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Figure 1: Dynamic human meshes estimated using radio signals. Images captured by a camera co-located with the radio sensor are
presented here for visual reference. (a) shows the estimated human meshes of the same person in sportswear, a baggy costume and when
he is behind the wall. (b) shows the dynamic meshes that capture the motion when the person walks, waves his hand, and sits.

Abstract – This paper presents RF-Avatar, a neural net-
work model that can estimate 3D meshes of the human body
in the presence of occlusions, baggy clothes, and bad light-
ing conditions. We leverage that radio frequency (RF) sig-
nals in the WiFi range traverse clothes and occlusions and
bounce off the human body. Our model parses such ra-
dio signals and recovers 3D body meshes. Our meshes are
dynamic and smoothly track the movements of the corre-
sponding people. Further, our model works both in sin-
gle and multi-person scenarios. Inferring body meshes
from radio signals is a highly under-constrained problem.
Our model deals with this challenge using: 1) a combi-
nation of strong and weak supervision, 2) a multi-headed
self-attention mechanism that attends differently to tempo-
ral information in the radio signal, and 3) an adversari-
ally trained temporal discriminator that imposes a prior
on the dynamics of human motion. Our results show that
RF-Avatar accurately recovers dynamic 3D meshes in the
presence of occlusions, baggy clothes, bad lighting condi-
tions, and even through walls.

1. Introduction

Estimating a full 3D mesh of the human body, capturing
both human pose and body shape, is a challenging task in

computer vision. The community has achieved major ad-
vances in estimating 2D/3D human pose [15, 44], and more
recent work has succeeded in recovering a full 3D mesh of
the human body characterizing both pose and shape [9, 23].
However, as in any camera-based recognition task, human
mesh recovery is still prone to errors when people wear
baggy clothes, and in the presence of occlusions or under
bad lighting conditions.

Recent research has proposed to use different sensing
modalities that could augment vision systems and allow
them to expand beyond the capabilities of cameras [46, 45,
12, 47, 50]. In particular, radio frequency (RF) based sens-
ing systems have demonstrated through-wall human detec-
tion and pose estimation [48, 49]. These methods leverage
the fact that RF signals in the WiFi range can traverse occlu-
sions and reflect off the human body. The resulting systems
are privacy-preserving as they do not record visual data, and
can cover a large space with a single device, despite occlu-
sions. However, RF signals have much lower spatial reso-
lution than visual camera images, and therefore it remains
an open question as to whether it is possible at all to capture
dynamic 3D body meshes characterizing the human body
and its motion with RF sensing.

In this paper, we demonstrate how to use RF sensing
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Figure 2: Specularity of the human body with respect to RF.
The human body reflects RF signals as opposed to scattering them.
A single RF snapshot can only capture a subset of limbs depending
on the orientation of the surfaces.

to estimate dynamic 3D meshes for human bodies through
walls and occlusions. We introduce RF-Avatar, a neural net-
work framework that parses RF signals to infer dynamic 3D
meshes. Our model can capture body meshes in the pres-
ence of significant, and even total, occlusion. It stays accu-
rate in bad lighting conditions, and when people wear cos-
tumes or baggy clothes. Figure 1 shows RF-Avatar’s per-
formance on a few test examples. The left panel demon-
strates that RF-Avatar can capture the 3D body mesh accu-
rately even when the human body is obscured by a volumi-
nous costume, or completely hidden behind a wall. Further,
as shown in the right panel, RF-Avatar generates dynamic
meshes that track the body movement. In Section 5.2, we
show that RF-Avatar also works in dark settings and in sce-
narios with multiple individuals.

Inferring 3D body meshes solely from radio signals is a
difficult task. The human body is specular with respect to
RF signals in the WiFi range –i.e., the human body reflects
RF signals, as opposed to scattering them. As illustrated
in Figure 2, depending on the orientation of the surface of
each limb, the RF signal may be reflected towards our ra-
dio or away from it. Thus, in contrast to camera systems
where any snapshot shows all unoccluded body parts, in ra-
dio systems, a single snapshot has information only about
a subset of the limbs. This problem is further complicated
by the fact that there is no direct relationship between the
reflected RF signals from a person and their underlying 3D
body mesh. We do not know which part of the body actually
reflected the signal back. This is different from camera im-
ages, which capture a 2D projection of the 3D body meshes
(modulo clothing). The fact that the reflected RF signal at a
point in time has information only about a unknown subset
of the body parts means that using RF sensing to capture
3D meshes is a highly unconstrained problem – at a point
in time, the reflected RF signal could be explained by many
different 3D meshes, most of which are incorrect.

