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Abstract
There is significant interest in technologies that can sense people and monitor their health
with minimal overhead. Existing solutions typically require people to wear different sen-
sors and devices on their bodies. This thesis demonstrates how we can use wireless signals
and machine learning to sense people without any physical contact with their bodies. We
develop novel radio sensors that sit in the background like a Wi-Fi router. Our sensors
however analyze the surrounding radio signals using novel machine learning algorithms
to monitor people’s movements and activities, assess their vital signs, learn their sleep
and sleep stages, and recognize their emotions. Since wireless sensors traverse walls, our
sensors can deliver all of these functions through walls and occlusions.

The key challenge in delivering the above contributions is that radio signals interact
with people and the environment in complex ways, resulting in an underdetermined map-
ping that varies across time and space. To address this problem, this dissertation adopts
a data-driven approach and develops custom machine learning models that operate on
radio signals. Developing such models requires technical innovations to address unique
challenges due to the specularity of radio signals in the frequencies of interest, multipath
reflections in indoor environments, high data rates and computation complexity, and the
lack of training data and the difficulty in annotating radio signals. Our work addresses
these challenges and enables two new capabilities: through-wall tracking of the human
pose and contactless health monitoring.

Thesis Supervisor: Dina Katabi
Title: Professor of Electrical Engineering and Computer Science
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CHAPTER 1

Introduction

Today, wireless systems analyze radio frequency (RF) signals with carefully-crafted signal

processing algorithms. These algorithms are, however, limited by human understand-

ing of how signals propagate and interact with the environment. This thesis explores the

customization of machine learning to interpret wireless signals, enabling entirely new ap-

plications and services. RF signals have the potential of being a uniquely powerful sensing

modality; they propagate in space, traverse walls and obstacles, reflect off people, and get

modulated by human movements, respiration, and even heartbeats. If we can interpret

such RF reflections, we can sense people through walls and occlusions, and learn much

information about their health and wellbeing without any physical contact.

Developing sensing technologies that infer people’s movements and physiological sig-

nals from the surrounding radio waves is not simple. While the information may be en-

coded in the radio signal, such coding is complex, unknown a priori, varies across time and

space, and depends on the specific characteristics of the objects in the environment, their

shapes and material. Further, in most cases, the signal is weak and marred in noise, and

the system is underdetermined (i.e., the radio receiver does not have enough resolution to

separate the RF signals that bounce off different objects in the environment).

Traditional methods for RF-based sensing, such as RADAR and RF-based localiza-

tion (see Chapter 2 for details), cannot effectively address these challenges. They mainly

rely on signal processing and closed-form equations that do not capture the complexity

and uncertainty faced in practical scenarios. For example, much of the work in this space

1
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assumes that radio signals reflect off either point objects or rigid surfaces [7, 8, 9, 10, 11,

12, 13, 14, 15]. Yet, the human body is not a single point in space. It is a large deformable

object that changes its shape and orientation as the person moves.

In this dissertation, we adopt a data-driven approach, where we integrate the knowl-

edge of RF signal processing and propagation properties into novel machine learning mod-

els that analyze radio signals to track people, infer their movements, and monitor their

health and vital signs through walls and occlusions. We produce smart radio sensors that

enable two types of capabilities: 1) detailed through-wall human sensing, and 2) touchless

health monitoring.

� 1.1 Though-Wall Human Sensing

For many years, humans have dreamed of X-ray vision and explored the concept in comic

books and sci-fi movies. Yet, our eyes can only sense the visible light, which does not

traverse walls or occlusions. Radio signals, on the other hand, traverse such obstacles. It

is natural to wonder whether we can leverage radio waves to see though walls.

The concept of imaging using wireless reflections has roots in RADAR and SONAR

technologies. Such technologies transmit a wireless signal and analyze its reflections to

extract an image of the reflecting object. Yet, adapting such technologies to seeing people

through walls is difficult. Indoor environments are full of reflective objects, including

people, furniture, walls, floor, ceilings, etc. Radio waves bounce off these objects many

times, and combine both constructively and destructively before they reach the receiver,

making it difficult to track the incoming rays back to the reflecting object. Hence, until

recently, seeing through-wall technologies have been limited to detecting the presence and

approximate location of people behind a wall [7, 8, 9, 10, 11, 12, 13].

This dissertation introduces the first RF systems that can sense a full and dynamic

human body through walls. Our systems can infer the 3D skeletons of multiple people.

The skeletons are dynamic; their movements follow the movements and actions of the

people behind the wall as they sit, stand, or walk. Further, their body shapes and sizes

(e.g., tall vs. short, thin vs. heavy) match the bodies of the actual people. Underlying our

systems are new specialized neural networks that operate over radio signals, and that we

have gradually refined to enable more capabilities and better accuracy from one system to
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Figure 1-1: Through-Wall 2D Human Pose Estimation. RF-Pose tracks 2D human
pose as the person enters the room and even when he is fully occluded behind the wall.
Top: Images captured by a camera colocated with our radio sensor, and presented here
for visual reference. Middle: Keypoint confidence maps extracted from RF signals
alone, without any visual input. Bottom: Skeleton parsed from keypoint confidence
maps showing that we can use RF signals to estimate the human pose even in the
presence of full occlusion. Full video is available at: https://www.youtube.com/
watch?v=HgDdaMy8KNE.

the next, as we describe below.

� 1.1.1 Through-Wall 2D Human Pose Estimation

Estimating the human pose is an important task with applications in activity recognition,

gaming, etc. The problem is defined as generating 2D skeletal representations of the joints

on the arms and legs, and keypoints on the torso and head. Prior to our work, research

in computer vision has developed neural network models to extract the human pose from

images and videos [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. But camera-based

systems do not work in the presence of occlusions or poor lighting conditions. Prior work

in RF-based sensing has also considered this problem [7, 8, 9, 10, 11, 12, 13]. However,

prior RF systems detected people as blobs, and none was capable of estimating the human

pose or localizing its keypoints.

We introduced RF-Pose, a neural network system that parses radio signals and ex-

tracts accurate 2D human poses, even when people are occluded or behind a wall. We

also showed that the pose learned from RF signals extracts identifying features of the peo-

ple and their motion style. A classifier that uses the extracted poses was able to identify

100 individuals with an average accuracy of 83%, even when they were behind a wall.

Figure 1-1 shows an example output of RF-Pose tracking a person as he enters a room,

becomes partially visible through a window, and then walks behind the wall.

https://www.youtube.com/watch?v=HgDdaMy8KNE
https://www.youtube.com/watch?v=HgDdaMy8KNE
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To develop machine learning models that operate on radio signals, we had to address

multiple challenges that evolved with the complexity of the system and the task. The first

challenge that we faced was: how do we label radio signals? We had to develop a new dataset

for training and testing our neural network models. However, unlike images and audio

datasets, radio signals cannot be interpreted by humans. Hence, we could not generate

labelled data by asking workers to label the person in a radio sample. To address this

challenge, we used cross-modal supervision. During training, we attached a web camera

to our wireless sensor, and synchronized the wireless and visual streams. We extracted

pose information from the visual stream and used it as a supervisory signal for the wireless

stream. Once the system was trained, it used only the radio signal as input. The result was

a system capable of estimating human pose using wireless signals only, without requiring

human annotation as supervision. This cross-modal supervision has become a standard

method for generating large-scale RF datasets and training RF-based neural models [30,

31, 32, 33, 34, 35, 36].

The second challenge stems from the specularity of radio signals at frequencies that tra-

verse walls. RF specularity is a physical phenomenon that occurs when the wavelength is

larger than the roughness of the surface. In this case, the object acts like a reflector - i.e.,

a mirror - as opposed to a scatterer. The wavelength of our radio is about 5cm and hence

humans act as reflectors. Depending on the orientation of the surface of each limb, the

signal may be reflected towards our sensor or away from it. Thus, in contrast to cameras

where any snapshot shows all unoccluded keypoints, in radio systems, a single snapshot

has information about a subset of the limbs and misses limbs and body parts whose orien-

tation at that time deflects the signal away from the sensor. To address this challenge we

had to design our model to work across time and space to generate snapshots of 2D poses

from radio signals.

Addressing these challenges enabled the first system that can track the 2D human pose

as it moves behind walls and occlusions, as shown in Figure 1-1.

� 1.1.2 Through-Wall 3D Human Pose Estimation

Unlike images and videos, RF signals carry information about depth. As a radio wave

travels in space, its phase changes with distance. This information can be retrieved to

measure the depth of the object that reflected the radio signal. Thus, a natural next step
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Figure 1-2: Through-Wall 3D Human Pose Estimation. RF-Pose3D estimates 3D hu-
man skeletons for multiple people and in different environments. It captures depth
information in addition to the 2D human poses. Top: Images captured by cameras for
visual reference. Bottom: Predicted 3D human poses with RF signals only. Full video
is available at: https://www.youtube.com/watch?v=XCEgyQKLaJ0.

was to use radio signals to extract 3D human poses through walls and occlusions.

Predicting 3D human poses from radio signals led us to a new important challenge: the

computational complexity of learning from radio signals. Since the depth information is in the

phase of the signal, we had to approach RF signals as complex-valued tensors. We devel-

oped a novel CNN that leverages the properties of radio waves to decompose 4D CNN to

3D convolutions over 2D planes and the time axis. This method allowed us to maintain

spatiotemporal relationships between human keypoints, yet operate on individual views

of the signal over time, which reduced the computational complexity and allowed us to

used common neural network platforms.

The resulting system RF-Pose3D tracks each keypoint on the human body with an av-

erage error of 4.2 cm, 4.0 cm, and 4.9 cm along the X, Y, and Z axes, respectively. Figure 1-2

shows a few example outputs of RF-Pose3D. It maintains this accuracy even in the pres-

ence of multiple people and in new environments not seen in the training set.

� 1.1.3 Through-Wall Human Mesh Recovery

Next, we were interested in investigating whether radio signals can capture the shape of

the human body (e.g., thin vs. heavy), not just a stick figure of it. We developed RF-Avatar,

a neural network model that estimates 3D mesh representation of human bodies from

radio signals. Our predicted meshes are dynamic and can smoothly track the movements

of the corresponding people while distinguishing their body shapes, as shown in Figure 1-

3.

https://www.youtube.com/watch?v=XCEgyQKLaJ0
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Figure 1-3: Through-Wall Human Mesh Recovery. RF-Avatar uses RF signals to esti-
mate dynamic 3D human meshes consisting of 6890 vertices, even in the presence of
occlusions and bad lighting conditions. 3D human meshes characterizing both pose
and shape could enable new applications in gaming, fitness, and healthcare. Top:
Images captured by cameras for visual reference. Bottom: Predicted human meshes
from RF-Avatar using RF signals only. The figure shows that RF-Avatar works with
different body shapes and sizes, and in the presence of partial and full occlusion.

The key new challenge we faced in inferring body meshes from radio signals is that

this is a highly under-constrained problem. Unlike cameras which have millions of photodi-

ode detectors and can obtain detailed spatial resolutions, a radio device at best has tens

of antennas and a very limited spatial resolution. Our model deals with this challenge

using: 1) a combination of strong and weak supervision, 2) a multi-headed self-attention

mechanism that attends differently to temporal information in the radio signal, and 3) an

adversarially trained temporal discriminator that imposes a prior on the dynamics of hu-

man motion. Our results show that RF-Avatar accurately recovers dynamic 3D meshes in

the presence of occlusions, baggy clothes, bad lighting conditions, and even walls.

Collectively, RF-Pose, RF-Pose3D and RF-Avatar have transformed the state-of-the-art re-

search on seeing through wall – from simple systems that rely on signal processing to

detect people and track their position as a blob in space, to data-driven neural-network

systems that capture rich information about dynamic human bodies through walls and

occlusions.

� 1.2 Contactless Health Monitoring

RF signals not only capture our activities and body shapes, but they also change with

our physiological signals. Every small movement that we take leaves an imprint on the
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surrounding radio waves. Our breathing, the pulsing of our blood, even the twitching of

our eye muscles as we dream during sleep are all encoded on radio waves that bounce

off our bodies. As part of this dissertation, we examined novel systems that can extract

health-related information from radio waves, and leverage them for health monitoring.

Remote in-home monitoring of people’s vital signs, sleep, medication adherence, and

emotional health is critical for the future of healthcare. It is motivated by skyrocketing

costs, a limited access to healthcare in rural and disadvantaged socio-economic commu-

nities, and an aging population that often lives alone and is increasingly vulnerable due

the COVID pandemic. However, existing remote monitoring solutions fail the very old,

very sick, and people who have cognitive difficulties. Existing solutions typically require

these groups to interact with advanced technology, including wearing sensors on one’s

body, and self-measuring and self-reporting their physiological signals. These tasks can be

difficult for old sick people, who may have memory or cognition problems [37, 38].

In this dissertation, we propose a system that passively monitors health at home while

the residents go about their normal lives. The design is based on a wireless sensor that

looks like a Wi-Fi router. It transmits very low-power radios signals (1000 times lower than

standard Wi-Fi). The radio signals bounce off nearby people, and reflect off their bodies

after being modulated by their movements and physiological signals. Our sensor analyses

such radio reflections using novel algorithms and neural network models. It monitors

people’s vital signs and emotional status, tracks their sleep and sleep stages, and assesses

medication administration. It does so without wearable sensors or body contact.

Below we describe the three components of our in-home health monitoring solution.

� 1.2.1 Assessment of Medication Administration using Radio Signals

Poor medication adherence is a major healthcare problem, contributing to 10% of hospi-

talizations, 125,000 deaths per year, and up to $290 billion in annual cost in the United

States alone [39, 40]. Medication errors are particularly common when medication deliv-

ery involves devices such as inhalers or insulin pens [41, 42, 43, 44]. Given our success

in tracking human skeletons using radio signals, we were interested in checking whether

one can use radio signals to detect when a patient uses their inhaler or insulin pen, and

whether they use the device properly.

The task of assessing medication administration introduces new challenges beyond
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Figure 1-4: Key Constituent Steps of Inhaler Device Self-Administration. We par-
titioned a medication self-administration event into key constituent steps based on
recommendations pertaining to insulin pen and inhaler device administration. This
allows us to build sample-efficient model to detect such events and to assess patient’s
administration techniques.

those introduced by human pose estimation. It requires detection of a composite activity

from a series of events. Specifically, proper medication administration requires the patient

to follow a sequence of steps for each medication device [45, 46]. For example, Figure 1-4

shows the recommended steps a patient should follow when using an inhaler: 1) shake

the inhaler, 2) fully exhale, 3) inhale a dose, 4) hold breath for 10 seconds, 5) exhale, then

6) put down the inhaler [45]. Similarly, the proper use of an insulin pen requires following

certain steps [46]. Ensuring the patient follows the proper steps is essential; otherwise the

patient may take the medication but fails to deliver the drug or obtain the proper dose.

While there is a significant amount of work on activity detection in videos, our ap-

proach differs from past work in two ways. First we detect activities from radio signals.

Second, we are interested in a sequence of actions/steps that together deliver the activity

of interest. Past methods for understanding human activities typically focus on short and

simple actions, e.g., drinking, dancing, waving hands, etc. [47, 48, 49]. Such methods face

challenges when applied to composite human activities consisting of multiple actions or

steps. Specifically, the intra-class variation of composite activities increases drastically con-

sidering the variation within individual steps, as well as the varied pause between steps.

As a result, a prohibitively large number of samples are required to train a model that

could capture the intra-class variation within the composite activities. It is even more chal-

lenging if the composite activities involve patients (e.g., medication self-administration)

due to limited amount of health-related data.

To design a sample-efficient model, we used neural discriminative models for recog-

nizing key constituent steps for medication self-administration, and Bayesian inference to

model how those steps construct the full composite activities. Findings from our study
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Figure 1-5: Sleep Stages Monitoring. Left: Existing methods require patients to sleep
in hospitals wearing various sensors. Right: RF-Sleep enables accurate monitoring of
sleep stages, while the person sleeps in their own bed without wearing any sensors.
Video is available at: https://www.youtube.com/watch?v=ltcjly-CYkI

demonstrated that our approach can automatically detect when patients use their inhalers

(area under the curve (AUC) = 0.992) or insulin pens (AUC = 0.967), and assess whether

they follow the appropriate steps for using these devices (AUC = 0.952).

� 1.2.2 Contactless Monitoring of Sleep Stages

Sleep plays a vital role in an individual’s health and wellbeing. Sleep progresses in cycles

that involve different sleep stages: Awake, Light sleep, Deep sleep and REM (Rapid Eye

Movement). Different stages are associated with different physiological functions. For ex-

ample, REM is the stage in which we dream and is essential for emotional health. Memory

consolidation happens during deep sleep and is related to diseases like Alzheimer’s. Mon-

itoring sleep stages typically requires a person to spend the night in a hospital or sleep lab,

sleeping with EEG electrodes and other sensors on their bodies. A sleep technician man-

ually analyses the resulting EEG signals and labels every 30-second episode with a sleep

stage.

We have developed a novel neural network model that takes as input the radio signals

that bounce off a person’s body while asleep, and outputs for each 30-second episode the

person’s sleep stage. We compared our model to an EEG-based FDA-approved sleep stage

monitor and showed that it achieves high accuracy, comparable to the consistency between

two sleep technicians analyzing the same EEG signals to predict sleep stages.

