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Abstract 

We propose a new one-parameter family of risk functions defined on portfolio return sample -paths, which 
is called conditional drawdown-at-risk  (CDaR). These risk functions depend on the portfolio drawdown 
(underwater) curve considered in active portfolio management. For some value of the tolerance parameter 
α , the CDaR is defined as the mean of the worst %100)1( ∗− α  drawdowns. The CDaR risk function 
contains the maximal drawdown and average drawdown  as its limiting cases. For a particular example, we 
find optimal portfolios with constraints on the maximal drawdown, average drawdown and several 
intermediate cases between these two. The CDaR family of risk functions originates from the conditional 
value-at-risk  (CVaR) measure. Some recommendations on how to select the optimal risk measure for 
getting practically stable portfolios are provided. We solved a real life portfolio allocation problem using 
the proposed risk functions. 

1. Introduction 

Optimal portfolio allocation is a longstanding issue in both practical portfolio management and 
academic research on portfolio theory. Various methods have been proposed and stud ied (for a 
review, see, for example, Grinold and Kahn, 1999). All of them, as a starting point, assume some 
measure of portfolio risk. 

From a standpoint of a fund manager, who trades clients' or bank’s proprietary capital, and for 
whom the clients' accounts are the only source of income coming in the form of management and 
incentive fees, losing these accounts is equivalent to the death of his business. This is true with no 
regard to whether the employed strategy is long-term valid and has very attractive expected 
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return characteristics. Such fund manager's primary concern is to keep the existing accounts and 
to attract the new ones in order to increase his revenues. A particular client who was persuaded 
into opening an account with the manager through reading the disclosure document, listening to 
the manager's attractive story, knowing his previous returns, etc., will decide on firing the 
manager based, most likely, on his account's drawdown magnitude and duration. In particular, it 
is highly uncommon, for a Commodity Trading Advisor (CTA) to still hold a client whose 
account was in a drawdown, even of small size, for longer than 2 years. By the same token, it is 
unlikely that a particular client will tolerate a 50% drawdown in an account with an average- or 
small-risk CTA. Similarly, in an investment bank setup, a proprietary system trader will be 
expected to make money in 1 year at the longest, i.e. he cannot be in a drawdown for longer than 
a year. Also, he/she may be shut down if a certain maximal drawdown condition will be 
breached, which, normally, is around 20% of his backing equity. Additionally, he will be given a 
warning drawdown level at which he will be reviewed for letting him keep running the system 
(around 15%). Obviously, these issues make managed accounts practitioners very concerned 
about both the magnitude and duration of their clients' accounts drawdowns. 

First, we want to mention the paper by Grossman and Zhou, 1993, where an assumption of log-
normality of equity statistics and use of dynamic programming theory led to an exact analytical 
solution of a maximal drawdown problem for a one-dimensional case. A subsequent 
generalization of this work for multiple dimensions was done in Cvitanic and Karatzas, 1995. In 
difference to these works, which find time-dependent portfolio allocation strategies under some 
assumptions on distributions of portfolio returns, this paper defines risk and finds optimal 
weights (constant over time) for a single sample-path of portfolio returns. We will be looking to 
find a constant set of weights, which will satisfy a certain risk condition over a period of time. 
We make no assumption about the underlying probability distribution, which allows considering 
variety of practical applications. We concentrate on the portfolio equity curves over a particular 
sample-path (historical or most probable future sample-path), i.e. we define some sample-path 
risk function rather than a risk measure on set of sample-paths. Being perfectly aware of this 
insufficiency, we leave the issue of definition and optimization of the drawdown-type risk 
measures on a set of sample-paths for future research. Also, we do not investigate the predictive 
power of a constant set of weights, trying to introduce and test the new approach in a simplified 
version. To some extend, we consider a setup similar to the index tracking problem, considered 
by Dembo and King, 1992, where an index historical performance is replicated by a portfolio 
with constant weights. 