RF-Avatar tackles the above challenge as follows. We
first develop a module that uses the RF signal to detect and
track multiple people over time in 3D space, and create tra-

jectories for each unique individual. Our detection pipeline
extends the Mask-RCNN framework [21] to handle RF sig-
nals. RF-Avatar then uses each person’s detected trajec-
tory, which incorporates multiple RF snapshots over time,
to estimate their body mesh. This strategy of combining
information across successive snapshots of RF signals al-
lows RF-Avatar to deal with the fact that different RF snap-
shots contain information about different body parts due to
the specularity of the human body. We incorporate a multi-
headed attention module that lets the neural network selec-
tively focus on different RF snapshots at different times, de-
pending on what body parts reflected RF signals back to the
radio. RF-Avatar also learns a prior on human motion dy-
namics to help resolve ambiguity about human motion over
time. We introduce a temporal adversarial training method
to encode human pose and motion dynamics.

To train our RF-based model, we use vision to provide
cross-modality supervision. We use various types of super-
vision, ranging from off-the-shelf 2D pose estimators (for
pose supervision) to vision-based 3D body scanning (for
shape supervision). We design a data collection protocol
that scales to multiple environments, while also minimizing
overhead and inconvenience to subjects.

We train and test RF-Avatar using data collected in pub-
lic environments around our campus. Our experimental re-
sults show that in visible scenes, RF-Avatar has mean joint
position error of 5.84 cm and mean vertex-to-vertex dis-
tance of 1.89 cm. For through-wall scenes and subjects
wearing loose costumes, RF-Avatar has mean joint posi-
tion error of 6.26 cm and mean vertex-to-vertex distance of
1.97 cm whereas the vision-based system fails completely.
We conduct ablation studies to show the importance of our
self-attention mechanism and the adversarially learned prior
for human pose and motion dynamics.

2. Related Work

Shape representation. Compact and accurate representa-
tions for human body meshes have been studied in computer
graphics, with many models proposed in prior work such
as linear blend skinning (LBS), the pose space deforma-
tion model (PSD) [28], SCAPE [10], and others [8]. More
recently, the Skinned Multi-Person Linear (SMPL) model
was proposed by [33]. SMPL is a generative model that
decomposes the 3D mesh into a shape vector (characteriz-
ing variation in height, body proportions, and weight) and
a pose vector (modeling the deformation of the 3D mesh
under motion). This model is highly realistic and can repre-
sent a wide variety of body shapes and poses; we therefore
adopt the SMPL model as our shape representation.

Capturing human shapes. There are broadly two meth-
ods used to capture body shape in prior work. In scanning-
based methods, several images of a subject are obtained,



typically in a canonical pose, and then optimization-based
methods are used to recover the SCAPE or SMPL pa-
rameters representing the subject’s shape. The authors of
[14, 19, 20, 41, 6] used scanning approaches, incorporat-
ing silhouette information and correspondence cues to fit a
SCAPE or SMPL model. However, scanning-based meth-
ods have the inherent limitation that they can be easily af-
fected by clothing, so they only work well when subjects are
in form-fitting clothes. They are also limited to indoor set-
tings and do not properly capture motion dynamics. Thus,
many recent works, including ours, use scanning methods
only to provide supervision to learning-based methods.

In learning-based methods, models are trained to predict
parameters of a shape model (e.g., SMPL). Such methods
are challenging due to the lack of 3D human mesh dataset.
Despite this, there has been significant success in this area.
Bogo et al. [13] proposed a two-stage process to firstly pre-
dict joint locations and then fit SMPL parameters from a 2D
image. Lassner et al. [27] developed on this approach, in-
corporating a semi-automatic annotation scheme to improve
scalability. More recent work [23, 36] captured 3D meshes
from 2D images using adversarial loss, and Kanazawa et
al. [24] learned dynamic 3D meshes using videos as an ad-
ditional data source. In this work, we adopt a learning-based
approach, building on the above literature, and expanding it
to deal with scenarios with occlusions and bad lighting.