The key challenge in predicting sleep stages from radio signals is that radio waves carry

much extraneous information that is irrelevant to the task of interest. They have information

about body shape and posture in addition to information about other people and objects

https://www.youtube.com/watch?v=ltcjly-CYkI
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Figure 1-6: Contactless Monitoring of Emotions and Vital Signs. EQ-Radio extracts
breathing and heart rate variability from RF signals with millisecond-level accuracy,
enabling contactless emotion recognition. Full video is available at: https://www.
youtube.com/watch?v=nmcDnEhZTJM

in the environment. This information can overwhelm the model and prevent it from gen-

eralizing to new people and new homes. To address this problem we introduced a new

predictive model based on conditional adversarial architecture, and analytically proved

that our model in equilibrium converges to eliminate all extraneous information, while

maintaining all information relevant to the predictive task.

� 1.2.3 Contactless Monitoring of Emotions and Vital Signs

As part of this dissertation, we developed a new technology that can infer a person’s emo-

tions from RF signals reflected off their body. As shown in Figure 1-6, EQ-Radio transmits

an RF signal and analyzes its reflections off a person’s body to extract their breathing and

heart rate variability, which it then processes via a machine learning model to infer the

person’s emotional state (happy, sad, angry, etc.). The operation of EQ-Radio intrinsically

depends on extremely accurate estimation of the length of each heart beat [50, 51, 52]. For

example, excitement causes our heart to beat faster, while sadness causes our heartbeats

to become more monotonic (i.e., less heart rate variability). Yet to capture these features,

our system needs to estimate the length of each heart beat to within a few milliseconds.

In contrast to ECG signals which have a known pattern, the shape of a heartbeat in RF

reflections is unknown and varies depending on the person’s body and exact posture with

respect to the radio. Thus we faced a new challenge: extracting a weak and unknown pattern

from noisy radio signals.

To address this challenge, we formulated the problem as a joint optimization, where we

iterate between two sub-problems. The first sub-problem learns a template of the shape

of the heartbeat in RF signals given a particular beat segmentation, while the second finds

https://www.youtube.com/watch?v=nmcDnEhZTJM
https://www.youtube.com/watch?v=nmcDnEhZTJM
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the segmentation that maximizes resemblance to the learned template. We keep iterating

between the two sub-problems until we converge to the best beat template and the optimal

segmentation that maximizes resemblance to the template. Our experiments show that

EQ-Radio is on par with state-of-the-art ECG-based emotion recognition systems, which

require on-body sensors [53]. Specifically the accuracy of emotion classification is 72.3% in

EQ-Radio and 73.2% in the ECG-based system [53].

� 1.3 Summary of Contributions

Below we summarize the contributions of this dissertation.

• This dissertation delivers the first systems that can sense human poses and meshes

through walls and occlusions. While seeing through obstacles with radio signals has

been a research topic for three decades, none of the prior systems can extract the human

pose and its keypoints from radio signals. Our systems were enabled through novel

neural network designs that address the challenges faced when operating neural net-

works on RF signals. The techniques we have developed to deal with RF specularity,

high computation complexity, and highly under-constrained sensing problems, as well

as the cross-modal training scheme, have been used by researchers to address other

RF-based sensing tasks [33, 34, 35, 36, 30, 31, 32, 54, 55, 56, 57, 58, 59, 60]. Beyond its con-

tributions to wireless sensing, this research also advances the state of computer vision

by enabling pose estimation in the presence of occlusions and bad lighting conditions.

• This dissertation introduces the first solution for assessing medication self-administration

at home using radio signals. This solution can accurately detect when patients use their

inhalers or insulin pens. It is also the first solution to automatically detect whether

patients follow the proper technique for using these medication delivery devices (e.g.,

shake the inhaler and prime the insulin pen before use).

• This dissertation develops RF-Sleep, a system that can infer sleep stages from radio

signals with accuracy comparable to FDA-approved EEG sleep monitors. It introduces

a new machine learning method for domain adaptation based on conditional domain

adversarial training.

• This dissertation presents EQ-Radio, the first system that demonstrates the feasibility

of emotion recognition using RF signals. It also introduces a new algorithm for extract-
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ing individual heartbeats from RF reflections with millisecond-level inter-beat-interval

accuracy.

Finally, we note that all the studies involving human subjects in this dissertation have

been reviewed and approved by the Institutional Review Board (IRB) of the Massachusetts

Institute of Technology.



CHAPTER 2

Related Work

The research presented in this thesis is naturally related to wireless and RADAR systems

(Section 2.1), as well as machine learning and computer vision (Section 2.2). We also sum-

marize other mechanisms that have been used for human and health sensing.

� 2.1 Wireless and RADAR systems

RF signals reflect off the human body and are modulated by body motion. Past work

leverages this phenomenon to sense human motion: it transmits an RF signal and ana-

lyzes its reflections to track user locations [8], gestures [7, 61, 62, 63, 64, 65], activities [66,

67], and vital signs [68, 69, 70]. Past proposals also differ in the transmitted RF signals:

Doppler RADAR [69, 70], frequency-modulated continuous wave (FMCW) [68], multi-

antenna FMCW [8, 9, 71] and WiFi [7, 61]. Among these techniques, multi-antenna FMCW

has the advantage of measuring the signal from different 3D voxels in the environment.

Thus, multi-antenna FMCW is more robust for capturing body movements and extracting

vital signs for multiple users simultaneously; hence, we use FMCW signals for the systems

in this thesis.

Through-wall vision: Our work on through-wall vision is related to research on localizing

people and tracking their motion using wireless signals. The literature can be classified

into two categories. The first category operates at very high frequencies (e.g., millimeter

wave or terahertz) [72]. These can accurately image the surface of the human body (as in

13
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airport security scanners), but do not penetrate walls and furniture. The second category

uses lower frequencies, around a few GHz, and hence can track people through walls and

occlusions. Such through-wall tracking systems can be divided into: device-based and

device-free. Device-based tracking systems localize people using the signal generated by

some wireless device they carry. For example, one can track a person using the WiFi signal

from their cellphone [73, 74, 75]. Since the tracking is performed on the device not the

person, one can track different body parts by attaching different radio devices to each of

them. On the other hand, device-free wireless tracking systems do not require the tracked

person to wear sensors on their body. They work by analyzing the radio signal reflected off

the person’s body. However, device-free systems typically have low spatial resolution and

cannot localize multiple body parts simultaneously. Different papers either localize the

whole body [8, 10], monitor the person’s walking speed [14, 15], track the chest motion to

extract breathing and heartbeats [68, 6, 5], or track the arm motion to identify a particular

gesture [61, 76]. The closest to our work is a system called RF-Capture which creates a

coarse description of the human body behind a wall by collapsing multiple body parts

detected at different points in time [71]. None of the past work however is capable of

estimating the human pose or simultaneously localizing its various keypoints.

Contactless health monitoring: Our work on contactless health monitoring is related to

prior arworkt that uses RF signals to extract a person’s breathing rate and average heart

rate [69, 70, 77, 78, 79, 69, 70, 77, 78, 79, 80, 81, 68]. In contrast to this past work, which

captures the chest movements due to breathing and heartbeats and derives breathing and

heart rates, the systems presented in this thesis either capture vital signs with finer gran-

ularity (i.e., average heart rate vs. beat-to-beat intervals with millisecond-level accuracy)

or extract semantic information based on these measurements (e.g., sleep stages, medi-

cation adherence). More specifically, prior research that aims to segment RF reflections

into individual heart beats either cannot achieve sufficient accuracy for emotion recogni-

tion [82, 83, 84] or requires the monitored subjects to hold their breath [85]. In Chapter 8, we

describe a heartbeat segmentation algorithm that builds on this past literature yet recovers

heartbeats with a mean accuracy of 3.2 milliseconds, hence achieving an order of magni-

tude reduction in errors in comparison to past techniques. This high accuracy enables us

to deliver the first emotion recognition system that relies purely on wireless signals.
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� 2.2 Machine Learning and Computer Vision

Human pose estimation: Inferring the human pose from images is a known problem in

the computer vision literature. The problem comes in two flavors: 2D and 3D. 2D pose

estimation has achieved remarkable success recently [86, 87, 20, 21, 88, 22, 23]. This is due

to the availability of large-scale datasets of annotated 2D human poses, and the introduc-

tion of deep neural network models. In contrast, advances in 3D human pose estimation

remain limited due to the difficulty and ambiguity of recovering 3D information from 2D

images.

In terms of methods, human pose estimation in images generally falls into two main

categories: top-down and bottom-up methods. Top-down methods [23, 86, 89, 87] first

detect each person in the image, and then apply a single-person pose estimator to each

person to extract keypoints. Bottom-up methods [22, 20, 21], on the other hand, first detect

all keypoints in the image, then use post-processing to associate the keypoints belonging

to the same person. We build on this literature and adopt both bottom-up (Chapter 3) and

top-down (Chapter 4) approaches for pose estimation, but differ in that we learn poses

from RF signals. While some prior papers use sensors other than conventional cameras,

such as RGB-D sensors [90] and VICON [91], unlike RF signals, those data inputs still

suffer from occlusions by walls and other opaque structures.

Our work builds on human pose estimation in computer vision in three ways. First, we

similarly use deep neural networks to address this problem. Second, we leverage a vision

system called OpenPose [22] to extract 2D skeletons from images. We further integrate this

module in our camera system, which combines such 2D skeletons across 12 cameras to cre-

ate 3D skeletons that can be used as training examples for our network. Third, our module

that zooms in on the RF signal from a particular individual and separates it from the sig-

nals from other individuals is inspired by object detection in computer vision, specifically

systems like R-CNN, Fast R-CNN and Faster R-CNN [92, 93, 94] which use deep neural

models to generate a bounding box around objects of interest in an image (e.g., a dog).

Our work, however, is fundamentally different from all past work in computer vision.

We infer 3D poses from RF signals, which is intrinsically different from extracting 3D poses

from images due to basic differences between the two data types. In particular, images

have high spatial resolution whereas RF signals have low spatial resolution, even when
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using multi-antenna systems. Second, the human body scatters visible light, but acts as a

reflector for the RF bands of interest (frequencies around few GHz) [95]. Hence, only sig-

nals that fall close to the normal on the body surface are reflected back towards the radio

source. As a result, at any time, only a few body parts are visible to the radio [71]. Further-

more, our neural network model differs from past work in vision, and is the first to propose

4D CNN decomposition. Even our dataset is different. Existing datasets for inferring 3D

poses from images are limited to one environment or one person (e.g., Human3.6M [96]).

In contrast, our dataset spans multiple environments and our scenes include multiple peo-

ple. This allows our system to learn to generalize to new environments which are unseen

during training.

Capturing human shapes: There are broadly two methods used to capture body shape in

prior work. In scanning-based methods, several images of a subject are obtained, typically

in a canonical pose, and then optimization-based methods are used to recover the SCAPE

or SMPL parameters representing the subject’s shape. The authors of [97, 98, 99, 100, 101]

used scanning approaches, incorporating silhouette information and correspondence cues

to fit a SCAPE or SMPL model. However, scanning-based methods have the inherent limi-

tation that they can be easily affected by clothing, so they only work well when subjects are

in form-fitting clothes. They are also limited to indoor settings and do not properly capture

motion dynamics. Thus, many recent works, including ours, use scanning methods only

to provide supervision to learning-based methods.

In learning-based methods, models are trained to predict parameters of a shape model

(e.g., SMPL). Such methods are challenging due to the lack of 3D human mesh dataset.

Despite this, there has been significant success in this area. Bogo et al. [102] proposed a

two-stage process to firstly predict joint locations and then fit SMPL parameters from a

2D image. Lassner et al. [103] developed on this approach, incorporating a semi-automatic

annotation scheme to improve scalability. More recent work [104, 105] captured 3D meshes

from 2D images using adversarial loss, and Kanazawa et al. [106] learned dynamic 3D

meshes using videos as an additional data source. In Chapter 5, we adopt a learning-

based approach, building on the above literature, and expanding it to deal with scenarios

with occlusions and bad lighting.

Domain adversarial training: Our work on domain adversarial training that ensures our
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RF sensing models to generalize across environments and individuals (Chapter 7) is also

related to learning invariant representations in deep adversarial networks. Adversarial

networks were introduced to effectively train complex generative models of images [107,

108, 109] where the adversary (discriminator) was introduced so as to match generated

samples with observed ones. The broader approach has since been adopted as the training

paradigm across a number of other tasks as well, from learning representations for semi-

supervised learning [110], and modeling dynamic evolution [111, 112] to inverse maps

for inference [113, 114], and many others. Substantial work has also gone into improv-

ing the stability of adversarial training [115, 116, 117]. On a technical level, this work is

most related to adversarial architectures for domain adaptation [118, 119, 120, 121]. Yet,

there are key differences between our approach and the above references, beyond the

main application of sleep staging that we introduce. First, our goal is to remove condi-

tional dependencies rather than making the representation domain independent. Thus,

unlike the above references which do not involve conditioning in the adversary, our ad-

versary takes the representation but is also conditioned on the predicted label distribution.

Second, our game theoretic setup controls the information flow differently, ensuring that

only the representation encoder is modified based on the adversary performance. Specifi-

cally, the predicted distribution over stages is strategically decoupled from the adversary

(conditioning is uni-directional). Third, we show that this new conditioning guarantees

an equilibrium solution that fully preserves the ability to predict sleep staging while re-

moving, conditionally, extraneous information specific to the individuals or measurement

conditions. Guarantees of this kind are particularly important for healthcare data where

the measurements are noisy with a variety of dependencies that need to be controlled.

� 2.3 Other sensing mechanisms

Smart sensors for assessing medication self-administration: Past solutions for assess-

ing medication self-administration (MSA) at home attach sensors to medication devices to

monitor MSA [122, 123, 124]. However, these solutions can impose a new burden on the

patient, as they require the patient to regularly charge or replace their battery and bring

the devices in the vicinity of a smartphone so they can upload their data. Although such

solutions can detect dose release, they lack information on whether the patient followed
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the proper MSA technique to ensure adequate dose delivery – that is, the sensor captures

the actuation and movements of the medication device itself but cannot capture the pa-

tient’s actions and their sequence, which are crucial for correct MSA. To our knowledge,

our work (Chapter 6) is the first to introduce an automated solution for assessing an in-

dividual’s MSA technique and whether it follows the proper steps. Being able to assess

MSA techniques is essential because failures to follow the proper techniques are common

and have been associated with high non-adherence levels and subsequent poor disease

outcomes [125, 126, 127, 128].

Polysomnography for sleep staging: The gold standard in sleep staging is based on Polyso-

mnography (PSG) conducted overnight in a hospital or sleep lab. The subject has to sleep

while wearing multiple sensors including an EEG monitor, an EMG monitor, an EOG mon-

itor, nasal probes, etc. A sleep technologist visually inspects the output of the sensors and

assigns to each 30-second window a stage label [129]. A few past proposals have tried to

automate the process and reduce the number of sensors. These solutions can be classified

into four categories according to their source signal: EEG-based, Cardiorespiratory-based,

Actigraphy-based, or RF-based. Table 7-1 summarizes the state-of-the-art performance in

each category. The table shows both the classification accuracy and the Cohen’s Kappa

coefficient, κ. The most accurate methods rely on EEG signals [130, 131, 132, 133]. How-

ever, EEG monitors are also the most intrusive because they require the subject to sleep

with a skullcap or a head-band equipped with multiple electrodes, which is uncomfort-

able and can cause headaches and skin irritation. The second category requires the subject

to wear a chest-band and analyzes the resulting cardiorespiratory signals. It is more com-

fortable than the prior method but also less accurate [134, 135]. The third approach is based

on actigraphy; it leverages accelerometers in FitBit or smart phones [136, 137] to monitor

body movements and infer sleep quality. Yet, motion is known to be a poor metric for

measuring sleep stages and quality [138]. The last approach relies on RF signals reflected

off the subject body during her sleep. It allows the subject to sleep comfortably without

any on-body sensors. Yet past approaches in this category have the worst performance

in comparison to other solutions. Our approach to sleep monitoring builds on the above

literature but delivers new contributions. In comparison to methods that use sources other

than RF signals, our work enables accurate monitoring of sleep stages while allowing the

subject to sleep comfortably in her own bed without sensors on her body.



2.3. OTHER SENSING MECHANISMS 19

Audiovisual and physiological techniques for Emotion Recognition: Recent years have

witnessed a growing interest in systems capable of inferring user emotions and reacting to

them [139, 140]. Such systems can be used for designing and testing games, movies, adver-

tisement, online content, and human-computer interfaces [141, 142]. Existing approaches

for extracting emotion-related signals fall under two categories: audiovisual techniques

and physiological techniques. Audiovisual techniques rely on facial expressions, speech,

and gestures [143, 144]. The advantage of these approaches is that they do not require users

to wear any sensors on their bodies. However, because they rely on outwardly expressed

states, they tend to miss subtle emotions and can be easily controlled or suppressed [145].

Moreover, vision-based techniques require the user to face a camera in order for them to

operate correctly. On the other hand, physiological measurements, such as ECG and EEG

signals, are more robust because they are controlled by involuntary activations of the au-

tonomic nervous system (ANS) [146]. However, existing sensors that can extract these

signals require physical contact with a person’s body, and hence interfere with the user

experience and affect her emotional state. In contrast, our approach can capture physio-

logical signals without requiring the user to wear any sensors by relying purely on wireless

signals reflected off her/his body.
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CHAPTER 3

Through-Wall 2D Human Pose

Estimation using Radio Signals

Estimating the human pose is an important task in computer vision with applications in

surveillance, activity recognition, gaming, etc. The problem is defined as generating 2D

skeletal representations of the joints on the arms and legs, and keypoints on the torso

and head. It has recently witnessed major advances and significant performance improve-

ments [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. However, as in any camera-based

recognition task, occlusion remains a fundamental challenge. Past work deals with occlu-

sion by hallucinating the occluded body parts based on the visible ones. Yet, since the

human body is deformable, such hallucinations are prone to errors. Further, this approach

becomes infeasible when the person is fully occluded, behind a wall or in a different room.