In this paper, we have introduced and studied a one-parameter family of risk functions called 
conditional drawdown-at-disk (CDaR). This risk function quantifies in aggregated format the 
frequency and magnitude of the portfolio drawdowns over some period of time for a particular 
sample-path. By definition, a drawdown is the drop in the portfolio value comparing to the 
maximum achieved in the past. We can define drawdown in absolute or relative (percentage) 
terms. For example, if at the present time the portfolio value equals $9M and the maximal 
portfolio value in the past was $10M, we can say that the portfolio drawdown in absolute terms 
equals $1M and in relative terms equals 10%. For some value of the confidence parameter α , the 
α -CDaR is defined as the mean of the worst %100)1( ∗−α  drawdowns experienced over some 
period of time on a sample-path. For instance, 0.95-CDaR (or 95%- CDaR) is the average of the 
worst 5% drawdowns over the considered time interval. The CDaR risk function contains the 
average drawdown and maximal drawdown as its limiting cases. It takes into account both the 
magnitude and duration of the drawdowns, whereas the maximal drawdown function 
concentrates on a single event – maximal portfolio loss compared to its previous highest value. 
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The CDaR risk function is related to Value-at-Risk (VaR) risk measure and to Conditional Value-
at-Risk (CVaR) risk measure studied in the paper by Rockafellar and Uryasev, 2000; 2002. By 
definition, with a specified probability level α , the α -VaR of a portfolio is the lowest amount 

αζ  such that the probability that the loss will not exceed αζ  is greater or equal to α , in a 
specified time τ  (Jorion, 1996), whereas the α -CVaR is α -tail expectation of losses 
(Rockafellar and Uryasev, 2000; 2002). For continuous distributions, α -tail expectation of losses 
coincides with the conditional expectation of losses above the VaR value αζ . 

The CDaR risk function is based on CVaR concept and can be viewed as a modification of the 
CVaR to the case when the loss-function is defined as a drawdown for discrete time moments 
having equal weights (instead of scenario probabilities). CDaR and CVaR are conceptually 
closely related percentile-based functions. The optimization approach developed for CVaR by 
Rockafellar and Uryasev, 2000; 2002 can be directly extended to CDaR optimization. A nice 
feature of the CVaR optimization approach is that the resulting problem is linear in an extended 
set of variables, and the VaR value, αζ , is calculated automatically using an auxiliary variable 
(Rockafellar and Uryasev, 2000; 2002). The paper by Krokhmal et al., 2002, considers several 
equivalent approaches for generating return-CVaR efficient frontiers; in particular, it considers an 
approach, which maximizes return with CVaR constraints. 

In the case of continuous distributions, CVaR is known also as Mean Excess Loss, Mean 
Shortfall (Mausser and Rosen, 1999), or Tail Value-at-Risk (Artzner et al., 1999). A case study 
on the hedging of a portfolio of options using the CVaR minimization technique is included in 
Rockafellar and Uryasev, 2000. Also, the CVaR minimization approach was applied to credit risk 
management of a portfolio of bonds (Andersson et al., 1999). A case study on optimization of a 
portfolio of stocks with CVaR constraints is considered in Krokhmal et al., 2002. 

Similar to the Markowitz mean-variance approach (Markowitz, 1952) in a sample-variance 
setting, we formulate and solve the optimization problem with the return performance function 
and CDaR constraints. The return-CDaR optimization problem is a convex optimization problem 
with a linear performance function and piece-wise linear convex constraint (see definition of 
convexity in Rockafellar, 1970). This paper reduces the return-CDaR optimization problem to a 
linear programming problem. Linear programming allows solving optimization problems with 
many thousands of instruments. The algorithm is fast, numerically stable, and provides a solution 
during one run (without adjusting parameters like in genetic algorithms or neural networks). 
Linear programming approaches are routinely used in portfolio optimization with various criteria, 
including mean absolute deviation (Konno and Yamazaki, 1991), maximum deviation (Young, 
1998), and mean regret (Dembo and King, 1992). A reader interested in other applications of 
optimization techniques in the finance area can find relevant papers in Ziemba and Mulvey, 1998. 

2. General Setup 

Denote by function ),( txw  the uncompounded portfolio return at time t , where the components 
of the portfolio vector ),,,( 21 mxxxx …=  are weights of m  instruments in the portfolio. The 
drawdown function at time t  is defined as the difference between the maximum of the function 

),( txw  over the history preceding time t  and the value of this function at time t  

 { } ),(),(max),(
0

txwxwtxD
t

−=
≤≤

τ
τ

. (1) 
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We consider three risk functions defined on a sample-path of portfolio returns: (i) maximum 
drawdown (MaxDD), (ii) average drawdown (AvDD), and (iii) conditional drawdown-at-risk 
(CDaR). The CDaR risk function is actually a family of risk functions parameterized by the 
parameter α . It contains, as a special case, the maximum drawdown and average drawdown risk 
functions. 