Priors on human shape and motion. Capturing the prior
of human shape and human motion dynamics is essential
in order to generate accurate and realistic dynamic meshes.
Supervision for training such systems is typically in the
form of 2D/3D keypoints; often, there is no supervision for
full 3D joint angles, so priors must be used for regulariza-
tion. Bogo et al. [13] and Lassner et al. [27] used optimiza-
tion methods to fit SMPL parameters and thus encode hu-
man shape; however, priors on human motion were not en-
coded when training their systems. Kanazawa et al. [23, 24]
used an adversarial loss to provide a prior when considering
shape estimation from 2D images and video but this method
did not capture a prior on motion dynamics, as the discrim-
inator operated on a per timestep basis. In this work, we
introduce a new prior to capture motion dynamics. We also
incorporate an attention module to selectively attend to dif-
ferent keypoints when producing shape estimates.

Wireless sensing to capture shape. Radar systems can use
RF reflections to detect and track humans [5, 37, 29]. How-
ever, they typically only track location and movements and
cannot generate accurate or dynamic body meshes. Radar
systems that generate body meshes (e.g., airport security
scanners) operate at very high frequencies [42, 7, 11]; such
systems work only at short distances, cannot deal with oc-
clusions such as furniture and walls, and do not generate
dynamic meshes. In contrast, our system operates through
walls and occlusions and generates dynamic meshes. There

is also prior work utilizing RF signals to capture elements
of human shape. RF-Capture [4] presented a system that
can detect human body parts when a person is walking to-
wards a radio transceiver. RF-Pose [48] presented a system
to perform 2D pose estimation for multiple people, and RF-
Pose3D [49] extended this result to enable multi-person 3D
keypoint detection. Our work develops on these ideas by
providing the ability to reconstruct a full 3D mesh captur-
ing shape and motion, as opposed to only recovering limb
and joint positions.

3. RF Signals and Convolutions
Much of the work on sensing people using radio sig-

nals uses a technology called FMCW (Frequency Modu-
lated Continuous Wave) [40, 35]. An FMCW radio works
by transmitting a low power radio signal and receiving its
reflections from the environment. Different FMCW radios
are available [2, 3] and RF-Avatar uses one similar to that
used in [4] and can be ordered from [1]. Our model is not
specific to a particular radio, and applies generally to such
radar-based radios. In RF-Avatar , the reflected RF signal
is transformed into a function of the 3D spatial location and
time [49]. This results in a 4D tensor that forms the input
to our neural network. It can be viewed as a sequence of
3D tensors at different points of time. Each 3D tensor is
henceforth referred to as the RF frame at a specific time.

It is important to note that RF signals have intrinsically
different properties from visual data, i.e., camera pixels:
first, the human body is specular in the frequency range that
traverse walls (see Figure 2). Each RF frame therefore only
captures a subset of the human body parts. Also, in the
frequency range of interest (in which RF can pass through
walls), RF signals have low spatial resolution – our radio
has a depth resolution about 10 cm, and angular resolution
of 15 degrees. This is a much lower resolution than what is
obtained with a camera. The above properties have impli-
cations for human mesh recovery, and need to be taken into
account in designing our model.
CNN with RF Signals: Processing the 4D RF tensor with
4D convolutions has prohibitive computational and space
complexity. We use a decomposition technique [49] to de-
compose both the RF tensor and the 4D convolution into
3D ones. The main idea is to represent each 3D RF frame
as a summation of multiple 2D projections. As a result, the
operation in the original dimension is equivalent to a com-
bination of operations in lower-dimensions.

4. Method
We propose a neural network framework that parses

RF signals and produces dynamic body meshes for mul-
tiple people. The design of our model is inspired by the
Mask-RCNN framework [21]. Mask-RCNN is designed for
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Figure 3: Overview of the network model used in RF-Avatar.

instance-level recognition tasks in 2D images; we extend it
to handle 4D RF inputs and generate 3D body meshes over
time. Figure 3 illustrates the 2-stage network architecture
used in RF-Avatar. In the first stage of the model, we use a
Trajectory Proposal Network (TPN) to detect and track each
person in 3D space (Sec. 4.2). TPN outputs a trajectory (a
sequence of bounding boxes over time) for each person, and
we use this trajectory to crop the spatial regions in the RF
tensor that contain this particular person.