This section presents a fundamentally different approach to deal with occlusions in

pose estimation, and potentially other visual recognition tasks. While visible light is easily

blocked by walls and opaque objects, radio frequency (RF) signals in the WiFi range can

traverse such occlusions. Further, they reflect off the human body, providing an opportu-

nity to track people through walls. Recent advances in wireless systems have leveraged

those properties to detect people [8] and track their walking speed through occlusions [15].

Past systems however are quite coarse: they either track only one limb at any time [8, 71],

or generate a static and coarse description of the body, where body-parts observed at dif-

ferent time are collapsed into one frame [71]. Use of wireless signals to produce a detailed

21
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Figure 3-1: An example output of RF-Pose. The figure shows a test example with a
single person. It demonstrates that our system tracks the pose as the person enters
the room and even when he is fully occluded behind the wall. Top: Images captured
by a camera colocated with the radio sensor, and presented here for visual reference.
Middle: Keypoint confidence maps extracted from RF signals alone, without any vi-
sual input. Bottom: Skeleton parsed from keypoint confidence maps showing that we
can use RF signals to estimate the human pose even in the presence of full occlusion.

and accurate description of the pose, similar to that achieved by a state-of-the-art computer

vision system, has remained intractable.

In this section, we introduce RF-Pose, a neural network system that parses wireless

signals and extracts accurate 2D human poses, even when the people are occluded or be-

hind a wall. RF-Pose transmits a low power wireless signal (1000 times lower power than

WiFi) and observes its reflections from the environment. Using only the radio reflections as

input, it estimates the human skeleton. Fig. 3-1 shows an example output of RF-Pose track-

ing a person as he enters a room, becomes partially visible through a window, and then

walks behind the wall. The RGB images in the top row show the sequence of events and

the occlusions the person goes through; the middle row shows the confidence maps of the

human keypoints extracted by RF-Pose; and the third row shows the resulting skeletons.

Note how our pose estimator tracks the person even when he is fully occluded behind a

wall. While this example shows a single person, RF-Pose works with multiple people in

the scene, just as a state-of-art vision system would.

The design and training of our network present different challenges from vision-based

pose estimation. In particular, there is no labeled data for this task. It is also infeasible

for humans to annotate radio signals with keypoints. To address this problem, we use

cross-modal supervision. During training, we attach a web camera to our wireless sensor,

and synchronize the the wireless and visual streams. We extract pose information from the

visual stream and use it as a supervisory signal for the wireless stream. Once the system
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is trained, it only uses the radio signal as input. The result is a system that is capable of

estimating human pose using wireless signals only, without requiring human annotation

as supervision. Interestingly, the RF-based model learns to perform pose estimation even

when the people are fully occluded or in a different room. It does so despite it has never

seen such examples during training.

Beyond cross-modal supervision, the design of RF-Pose accounts for the intrinsic fea-

tures of RF signals including low spatial resolution, specularity of the human body at RF

frequencies that traverse walls, and differences in representation and perspective between

RF signals and the supervisory visual stream.

We train and test RF-Pose using data collected in public environments around our cam-

pus. The dataset has hundreds of different people performing diverse indoor activities:

walking, sitting, taking stairs, waiting for elevators, opening doors, talking to friends,

etc. We test and train on different environments to ensure the network generalizes to

new scenes. We manually label 2000 RGB images and use them to test both the vision

system and RF-Pose. The results show that on visible scenes, RF-Pose has an average pre-

cision (AP) of 62.4 whereas the vision-based system used to train it has an AP of 68.8.

For through-wall scenes, RF-Pose has an AP of 58.1 whereas the vision-based system fails

completely.

We also show that the skeleton learned from RF signals extracts identifying features of

the people and their style of moving. We run an experiment where we have 100 people

perform free walking, and train a vanilla-CNN classifier to identify each person using a

2-second clip of the RF-based skeleton. By simply observing how the RF-based skeleton

moves, the classifier can identify the person with an accuracy over 83% in both visible and

through wall scenarios.

� 3.1 RF Signals Acquisition and Properties

Our RF-based pose estimation relies on transmitting a low power RF signal and receiv-

ing its reflections. To separate RF reflections from different objects, it is common to use

techniques like FMCW (Frequency Modulated Continuous Wave) and antenna arrays [71].

FMCW separates RF reflections based on the distance of the reflecting object, whereas an-

tenna arrays separate reflections based on their spatial direction. In this section, we intro-
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duce a radio similar to [71], which generates an FMCW signal and has two antenna arrays:

vertical and horizontal (other radios are also available [147, 148]). Thus, our input data

takes the form of two-dimensional heatmaps, one for each of the horizontal and vertical

antenna arrays. As shown in Fig. 3-2, the horizontal heatmap is a projection of the signal

reflections on a plane parallel to the ground, whereas the vertical heatmap is a projection

of the reflected signals on a plane perpendicular to the ground (red refers to large values

while blue refers to small values). Note that since RF signals are complex numbers, each

pixel in this map has a real and imaginary components. Our radio generates 30 pairs of

heatmaps per second.

x

y

z

Figure 3-2: RF heatmaps and an RGB image recorded at the same time.

It is important to note that RF signals have intrinsically different properties than visual

data, i.e., camera pixels.

• First, RF signals in the frequencies that traverse walls have low spatial resolution, much

lower than vision data. The resolution is typically tens of centimeters [8, 148, 71], and

is defined by the bandwidth of the FMCW signal and the aperture of the antenna array.

In particular, our radio has a depth resolution about 10 cm, and its antenna arrays have

vertical and horizontal angular resolution of 15 degrees.

• Second, the human body is specular in the frequency range that traverse walls [95]. RF

specularity is a physical phenomenon that occurs when the wavelength is larger than

the roughness of the surface. In this case, the object acts like a reflector - i.e., a mirror - as

opposed to a scatterer. The wavelength of our radio is about 5cm and hence humans act

as reflectors. Depending on the orientation of the surface of each limb, the signal may

be reflected towards our sensor or away from it. Thus, in contrast to camera systems
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where any snapshot shows all unoccluded key-points, in radio systems, a single snap-

shot has information about a subset of the limbs and misses limbs and body parts whose

orientation at that time deflects the signal away from the sensor.

• Third, the wireless data has a different representation (complex numbers) and different

perspectives (horizontal and vertical projections) from a camera.

The above properties have implications for pose estimation, and need to be taken into

account in designing a neural network to extract poses from RF signals.

� 3.2 Method

Our model, illustrated in Fig. 3-3, follows a teacher-student design. The top pipeline in the

figure shows the teacher network, which provides cross-modal supervision; the bottom

pipeline shows the student network, which performs RF-based pose estimation.

L

. . .

. . .

. . .

Horizontal Heatmaps

Vertical Heatmaps

RGB Frames Keypoint Confidence Maps
from Visual Inputs

from RF Signals
Keypoint Confidence Maps

supervision

. . .
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Vertical RF Encoder Ev

Pose Decoder D

Student Network S

Teacher Network T

Figure 3-3: Our teacher-student network model used in RF-Pose. The upper pipeline
provides training supervision, whereas the bottom pipeline learns to extract human
pose using only RF heatmaps.

� 3.2.1 Cross-Modal Supervision

One challenge of estimating human pose from RF signals is the the lack of labelled data.

Annotating human pose by looking at RF signals (e.g., Fig. 3-2) is almost impossible. We

address this challenge by leveraging the presence of well established vision models that

are trained to predict human pose in images [149, 150].
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We design a cross-modal teacher-student network that transfers the visual knowledge

of human pose using synchronized images and RF signals as a bridge. Consider a syn-

chronized pair of image and RF signals (I,R), where R denotes the combination of the

vertical and horizontal heatmaps, and I the corresponding image in Fig. 3-2. The teacher

network T(·) takes the images I as input and predicts keypoint confidence maps as T(I).

These predicted maps T(I) provide cross-modal supervision for the student network S(·),

which learns to predict keypoint confidence maps from the RF signals. In this work, we

adopt the 2D pose estimation network in [22] as the teacher network. The student network

learns to predict 14 keypoint confidence maps corresponding to the following anatomical

parts of the human body: head, neck, shoulders, elbows, wrists, hips, knees and ankles.

The training objective of the student network S(·) is to minimize the difference between

its prediction S(R) and the teacher network’s prediction T(I):

min
S

∑

(I,R)

L(T(I),S(R)) (3.1)

We define the loss as the summation of binary cross entropy loss for each pixel in the

confidence maps:

L(T,S) = −
∑

c

∑

i,j

Scij log Tc
ij + (1− Scij) log (1−Tc

ij),

where Tc
ij and Scij are the confidence scores for the (i, j)-th pixel on the confidence map c.

� 3.2.2 Keypoint Detection from RF Signals

The design of our student network has to take into account the properties of RF signals. As

mentioned earlier, the human body is specular in the RF range of interest. Hence, we can-

not estimate the human pose from a single RF frame ( a single pair of horizontal and verti-

cal heatmaps) because the frame may be missing certain limbs tough they are not occluded.

Further, RF signals have low spatial resolution. Hence, it will be difficult to pinpoint the

location of a keypoint using a single RF frame. To deal with these issues, we make the

network learn to aggregate information from multiple snapshots of RF heatmaps so that it

can capture different limbs and model the dynamics of body movement. Thus, instead of

taking a single frame as input, we make the network look at sequences of frames. For each
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sequence, the network outputs keypoint confidence maps as the number of frames in the

input – i.e., while the network looks at a clip of multiple RF frames at a time, it still outputs

a pose estimate for every frame in the input.

We also want the network to be invariant to translations in both space and time so that

it can generalize from visible scenes to through-wall scenarios. Therefore, we use spatio-

temporal convolutions [151, 152, 48] as basic building blocks for the student networks.

Finally, the student network needs to transform the information from the views of RF

heatmaps to the view of the camera in the teacher network (see Fig. 3-2). To do so, the

model has to first learn a representation of the information in the RF signal that is not en-

coded in original spatial space, then decode that representation into keypoints in the view

of the camera. Thus, as shown in Fig. 3-3, our student network has: 1) two RF encoding

networks Eh(·) and Ev(·) for horizontal and vertical heatmap streams, and 2) a pose de-

coding network D(·) that takes a channel-wise concatenation of horizontal and vertical RF

encodings as input and predicts keypoint confidence maps. The RF encoding networks

uses strided convolutional networks to remove spatial dimensions [153, 111] in order to

summarize information from the original views. The pose decoding network then uses

fractionally strided convolutional networks to decode keypoints in the camera’s view.

� 3.2.3 Implementation and Training

RF encoding network. Each encoding network takes 100 frames (3.3 seconds) of RF heat-

map as input. The RF encoding network uses 10 layers of 9 × 5 × 5 spatio-temporal con-

volutions with 1 × 2 × 2 strides on spatial dimensions every other layer. We use batch

normalization [154] followed by the ReLU activation functions after every layer.

Pose decoding network. We combine spatio-temporal convolutions with fractionally str-

ided convolutions to decode the pose. The decoding network has 4 layers of 3× 6× 6 with

fractionally stride of 1× 1
2 × 1

2 , except the last layer has one of 1× 1
4 × 1

4 . We use Parametric

ReLu [155] after each layer, except for the output layer, where we use sigmoid.

Training Details. We represent a complex-valued RF heatmap by two real-valued channels

that store the real and imaginary parts. We use a batch size of 24. Our networks are

implemented in PyTorch.
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� 3.2.4 Keypoint Association

The student network generates confidence maps for all keypoints of all people in the scene.

We map the keypoints to skeletons as follows. We first perform non-maximum suppres-

sion on the keypoint confidence maps to obtain discrete peaks of keypoint candidates. To

associate keypoints of different persons, we use the relaxation method proposed by Cao

et al. [22] and we use Euclidean distance for the weight of two candidates. Note that we

perform association on a frame-by-frame basis based on the learned keypoint confidence

maps. More advanced association methods are possible, but outside the scope of this the-

sis.

� 3.3 Dataset

We collected synchronized wireless and vision data. We attached a web camera to our

RF sensor and synchronized the images and the RF data with an average synchronization

error of 7 milliseconds.

We conducted more than 50 hours of data collection experiments from 50 different

environments (see Fig. 3-4), including different buildings around our campus. The en-

vironments span offices, cafeteria, lecture and seminar rooms, stairs, and walking corri-

dors. People performed natural everyday activities without any interference from our

side. Their activities include walking, jogging, sitting, reading, using mobile phones and

laptops, eating, etc. Our data includes hundreds of different people of varying ages. The

maximum and average number of people in a single frame are 14 and 1.64, respectively.

A data frame can also be empty, i.e., it does not include any person. Partial occlusions,

where parts of the human body are hidden due to furniture and building amenities, are

also present. Legs and arms are the most occluded parts.

To evaluate the performance of our model on through-wall scenes, we build a mobile

camera system that has 8 cameras to provide ground truth when the people are fully oc-

cluded. After calibrating the camera system, we construct 3D poses of people and project

them on the view of the camera colocated with RF sensor. The maximum and average

number of people in each frame in the through-wall testing set are 3 and 1.41, respectively.

This through-wall data was only for testing and was not used to train the model.
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Figure 3-4: Different environments in the dataset.

� 3.4 Experiments

RF-Pose is trained with 70% of the data from visible scenes, and tested with the remaining

30% of the data from visible scenes and all the data from through-wall scenarios. We make

sure that the training data and test data are from different environments.

� 3.4.1 Setup

Evaluation Metrics: Motivated by the COCO keypoints evaluation [149] and as is common

in past work [22, 89, 23], we evaluate the performance of our model using the average

precision over different object keypoint similarity (OKS). We also report AP50 and AP75,

which denote the average precision when OKS is 0.5 and 0.75, and are treated as loose and

strict match of human pose, respectively. We also report AP, which is the mean average

precision over 10 different OKS thresholds ranging from 0.5 to 0.95.

Baseline: For visible and partially occluded scenes, we compare RF-Pose with Open-

Pose [22], a state-of-the-art vision-based model, that also acts as the teacher network.

Ground Truth: For visible scenes, we manually annotate human poses using the images
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Methods Visible scenes Through-walls

AP AP50 AP75 AP AP50 AP75

RF-Pose 62.4 93.3 70.7 58.1 85.0 66.1
OpenPose[22] 68.8 77.8 72.6 - - -

Table 3-1: Average precision in visible and through-wall scenarios.
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Figure 3-5: Average precision at different OKS values.

captured by the camera colocated with our RF sensor. For through-wall scenarios where

the colocated camera cannot see people in the other room, we use the eight-camera system

described in 3.3 to provide ground truth. We annotate the images captured by all eight

cameras to build 3D human poses and project them on the view of the camera colocated

with the radio. We annotate 1000 randomly sampled images from the visible-scene test set

and another 1000 examples from the through-wall data.

� 3.4.2 Multi-Person Pose Estimation Results

We compare human poses obtained via RF signals with the corresponding poses obtained

using vision data. Table 3-1 shows the performance of RF-Pose and the baseline when

tested on both visible scenes and through-wall scenarios. The table shows that, when

tested on visible scenes, RF-Pose is almost as good as the vision-based OpenPose that was

used to train it. Further, when tested on through-wall scenarios, RF-Pose can achieve good

pose estimation while the vision-based baseline completely fail due to occlusion.

The performance of RF-Pose on through-wall scenarios can be surprising because the

system did not see such examples during training. However, from the perspective of radio

signals, a wall simply attenuates the signal power, but maintains the signal structure. Since

our model is space invariant, it is able to identify a person behind a wall as similar to the
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Methods Hea Nec Sho Elb Wri Hip Kne Ank
RF-Pose 75.5 68.2 62.2 56.1 51.9 74.2 63.4 54.7

OpenPose[22] 73.0 67.1 70.8 64.5 61.5 71.4 68.4 68.3

Table 3-2: Average precision of different keypoints in visible scenes.

Figure 3-6: Pose estimation with different activities and environments. First row:
Images captured by a web camera (shown as a visual reference). Second row: Pose
estimation by our model using RF signals only and without any visual input. Third
row: Pose estimation using OpenPose based on images from the first row.

examples it has seen in the space in front of a wall.

An interesting aspect in Table 3-1 is that RF-Pose outperforms OpenPose for AP50, and

becomes worse at AP75. To further explore this aspect, we plot in Fig. 3-5 the average

precision as a function of OKS values. The figure shows that at low OKS values (< 0.7), our

model outperforms the vision baseline. This is because RF-Pose predicts less false alarm

than the vision-based solution, which can generate fictitious skeletons if the scene has a

poster of a person, or a human reflection in a glass window or mirror. In contrast, at high

OKS values (> 0.75), the performance of RF-Pose degrades fast, and becomes worse than

vision-based approaches. This is due to the intrinsic low spatial resolution of RF signals

which prevents them from pinpointing the exact location of the keypoints. The ability of

RF-Pose to exactly locate the keypoints is further hampered by imperfect synchronization

between the RF heatmaps and the ground truth images.

Next, we zoom in on the various keypoints and compare their performance. Table 3-

2 shows the average precision of RF-Pose and the baseline in localizing different body

parts including head, right and left shoulders, elbows, wrists, hips, knees, and ankles. The

results indicate that RF signals are highly accurate at localizing the head and torso (neck

and hips) but less accurate in localizing limbs. This is expected because the amount of RF

reflections depends on the size of the body part. Thus, RF-Pose is better at capturing the

head and torso, which have large reflective areas and relatively slow motion in comparison
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(a) Failure examples of OpenPose due to occlusioin, posters, and
bad lighting.

(b) Failure examples of ours due to metal
and crowd.