The maximum drawdown on the interval ],0[ T , is calculated by maximizing the drawdown 
function ),( txD , i.e. 

 { }),(max)(
0

txDx
Tt≤≤

=M . (2) 

The average drawdown is equal to 

 ∫=
T

dttxD
T

x
0

),(
1

)(A . (3) 

Let N  denote the number of time sub-periods in the time interval ],0[ T  and ]1,0[∈α  denote the 
confidence level. In a case when N)1( α−  is an integer number (i.e. we are able to precisely 
count %100)1( ∗−α  of the drawdowns), the CDaR is defined as the mean of the worst 

%100)1( ∗− α  drawdowns. For instance, if 0=α , CDaR equals the average drawdown over all 
sub-periods, and if 95.0=α , then CDaR is the average of the worst 5% drawdowns. Let )(xαζ  
denote a threshold such that exactly %100)1( ∗−α  of drawdowns exceed this threshold (it is 
supposed that N)1( α−  is an integer number). In this case, CDaR with a confidence level α  is 
the average of %100)1( ∗−α  of the drawdowns 

 ,),(
)1(

1
)( ∫

Ω−
=∆

α
αα dttxD

T
x  

where { })(),(:],0[ xtxDTt αα ζ≥∈=Ω . However, when N)1( α−  is not integer, which is a 
general case, CDaR is expressed as a liner combination of )(xαζ  and drawdowns strictly 
exceeding )(xαζ , similar as it was done for CVaR by Rockafellar and Uryasev, 2002. The 
following optimization formula presents CDaR in a general case 

 








−
−

+=∆ ∫ +
T

dttxD
T

x
0

]),([
)1(

1
min)( ζ

α
ζ

ζ
α , (4) 

where },0{max][ gg =+ . If N)1( α−  is integer, then optimal value of ζ  in (4) coincides with 
)(xαζ , otherwise optimal ζ  is greater than or equal to )(xαζ . 

When α  tends to 1, CDaR tends to the maximum drawdown, i.e. )()(1 xx M=∆ , and when 
0=α , CDaR coincides with the average drawdown, i.e. )()(0 xx A=∆ . 

In portfolio optimization problems, depending on our risk preference, we can impose constraints 
on the maximum drawdown given by (2) 

 ,)( 1Cx ν≤M  

on average drawdown given by (3) 
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 Cx 2)( ν≤A , 

on CDaR given by (4) 

 ,)( 3 Cx να ≤∆  

or combine several constraints together 

 CxCxCx 321 )(,)(,)( ννν α ≤∆≤≤ AM , (5) 

where the constant C  represents the available capital and coefficients 1ν , 2ν  and 3ν  define the 
capital portions “allowed to be lost”. Usually, 

 1,,0 321 ≤≤ ννν . (6) 

Let j be an instrument index, mj ≤≤1 . Suppose that for a particular sample-path, returns 
))(,),2(),1(( Nrrr jjj … , mj ≤≤1 , for the portfolio instruments are available. Denote by 

∑
=

=
t

k
jj krty

1

)()(  the uncompounded cumulative return of the thj  instrument up to the time 

moment t. Let the vector ))(,),(),(()( 21 tytytyty m…=  be a set of uncompounded cumulative 
returns for m  portfolio instruments at time moment t . The cumulative portfolio return equals 

∑
=

=⋅=
m

i
ii xtyxtytxw

1

)()(),( . 

The average annualized return )(xR  over the period ],0[ T , which is a linear function of x , is 
defined as follows 

 xNyNxwxR dCdC ⋅== )(),()( 11 , (7) 

where d  is the number of years in the time interval ],0[ T  and C  is the available capital. 

We impose the so-called technological constraints on the vector x  given by box inequalities 

 { }mixxxxX i ,1,: maxmin =≤≤= , (8) 

for some constant values of minx  and maxx . However, other feasible constraints can be imposed. 

In the next section, we will consider the problem of maximizing return )(xR  subject to 
constraints on various risk functions and technological constraints (8) on the portfolio positions. 