The second stage of the model takes the cropped features
as input and uses a Trajectory-CNN (TCNN) to estimate the
sequence of body meshes of this person (Sec. 4.3). TCNN
introduces an attention module to adaptively combine fea-
tures from different RF frames when predicting the body
shape (Sec. 4.3). TCNN also outputs a sequence of joint
angles capturing the body motion. It uses a Pose and Dy-
namics Discriminator (PDD) to help resolve the ambiguities
about human motion (Sec. 4.4). We describe how we use
various forms of supervision to train RF-Avatar in Sec. 4.5.

4.1. Human Mesh Representation

We use the Skinned Multi-Person Linear (SMPL)
model [33] to encode the 3D mesh of a human body. SMPL
factors the human mesh into a person-dependent shape vec-
tor and pose-dependent 3D joint angles. The shape vector
β ∈ R10 corresponds to the first 10 coefficients of a PCA
shape model. The joint angles θ ∈ R72 define the global ro-
tation of the body and the 3D relative rotations of 23 joints.
SMPL provides a differentiable functionM(β,θ) that out-
puts N = 6890 vertices of a triangular mesh given β and θ.
A 3D mesh of a human body in the world coordinates is rep-
resented by 85 parameters including β, θ (describing shape
and pose via SMPL) and a global translation vector δ. Note
that the 3D location of body joints, J , can be computed via
a linear combination of mesh vertices.

RF-Avatar recovers dynamic body meshes, i.e., a se-
quence of SMPL parameters including a time-invariant
β characterizing the body, and a time-variant Θ =
(θ1,θ2, . . . ,θT ) describing the joint angles, and a time-

variant global translation vector ∆ = (δ1, δ2, . . . , δT ) cap-
turing the location.

4.2. Trajectory Proposal Network

The first stage in our 3D mesh estimation pipeline is to
detect regions containing individuals and then track them
over time to form trajectories. Our Trajectory Proposal Net-
work (TPN) takes as input the 4D RF tensor. It first extracts
features using a backbone with spatial-temporal convolu-
tions, and then uses a recurrent region proposal network to
propose candidate regions for each RF frame. After a fur-
ther candidate selection stage with a box head, we perform
a lightweight optimization to link the detections over time.
We describe each TPN component in detail:
Backbone: This takes the raw sequence of RF frames as
input and uses a set of decomposed 4D convolutional layers
(see Sec. 3) with residual connections to produce features.
Recurrent Region Proposal Network (Recurrent-RPN):
In contrast to prior work using RPN in detection and track-
ing [38, 21, 16], our recurrent-RPN has two major differ-
ences. First, we wish to detect individuals in the 3D world
space instead of the 2D image space. Thus, our model uses
3D bounding boxes as anchors and learns to propose 3D
regions by transforming these anchors. Proposing regions
in 3D space removes scale-variation of regions due to per-
spective projection to image space [30]. For tractability, we
choose 3D anchors to be those close to the ground plane.
Second, our RPN works in a recurrent manner to propose
regions for each RF frame sequentially. It uses recurrent
layers on top of convolutional layers to predict object scores
and regression outputs for all anchor regions. Non-maximal
suppression (NMS) is used to remove duplicated proposals.
Box Head: To improve detection precision, we use a box
head to further classify proposals into correct/incorrect de-
tections. We use standard box head with RoIAlign [21].
Tracker: The tracker module receives proposals from the
Box Head output at each timestep. It then associates to-
gether proposals that belong to the person, and stitches them



over time to form trajectory tubes. We use a lightweight op-
timization tracker based on bipartite matching [16].

4.3. Trajectory-CNN with Attention

Trajectory-CNN (TCNN) uses the cropped features from
the TPN as input and estimates the body mesh parameters
for each individual. To deal with the fact that different
RF frames contain information about different body parts,
we introduce a self-attention module to predict a tempo-
rally consistent shape β. TCNN first extracts shape fea-
tures at different timesteps as H = (h1,h2, . . . ,hT ). Our
self-attention module uses a function f to attend to differ-
ent frames and combine all the shape features into a fixed-
length feature vector: h̃ = 1

C(H)

∑
t (f(ht) · ht), where

C(H) =
∑
t(f(ht) is a normalization factor. We utilize

multi-headed self-attention [31], allowing the neural net-
work to attend to different aspects of the shape features dif-
ferently. Feature vectors from different heads are concate-
nated together to produce the β prediction.

Empirical results show that this temporal self-attention
leads to improved shape estimation and model interpretabil-
ity. We further believe that the benefits of temporal attention
extend to video-based 3D mesh models, since it allows the
model to recognize that different frames may have different
importance for estimating a particular mesh parameter. For
example, height is better estimated from frames where the
subject is standing as opposed to sitting.