Figure 3-7: Common failure examples. First row: Images captured by a web camera
(shown as a visual reference). Second row: Pose estimation by our model using RF
signals only and without any visual input. Third row: Pose estimation using Open-
Pose based on images from the first row.

to the limbs. As for why RF-Pose outperforms OpenPose on some of the keypoints, this is

due to the RF-based model operating over a clip of a few seconds, whereas the OpenPose

baseline operates on individual images.

Finally, we show a few test skeletons to provide a qualitative perspective. Fig. 3-6

shows sample RF-based skeletons from our test dataset, and compares them to the cor-

responding RBG images and OpenPose skeletons. The figure demonstrates RF-Pose per-

forms well in different environments with different people doing a variety of everyday

activities. Fig. 3-7 illustrates the difference in errors between RF-Pose and vision-based

solutions. It shows that the errors in vision-based systems are typically due to partial oc-

clusions, bad lighting 1, or confusing a poster or wall-picture as a person. In contrast,

errors in RF-Pose happen when a person is occluded by a metallic structure (e.g., a metal-

lic cabinet in Fig. 3-7(b)) which blocks RF signals, or when people are too close and hence

the low resolution RF signal fails to track all of them.

� 3.4.3 Model Analysis

We use guided back-propagation [156] to visualize the gradient with respect to the input

RF signal, and leverage the information to provide insight into our model.

Which part of the RF heatmap does RF-Pose focus on? Fig. 3-8 presents an example

where one person is walking in front of the wall while another person is hidden behind

1Images with bad lighting are excluded during training and testing.
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it. Fig. 3-8(c) shows the raw horizontal heatmap. The two large boxes are the rescaled

versions of the smaller boxes and zoom in on the two people in the figure. The red patch

indicated by the marker is the wall, and the other patches are multipath effects and other

objects. The gradient in Fig. 3-8(d) shows that RF-Pose has learned to focus its attention on

the two people in the scene and ignore the wall, other objects, and multipath.

(a) RGB image (b) Parsed poses

wall

(c) Horizontal Heatmap (d) Gradients

Figure 3-8: Attention of the model across space.

How does RF-Pose deal with specularity? Due to the specularity of the human body,

some body parts may not reflect much RF signals towards our sensor, and hence may be

de-emphasized or missing in some heatmaps, even though they are not occluded. RF-

Pose deals with this issue by taking as input a sequences of RF frames (i.e., a video clip

RF heatmaps). To show the benefit of processing sequences of RF frames, we sum up the

input gradient in all pixels in the heatmaps to obtain activation per RF frame. We then plot

in Fig. 3-9 the activation as a function of time to visualize the contribution of each frame

to the estimation of various keypoints. The figure shows: that the activations of the right

knee (RKnee) and right ankle (RAnkle) are highly correlated, and have peaks at time t1 and

t2 when the person is taking a step with her right leg. In contrast, her left wrist (LWrist)

gets activated after she raises her forearm at t3, whereas her left elbow (LElbow) remains

silent until t4 when she raises her backarm.

Fig. 3-9 shows that, for a single output frame, different RF frames in the input sequence

contribute differently to the output keypoints. This emphasizes the need for using a se-

quence of RF frames at the input. But how many frames should one use? Table 3-3 com-

pares the model’s performance for different sequence length at the input. The average

precision is poor when the input uses only 6 RF frames and increases as the sequence

length increases.
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RKnee

RAnkle

RShoulder

LWrist
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Figure 3-9: Activation of different keypoints over time.
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Figure 3-10: Contribution of the neighbor to the current frame.

But how much temporal information does RF-Pose need? Given a particular output

frame, i, we compute the contributions of each of the input frames to it as a function of

their time difference from i. To do so, we back-propagate the loss of a single frame w.r.t.

to the RF heatmaps before it and after it, and sum up the spatial dimensions. Fig. 3-10

shows the results, suggesting that RF-Pose leverages RF heatmaps up to 1 second away to

estimate the current pose.

# RF frames AP
6 30.8
20 50.8
50 59.1

100 62.4

Table 3-3: Average precision of pose estimation trained on varying lengths of input
frames.
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� 3.4.4 Identification Using RF-Based Skeleton

We would like to show that the skeleton generated by RF-Pose captures personalized fea-

tures of the individuals in the scene, and can be used by various recognition tasks. Thus,

we experiment with using the RF-based skeleton for person identification.

We conduct person identification experiment with 100 people in two settings: visible

environment, where the subject and RF device are in the same room, and through-wall en-

vironment, where the RF device captures the person’s reflections through a wall. In each

setting, every person walks naturally and randomly inside the area covered by our RF de-

vice, and we collect 8 and 2 minutes data separately for training and testing. The skeleton

heatmaps are extracted by the model trained on our pose estimation dataset, which never

overlaps with the identification dataset. For each setting, we train a 10-layer vanilla CNN

to identify people based on 50 consecutive frames of skeleton heatmaps.

Method Visible scenes Through-walls

Top1 Top3 Top1 Top3
RF-Pose 83.4 96.1 84.4 96.3

Table 3-4: Top1 and top3 identification percent accuracy in visible and through-wall
settings.

Table 3-4 shows that RF-based skeleton identification can reach 83.4% top1 accuracy in

visible scenes. Interestingly, even when a wall blocks the device and our pose extractor

never sees these people and such environments during training, the extracted skeletons

can still achieve 84.4% top1 accuracy, showing its robustness and generalizability regard-

less of the wall. As for top3 accuracy, we achieve more than 96% in both settings, demon-

strating that the extracted skeleton can preserve most of the discriminative information for

identification even though the pose extractor is never trained or fine-tuned on the identifi-

cation task.

� 3.5 Scope & Limitations

RF-Pose leverages RF signals to infer the human pose through occlusions. However, RF

signals and the solution that we present herein have some limitations: First, the human

body is opaque at the frequencies of interest – i.e., frequencies that traverse walls. Hence,

inter-person occlusion is a limitation of the current system. Second, the operating distance
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of a radio is dependent on its transmission power. The radio we use in our system works

up to 40 feet. Finally, we have demonstrated that our extracted pose captures identifying

features of the human body. However, our identification experiments consider only one

activity: walking. Exploring more sophisticated models and identifying people in the wild

while performing daily activities other than walking is left for future work.

� 3.6 Conclusion

Occlusion is a fundamental problem in human pose estimation and many other vision

tasks. Instead of hallucinating missing body parts based on visible ones, we demonstrate a

solution that leverages radio signals to accurately track the 2D human pose through walls

and obstructions. We believe this work opens up exciting research opportunities to transfer

visual knowledge about people and environments to RF signals, providing a new sensing

modality that is intrinsically different from visible light and can augment vision systems

with powerful capabilities.
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Through-Wall 3D Human Pose

Estimation using Radio Signals

The past decade has witnessed much progress in using RF signals to localize people and

track their motion. Novel algorithms have led to accurate localization within tens of cen-

timeters [73, 74]. Advanced sensing technologies have enabled people tracking based on

the RF signals that bounce off their bodies, even when they do not carry any wireless

transmitters [8, 10, 157]. Various papers have developed classifiers that use RF reflections

to detect actions like falling, walking, sitting, etc. [61, 76, 158]. This literature shows that

RF signals carry an impressive amount of information about people and their movements.

But, how rich a description of people can one extract from the surrounding radio signals?

In this section, we demonstrate the potential of extracting rich and detailed information

about people using the radio signals that bounce off their body. Instead of simply returning

a person’s location, we present RF-Pose3D, a new system that can use the RF signals in the

Figure 4-1: Example output of RF-Pose3D. Left: RGB image. Middle: RF-based local-
ization results. Right: 3D skeletons from our system.

37
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environment to extract full 3D skeletons of people including the head, arms, shoulders,

hip, legs, etc. Further, the extracted skeletons are dynamic, i.e., they move and act like the

original people in the scene. Fig. 4-1 presents the output of our system, and compares it

against RF-based localization. The figure on the left shows a scene with two people. The

figure in the middle illustrates the output of today’s RF-based localization systems. The

figure on the right shows the output of our system, which not only localizes the people,

but also provides their detailed 3D skeletons and reveals their exact posture. Further, if the

persons in Fig. 4-1(a) move, the skeletons in Fig. 4-1(c) would move accordingly.

Such 3D skeletons have applications in gaming where they can extend systems like

Kinect to work across occlusions. They may be used by law enforcement personnel to

assess a hostage scenario, leveraging the ability of RF signals to traverse walls. They also

have applications in healthcare, where they can track motion disorders such as involuntary

movements (i.e., dyskinesia) in Parkinson’s patients.

Designing a system that maps RF signals to 3D skeletons is a highly complex task. The

system must model the relationship between the observed radio waves and the human

body, as well as the constraints on the location and movement of different body parts. To

deal with such complexity we resort to deep neural networks. Our aim is to leverage recent

success of convolutional neural network (CNN), which has demonstrated a major leap in

abstracting the human pose in images and videos [22, 23, 20].

Our neural network takes as input the RF signal captured by an FMCW radio similar

to the radio used in past work on localization [8]. The network operates on sliding time

windows of 3 seconds. It produces a continuous 3D video of the skeletons in the scene,

where for each skeleton it tracks the 3D location of 14 keypoints: head, neck, shoulders,

elbows, wrists, hip, knees, and feet.

The design of RF-Pose3D is structured around three components that together provide

an architecture for using deep learning for RF-sensing. Each component serves a particular

function as we describe below.

(1) Sensing the 3D Skeleton: This component takes the RF signals that bounce off

someone’s body, and leverages deep CNN to infer the person’s 3D skeleton. There is a

key challenge, however, in adapting CNNs to RF data. The RF signal that we deal with

is a 4 dimensional function of space and time. Thus, our CNN needs to apply 4D convo-

lutions. But common deep learning platforms (e.g., PyTorch, TensorFlow) do not support
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4D CNNs. They are targeted to images or videos, and hence support only up to 3D convo-

lutions. More fundamentally, the computational and I/O resources required by 4D CNNs

are excessive and limit scaling to complex tasks like 3D skeleton estimation.

To address this challenge, we leverage the properties of RF signals to decompose 4D

convolutions into a combination of 3D convolutions performed on two planes and the

time axis. We also decompose CNN training and inference to operate on those two planes.

We analytically prove that our decomposition is valid and equivalent to performing 4D

convolutions at each layer of the neural network. This approach not only addresses the

dimensional difference between RF data and existing deep learning tools, but also reduces

the complexity of the model and speed up training by orders of magnitude.

(2) Scaling to Multiple People: Most environments have multiple people. To estimate

the 3D skeletons of all individuals in the scene, we need a component that separates the

signals from each individual so that it can be processed independently to infer his or her

skeleton. The most straightforward approach to this task would run past localization al-

gorithms, locate each person in the scene, and zoom in on signals from that location. The

drawbacks of such approach are: 1) localization errors will lead to errors in skeleton es-

timation, and 2) multipath effects can create fictitious people. To avoid these problems,

we design this component as a deep neural network that directly learns to detect people

and zoom in on them. However, instead of zooming in on people in the physical space,

the network first transforms the RF signal into an abstract domain that condenses the rele-

vant information, then separates the information pertaining to different individuals in the

abstract domain. This allows the network to avoid being fooled by fictitious people that

appear due to multipath, or random reflections from objects in the environment.

(3) Training: Once the network is setup, it needs training data –i.e., it needs many

labeled examples where each example is a short clip (3-second) of received RF signals and

a 3D video of the skeletons and their keypoints as functions of time. How do we obtain

such labeled examples?

We leverage past work in computer vision which, given an image of people, identifies

the pixels that correspond to their keypoints [22]. To transform such 2D skeletons to 3D

skeletons, we develop a coordinated system of 12 cameras. We collect 2D skeletons from

each camera, and design an optimization problem based on multi-view geometry to find

the 3D location of each keypoint of each person. Of course, the cameras are used only
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during training to generate labeled examples. Once the network is trained, we can take

the radio to new environments and use the RF signal alone to track the 3D skeletons and

their movements.

RF-Pose3D has been evaluated empirically. We train and test our system using data

collected in public environments around our campus.1 The dataset has over one hundred

people performing diverse indoor activities: walking, sitting, waiting for elevators, open-

ing doors, talking to friends, etc. We train and test in different environments to ensure the

network generalizes to new scenes. We summarize our results as follows:

• Qualitative Results: Figure 4-1 above provides a representative example of our results

(more are provided in Section 4.6.3). The figure shows an important feature of our 3D

skeletons. The radio in this experiment is situated behind the seated person, and hence

captures signals from a specific perspective. Yet, RF-Pose3D generates 3D skeletons that

can be shown from any perspective –e.g., you can look at them from the direction oppo-

site to the radio.

• Accuracy of Each Keypoint: RF-Pose3D estimates simultaneously the 3D locations of 14

keypoints on the body. Its average error in localizing a keypoint is 6.5cm in the horizon-

tal plane and 4.0cm along the vertical axis. To the best of our knowledge, this is the first

work that localizes multiple keypoints on the human body at the same time.

• Indoor Localization: Once we have 3D skeletons, we can easily localize people. Our

median localization error is 1.7cm, 2.8cm and 2.3cm along the X, Y and Z axes, which is

a significant improvement over past work.

Contributions: RFPose3D makes the following contributions:

• Our system is the first to extract 3D skeletons and their keypoints from RF signals. In-

ferring the 3D skeleton is a complex task that requires mapping 14 keypoints on the

human body to their 3D locations. It also involves generalization to unseen views that

are different from the view of the radio.

• We present a novel CNN model that differs from all past work including models used in

computer vision. The key property of this model is its ability to decompose 4D CNN to

1All experiments that involve humans satisfy our IRB requirements.
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3D convolutions over 2D planes and the time axis. This method allows us to maintain

spatio-temporal relationship between human keypoints, yet operate on individual views

of the signal over time, which both reduces complexity and allows for using common

neural network platforms.

• We present an architecture that leverages deep learning to sense humans using RF sig-

nals. Our architecture consists of a component that generates training example, a com-

ponent that separates RF data from different individuals, and a sensing component that

infers properties related to a particular individual. We show how to build these com-

ponents using deep neural networks and multi-view optimization of visual data. We

believe that this architecture as well as our camera system can be used by researchers in

the field to address other RF-based sensing tasks.

� 4.1 Primer: Multi-Antenna FMCW Radio

RF-Pose3D uses a multi-antenna FMCW radio similar to the one used in [71]. The radio

has a single transmit antenna, and two 1D antenna arrays for reception, one situated hori-

zontally and the other vertically. The combination of FMCW and antenna arrays allows the

radio to measure the signal from different 3D voxels in space. Specifically, the RF signals

reflected from location (x, y, z) can be computed as [159]:

a(x, y, z, t) =
∑

k

∑

i

stk,i · e
j2π

dk(x,y,z)

λi , (4.1)

where stk,i is the i-th sample of an FMCW sweep received on the k-th receive antenna at the

time index t (i.e., the FMCW index), λi is the wavelength of the signal at the i-th sample in

the FMCW sweep, and dk(x, y, z) is the round-trip distance from the transmit antenna to

the voxel at (x, y, z), and back to the k-th receive antenna.

� 4.2 RF-Pose3D Overview

RF-Pose3D is a system that estimates multi-people 3D poses based on RF signals. RF-

Pose3D takes as input the RF reflections from the environment captured by a multi-antenna

FMCW radio. Such reflections are a 4D function of space and time, which we refer to there-
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Figure 4-2: RF-Pose3D’s system overview. Top graph shows the process of generating
labeled 3D poses using our coordinated camera system. The labeled samples are used
to train the model in the bottom graph. The model can be divided into two compo-
nents: a region proposal network (RPN) that zooms in on RF data from one individual,
and a CNN that extracts the 3D skeleton from the proposed region.

after as a 4D RF tensor.

RF-Pose3D’s design is based on a deep neural network architecture (Figure 4-2). The

system includes multiple components:

• A multi-camera sub-system that generates 3D poses from many 2D images taken from

different viewpoints (top graph in Fig. 4-2). The output of this subsystem is used to

provide labeled examples to train RF-Pose3D’s neural networks.

• A neural network model that extracts multi-people 3D poses from RF signals (bottom

graph in Fig. 4-2). The model is trained using labeled examples from the camera system.

Once training is over, the model can infer 3D skeletons from RF signals alone. Further-

more, it can be taken to new environments that it did not see during training and would

still work correctly. The model itself has two conceptual subcomponents:

– A component that zooms in on the RF data from each individual separately. We

refer to this network as the region proposal network (RPN) because it associates

each person with the RF data in a particular region.

– A component that operates on the RF data of each person and extracts his or her

skeleton. We refer to this component as the CNN.

The following sections explain the above three components: the camera-system, the

RPN, and the CNN. For clarity reason, we start by explaining the CNN assuming only one

person in the scene. We then extend the model by adding the RPN, which takes care of

separating the RF signals from different people in the scene. Finally, we explain the camera

system and how it obtains labeled examples for training.
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Figure 4-3: Illustration of RF-Pose3D’s 4D CNN model. The model localizes human
keypoints (e.g., head, neck, right knee) by classifying each keypoint to one voxel in
space.

� 4.3 3D Pose Estimation from RF

In this section, we describe our design of a CNN model that uses RF signal to estimate

the 3D human pose. The problem of 3D pose estimation is defined as identifying the 3D

locations of 14 anatomical keypoints on the body: head, neck, shoulders, elbows, wrists,

hips, knees and ankles. We first focus on 3D pose estimation for a single person in this

section, and extend it for multi-person scenarios in Section 4.4.