3. Portfolio Optimization with Drawdown Constraints 

The maximization of the average return with constraints on maximum drawdown (see, (9)), 
average drawdown (see, (10)), or CDaR (see, (11)) can be formulated as the following 
mathematical programming problems: 

 
,)(..

)(max

1Cxts

xR
Xx

ν≤
∈

M
 (9) 
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,)(..

)(max

2Cxts

xR
Xx

ν≤
∈

A
 (10) 

 

 
.)(..

)(max

3Cxts

xR
Xx

να ≤∆
∈  (11) 

Similar to Rockafellar and Uryasev, 2000; 2002, problems (9), (10) and (11) can be reduced to 
linear programming problems using auxiliary variables. 

4. Discrete Formulation: Reduction to Linear Programming Problems  

Denote the vector of cumulative instrument returns up to the time moment k  by 

 )(kyyk = , (13) 

then the drawdown function is defined by the expression 

 xyxyxD kj
kj

k ⋅−⋅=
≤≤

}{max)(
1

, (14) 

and the average annualized return function is given by the inner product 

 xyxR NdC ⋅= 1)( . (15) 

Problems (9), (10) and (11) are formulated accordingly. 

The optimization problem with a constraint on maximum drawdown is 

 
,}}{max{max..

max

111

1

Cxyxyts

xy

kjkjNk

NdC
Xx

ν≤⋅−⋅

⋅

≤≤≤≤

∈  

which is reduced to the following linear programming (LP) problem 

 

,1,
,0

,1,
,1,

,1,..

max

maxmin

0

1

1

1

,

mixxx
u

Nkuu
Nkxyu

NkCxyuts

xy

i

kk

kk

kk

NdCux

≤≤≤≤
=

≤≤≥
≤≤⋅≥

≤≤≤⋅−

⋅

−

ν

 (16) 

where ku , Nk ≤≤1 , are auxiliary variables. 

The optimization problem with a constraint on average drawdown can be written as follows 
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or, equivalently, 

 

.1,
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,1,
,1,
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maxmin
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⋅
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 (17) 

Following the approach for Conditional Value-at-Risk (CVaR), see Rockafellar and Uryasev, 
2002, it can be proved that the optimization problem with a constraint on CDaR may be 
formulated as follows 

 
,]}{max[..

max

3
1

1)1(
1

1

Cxyxyts

xy

N

k
kjkjN

NdCXx
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⋅

∑
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which is reduced to the LP 
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ζ

νζ α

ζ

 (18) 

An important feature of formulation (18) is that it does not involve the threshold function )(xαζ . 
At optimal solution of problem (18), variables x  and ζ  give an optimal portfolio and 
corresponding value of the threshold function. 
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5. Calculation Results 

For numerical experiments, we have considered the equity curves generated by a futures 
technical trading system in 32=m  different markets (a wide range of major liquid markets: 
currencies, currency crosses, U.S. treasuries both short- and long-term, foreign long-term 
treasuries, international equity indices, and metals). The list of market ticker symbols, provided in 
the results below, is mnemonic and corresponds to the widely used data provider, FutureSource. 
The individual equity curves covered a time span of 1/1/1988 through 9/1/1999. The equity 
curves were based on $20M backing equity in a margin account and were uncompounded, i.e. the 
risk was taken based always on the original $20M and did not account for the money made or lost 
during a trading strategy. 

As for the technological constraints (8), we chose 2.0min =x  and 8.0max =x . This choice was 
dictated by the need to have the resultant margin-to-equity ratio in the account within admissible 
bounds, which are specific for a particular portfolio. In this futures trading setup, these 
constraints are analogous to the “fully- invested” condition from classical Sharpe-Markowitz 
theory. They define bounds on the leverage of the strategy and make an efficient frontier to be 
concave. If all positions are equal to the lower bound 0.2, then the sum of the positions equals 

4.6322.0 =⋅  and the minimal leverage equals 6.4. However, if all positions are equal to the 
upper bound 0.8, then the sum of the positions equals 6.25328.0 =⋅  and the maximal leverage 
equals 25.6. The optimal allocation of weights picks both the optimal leverage and proportions 
between instruments. 