4.4. Learning Pose and Dynamics Priors

We would like to learn a prior that encodes feasible hu-
man pose and motion dynamics in order to ensure that the
3D meshes it produces over time are realistic. Without such
a prior, and especially given the weak supervision for the
3D joint angles (see Sec. 4.5), our model could produce
arbitrary rotations of joints and/or temporally inconsistent
meshes. This issue is exacerbated in the case of pose esti-
mation from RF signals, as we only get sparse observations
at each timestep, due to human body specularity.

We introduce an adversarial prior that regularizes both
human body pose and motion dynamics and ensures real-
istic predictions; we call this the Pose and Dynamics Dis-
criminator (PDD). PDD is a data-driven discriminator that
takes our predicted sequence of 3D joint angles, and aims
to distinguish it from real human poses and dynamics data.
We use MoSh-ed data from the CMU MoCap dataset [26]
as real dynamics data. It covers a diverse set of human sub-
jects performing different poses and actions. In contrast to
previous work, which uses a separate discriminator for each
joint at a single time instance [23, 24], PDD considers all
keypoints over a temporal window, which improves the es-
timated pose results.

The PDD is trained using a binary cross entropy loss and
a gradient penalty term on the real data. Its objective func-

tion takes the following form:

LPDD = −
(
EΦ∼pdata [logD(Φ)] + EΘ∼pE

[
log(1−D(Θ)

])
+γ · EΦ∼pdata [‖∇D(Φ)‖2],

(1)

where Θ is the estimated joint angles from TCNN, andD(·)
is our pose and dynamics discriminator.

Finally, we convert them to rotation matrices and feed
to the discriminator. This technique allows for more sta-
ble training by bypassing the 2π wrapping nature of angle
representations.

4.5. Training the Model

Past image-based solutions that recover 3D meshes use
mostly weak supervision during training, in the form of
the location of body joints. However, our empirical results
(Sec. 5.3) show that weak supervision is insufficient for RF-
based systems. Unfortunately, strong supervision that cap-
tures full information about 3D meshes is difficult to obtain,
as it requires highly constrained setups involving a sophisti-
cated multi-view camera setup, and minimally clothed sub-
jects [32, 22]; such setups are not scalable.

To deal with this issue, we train our model using a com-
bination of strong and weak supervision. The SMPL shape
representation decomposes into a time-independent shape
vector, β, and time-dependent joint angles, θ. We obtain
strong supervision for the time-independent shape vector by
using an adapted version of the scanning/silhouette method
from [6] once for each subject in our dataset, with each sub-
ject in a standard canonical pose. We need only perform this
procedure once for each person, as the shape vector, β, is
constant for a given person. We adapt the procedure in [6] as
follows. The original method solves an optimization prob-
lem to obtain both β and offsets for the N mesh vertices (to
capture clothing and other small perturbations). We remove
the optimization over the mesh vertices (as we wish to cap-
ture pure body shape, and do not wish to include clothing
information) to obtain only β. We henceforth refer to the
mesh obtained from this method as a VideoAvatar.

Additionally, we use a system of 12 calibrated cameras
and the AlphaPose algorithm [15, 44] to obtain ground truth
information for 3D joint locations, obtained as subjects en-
gage in activities (walking, standing up/sitting down, inter-
acting with objects, etc). This serves as weak supervision
for our system’s joint angle predictions, θ.
Training TPN: We use standard anchor classification and
regression losses [38, 21]. We compute ground truth 3D
bounding boxes from the 3D poses reconstructed by 3D-
AlphaPose. The total loss Ltraj is the sum of losses from the
RPN and the Box Head.
Training TCNN: As illustrated in Figure 3, TCNN has
three different loss terms. We compute shape loss Lβ and



3D joint loss Ljoints by comparing our predictions with the
ground truth provided by corresponding vision algorithms.
We use the smooth L1 loss [17] for both of them. We note
that in order to compute the joint locations in 3D world
space, our model needs to predict the global translations ∆
as well. We use the bounding box centers and predicted lo-
cal translations with respect to the box centers to obtain the
global translations. Our TCNN also performs a gender clas-
sification and uses the SMPL model of the predicted gender
to compute the vertex and the joint locations.