Manually designing a mapping from RF signals to 3D poses is an intractable task. Such

a mapping has to take care of reflection properties, the presence of multi-path and other

reflective objects, the deformable nature of the human body, and the constraints on the

movements and locations of human body parts with respect to each other. Thus, rather

than manually design filters or rules to decode 3D human poses from the RF signals, we

consider neural networks, which have proved their advantage in learning complex map-

pings from training examples. Our goal is to design a CNN model that takes as input a 4D

RF tensor (Section 4.1), and outputs a 3D human pose.

� 4.3.1 CNN Model

We start by formulating keypoint localization as a CNN classification problem, then design

a CNN architecture that solves the problem.

Keypoint localization as CNN classification: We first discretize the space of interests into

3D voxels. In our CNN classification problem, the set of classes are all 3D voxels, and

our goal is to classify the location of each keypoint (head, neck, right elbow, etc.) into one

of the voxels. Specifically, to localize a keypoint, our CNN outputs scores s = {sv}v∈V
corresponding to all 3D voxels v ∈ V , and the target voxel v∗ is the one that contains the

keypoint. We use the Softmax loss LSoftmax(s, v∗) as the loss of keypoint localization. To

localize all 14 keypoints, instead of having a separate CNN for each of the keypoint, we
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use a single CNN that outputs scores sk for each of the 14 keypoints. This design forces the

model to localize all the keypoints jointly, and will learn to infer the location of occluded

keypoint based on the locations of other keypoints. The total loss of pose estimation is the

sum of the Softmax loss of all 14 keypoints:

Lpose =
∑

k

LSoftmax(sk, vk
∗
), (4.2)

where the index k refers to a particular keypoint. Once the model is trained, it can predict

the location of each keypoint k as the voxel with the highest score:

v̂k = arg max
v
skv . (4.3)

CNN architecture: To localize keypoints in 3D space, our CNN model needs to aggre-

gate information over space to analyze all RF reflections from a person’s body and assign

scores for each voxel. Also the model needs to aggregate information across time to infer

keypoints that may be occluded at a specific time instance. Thus, as illustrated in Fig-

ure 4-3, our CNN model takes 4D RF tensors (space and time) as input and performs 4D

convolution at each layer to aggregate information along space and time, that is:

an = fn ∗(4D) a
n−1, (4.4)

where an and an−1 are the feature maps at layer n and n−1, fn is the 4D convolution filter

at layer n and ∗4D is 4D convolution operator.

� 4.3.2 Challenge: Time and Space Complexity

The 4D CNN model described in Section 4.3.1 has practical issues. The time and space

complexity of 4D CNN is so prohibitive that major machine learning platforms (PyTorch,

TensorFlow) only support convolution operation up to 3D. To appreciate the computa-

tional complexity of such model, consider performing 4D convolutions on our 4D RF ten-

sor. The size of the convolution kernel is fixed and relatively small. So the complexity

stems from convolving with all 3 spatial dimensions and the time dimension. Say we want

to span an area of 100 square meters with 3 meters of elevation. We want to divide this

area to voxels of 1 cm3 to have a good resolution of the location of a keypoint. Also say
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that we take a time window of 3 seconds and that we have 30 RF measurements per voxel

per second. Performing a 4D convolution on such tensor involves 1, 000×1, 000×300×90,

i.e., 27 giga operations. This process has to be repeated for each example in the training

set, which contains over 1.2 million (Section 4.6.3) such examples. The training can take

multiple weeks. Furthermore, the inference process cannot be performed in real-time.

In fact, the above analysis underestimates the required training and inference time

since 4D convolution is one out of multiple high-complexity computations needed by

a 4D CNN. Claim 0.1 below states the complexity of our 4D CNN, which depends on

three equally complex computations: 4D convolution (Equation 4.4), Softmax loss compu-

tation (Equation 4.2) and maximum score selection (Equation 4.3).

Claim 0.1. Assuming the time and space complexity of computing the response of a 4D filter at a

single location and time is O(1), the time and space complexity of each 4D convolution, Softmax

loss computation and maximum score computation are all O(XY RT ), where X,Y,R, T are the

size of the input 4D RF tensor along the space and time axes.

� 4.3.3 Model Decomposition

We present a model decomposition that allows us to reduce the complexity fromO(XY RT )

to O(XRT + Y RT ). For scenarios in which a resolution of a couple of centimeters is de-

sirable for a space that spans 10 × 10 square meters, this decomposition translates to 3

orders of magnitude reduction in computation time. In Section 4.6.6 we show that such a

reduction allows us to infer the 3D skeleton in real-time on a single GPU.

At a high-level, our model decomposition goes as follows: We first prove that our 4D

RF tensor is planar decomposable (planar decomposition defined later in Definition 1 and

2). Then we prove that for a layer in a CNN, if its input is planar decomposable, its output

is also planar decomposable. Thus, we can stack many convolution layers creating a deep

CNN while maintaining decomposability. Finally, we prove that the computation of the

loss function and the process of detecting which class has the maximum score are both

decomposable when given a decomposable tensor as input. This last step means that we

can train the network (and use it for inference) while operating on its decomposed version

–i.e., the two 2D planar tensors and the time axis. This completes our model decomposi-

tion. Below, we define planar decomposition and state the theorem underlying the model

decomposition process, and leave the proofs to the Appendix.
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Figure 4-4: Illustration of Planar Summation.

We first define the concept of a planar summation. This concept allows us to create a

3D tensor from two 2D tensors simply by replicating and summing their entries, as shown

in Fig. 4-4. Specifically:

Definition 1 (Planar Summation). If A is an n × l matrix and B is an m × l matrix, then the

planar sumA⊕B is an n×m× l 3D tensor C, where Ci,j,k = Ai,k +Bj,k.

Analogously, we can define planer decomposition as taking a 3D tensor and decompos-

ing it to two 2D tensors that can regenerate the original 3D tensor using planar summation.

Specifically:

Definition 2 (Planar Decomposition). An n×m×l 3D tensorC is planar decomposable if it can

be written into the planar sum of an n× l matrixA and an m× l matrixB, that is, C = A⊕B.

Once we have defined planar summation and decomposition, the process of decom-

posing our 4D CNN becomes simple.

1. First we decompose the RF input.

Theorem 3 (Decomposition of 4D RF tensor by decomposing its spatial dimensions).

The 3D RF tensor from an FMCW array radio with a horizontal array and a vertical array (Sec-

tion 4.1) is planar decomposable. It can be decomposed into the planar summation of the 2D RF

tensors computed separately from the horizontal array and the vertical array.

2. Then, we show that for every convolution layer, if its input is decomposable, its output

is also decomposable.

Theorem 4 (Decomposition of Convolution). For a decomposable 4D tensor A = H ⊕ V ,

the output of convolvingAwith a 4D filter f is also decomposable. That is, there exist 3D tensors

H ′ and V ′, such thatH ′ ⊕ V ′ = (H ⊕ V ) ∗(3D) f .
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3. Next, we show that the loss function and the identification of the class with the maxi-

mum score are decomposable. Hence, allowing us to perform training and inference on

the decomposed networks.

Theorem 5 (Decomposition of Softmax Loss). For an n × l matrix H and an m × l matrix

V , Softmax loss L(H ⊕ V , (x∗, y∗, r∗)) can be computed as:

log (
∑

r

(
∑

x

eHx,r) · (
∑

y

eV y,r))−Hx∗,r∗ − V y∗,r∗

Theorem 6 (Decomposition of Maximum Score). For an n×l matrixH and anm×l matrix

V , the maximum value ofH ⊕ V can be computed as follows:

max (H ⊕ V ) = max
r

(hr + vr)

where hr = maxx (Hx,r) and vr = maxy (V y,r).

4. Finally, Claim 6.1 below states our final result of reducing the 4D CNN complexity from

O(XY RT ) to O(XRT + Y RT ), which is derived directly from the above theorems.

Claim 6.1. Assuming the time and space complexity of computing the response of a 4D filter

at a single location and time are both O(1), the time and space complexity of each 4D convolu-

tion (Theorem 4), Softmax loss computation (Theorem 5) and maximum value computation (The-

orem 6) are all O(XRT + Y RT ), where X,Y,R, T are the size of input 4D RF tensor on spatial

and time axis.

� 4.4 Multi-Person 3D Pose Estimation

While the CNN described in the last section can handle single-person 3D pose estimation,

the RF signal is capable of capturing multiple people at the same time. Therefore, it is de-

sirable to extend the CNN model so that it can extract 3D skeletons of multiple people from

the RF signal. To this end, we follow the divide-and-conquer paradigm by first detecting

people regions and then zooming into each region to extract 3D skeleton for each indi-

vidual. This leads to the design of a new neural network module called region proposal

network (RPN), which generates potential people regions.
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Figure 4-5: Extension single-person model to multiple people. The single-person
pose estimation network is split into feature network and pose estimation network.
Critically, region proposal network is inserted to detect individual person based on the
output of FN. The skeleton of each individual is further estimated by pose estimation
network.

The most straight-forward approach would have the RPN operate directly on the RF

input to identify the 3D region in space that is associated with each person. We can then

run our CNN pose-estimation model from last section on the 4D RF tensor after cropping

it according to the RPN output. We actually take a different approach: We split the CNN

model from last section and make the RPN operate on the output of an intermediate layer

(i.e., a feature map), as shown in Fig 4-5. This approach is inspired by object detection in

images; instead of trying to detect objects in the original image, it is preferable to detect

objects at an intermediate layer after the information has been condensed. For our ap-

plication, the reason why we crop the region associated with a person at an intermediate

layer is twofold. First, the raw RF signal is cluttered and suffers from multipath effect. So

we want to use a few convolutions layers to condense the information and remove clut-

ter before asking the RPN to crop a specific region (Figure 4-11). Second, when multiple

people are present, they may occlude each other from the RF device, resulting in missing

reflections from the occluded person. Thus we want to perform a few 4D spatio-temporal

convolutions to combine information across space and time to allow the RPN to detect a

temporarily occluded person

The RPN is inserted in the middle as shown in Figure 4-5. The CNN model is split into

two parts, which we name as feature network (FN) and pose estimation network (PEN).

Feature network extracts abstract and high-level feature maps from raw RF signals. Based

on these features maps, we first detect potential person regions with RPN. For each region

detected by RPN, we zoom into the corresponding region on the feature maps, crop the

features and feed them into our pose estimation network.

The single person network contains 18 convolutional layers totally. We split the first 12
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layers into feature network (FN) and the remaining 6 layers into pose estimation network

(PEN). Where to split is not unique, but generally the FN should have enough layers to

aggregate spatial and temporal information for the subsequent RPN and PEN.

� 4.4.1 Region Proposal Network

Region proposal network (RPN) is built to generate possible person regions for the subse-

quent pose estimation network. Ideally a region is a cuboid which tightly bounds a person.

While it is inefficient to search over the 3D space to propose such cuboids, it is quite un-

likely that one person stands over the head of another person. Therefore, we simplify the

3D cuboid detection as 2D bounding box detection on the horizontal plane (recall that we

have decomposed our 4D convolutions to two 3D convolution over horizontal and vertical

planes and the time axis).

The RPN takes as input feature maps output by the FN, and outputs a set of rectangular

region proposals, each with a score describing the probability of the region containing a

person. The RPN is implemented as a standard CNN. One way to train the RPN is to try

to all possible regions, and for each region classify it as correct if it fits tightly around a real

person in the scene. This approach is very slow since there are so many possible regions.

Instead we sample potential regions using a sliding window. For each sampled window,

we use a classifier to check whether it intersects reasonably well with a real person. If it

does, RPN tries to adjust the boundaries of that window to make it fit better.

We assign a binary label to each window for training, to indicate whether it contains a

person or not. To set the label, we use a simple intersection-over-union (IoU) metric, which

is defined as:

IoU =
Area of Intersection

Area of Union
(4.5)

Therefore, (1) a window that overlaps more than 0.7 IoU with any ground truth region (i.e.,

a region corresponding to a real person) is set as positive; (2) a window that overlaps less

than 0.3 with all ground truth is set as negative; For other windows which satisfy neither

of the above criteria, we simply ignore them during the training stage. For other details,

we refer the reader to the literature on selecting regions for object detection in images [94].
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Figure 4-6: Diagram of 3D skeleton generation using a set of RGB images.

� 4.5 Generating 3D Pose Labels

To learn 3D skeletons from RF signals, RF-Pose3D needs many training examples –i.e., syn-

chronized 4D RF tensors and the corresponding 3D skeletons. In this section, we describe

a subsystem that generates such training examples. This subsystem is designed to satisfy

the following requirements:

• Portable and Passive: It should be portable so that we can collect pose labels from differ-

ent environments to make sure that our RF-based model can generalize to new scenes.

It should also be passive without requiring people to wear any markers, as opposed to

motion capture systems (e.g., VICON [160]) that require every person in the scene to put

reflective markers around every keypoint.

• Accurate and Robust: It should generate accurate 3D skeletons and localize every key-

point on each person with respect to a global reference frame. It also should be robust to

various types of occlusions including self-occlusion, inter-person occlusion and occlu-

sion by furniture or walls. Such data is necessary to enable RF-Pose3D to estimate 3D

skeletons from different perspectives despite occlusions.

• Capable of dealing with multiple people: It should track the 3D skeletons of multiple

people simultaneously so that RF-Pose3D has training examples with multiple people

and hence can scale to such scenarios.

We have designed and implemented a subsystem for generating labeled examples that

satisfy all of the above requirements. Figure 4-6 illustrates the operation of this system,

which involves the following steps:
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Multi-camera system: Our system has 12 camera nodes, each of which consists of a Rasp-

berry Pi, a battery, and a camera module board. Our nodes are small, light, and easy to

deploy by attaching them on the wall. The camera nodes are synchronized via NTP and

calibrated with respect to one global coordinate system using standard multi-camera cal-

ibration techniques [161]. Once deployed, the cameras image people from different view

points.

2D skeleton generation: Next, our system uses the images captured by the cameras to gen-

erate 2D skeletons. To do so, we leverage a computer vision system called OpenPose [22],

which given an image returns the 2D skeletons of the people in it, as shown in Figure 4-6.

Ideally we would like the same skeletons to appear in the images of all 12 cameras. How-

ever, due to occlusions and the fact that 12 cameras are placed to cover different area, each

camera may see different people or different keypoints of the same person.

2D skeleton association: Next, we identify 2D skeletons of the same person and associate

them together as shown in Figure 4-6. To tell whether a pair of 2D skeletons are from

the same person or not, we look at the geometric relationship between them. Specifically,

given a 2D keypoint (e.g. head), the original 3D keypoint must lie on a line in the 3D

space that is perpendicular to the camera view and intersects it at the 2D keypoint. The

intuition is that when a pair of 2D skeletons are both from the same person, those two lines

corresponding to the potential location of a particular keypoint will intersect in 3D space.

On the other hand, if the pair of 2D skeletons are from two different people, those two

lines in 3D space will have a large distance and no intersection. Based on this intuition,

we use the average distance between the 3D lines corresponding to various keypoints as

the distance metric of two 2D skeletons, and use hierarchical clustering [162] to cluster 2D

skeletons from the same person.

Triangulating 3D skeletons: Once we have multiple 2D skeletons from the same person,

we can triangulate their keypoints to generate the corresponding 3D skeleton. We estimate

the 3D location of a particular keypoint p using its 2D projections pi as the point in space

whose projection minimizes the sum of distances from all such 2D projections, i.e.:

p = arg min
p

∑

i∈I

∥∥Cip− pi
∥∥2
2
, (4.6)

where the sum is over all cameras that detected that keypoint, and Ci is the calibration
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matrix that transforms the global coordinates to the image coordinates in the view of cam-

era i [163].

� 4.6 Implementation and Evaluation

In this section, we describe our implementation, dataset and evaluation results.

� 4.6.1 Implementation

Neural Network Architecture. Today there are a few standard CNN designs that are

widely used across tasks, we choose to use the ResNet [164] design that uses residual

connections across different layers. For more detail about ResNet, please refer to [164].

Our feature network uses a ResNet with 12 layers. Our region proposal network and pose

estimation network have another 2 and 6 layers on top of the feature network, respectively.

All convolutional layers have a kernel size of 5 except the region proposal network where

the kernel sizes are 3 and 1 for the first and second layer, respectively.

Training Details. All 3 subnetworks are trained jointly using ADAM optimizer [165] with

a learning rate of 0.001. Both Residual Connection and Batch Normalization are adopted

to benefit the training. To stabilize the training, we balance the loss weights between RPN

and PEN as 1 and 0.3, respectively. We use RoiAlign [23] to crop and resize feature maps

inside each region proposal.

Camera System. We have implemented a wireless camera system consisting of 12 camera

nodes. Each camera node is built on a Raspberry Pi 3 single-board computer resulting in a

small box design (10× 7× 5cm) with a light weight (290g).

RF Radio. RF-Pose3D uses an FMCW radio equipped with a vertical and horizontal an-

tenna arrays, similar to the one used in [71]. The radio transmits an FMCW chirp sweeping

the frequencies from 5.4 to 7.2 GHz. The transmission power is less than one millie Watt.

The RF signal is processed using standard FMCW and antenna array equations to gener-

ate 30 vertical and horizontal heatmaps per second, which are then synchronized with the

camera frames.

Synchronization. Our radio and cameras are synchronized using the network time proto-

col (NTP). When using a local NTP server, the clock synchronization error is less than 1ms
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on average. During experiments, we timestamp all the RF heatmaps and video frames and

synchronize different streams based on their timestamps. We use an FPS of 30 for all the

RF and video streams after synchronization.

� 4.6.2 Dataset

We have collected a diverse dataset of synchronized 3D skeletons and RF signals. Our

dataset has people performing a variety of typical activities including walking, sitting,

hand shaking, using mobile device, chatting, waving hands, etc.