The absence of technological constraints (8) leads to the infinite leverage of these types of 
strategies and as a result, an efficient frontier would be a straight line passing through (0,0). 
Another subtle issue is the stability of the optimal portfolios in the case when the constraints are 
"too lax". It is a matter of empirical evidence that the more lax the constraints are – the better 
portfolio equity curve you can get through optimal mixing – and the less stable these results 
would be with respect to walk-forward analysis. The aforementioned set of constraints was 
empirically found to be both leading to sufficiently stable portfolios and allowing enough mix of 
the individual equity curves. 

The problem, then, is to find a set of weights ),,,( 21 mxxxx …= , such that it solves the 
minimization problems (16), (17), or (18). These linear programming problems have been solved 
by the CPLEX solver (inputs are prepared with C++ programming language). An alternative 
verification of the solutions was obtained via solving these optimization problems by a genetic 
algorithm implemented in VB6, discussion of which is beyond the present scope. 

Let us denote (16), (17) and (18) by MaxDD, AvDD and α -CDaR problems, respectively. We 
have solved these optimization problems for cases of 0)1( =− α , 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 
1. As we have noted before, cases of 0)1( =− α  and 1)1( =−α  correspond to MaxDD and 
AvDD problems, accordingly. 

Tables 1 and 2 present the list of markets and corresponding sets of optimal weights for MaxDD 
and AvDD problems. Table 3 presents the weights for the CDaR case with the confidence level 

05.0)1( =− α . In these tables, the solution achieving maximal reward/risk ratio is boldfaced. 
Note that the smallest value of risk is chosen in such a way that the solutions of the optimization 
problem still exist. This means that each problem does not have a solution beyond the upper and 
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lower bounds of the risk range covered (the whole efficient frontier is shown). The risk and rate 
of return are expressed in percentage terms with respect to the original account size, i.e. $20M. 

The efficient frontiers for the reward-MaxDD and reward-AvDD problems are shown in Figures 
1 and 2, respectively. We do not show efficient frontiers for reward-CDaR problem in separate 
graphs (except for MaxDD and AvDD). However, in Figure 3 we show the reward-MaxDD 
graphs for portfolios optimal with 0)1( =− α , 0.05, 0.4 and 1 CDaR constraints. As expected, 
the case with 0)1( =− α  CDaR corresponding to MaxDD has a concave efficient frontier 
dominating other graphs. The reward is not maximal for each level of MaxDD when we solved 
the optimization problems with 05.0)1( =− α , 0.4 and 1 CDaR constraints. Viewed from the 
reference point of MaxDD problem, 1)1( <−α  solutions are uniformly “worse.” However, none 
of these solutions are truly better or worse than others from a mathematical standpoint. Each of 
them provides the optimal solution in its own sense. Some thoughts on quality of solutions are 
discussed from a practical standpoint below. Similar to Figure 3, Figure 4 depicts the reward-
AvDD graphs for portfolios optimal with 0)1( =− α , 0.05, 0.4 and 1 CDaR constraints. The case 
with 1)1( =−α  CDaR corresponding to AvDD has a concave efficient frontier dominating other 
graphs. 

As in classical portfolio theory, we are interested in a portfolio with a maximal reward/risk ratio, 
i.e. the portfolio corresponding to the point of contact of the straight line coming through (0,0) 
and the efficient frontier. For the risk defined in terms of problems (16), (17), and (18), we will 
call the reward/risk ratios as MaxDDRatio, AvDDRatio, and CDaRRatio which, by definition, 
are: 

 )()(MaxDDRatio xxR M= , )()(AvDDRatio xxR A= , and )()(CDaRRatio xxR α∆= . 

The charts of MaxDDRatio and AvDDRatio quantities are shown in Figures 5 and 6 for the same 
cases of )1( α−  as in Figures 3 and 4. 

We have solved optimization problem (18) for cases of 0)1( =− α , 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 
and 1. Let us note that the case of 05.0)1( =− α  (see Table 3), considering minimization of the 
worst 5% part of the underwater curve, produces a set of weights significantly different from the 

0)1( =− α  case (MaxDD problem), and 05.0)1( =− α  CDaR case contains several tens of 
events over which the averaging was performed. We consider that optimization with 

05.0)1( =− α  or 0.1 constraints produces a more robust portfolio than the optimization with 
MaxDD or AvDD constraints. CDaR solution takes into account many significant drawdowns, 
comparing to MaxDD considering only the largest drawdown. Also, CDaR solution is not 
impacted by many small drawdowns like a solution in AvDD case. 