When training TCNN together with the PDD, we follow
standard adversarial training schemes [18, 34] and use the
following loss term for TCNN:

Lprior = −EΘ∼pE log(D(Θ)), (2)

where D(·) is our pose and dynamics discriminator.
The total loss for the TCNN is a sum of the terms:

LTCNN = Lβ + Ljoints + Lprior + Lgender. (3)

5. Experiments
We describe our dataset, implementation details, quanti-

tative and qualitative results on shape and pose estimation,
and analyze what is learned by the attention module.

5.1. Dataset and Implementation

Dataset: To train and test our model, we build a dataset
containing 84 subjects (male and female). For each subject,
we use an adapted version of the approach in [6] to obtain
ground truth β vectors with the subjects in a canonical pose
(Sec. 4.5) – we refer to this method as VideoAvatar. We
obtain data for the subjects walking around and engaging
in activities in 16 different environments around our cam-
pus, and use a co-located calibrated camera system to obtain
ground truth keypoint locations for the subjects. Our cam-
era system is mobile, allowing us to collect data in varied
environments and build a representative dataset.
Implementation details: We use decomposed 4D convo-
lutions (Sec. 3) with residual blocks. Each uses ReLu ac-
tivation and Group Normalization [43]. We use 12, 3, 12
and 12 layers of convolution in our backbone, RPN, box
head and TCNN, respectively. We also use 1 and 2 lay-
ers of spatially-distributed GRU for TPN and RCNN. Our
self-attention module uses two fully connected layers with
tanh(·) activation in the middle. Our PDD model uses 12
layers of 1D temporal convolution, followed by a fully con-
nected layer. We implement our model in PyTorch. Our
model is trained with the Adam [25] optimizer for 40000
iterations.

5.2. Qualitative Evaluation for Shape and Pose

RF-Avatar produces realistic meshes: Figure 4 shows the
3D meshes produced by our model for different poses and

subjects, as compared to the RGB images captured by a
co-located camera. As can be seen, qualitatively, the esti-
mated meshes are realistic, and agree well with the body
shapes of different subjects. Our model also handles differ-
ent body shapes (for male and female subjects), poses, and
multi-person scenarios effectively. In addition, considering
the bottom row of images in Figure 4, our model can pro-
duce accurate meshes for partially occluded subjects, sub-
jects behind a wall, and subjects in poor lighting conditions;
a vision-based system cannot produce full meshes in these
situations.
RF-Avatar effectively captures variation in body shape:
To evaluate the quality of body shape predicted by
RF-Avatar, we compare our prediction with the body shape
captured by VideoAvatar [6], shown in Figure 6. VideoA-
vatar leverages a sequence of images to estimate a body
mesh. The recovered mesh is overlaid on the RGB image
of each person and is shown on the right side of each pair.
To better compare the difference in body shape, we take
the predicted shape of a subject (obtained by averaging pre-
dictions over a window of 10 seconds) from RF-Avatar and
render the resulting mesh (in the same pose as VideoAvatar)
and overlay it on the same background. This is shown on the
left side of each pair. We see a close qualitative agreement
between the ground truth and the output from RF-Avatar for
male and female subjects with different body shapes.
RF-Avatar encodes human motion dynamics: Figure
5 demonstrates how our model can produce dynamic 3D
meshes for different people over time, and how these
meshes look realistic. We can see how the two subjects per-
form walking and lifting actions, and the produced meshes
over time closely map to the performed actions.

5.3. Quantitative Evaluation for Shape and Pose

We now present quantitative results for our method, eval-
uating its performs on standard pose and body shape met-
rics. We also conduct ablation studies comparing with vari-
ants of our model that lack a particular component, namely
variants that do not have supervision on the β parameters,
do not use an attention mechanism, and use a frame-based
discriminator (as in [23, 24]).
Metrics: We report the commonly used 3D joint metric
Mean Per Joint Position Error (MPJPE). We also compute
the per-vertex error as the average vertex to surface distance
between the predicted mesh and the ground truth.

Table 1 shows the results for MPJPE and Per-vertex er-
ror respectively. As can be seen, for both MPJPE and per-
vertex error, assessing recovered pose and shape quality re-
spectively, the model that incorporates supervision for β,
self-attention, and the temporal discriminator, performs the
best across all metrics. Of particular note is how the MPJPE
drops from 6.05 cm to 6.88 cm when we do not use the tem-
poral discriminator, demonstrating the value of the PDD in
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Figure 4: Human mesh prediction from RF-Avatar. We show images for visual reference. Our model captures different body shapes,
poses, and multi-person scenarios effectively. The bottom row shows that RF-Avatar works despite occlusion and bad lighting conditions.