• Scale: The dataset contains 16 hours of data. This results in 1,693,440 samples of syn-

chronized 3D skeleton frames and 3D RF tensors.

• Diversity: Our data is collected from 22 different locations on a university campus in-

cluding seminar rooms, open spaces, and offices. The average number of people in each

frame is 2.3.

• Accuracy of 3D skeleton labels: To evaluate the accuracy of 3D skeletons generated

by our camera system (Section 4.5), we compare the resulting skeletons against a VI-

CON motion capturing system [160]. Table 4-1 shows the average distance between 3D

skeletons from our camera system and from a VICON system. Our 3D skeletons have

an average error of 1.1cm and 1.5cm along two axes on the horizontal plane and 0.7cm

along the vertical axis. This result suggests that our 3D skeleton generation subsystem is

very accurate and can serve as the ground-truth for training our RF-based model. Note

that we could not use the VICON room to generate labeled examples for training since

it would limit us to only one environment.

Axis Avg Hea Nec Sho Elb Wri Hip Kne Ank
X 1.1 1.7 0.6 0.8 1.3 1.3 1.1 1.1 1.1
Y 0.7 0.4 0.3 0.4 0.9 1.5 0.6 0.9 0.9
Z 1.5 1.5 1.4 1.2 1.5 1.9 1.6 2.1 1.2

Table 4-1: Average distance between labels from our camera system and labels from
a VICON system. The results show high accuracy and hence justify using our camera
system as the ground truth for RF-based 3D skeleton estimation.
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� 4.6.3 3D Pose Estimation Performance

The 3D pose estimation performance is evaluated by comparing the pose predicted from

our model with the ground truth from the camera system. We ensure that the data used

for testing and training do not include the same environments.

Training/Testing Split: Our dataset is split into 12 and 4 hours for training and testing,

respectively. Our model is trained with data from 16 environments and tested in the re-

maining 6 environments that are not in the training set.

Metric: The spatial distance for each human keypoint between the model predictions and

ground truth.

Axis Avg Hea Nec Sho Elb Wri Hip Kne Ank
X 4.2 3.9 3.1 3.6 4.3 5.8 3.2 4.0 5.1
Y 4.0 4.4 4.2 4.3 4.0 5.1 3.5 3.3 3.5
Z 4.9 4.8 3.9 4.4 5.0 6.6 3.8 4.2 5.7

Table 4-2: Average keypoint localization error (cm) of RF-based 3D skeleton predic-
tion on the test set.

Overall Performance: The keypoint localization performance of our model is shown in

Table 4-2, where the X and Z axes define the horizontal plane and Y is the vertical axis.

The average error in localizing a keypoint are 4.2, 4.0 and 4.9 cm in the X, Y and Z axes,

respectively. The error along X and Z axes are larger than that of Y axis because of the

larger variation of locations in the horizontal plane.

The table reports the localization accuracy for every keypoint type. It merges results

for the left and right sides of the body. Evaluated keypoints include head, neck, shoulder,

elbow, wrist, hip, knee, and ankle. The results show that our model achieves less error

when localizing large or slow body parts, e.g., head or hip, than when localizing small

and highly mobile parts, e.g., wrist or ankle. For example, the average error along X, Y

and Z when localizing someone’s head is 4.4cm, whereas the error in localizing their wrist

is 5.8cm. This is expected and can be explained by two reasons. First, the amount of RF

reflections highly depends on the size of a body part. Second, limbs such as wrist and

ankles are more flexible and their movements usually have a larger degree of freedom

than head or hip, thus are harder to be captured.

Overall the accuracy is significantly higher than past localization work, though the

task is significantly harder since we are localizing small body parts. This may come as a
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Figure 4-7: Keypoint localization performance. Keypoint localization error (cm) with
(a) different number of people; (b) people at different distances.

surprise to some readers. The reason however is threefold. First, a neural network model is

much more powerful than a manually crafted model because it can capture dependencies

that are unknown to the designer. Second, our model not only captures the information

in the RF signal but also the general constraints on the shape and relationship between

different body parts. This is because it is trained with many 3D skeletons and hence learns

to abstract the relationship between their keypoints. Third, we operate over time and

space. Thus, the model can learn the dynamics of how each keypoint moves and use the

information to predict the location of a keypoint even when it is occluded.

Figure 4-8: Through-wall example. The top left image represents the view of the
radio, the top right image shows the view inside the room. Bottom row shows the
detected skeletons in corresponding views.

Different Number of People: The performance on different number of people is reported
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in Figure 4-7(a). The average error along the spatial dimensions for a single person is

3.8cm. As the number of subjects goes to 5, the average error increases to 7cm, which is

caused by heavy inter-people occlusion. The ability to sustain such accuracy with multiple

people is due to our RPN module, which can zoom in on each person and reduce inter-

ference from other people and the environment. One major reason we do not train with

more than 5 people is that the camera system starts to become unstable due to heavy occlu-

sions. Potentially our model can be trained and tested with more people if a better camera

system is constructed to provide supervision (for example by increasing the number of

coordinated cameras).

Different Ranges: We evaluate the performance when people are located at different dis-

tances. Fig. 4-7(b) shows that as people move from 1m to 10m, the error slightly increases

from 3.8cm to 5.3cm. The increase in error is expected since the spatial resolution of an-

tenna arrays decreases with distance (an angular error of a few degrees leads to small

errors at nearby distances but large errors at far distances.) We did not experiment with

distances larger than 10 meters because at such distances the main limitation is the low

power of the FMCW radio [8].

Figure 4-9: Qualitative results on multi-person detection and pose estimation.

Same v.s. Different Environment: All of the above results were for training and testing

on different environment. In this section, we train and test our model in the same environ-

ment in order to compare with cross environment testing result. Note that though we use

the same environment, we still use different examples for training and testing. The aver-

age error along X, Y, and Z is 3.7cm which is on par with cross environment error which is

4.4cm. This clearly shows that our model is robust to environmental changes. Again, this

benefit stems from the RPN module which enables the PEN to focus on individual people
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(a) 1st Camera View (b) 2nd Camera View (c) 1st Prediction View (d) 2nd Prediction View

Figure 4-10: RF-Pose3D generates 3D skeletons from different perspectives. (a)(b)
shows two views out of the camera system, (c)(d) shows the detected skeletons in
corresponding views.

and ignore environmental reflectors.

Through-Wall v.s. Line of Sight: We evaluate our system in through-wall scenarios where

the radio is separated from the monitored people by a wall. The errors along the X, Y and Z

axes are 5.2cm, 3.7cm and 4.7cm, respectively. These errors are comparable to the errors in

line-of-sight scenarios which are reported in Table 4-2. One example is shown in Figure 4-

8, where the top left image shows the viewpoint of the radio, the right image shows the

view inside the room. The second row shows the 3D skeletons from the corresponding

viewpoints.

Qualitative Results: Fig. 4-9 and Fig. 4-10 shows samples of 3D skeletons for multiple

people generated using RF-Pose3D. It illustrates that RF-Pose3D works well in different

environments and when people are doing a variety of activities, e.g., sitting, walking, in-

teracting with each other, etc.

� 4.6.4 Performance of Human Detection

Recall that our model starts by detecting people and zooming on each of them to extract

his or her skeleton. Thus we evaluate the human detection performance of our model–i.e.,

whether it correctly detects all the people in the environment despite fictitious people due

to multipath or other objects.

Metrics: We use the following metrics that are commonly used in object detection tasks.

• Precision: Precision is defined as the fraction of detected regions that truly contain a

person. It measures the robustness of our system against false positives, i.e., fictitious

people.

• Recall: Recall is defined as the fraction of people that are detected over the total amount
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of people. It measures our system’s ability in detecting all the people without misses.

• F1 score: F1 considers both precision and recall, and is computed as the harmonic average

of the two, i.e., 2·p·r
p+r .

Table 4-3 shows the precision and recall for test data with different number of people in

the scene. Overall, our model achieves a precision of 95.8% and a recall of 99.6% on single-

person data. As the number of people increases, the F1 score only drops slightly by 2.9%.

This demonstrates the effectiveness of our region proposal network, which successfully

detects multiple people in the environment without being fooled by multipath or objects in

the environment. This is partly attributed to the feature network which learns to attenuate

the side effect of multipath as well as aggregate beneficial temporal information.

#People 1 2 3 4 5
Precision (%) 95.8 96.2 94.9 95.2 96.3

Recall (%) 99.6 98.8 97.8 96.5 93.4
F-1 score 97.7 97.4 96.3 95.9 94.8

Table 4-3: Precision and Recall when there are different number of people.

To better understand how RPN works consider the example in Figure 4-11. The left part

of Figure 4-11 shows an experiment where there are three people in the scene. The middle

part of the figure shows the horizontal RF tensor at that instance of time, which contains

multipath reflections from the wall. The right part of the figure shows one of the feature

maps from the feature network together with the regions proposed by RPN. The feature

map has a large value only at the locations of the three people, suggesting that the feature

network has learned to differentiate reflections from real people from fictitious ones due

to multipath and objects in the environment. In this example, the RPN successfully detects

all the people and have 3 proposal boxes corresponding to each of them.

� 4.6.5 Localization Performance

Methods Median 90-th Percentile

X Y Z X Y Z
RF-Pose3D 1.7 2.8 2.3 5.1 8.3 6.4
WiTrack [8] 9.9 8.6 17.7 35.0 20.0 60.0

Table 4-4: Comparison with previous device-free localization system. Median and
90-th percentile localization error (cm) of RF-Pose3D and WiTrack.
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(a) RGB image (b) Horizontal RF tensor (c) Feature map

Figure 4-11: An example output of RPN. Left: RGB images from the view of the
device. Middle: horizontal RF tensor that contains fictitious people along with real
ones. Right: Decomposed horizontal feature map after FN, marked with detected
regions. Fictitious people are removed, real ones are detected.

We also compare our model with past work on indoor localization. Our trained model

can derive people’s location simply by computing the center of neck, two shoulders and

two hips. We compare our method with previous RF-based device-free indoor localization

system WiTrack [8] in Table 4-4. Our system achieves a median error of 1.7, 2.8 and 2.3

on X, Y and Z axes, respectively and 90-th percentile error of 5.1, 8.3 and 6.4, which is

significantly better than past localization systems. This results demonstrates the power of

the new model and the importance of the extra information it can get from the wireless

signal even for more traditional tasks like localization.

� 4.6.6 Running Time Analysis

As explained in Section 4.3.3, the proposed planar tensor decomposition technique en-

ables us to train and test on 4D tensor data using 3D convolutions. Here, we provide a

quantitative analysis of it. In Table 4-5, we benchmark the inference runtime of the three

subnetworks of our model: FN, FPN and PEN. On a single NVIDIA Titan X GPU, one

second of RF tensor data takes only 0.39 seconds to process. Estimated from the number of

floating point operations, it would take a 4D CNN approximately 87 seconds to perform

inference, which is way below real-time.
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Model FN RPN PEN Total 4D CNN
Time (s) 0.04 0.01 0.34 0.39 87.0 (estimated)

Table 4-5: Runtime analysis of our model during inference on a single NVIDIA
Titan X GPU. The table shows the time spent on each part of our model for every 1
second of RF signal. It suggests that our model can perform inference in real-time with
our decomposition techniques while a vanilla 4D CNN could take 87.0 seconds from
estimation.

� 4.7 Discussion

We present RF-Pose3D, a device-free system that for the first time estimates 3D human

skeletons from RF signals. By designing a novel CNN model and leveraging camera sys-

tem for supervision, RF-Pose3D is able to detect 3D skeletons for multiple people simul-

taneously. In terms of modeling, to avoid high dimensional convolution operations, we

propose a tensor decomposition technique that is computationally efficient, making the

system capable of running in realtime.

RF-Pose3D provides a leap in the quality and richness of human-related information

learned from RF signals. However, the system exhibits some limitations: First, our dataset

is focused on common activities in office buildings (e.g., walking, sitting, standing) and

misses certain poses, e.g., dancing and doing sports. As a result, the trained model is good

for poses common in office buildings and may degenerate with poses it did not see in the

dataset. This problem can be addressed by expanding the dataset to include more actions.

Second, the radio we use in our system can work up to 40 feet. Extra transmission power

or multiple radios would be needed in order to cover a larger space. Third, the efficacy

of RF-based pose estimation depends on the power reflected from each body part. Natu-

rally, smaller body parts (e.g., hands and wrists) reflect less power than larger ones. Thus,

learning actions that involve complex hand motion is more difficult. Despite these limi-

tations, we see this work as an important step towards using wireless signals for human

sensing. We believe this non-contact 3D pose tracking system can enable new applications

in healthcare, smart homes and video gaming.

� 4.8 Proof of Theorems

Proof of Theorem 3. We prove that each 3D RF tensor is planar decomposable, and there-

fore the 4D RF tensor (3D RF tensor over time) is also planar decomposable. Consider an
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FMCW array with M and N receivers for the horizontal and vertical arrays, respectively.

Let (x, y, r) denotes 3D location in the (X,Y,R)-coordinate system as shown in Figure 4-

12, where r is the distance from the point (x, y, r) to the origin. Let dhm(x, y, r) denotes the

round trip distance from transmit antenna to the point at the 3D voxel at (x, y, r) and back

to the m-th horizontal receive antenna. dvn(x, y, r) is similarly defined for the n-th vertical

receive antenna.

Base on Equation 4.1, the 3D RF tensor is computed as:

A(x, y, r) =
M∑

m=1

∑

i

shm,i · e
j2π

dhm(x,y,r)

λi +
N∑

n=1

∑

i

svn,i · e
j2π

dvn(x,y,r)

λi

and the 2D RF tensor based on horizontal and vertical array are computed as:

H(x, r) =

M∑

m=1

∑

i

shm,i · e
j2π

dhm(x,0,r)

λi

V (y, r) =
N∑

n=1

∑

i

svn,i · e
j2π

dvn(0,y,r)

λi

It can be proved geometrically that dhm(x, y, r) = dhm(x, 0, r) and dvn(x, y, r) = dvn(0, y, r),

therefore A(x, y, r) = H(x, r) + V (y, r), that is A = H ⊕ V .

X

Y

Z

y

x

r

(x, y, r)

Figure 4-12: (X,Y,R)-coordinate system.

Proof of Theorem 4. Due to space limit, we only prove the decomposition of 3D spatial con-

volution below, and 4D convolution is a natural extension of it. For an n × l matrix H

and an m × l matrix V , we prove that: (H ⊕ V ) ∗(3D) (fh ⊕ fv) = H ′ ⊕ V ′, where

H ′ = (mH + 1n×m ·V ) ∗(2D) f
h, V ′ = (nV + 1m×n ·H) ∗(2D) f

v, and 1a×b is a-by-b all-one
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matrix. Let A = (H ⊕ V ) ∗(3D) (fh ⊕ fv).

A(x, y, r) =
∑

i,j,k

(
H(x+i, r+k) + V (y+j, r+k)

)
·
(
fh(i, k) + fv(j, k)

)

H ′(x, r) = m
∑

i,k

H(x+i, r+k)fh(i, k) +
∑

i,k

∑

j

V (j, r+k)fh(i, k)

V ′(y, r) = n
∑

j,k

V (y+j, r+k)fv(j, k) +
∑

j,k

∑

i

H(i, r+k)fv(j, k)

It can be examined thatA(x, y, r) = H ′(x, r) +V ′(x, r), henceA = H ′⊕V ′ by definition.

Proof of Theorem 5.

L(H ⊕ V , (x∗, y∗, r∗)) = log (
∑

x,y,r

eHx,r+V y,r)−Hx∗,r∗ − V y∗,r∗

= log (
∑

r

(
∑

x

eHx,r) · (
∑

y

eV y,r))−Hx∗,r∗ − V y∗,r∗

Proof of Theorem 6.

max (H ⊕ V ) = max
x,y,r

(Hx,r+V y,r)

= max
r

(max
x
Hx,r+max

y
V y,r)

= max
r

(hr + vr)



CHAPTER 5

Through-Wall Human Mesh Recovery

using Radio Signals

Estimating a full 3D mesh of the human body, capturing both human pose and body shape,

is a challenging task in computer vision. The community has achieved major advances in

estimating 2D/3D human pose [86, 166], and more recent work has succeeded in recov-

ering a full 3D mesh of the human body characterizing both pose and shape [167, 104].

However, as in any camera-based recognition task, human mesh recovery is still prone to

errors when people wear baggy clothes, and in the presence of occlusions or under bad

lighting conditions.

Recent research has proposed to use different sensing modalities that could augment

vision systems and allow them to expand beyond the capabilities of cameras [168, 169,

170, 6, 5]. In particular, radio frequency (RF) based sensing systems have demonstrated

through-wall human detection and pose estimation [1, 2]. These methods leverage the

fact that RF signals in the WiFi range can traverse occlusions and reflect off the human

body. The resulting systems are privacy-preserving as they do not record visual data, and

can cover a large space with a single device, despite occlusions. However, RF signals

have much lower spatial resolution than visual camera images, and therefore it remains

an open question as to whether it is possible at all to capture dynamic 3D body meshes

characterizing the human body and its motion with RF sensing.

In this section, we demonstrate how to use RF sensing to estimate dynamic 3D meshes

63
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Person behind the wall
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Figure 5-1: Dynamic human meshes estimated using radio signals. Images captured
by a camera co-located with the radio sensor are presented here for visual reference.
(a) shows the estimated human meshes of the same person in sportswear, a baggy
costume and when he is behind the wall. (b) shows the dynamic meshes that capture
the motion when the person walks, waves his hand, and sits.

for human bodies through walls and occlusions. We introduce RF-Avatar, a neural net-

work framework that parses RF signals to infer dynamic 3D meshes. Our model can cap-

ture body meshes in the presence of significant, and even total, occlusion. It stays accurate

in bad lighting conditions, and when people wear costumes or baggy clothes. Figure 5-1

shows RF-Avatar’s performance on a few test examples. The left panel demonstrates that

RF-Avatar can capture the 3D body mesh accurately even when the human body is ob-

scured by a voluminous costume, or completely hidden behind a wall. Further, as shown

in the right panel, RF-Avatar generates dynamic meshes that track the body movement.