We have also verified our results via solving the related nonlinear optimization problems 
corresponding to problems (16-18). These problems have optimized the drawdown ratios 
corresponding to the same set of constraints. Verification was done using a genetic optimization 
algorithm. We were satisfied to find that this procedure has produced the same sets of weights for 
the optimal solutions. 
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6. Conclusions  

We have introduced a new CDaR risk function, which is quite useful in practical portfolio 
management. This function is based on CVaR risk measure and has the MaxDD and AvDD risk 
functions as its limiting cases. We have studied reward/risk ratios implied by these risk functions, 
namely MaxDDRatio, AvDDRatio, and CDaRRatio. We have shown that the portfolio allocation 
problem with CDaR, MaxDD and AvDD risk functions can be efficiently solved. We have 
formulated and solved a portfolio allocation problem for a real- life example. Implemented in a 
managed accounts' environment, these developments will allow a trading or risk manager to 
allocate risk according to his/her personal assessment of magnitude and duration of extreme 
drawdowns of a portfolio equity. 

We think that solutions produced by the MaxDD approach may contain a significant amount of 
statistical error since it is based on a single observation of maximal loss. The CDaR family of risk 
functions allows a risk manager to control the worst %100)1( ∗−α  drawdowns. Due to the 
statistical averaging of drawdowns, a better prediction of risk in the future and a more stable 
portfolio can be obtained. Our studies indicate that CDaR control with an appropriate level (e.g. 

95.0=α , i.e. optimizing over the 5% of the worst drawdowns) produces a more stable weight 
allocation compared to one produced by MaxDD control. A detailed study of this issue calls for a 
separate publication. 
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Table 1. List of markets and corresponding sets of optimal weights for the MaxDD problem. 
The solution achieving maximal reward/risk ratio is boldfaced. 

Risk, %  4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 
Reward, %  25.0 36.3 44.5 51.4 57.3 63.0 67.7 71.7 75.2 78.0 80.4 81.9 82.9 83.0 
Reward/Risk 6.26 7.27 7.42 7.34 7.16 7.00 6.77 6.52 6.27 6.00 5.74 5.46 5.18 4.88 

 
OPTIMAL PORTFOLIO CONFIGURATION 

 
AAO 0.20 0.25 0.25 0.28 0.21 0.39 0.68 0.80 0.69 0.80 0.80 0.80 0.80 0.80 
AD 0.20 0.40 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
AXB 0.20 0.37 0.32 0.47 0.63 0.80 0.55 0.64 0.80 0.80 0.80 0.80 0.80 0.80 
BD 0.20 0.20 0.20 0.20 0.62 0.41 0.53 0.56 0.80 0.80 0.80 0.80 0.80 0.80 
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.22 0.51 0.77 0.80 0.80 0.80 
CD 0.25 0.59 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
CP 0.62 0.80 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
DGB 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.63 0.80 0.80 0.80 0.80 0.80 
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.35 0.74 0.80 0.80 0.80 
EU 0.20 0.20 0.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FV 0.20 0.20 0.39 0.58 0.52 0.50 0.54 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FXADJY 0.27 0.58 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FXBPJY 0.20 0.20 0.20 0.20 0.20 0.20 0.53 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FXEUBP 0.20 0.28 0.29 0.32 0.34 0.65 0.72 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FXEUJY 0.20 0.20 0.41 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FXEUSF 0.33 0.20 0.25 0.30 0.73 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FXNZUS  0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.27 0.80 0.80 
FXUSSG 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.28 0.21 0.43 0.72 0.80 0.80 0.80 
FXUSSK 0.20 0.80 0.80 0.65 0.73 0.70 0.60 0.35 0.20 0.20 0.20 0.80 0.80 0.80 
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.57 0.80 0.80 
JY 0.20 0.23 0.34 0.25 0.37 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
LBT 0.20 0.35 0.62 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
LFT 0.20 0.20 0.20 0.20 0.39 0.63 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
LGL 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.37 0.80 0.80 0.80 0.80 0.80 0.80 
LML 0.20 0.27 0.36 0.46 0.51 0.60 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
MNN 0.20 0.30 0.42 0.45 0.44 0.80 0.80 0.80 0.77 0.80 0.80 0.80 0.80 0.80 
SF 0.20 0.20 0.37 0.39 0.52 0.52 0.63 0.75 0.80 0.80 0.80 0.80 0.80 0.80 
SI 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.40 0.80 
SJB 0.49 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
SNI 0.20 0.56 0.67 0.69 0.78 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
TY 0.20 0.20 0.23 0.32 0.60 0.69 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
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Table 2. List of markets and corresponding sets of optimal weights for the AvDD problem. 
The solution achieving maximal reward/risk ratio is boldfaced. 