Figure 5: Dynamic human meshes predicted from RF-Avatar.
RF-Avatar can capture dynamic mashes for different actions, in-
cluding walking (top image) and lifting an object (bottom image).

learning motion dynamics to help resolve ambiguities. We
also see the importance of adding strong supervision for β:
the per-vertex error increases from 1.88 cm to 4.70 cm when
it is removed. We also note here that the previous image-
based mesh recovery methods have an MPJPE error around
8.8 cm [23] and a Per-vertex error around 11.8 cm [36].
Aside from the difference in datasets, we believe this dif-
ference in performance can be attributed to the fact that

RF signals capture information about 3D space and our
RF-based model is trained with stronger supervision than
image-based methods.

We further see that the results using the TPN output (top
row) are similar to the results using the ground truth bound-
ing boxes (bottom row), illustrating the effectiveness of our
entire detection, tracking, and shape estimation pipeline.
This applies for both pose and shape metrics.

MPJPE (cm) Per-vertex error (cm)

RF-Avatar 6.05 1.88
No β loss 6.72 4.70
No attention 6.43 2.55
Frame-based disc. 6.88 2.24
With g.t. boxes 5.75 1.65

Table 1: Joint and vertex errors, assessing pose and body shape
quality respectively.

Table 2 compares the results of our model for the shape
and pose metrics for the total occlusion (through-wall) and
line-of-sight scenarios. We see that our model performs
well in the through-wall setting, even though it was never
trained directly on through-wall data.

5.4. Analysis of Self-Attention

Table 1 shows that adding the self-attention module
helps our quantitative results on shape and pose metrics.
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Figure 6: Comparison of body shape recovered from RF-Avatar and VideoAvatar. We render the mesh with the predicted shape
estimated by RF-Avatar and the ground truth shape estimated by VideoAvatar and overlaid both on top of the corresponding RGB image.

3D MPJPE (cm) Per-vertex errors (cm)

Line-of-sight 5.84 1.79
Through-wall 6.26 1.97

Table 2: Results in the line-of-sight and through-wall settings.

Self-attention helps our model better combine information
over time when estimating the shape vector. We visualize
the learned multi-headed attention maps in Figure 7. Fo-
cusing on the second attention component first, we see that
it has high activation for timesteps 11 and 12. The high
activation at these times indicates that they may contain im-
portant shape information. When comparing with the RGB
images around timesteps 11 and 12, we see that the sub-
ject is facing the radio and waving at these times, so these
timesteps likely contain reflections from his arm and pro-
vide important information about his upper limbs.
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Figure 7: Learned attention maps over time for the different at-
tention heads. We see that different attention components activate
differently when the person is turning, waving hands and showing
his side to the sensor.

5.5. Failure Modes

We analyze the failure cases of RF-Avatar. Typical fail-
ure examples are caused by (a) unusual body poses, (b)
interpenetration of body meshes [13, 39], and (c) highly
crowded scenes where people are very close to each other.

(a) Unusual body pose (b) Interpenetration (c) Crowded scene

Figure 8: Typical failure cases of RF-Avatar.

In Figure 8, we present examples of the typical failure
cases. Figure 8(b) shows that RF-Avatar fails to handle
unusual body poses (e.g. tying shoes). In Figure 8(b),
interpenetration of estimated body meshes happens when
the person raise his hand to hold glasses. In crowded
scenes (e.g. Figure 8(c)) where people are very close to
each other, RF-Avatar produces overlapped body meshes.
Failure modes (a) and (b) are related to our choice of body
mesh model, while failure mode (c) is due to the relatively
low spatial resolution of RF signals in comparison to visible
light.

6. Conclusion
This paper presented RF-Avatar a system that recovers

dynamic 3D mesh models of the human body using RF sig-
nals. RF-Avatar is trained using cross-modality supervision
from state-of-the-art vision algorithms, yet remains effec-
tive in situations that challenge vision systems, such as in
poor lighting, and when subjects are occluded. We believe
this work paves the way for many new applications in health
monitoring, gaming, smart homes, etc. RF-Avatar signifi-
cantly extends the capabilities of existing RF-based sensing
systems, and the principles involved in its design could be
utilized to improve the performance of existing computer
vision methodologies.
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