In Section 5.3.2, we show that RF-Avatar also works in dark settings and in scenarios with

multiple individuals.

RF Sensor

Figure 5-2: Specularity of the human body with respect to RF. The human body re-
flects RF signals as opposed to scattering them. A single RF snapshot can only capture
a subset of limbs depending on the orientation of the surfaces.

Inferring 3D body meshes solely from radio signals is a difficult task. The human body
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is specular with respect to RF signals in the WiFi range –i.e., the human body reflects

RF signals, as opposed to scattering them. As illustrated in Figure 5-2, depending on

the orientation of the surface of each limb, the RF signal may be reflected towards our

radio or away from it. Thus, in contrast to camera systems where any snapshot shows all

unoccluded body parts, in radio systems, a single snapshot has information only about a

subset of the limbs. This problem is further complicated by the fact that there is no direct

relationship between the reflected RF signals from a person and their underlying 3D body

mesh. We do not know which part of the body actually reflected the signal back. This

is different from camera images, which capture a 2D projection of the 3D body meshes

(modulo clothing). The fact that the reflected RF signal at a point in time has information

only about a unknown subset of the body parts means that using RF sensing to capture

3D meshes is a highly unconstrained problem – at a point in time, the reflected RF signal

could be explained by many different 3D meshes, most of which are incorrect.

RF-Avatar tackles the above challenge as follows. We first develop a module that uses

the RF signal to detect and track multiple people over time in 3D space, and create trajec-

tories for each unique individual. Our detection pipeline extends the Mask-RCNN frame-

work [23] to handle RF signals. RF-Avatar then uses each person’s detected trajectory,

which incorporates multiple RF snapshots over time, to estimate their body mesh. This

strategy of combining information across successive snapshots of RF signals allows RF-

Avatar to deal with the fact that different RF snapshots contain information about differ-

ent body parts due to the specularity of the human body. We incorporate a multi-headed

attention module that lets the neural network selectively focus on different RF snapshots

at different times, depending on what body parts reflected RF signals back to the radio.

RF-Avatar also learns a prior on human motion dynamics to help resolve ambiguity about

human motion over time. We introduce a temporal adversarial training method to encode

human pose and motion dynamics.

To train our RF-based model, we use vision to provide cross-modality supervision. We

use various types of supervision, ranging from off-the-shelf 2D pose estimators (for pose

supervision) to vision-based 3D body scanning (for shape supervision). We design a data

collection protocol that scales to multiple environments, while also minimizing overhead

and inconvenience to subjects.

We train and test RF-Avatar using data collected in public environments around our
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campus. Our experimental results show that in visible scenes, RF-Avatar has mean joint

position error of 5.84 cm and mean vertex-to-vertex distance of 1.89 cm. For through-wall

scenes and subjects wearing loose costumes, RF-Avatar has mean joint position error of

6.26 cm and mean vertex-to-vertex distance of 1.97 cm whereas the vision-based system

fails completely. We conduct ablation studies to show the importance of our self-attention

mechanism and the adversarially learned prior for human pose and motion dynamics.

� 5.1 RF Signals and CNN

Much of the work on sensing people using radio signals uses a technology called FMCW

(Frequency Modulated Continuous Wave) [171, 172]. An FMCW radio works by transmit-

ting a low power radio signal and receiving its reflections from the environment. Different

FMCW radios are available [147, 148] and RF-Avatar uses one similar to that used in [71]

and can be ordered from [173]. Our model is not specific to a particular radio, and applies

generally to such RADAR-based radios. In RF-Avatar , the reflected RF signal is trans-

formed into a function of the 3D spatial location and time [2]. This results in a 4D tensor

that forms the input to our neural network. It can be viewed as a sequence of 3D tensors

at different points of time. Each 3D tensor is henceforth referred to as the RF frame at a

specific time.

It is important to note that RF signals have intrinsically different properties from visual

data, i.e., camera pixels: first, the human body is specular in the frequency range that tra-

verse walls (see Figure 5-2). Each RF frame therefore only captures a subset of the human

body parts. Also, in the frequency range of interest (in which RF can pass through walls),

RF signals have low spatial resolution – our radio has a depth resolution about 10 cm, and

angular resolution of 15 degrees. This is a much lower resolution than what is obtained

with a camera. The above properties have implications for human mesh recovery, and

need to be taken into account in designing our model.

CNN with RF Signals: Processing the 4D RF tensor with 4D convolutions has prohibitive

computational and space complexity. We use a decomposition technique [2] to decompose

both the RF tensor and the 4D convolution into 3D ones. The main idea is to represent each

3D RF frame as a summation of multiple 2D projections. As a result, the operation in the

original dimension is equivalent to a combination of operations in lower-dimensions.
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Figure 5-3: Overview of the network model used in RF-Avatar.

� 5.2 Method

We propose a neural network framework that parses RF signals and produces dynamic

body meshes for multiple people. The design of our model is inspired by the Mask-RCNN

framework [23]. Mask-RCNN is designed for instance-level recognition tasks in 2D im-

ages; we extend it to handle 4D RF inputs and generate 3D body meshes over time. Fig-

ure 5-3 illustrates the 2-stage network architecture used in RF-Avatar. In the first stage of

the model, we use a Trajectory Proposal Network (TPN) to detect and track each person in

3D space (Sec. 5.2.2). TPN outputs a trajectory (a sequence of bounding boxes over time)

for each person, and we use this trajectory to crop the spatial regions in the RF tensor that

contain this particular person.

The second stage of the model takes the cropped features as input and uses a Trajectory-

CNN (TCNN) to estimate the sequence of body meshes of this person (Sec. 5.2.3). TCNN

introduces an attention module to adaptively combine features from different RF frames

when predicting the body shape (Sec. 5.2.3). TCNN also outputs a sequence of joint angles

capturing the body motion. It uses a Pose and Dynamics Discriminator (PDD) to help

resolve the ambiguities about human motion (Sec. 5.2.4). We describe how we use various

forms of supervision to train RF-Avatar in Sec. 5.2.5.

� 5.2.1 Human Mesh Representation

We use the Skinned Multi-Person Linear (SMPL) model [174] to encode the 3D mesh of a

human body. SMPL factors the human mesh into a person-dependent shape vector and

pose-dependent 3D joint angles. The shape vector β ∈ R10 corresponds to the first 10

coefficients of a PCA shape model. The joint angles θ ∈ R72 define the global rotation of
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the body and the 3D relative rotations of 23 joints. SMPL provides a differentiable function

M(β,θ) that outputs N = 6890 vertices of a triangular mesh given β and θ. A 3D mesh

of a human body in the world coordinates is represented by 85 parameters including β, θ

(describing shape and pose via SMPL) and a global translation vector δ. Note that the 3D

location of body joints, J , can be computed via a linear combination of mesh vertices.

RF-Avatar recovers dynamic body meshes, i.e., a sequence of SMPL parameters includ-

ing a time-invariant β characterizing the body, and a time-variant Θ = (θ1,θ2, . . . ,θT ) de-

scribing the joint angles, and a time-variant global translation vector ∆ = (δ1, δ2, . . . , δT )

capturing the location.

� 5.2.2 Trajectory Proposal Network

The first stage in our 3D mesh estimation pipeline is to detect regions containing individ-

uals and then track them over time to form trajectories. Our Trajectory Proposal Network

(TPN) takes as input the 4D RF tensor. It first extracts features using a backbone with

spatial-temporal convolutions, and then uses a recurrent region proposal network to pro-

pose candidate regions for each RF frame. After a further candidate selection stage with

a box head, we perform a lightweight optimization to link the detections over time. We

describe each TPN component in detail:

Backbone: This takes the raw sequence of RF frames as input and uses a set of decomposed

4D convolutional layers (see Sec. 5.1) with residual connections to produce features.

Recurrent Region Proposal Network (Recurrent-RPN): In contrast to prior work using

RPN in detection and tracking [94, 23, 175], our recurrent-RPN has two major differences.

First, we wish to detect individuals in the 3D world space instead of the 2D image space.

Thus, our model uses 3D bounding boxes as anchors and learns to propose 3D regions

by transforming these anchors. Proposing regions in 3D space removes scale-variation

of regions due to perspective projection to image space [176]. For tractability, we choose

3D anchors to be those close to the ground plane. Second, our RPN works in a recurrent

manner to propose regions for each RF frame sequentially. It uses recurrent layers on top of

convolutional layers to predict object scores and regression outputs for all anchor regions.

Non-maximal suppression (NMS) is used to remove duplicated proposals.

Box Head: To improve detection precision, we use a box head to further classify proposals
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into correct/incorrect detections. We use standard box head with RoIAlign [23].

Tracker: The tracker module receives proposals from the Box Head output at each timestep.

It then associates together proposals that belong to the person, and stitches them over time

to form trajectory tubes. We use a lightweight optimization tracker based on bipartite

matching [175].

� 5.2.3 Trajectory-CNN with Attention

Trajectory-CNN (TCNN) uses the cropped features from the TPN as input and estimates

the body mesh parameters for each individual. To deal with the fact that different RF

frames contain information about different body parts, we introduce a self-attention mod-

ule to predict a temporally consistent shape β. TCNN first extracts shape features at dif-

ferent timesteps as H = (h1,h2, . . . ,hT ). Our self-attention module uses a function f to

attend to different frames and combine all the shape features into a fixed-length feature

vector: h̃ = 1
C(H)

∑
t (f(ht) · ht), where C(H) =

∑
t(f(ht) is a normalization factor. We

utilize multi-headed self-attention [177], allowing the neural network to attend to different

aspects of the shape features differently. Feature vectors from different heads are concate-

nated together to produce the β prediction.

Empirical results show that this temporal self-attention leads to improved shape esti-

mation and model interpretability. We further believe that the benefits of temporal atten-

tion extend to video-based 3D mesh models, since it allows the model to recognize that

different frames may have different importance for estimating a particular mesh parame-

ter. For example, height is better estimated from frames where the subject is standing as

opposed to sitting.

� 5.2.4 Learning Pose and Dynamics Priors

We would like to learn a prior that encodes feasible human pose and motion dynamics

in order to ensure that the 3D meshes it produces over time are realistic. Without such a

prior, and especially given the weak supervision for the 3D joint angles (see Sec. 5.2.5), our

model could produce arbitrary rotations of joints and/or temporally inconsistent meshes.

This issue is exacerbated in the case of pose estimation from RF signals, as we only get

sparse observations at each timestep, due to human body specularity.

We introduce an adversarial prior that regularizes both human body pose and motion
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dynamics and ensures realistic predictions; we call this the Pose and Dynamics Discrimi-

nator (PDD). PDD is a data-driven discriminator that takes our predicted sequence of 3D

joint angles, and aims to distinguish it from real human poses and dynamics data. We use

MoSh-ed data from the CMU MoCap dataset [178] as real dynamics data. It covers a di-

verse set of human subjects performing different poses and actions. In contrast to previous

work, which uses a separate discriminator for each joint at a single time instance [104, 106],

PDD considers all keypoints over a temporal window, which improves the estimated pose

results.

The PDD is trained using a binary cross entropy loss and a gradient penalty term on

the real data. Its objective function takes the following form:

LPDD = −
(
EΦ∼pdata [logD(Φ)] + EΘ∼pE

[
log(1−D(Θ)

])

+γ · EΦ∼pdata [‖∇D(Φ)‖2],
(5.1)

where Θ is the estimated joint angles from TCNN, and D(·) is our pose and dynamics

discriminator.

Finally, we convert them to rotation matrices and feed to the discriminator. This tech-

nique allows for more stable training by bypassing the 2π wrapping nature of angle repre-

sentations.

� 5.2.5 Training the Model

Past image-based solutions that recover 3D meshes use mostly weak supervision dur-

ing training, in the form of the location of body joints. However, our empirical results

(Sec. 5.3.3) show that weak supervision is insufficient for RF-based systems. Unfortunately,

strong supervision that captures full information about 3D meshes is difficult to obtain, as

it requires highly constrained setups involving a sophisticated multi-view camera setup,

and minimally clothed subjects [179, 180]; such setups are not scalable.

To deal with this issue, we train our model using a combination of strong and weak

supervision. The SMPL shape representation decomposes into a time-independent shape

vector, β, and time-dependent joint angles, θ. We obtain strong supervision for the time-

independent shape vector by using an adapted version of the scanning/silhouette method

from [101] once for each subject in our dataset, with each subject in a standard canonical
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pose. We need only perform this procedure once for each person, as the shape vector, β,

is constant for a given person. We adapt the procedure in [101] as follows. The origi-

nal method solves an optimization problem to obtain both β and offsets for the N mesh

vertices (to capture clothing and other small perturbations). We remove the optimization

over the mesh vertices (as we wish to capture pure body shape, and do not wish to include

clothing information) to obtain only β. We henceforth refer to the mesh obtained from this

method as a VideoAvatar.

Additionally, we use a system of 12 calibrated cameras and the AlphaPose algorithm

[86, 166] to obtain ground truth information for 3D joint locations, obtained as subjects

engage in activities (walking, standing up/sitting down, interacting with objects, etc). This

serves as weak supervision for our system’s joint angle predictions, θ.

Training TPN: We use standard anchor classification and regression losses [94, 23]. We

compute ground truth 3D bounding boxes from the 3D poses reconstructed by 3D Alpha-

Pose. The total loss Ltraj is the sum of losses from the RPN and the Box Head.

Training TCNN: As illustrated in Figure 5-3, TCNN has three different loss terms. We

compute shape loss Lβ and 3D joint loss Ljoints by comparing our predictions with the

ground truth provided by corresponding vision algorithms. We use the smooth L1 loss [93]

for both of them. We note that in order to compute the joint locations in 3D world space,

our model needs to predict the global translations ∆ as well. We use the bounding box

centers and predicted local translations with respect to the box centers to obtain the global

translations. Our TCNN also performs a gender classification and uses the SMPL model

of the predicted gender to compute the vertex and the joint locations.

When training TCNN together with the PDD, we follow standard adversarial training

schemes [107, 181] and use the following loss term for TCNN:

Lprior = −EΘ∼pE log(D(Θ)), (5.2)

where D(·) is our pose and dynamics discriminator.

The total loss for the TCNN is a sum of the terms:

LTCNN = Lβ + Ljoints + Lprior + Lgender. (5.3)



72 CHAPTER 5. THROUGH-WALL HUMAN MESH RECOVERY USING RADIO SIGNALS

� 5.3 Experiments

We describe our dataset, implementation details, quantitative and qualitative results on

shape and pose estimation, and analyze what is learned by the attention module.

� 5.3.1 Dataset and Implementation

Dataset: To train and test our model, we build a dataset containing 84 subjects (male and

female). For each subject, we use an adapted version of the approach in [101] to obtain

ground truth β vectors with the subjects in a canonical pose (Sec. 5.2.5) – we refer to this

method as VideoAvatar. We obtain data for the subjects walking around and engaging in

activities in 16 different environments around our campus, and use a co-located calibrated

camera system to obtain ground truth keypoint locations for the subjects. Our camera sys-

tem is mobile, allowing us to collect data in varied environments and build a representative

dataset.

Implementation details: We use decomposed 4D convolutions (Sec. 5.1) with residual

blocks. Each uses ReLu activation and Group Normalization [182]. We use 12, 3, 12 and 12

layers of convolution in our backbone, RPN, box head and TCNN, respectively. We also

use 1 and 2 layers of spatially-distributed GRU for TPN and RCNN. Our self-attention

module uses two fully connected layers with tanh(·) activation in the middle. Our PDD

model uses 12 layers of 1D temporal convolution, followed by a fully connected layer. We

implement our model in PyTorch. Our model is trained with the Adam [165] optimizer for

40000 iterations.

� 5.3.2 Qualitative Evaluation for Shape and Pose

RF-Avatar produces realistic meshes: Figure 5-4 shows the 3D meshes produced by our

model for different poses and subjects, as compared to the RGB images captured by a co-

located camera. As can be seen, qualitatively, the estimated meshes are realistic, and agree

well with the body shapes of different subjects. Our model also handles different body

shapes (for male and female subjects), poses, and multi-person scenarios effectively. In

addition, considering the bottom row of images in Figure 5-4, our model can produce ac-

curate meshes for partially occluded subjects, subjects behind a wall, and subjects in poor

lighting conditions; a vision-based system cannot produce full meshes in these situations.
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Prediction RGB image Prediction RGB image Prediction RGB image

Figure 5-4: Human mesh prediction from RF-Avatar. We show images for visual ref-
erence. Our model captures different body shapes, poses, and multi-person scenarios
effectively. The bottom row shows that RF-Avatar works despite occlusion and bad
lighting conditions.

RF-Avatar effectively captures variation in body shape: To evaluate the quality of body

shape predicted by RF-Avatar, we compare our prediction with the body shape captured

by VideoAvatar [101], shown in Figure 5-6. VideoAvatar leverages a sequence of images to

estimate a body mesh. The recovered mesh is overlaid on the RGB image of each person

and is shown on the right side of each pair. To better compare the difference in body

shape, we take the predicted shape of a subject (obtained by averaging predictions over a

window of 10 seconds) from RF-Avatar and render the resulting mesh (in the same pose

as VideoAvatar) and overlay it on the same background. This is shown on the left side of

each pair. We see a close qualitative agreement between the ground truth and the output

from RF-Avatar for male and female subjects with different body shapes.