Risk, %  0.77 1.00 1.23 1.46 1.50 1.69 1.92 2.15 2.38 2.61 2.84 3.07 
Reward, %  21.7 35.6 45.3 53.3 54.5 59.9 65.7 70.6 74.8 78.2 81.2 83.0 
Reward/risk 28.2 35.6 36.8 36.5 36.3 35.4 34.2 32.9 31.4 30.0 28.6 27.0 

 
OPTIMAL PORTFOLIO CONFIGURATION 

 
AAO 0.20 0.46 0.61 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
AD 0.21 0.57 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
AXB 0.20 0.20 0.23 0.55 0.62 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.52 0.80 0.80 
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.43 0.80 0.80 0.80 
CD 0.20 0.37 0.54 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
CP 0.24 0.60 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
DGB 0.33 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.71 0.80 
ED 0.20 0.30 0.35 0.33 0.32 0.21 0.31 0.44 0.70 0.75 0.80 0.80 
EU 0.20 0.20 0.20 0.20 0.20 0.20 0.46 0.80 0.80 0.80 0.80 0.80 
FV 0.20 0.20 0.37 0.50 0.53 0.76 0.80 0.80 0.80 0.80 0.80 0.80 
FXADJY 0.20 0.20 0.20 0.31 0.33 0.42 0.57 0.73 0.80 0.80 0.80 0.80 
FXBPJY 0.20 0.20 0.32 0.49 0.50 0.69 0.80 0.80 0.80 0.80 0.80 0.80 
FXEUBP 0.20 0.20 0.29 0.53 0.58 0.77 0.80 0.80 0.80 0.80 0.80 0.80 
FXEUJY 0.20 0.59 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FXEUSF 0.29 0.62 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FXNZUS  0.20 0.20 0.20 0.20 0.20 0.27 0.80 0.80 0.80 0.80 0.80 0.80 
FXUSSG 0.20 0.20 0.20 0.40 0.48 0.71 0.80 0.80 0.80 0.80 0.80 0.80 
FXUSSK 0.20 0.74 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.79 
JY 0.20 0.38 0.62 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
LBT 0.20 0.52 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
LFT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.36 0.46 0.80 
LGL 0.20 0.20 0.20 0.20 0.20 0.20 0.29 0.48 0.65 0.80 0.80 0.80 
LML 0.20 0.20 0.21 0.34 0.34 0.49 0.64 0.80 0.80 0.80 0.80 0.80 
MNN 0.20 0.20 0.20 0.20 0.20 0.20 0.42 0.80 0.80 0.80 0.80 0.80 
SF 0.20 0.20 0.38 0.50 0.54 0.67 0.80 0.80 0.80 0.80 0.80 0.80 
SI 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 
SJB 0.23 0.67 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
SNI 0.20 0.33 0.47 0.62 0.66 0.72 0.80 0.80 0.80 0.80 0.80 0.80 
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.32 0.69 0.77 0.80 0.80 
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Table 3. List of markets and corresponding sets of optimal weights for the CDaR problem with 
05.0)1( =− α . The solution achieving maximal reward/risk ratio is boldfaced. 

Risk, %  3.0 3.2 3.7 3.8 3.9 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 
Reward, %  24.2 27.2 33.3 34.4 35.5 36.6 46.3 54.7 62.1 68.4 73.9 78.6 82.0 83.0 

αζ , %  2.55 2.64 3.10 3.18 3.27 3.36 4.26 5.13 6.02 6.81 7.66 8.61 9.57 9.98 

Reward/Risk 8.06 8.50 8.99 9.04 9.09 9.14 9.26 9.12 8.86 8.55 8.21 7.86 7.45 6.92 

 
OPTIMAL PORTFOLIO CONFIGURATION 

 
AAO 0.20 0.21 0.30 0.32 0.33 0.34 0.49 0.54 0.69 0.80 0.80 0.80 0.80 0.80 
AD 0.24 0.36 0.60 0.64 0.68 0.69 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
AXB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.33 0.46 0.80 0.80 0.80 0.80 
BD 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.60 0.69 0.67 0.80 0.80 0.80 0.80 
BP 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 
CD 0.20 0.20 0.29 0.31 0.32 0.33 0.49 0.64 0.80 0.80 0.80 0.80 0.80 0.80 
CP 0.23 0.34 0.41 0.44 0.46 0.51 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
DGB 0.50 0.71 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
DX 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.31 0.80 0.80 0.80 
ED 0.20 0.20 0.20 0.20 0.20 0.20 0.26 0.27 0.31 0.28 0.28 0.48 0.64 0.80 
EU 0.20 0.20 0.23 0.26 0.30 0.31 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FV 0.20 0.20 0.20 0.23 0.25 0.30 0.47 0.47 0.56 0.73 0.80 0.80 0.80 0.80 
FXADJY 0.20 0.22 0.33 0.34 0.35 0.36 0.49 0.69 0.80 0.80 0.80 0.80 0.80 0.80 
FXBPJY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.32 0.50 0.73 0.80 0.80 0.80 0.80 
FXEUBP 0.20 0.20 0.29 0.31 0.34 0.34 0.43 0.39 0.46 0.76 0.80 0.80 0.80 0.80 
FXEUJY 0.20 0.35 0.68 0.72 0.74 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
FXEUSF 0.20 0.20 0.28 0.30 0.31 0.29 0.38 0.59 0.80 0.80 0.80 0.80 0.80 0.80 
FXNZUS  0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.77 0.80 
FXUSSG 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.37 0.59 0.75 0.80 0.80 0.80 0.80 
FXUSSK 0.20 0.20 0.22 0.22 0.24 0.25 0.61 0.80 0.80 0.80 0.79 0.80 0.80 0.80 
GC 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 
JY 0.31 0.35 0.42 0.43 0.45 0.47 0.75 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
LBT 0.20 0.20 0.20 0.20 0.20 0.20 0.47 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
LFT 0.20 0.20 0.20 0.20 0.20 0.20 0.25 0.28 0.43 0.58 0.66 0.76 0.80 0.80 
LGL 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.27 0.66 0.80 0.80 
LML 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.31 0.52 0.69 0.74 0.80 0.80 
MNN 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.34 0.74 0.80 0.80 0.80 0.80 0.80 
SF 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.54 0.80 0.80 0.80 0.80 0.80 0.80 
SI 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.58 0.80 
SJB 0.47 0.57 0.71 0.74 0.77 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
SNI 0.21 0.22 0.29 0.29 0.30 0.33 0.58 0.80 0.80 0.80 0.80 0.80 0.80 0.80 
TY 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.39 0.70 0.80 0.80 0.80 
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Figure 1. Efficient frontier for the MaxDD problem (rate of return versus MaxDD). 

 

 

Figure 2. Efficient frontier for the AvDD problem (rate of return versus AvDD). 
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Figure 3. Reward-MaxDD graphs for optimal portfolios with 0)1( =− α , 0.05, 0.4 and 1 CDaR 
constraints (rate of return versus MaxDD). The frontier is efficient only for the case with 

0)1( =− α  CDaR constraints, which corresponds to the MaxDD risk measure. 

 
 

Figure 4. Reward-AvDD graphs for optimal portfolios with 0)1( =− α , 0.05, 0.40 and 1 CDaR 
constraints (rate of return versus AvDD). The frontier is efficient only for the case with 

1)1( =−α  CDaR constraints, which corresponds to the AvDD risk measure. 
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Figure 5. MaxDDRatio graphs for optimal portfolios with 0)1( =− α , 0.05, 0.4 and 1 CDaR 
constraints (MaxDDRatio versus MaxDD). The maximum MaxDDRatio is achieved in the case 
with 0)1( =− α  CDaR constraints, which corresponds to the MaxDD risk measure. 

 
 
Figure 6. AvDDRatio graphs for optimal portfolios with 0)1( =− α , 0.05, 0.40 and 1 CDaR 
constraints (AvDDRatio versus AvDD). The maximum AvDDRatio is achieved in the case with 

1)1( =− α  CDaR constraints, which corresponds to the AvDD risk measure. 
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