RF-Avatar encodes human motion dynamics: Figure 5-5 demonstrates how our model

can produce dynamic 3D meshes for different people over time, and how these meshes

look realistic. We can see how the two subjects perform walking and lifting actions, and

the produced meshes over time closely map to the performed actions.



74 CHAPTER 5. THROUGH-WALL HUMAN MESH RECOVERY USING RADIO SIGNALS

Figure 5-5: Dynamic human meshes predicted from RF-Avatar. RF-Avatar can cap-
ture dynamic mashes for different actions, including walking (top image) and lifting
an object (bottom image).

� 5.3.3 Quantitative Evaluation for Shape and Pose

We now present quantitative results for our method, evaluating its performs on standard

pose and body shape metrics. We also conduct ablation studies comparing with variants

of our model that lack a particular component, namely variants that do not have super-

vision on the β parameters, do not use an attention mechanism, and use a frame-based

discriminator (as in [104, 106]).

Metrics: We report the commonly used 3D joint metric Mean Per Joint Position Error

(MPJPE). We also compute the per-vertex error as the average vertex to surface distance

between the predicted mesh and the ground truth.

Table 5-1 shows the results for MPJPE and Per-vertex error respectively. As can be

seen, for both MPJPE and per-vertex error, assessing recovered pose and shape quality re-

spectively, the model that incorporates supervision for β, self-attention, and the temporal

discriminator, performs the best across all metrics. Of particular note is how the MPJPE

drops from 6.05 cm to 6.88 cm when we do not use the temporal discriminator, demon-

strating the value of the PDD in learning motion dynamics to help resolve ambiguities.

We also see the importance of adding strong supervision for β: the per-vertex error in-

creases from 1.88 cm to 4.70 cm when it is removed. We also note here that the previous

image-based mesh recovery methods have an MPJPE error around 8.8 cm [104] and a Per-
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RF-Avatar VideoAvatar RF-Avatar VideoAvatar RF-Avatar VideoAvatar RF-Avatar VideoAvatar RF-Avatar VideoAvatar

Figure 5-6: Comparison of body shape recovered from RF-Avatar and VideoAvatar.
We render the mesh with the predicted shape estimated by RF-Avatar and the ground
truth shape estimated by VideoAvatar and overlaid both on top of the corresponding
RGB image.

vertex error around 11.8 cm [105]. Aside from the difference in datasets, we believe this

difference in performance can be attributed to the fact that RF signals capture informa-

tion about 3D space and our RF-based model is trained with stronger supervision than

image-based methods.

We further see that the results using the TPN output (top row) are similar to the results

using the ground truth bounding boxes (bottom row), illustrating the effectiveness of our

entire detection, tracking, and shape estimation pipeline. This applies for both pose and

shape metrics.

MPJPE (cm) Per-vertex error (cm)

RF-Avatar 6.05 1.88
No β loss 6.72 4.70
No attention 6.43 2.55
Frame-based disc. 6.88 2.24
With ground truth boxes 5.75 1.65

Table 5-1: Joint and vertex errors, assessing pose and body shape quality respec-
tively.

Table 5-2 compares the results of our model for the shape and pose metrics for the total

occlusion (through-wall) and line-of-sight scenarios. We see that our model performs well

in the through-wall setting, even though it was never trained directly on through-wall

data.
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3D MPJPE (cm) Per-vertex errors (cm)

Line-of-sight 5.84 1.79
Through-wall 6.26 1.97

Table 5-2: Results in the line-of-sight and through-wall settings.

� 5.3.4 Analysis of Self-Attention

Table 5-1 shows that adding the self-attention module helps our quantitative results on

shape and pose metrics. Self-attention helps our model better combine information over

time when estimating the shape vector. We visualize the learned multi-headed attention

maps in Figure 5-7. Focusing on the second attention component first, we see that it has

high activation for timesteps 11 and 12. The high activation at these times indicates that

they may contain important shape information. When comparing with the RGB images

around timesteps 11 and 12, we see that the subject is facing the radio and waving at these

times, so these timesteps likely contain reflections from his arm and provide important

information about his upper limbs.

Time step
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Figure 5-7: Learned attention maps over time for the different attention heads. We
see that different attention components activate differently when the person is turning,
waving hands and showing his side to the sensor.

� 5.3.5 Failure Modes

We analyze the failure cases of RF-Avatar. Typical failure examples are caused by (a) un-

usual body poses, (b) interpenetration of body meshes [102, 183], and (c) highly crowded
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(a) Unusual body pose (b) Interpenetration (c) Crowded scene

Figure 5-8: Typical failure cases of RF-Avatar.

scenes where people are very close to each other. In Figure 5-8, we present examples of

the typical failure cases. Figure 5-8(b) shows that RF-Avatar fails to handle unusual body

poses (e.g., tying shoes). In Figure 5-8(b), interpenetration of estimated body meshes hap-

pens when the person raise his hand to hold glasses. In crowded scenes (e.g., Figure 5-8(c))

where people are very close to each other, RF-Avatar produces overlapped body meshes.

Failure modes (a) and (b) are related to our choice of body mesh model, while failure mode

(c) is due to the relatively low spatial resolution of RF signals in comparison to visible

light.

� 5.4 Conclusion

This section presented RF-Avatar a system that recovers dynamic 3D mesh models of the

human body using RF signals. RF-Avatar is trained using cross-modality supervision from

state-of-the-art vision algorithms, yet remains effective in situations that challenge vision

systems, such as in poor lighting, and when subjects are occluded. We believe this work

paves the way for many new applications in health monitoring, gaming, smart homes,

etc. RF-Avatar significantly extends the capabilities of existing RF-based sensing systems,

and the principles involved in its design could be utilized to improve the performance of

existing computer vision methodologies.
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CHAPTER 6

Assessment of Medication

Self-Administration using Artificial

Intelligence

Poor medication adherence is a major healthcare problem, contributing to 10% of hospi-

talizations, 125,000 deaths per year and up to $290 billion in annual cost in the United

States alone [39, 40]. A crucial step toward achieving medication adherence is ensuring

proper MSA – that is, ensuring that patients take medications at the prescribed time and

use the proper self-administration technique. When patients fail to perform MSA prop-

erly, the net result is that the medication is not delivered to its intended action site, causing

failures in managing the condition [125]. Unfortunately, MSA errors are common, par-

ticularly in chronic diseases where up to 50% of patients do not take medications as pre-

scribed [184, 185]. The problem is exacerbated when medication delivery requires devices

such as insulin pens or inhalers. MSA errors associated with medication delivery devices

(for example, not shaking the inhaler before use or not priming the insulin dose) result in

administration failures, subsequent high levels of non-adherence, reduced disease control

and unscheduled use of healthcare resources [41, 42, 43, 44]. Physicians report that up to

70% of their patients do not take their insulin as prescribed [41, 42]. Similarly, over 50% of

patients who use inhalers do so erroneously regardless of the inhalation device used [43].

These statistics are alarming given that hundreds of millions of patients worldwide de-

79
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pend on these devices for their medication administration [44, 186].

Addressing the above problems requires adequately assessing patients’ MSA and de-

tecting MSA errors. Existing solutions to assess MSA typically require direct observation

by health professionals – that is, a clinician or pharmacist watches the patient as she uses

her inhaler or insulin pen and guides her through the proper administration technique.

For example, the clinician would explain to the patient that she needs to shake the inhaler,

fully exhale, inhale a dose and hold her breath for 10 seconds before exhaling. The clinician

would also watch the patient performing these steps and alert her if she fails to follow the

proper administration technique. Although this approach can be used in the clinic, most

MSA errors occur at home and away from the observation of a clinician. Furthermore, pa-

tients’ performance in front of a clinician might be unrepresentative of their actual MSA,

as patients tend to perform better when assessed by a clinician, a phenomenon known

as ‘white-coat compliance’ [187]. Even when patients receive initial training on their de-

vices by a clinician, MSA errors occur over time due to forgetfulness or recklessness in

adhering to the prescribed administration time, frequency or technique [188]. As a result,

many MSA errors end up undetected until they manifest as serious health problems or

admissions to the emergency room [188].

This study was motivated by the question of whether we could use AI to assist with

the observation of patients at home and provide a continuous assessment of their MSA.

We present an AI-based solution that achieves this goal in an accurate, efficient and cost-

effective manner. Our solution avoids cameras, which many patients find to be intrusive

when deployed in their homes [189]. Instead, our solution uses a Wi-Fi-like sensor de-

ployed in patient homes. (The sensor transmits signals around the Wi-Fi frequency range

using the frequency-modulated continuous-wave (FMCW) technique. A detailed descrip-

tion of the radio sensor can be found in the Methods section.) The sensor transmits a

very low-power wireless signal (1,000 times lower power than standard Wi-Fi), and our

system analyzes the reflections of the signal from the environment using AI techniques.

Because up to 60% of the human body is water, it reflects the surrounding radio signals

and modulates them with the person’s movements [8]. Past work has shown that such

radio reflections can be used to capture breathing and heart rate, detect falls and monitor

sleep [68, 55, 5]. In this study, we focused on movements associated with MSA events.

Our AI system, embedded in the sensor, analyses the radio reflections from the environ-
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a b c d
Wireless sensor

with AI

Figure 6-1: A use case illustration of the wireless Ai-based system to monitor indi-
vidual MSA with an inhaler device. a, The wireless sensor is mounted on the wall,
analyzing the surrounding radio signals using AI. The AI solution would detect when
the person started to use an inhaler. b–d, Our AI solution also tracks the motion dur-
ing the MSA event and detects that the person shook the device, exhaled before use
and, finally, inhaled a dose. (We obtained informed consent from the participant for
the use of his photographs.)

ment to track the specific movements associated with MSA and to detect when a patient

administers her medication using an inhaler or insulin pen. It further examines the wire-

less reflections to detect whether the patient has followed the required steps of using the

medication device and generates an alert if the patient fails to follow the proper technique

(for example, forgot to prime her insulin pen or shake her inhaler). This AI-based solution

works in a contactless and passive manner, introducing no burden on the patient, caregiver

or health personnel.

Figure 6-1 illustrates a use case of our AI system at home, where it assesses the indi-

vidual’s MSA with an inhaler. The wireless sensor is mounted on the wall like a Wi-Fi box

(Figure 6-1.a). There is no need for cameras, wearable sensors or any additional smart de-

vices. The wall-mounted sensor analyzes the surrounding radio signal using AI methods.

In this case, it would detect an instance of MSA using an inhaler and document the corre-

sponding time. The AI solution also tracks the motion of the person and detects that the

person shook the device, exhaled before use and, finally, inhaled a dose (Figure 6-1.b–d),

which are required steps for MSA with an inhaler.

To build the AI-based solution, we designed a study where health professionals and

the AI-based solution simultaneously observe MSA events with insulin pens and inhaler

devices. To emulate real-world standard practice for first-time users of these medications,

participants were trained by a pharmacist to perform MSA according to current guidelines

and recommendations [45, 46] and were then asked to demonstrate their MSA technique.
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During the experiment, human observers provided an MSA assessment that included the

time window of each MSA event and the errors made during each event (if any). We used

the MSA assessment provided by human observers to train and evaluate our AI algorithm.

In total, we collected a large dataset that consists of 47,788 examples, where each example is

a 2-min recording of radio signals. This dataset has 1,203 positive examples of MSA events

with insulin pens and inhaler devices; about half of these MSA events are performed with

no errors, whereas the other half includes some errors (for example, not shaking the inhaler

before use or not holding one’s breath after inhaling the dose). The dataset also includes

46,585 negative MSA examples corresponding to common home activities that do not in-

volve MSA, such as cooking, eating, typing and interacting with objects such as glasses,

clothes, microwaves and hairdryers. The MSA examples in the dataset were performed by

107 healthy individuals whose ages varied from 18 to 72 years. The dataset was divided

into training and testing sets that we used to train and evaluate the AI system, respectively.

Extensive experimental results (that are detailed in the Results section) demonstrate

that our AI-based solution can reliably detect the occurrence of MSA events. Specifically,

the AUC was 0.992 for detecting the use of an inhaler and 0.967 for detecting the use of

an insulin pen. These results indicate that an AI system could be used at home to monitor

whether patients use their inhalers and insulin pens following the prescribed time and

frequency.

The experimental results also show that the AI solution can accurately evaluate whether

the individual correctly followed the required steps for administering her medication us-

ing an inhaler or insulin pen. Adherence to the proper steps while performing MSA is

crucial or disease management and therapeutic effectiveness [126]. For example, failure

to follow the correct steps when using an insulin pen can lead to hyperglycemia or severe

hypoglycemic episodes for patients with diabetes [190, 191]. Similarly, failure to follow

the recommended steps during inhaler administration contributes to symptom exacerba-

tions and subsequent reduced quality of life for patients with asthma and patients with

chronic obstructive pulmonary disease (COPD) [192, 193, 194]. Our results show that the

AI system reliably detects both 1) missing key steps during the administration process (for

example, not shaking the inhaler before use or not priming the insulin pen) and 2) patients

not following duration-based requirements (for example, not holding the insulin pen after

injection for 10 seconds).
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Reminder

Automatic MSA records in the cloud

Health Professional

Patient

Wireless sensor
with AI

Upload
Web portal

Help

§ Inhaler used at 3:55 PM
§ Technique was correct

§ Forgot to use inhaler at
9:00 PM

§ Inhaler used at 8:25 AM
§ Didn’t shake before use

Figure 6-2: Potential integration of our system into care management. Our wireless
sensor with AI will continuously and automatically analyze the radio signals and doc-
ument MSA assessment results in the cloud. The patient will receive reminders if she
fails to take the medication at the prescribed time. Authorized health professionals
can also access these records via a web portal to learn which patients have difficulties
with their MSA and the types of errors they experience. The health professionals can
reach out to the patient to corroborate these results and make a clinical judgment if
necessary.

Figure 6-2 illustrates how we envision such an AI-based solution that could be used

in patient homes to help detect and address MSA errors. Our wireless sensor would be

deployed in the patient’s home. The AI system would continuously and automatically an-

alyze the radio signals and document MSA assessment results, which are uploaded over

the internet and appended to the patient’s digital health record. Reminders will be sent

to the patient if she fails to take the medication at the prescribed time. Authorized health

professionals will also be able to access these records via a web portal to learn which pa-

tients have difficulties with their MSA and the types of errors they experience. The health

professionals can then reach out to the patient to corroborate these results and make a clin-

ical judgment (for example, whether more training on medication device administration is

needed for the patient).

The recent outbreak of Coronavirus Disease 2019 (COVID-19) emphasizes the need

for an automated and contactless solution for assessing MSA at home. The stay-at-home

orders make it even more difficult to assess MSA through direct observation by health pro-

fessionals. At the same time, individuals suffering from asthma, COPD and diabetes are

at higher risk for severe illness from COVID-19 [195, 196]; hence, it is even more critical

to ensure that they take their medications with the proper administration technique. Our

automated and contactless AI-based MSA assessment solution could help these vulnera-
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ble populations to control their chronic conditions. It also enables health professionals to

remotely monitor the MSA of their patients, without risks of contagion.

Our work shows how advances in AI can address an important unmet need in health-

care [41, 42, 43, 44, 186], by continuously monitoring the MSA of patients in their homes,

detecting when patients fail to use their medication devices as prescribed and providing

patients with feed-back on their medication administration technique and whether it fol-

lows the required steps. More generally, the work opens the door to the integration of

AI-based solutions in care management through in-home passive, unobtrusive and con-

tactless patient monitoring. Such integration could improve outcomes for patients and

reduce the cost of healthcare.

� 6.1 Method

Experiment Design. When designing the experiments in this study, we aimed to emulate

the real-world scenarios of how patients use medication delivery devices. Patients typi-

cally receive training from pharmacists or other health professionals on how to use their

medication delivery device when they are prescribed such medication for the first time41.

To emulate the real-world scenarios, we chose individuals without prior experience with

insulin pens and inhalers and had them trained by a pharmacist to use those devices.

The pharmacist followed a standard procedure where he first taught the individual the

MSA process and then asked the individual to demonstrate their MSA technique and en-

sured that the individual correctly simulated the administration of their insulin pen and

inhaler device. After the initial training session, the individual performed MSA in front

of a wireless sensor and a camera that recorded videos for annotation purposes. In addi-

tion to performing MSA, individuals were instructed to perform other activities, such as

typing, cooking, eating and interacting with surrounding objects. We annotated the exact

time window for every step involved in each MSA event and the types of errors that were

made. To mitigate the imbalance between MSA events with and without errors and facili-

tate the development of AI models, we asked the individuals to purposely simulate errors

during the experiment sessions. Note that, during both the initial training session and the

later experiment session, all the MSA events were performed using placebo devices, and

no medication dose was actually administered.
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Individuals and dataset. A total of 107 healthy individuals (18–72 years of age) were re-

cruited for this study. The individuals performed 1,203 positive examples of MSA events

with insulin pens and inhaler devices at 40 different locations (offices, lounges, seminar

rooms, kitchens, halls, etc). Positive MSA events were compared against a total of 46,585

instances of negative MSA examples corresponding to common activities that do not in-

volve MSA. Of the 1,203 MSA events, 620 used insulin pens, and 583 used inhalers for

administration. For the MSA events with insulin pens, 150 of them missed a common

step, and 155 of them failed to comply with duration requirements. For the MSA events

with inhaler devices, 149 of them missed a common step, and 168 of them failed to comply

with duration requirements. None of the MSA events simultaneously missed a step and

failed to comply with duration requirements.

During the experiments, the individuals were allowed to move freely in the space and

perform the MSA at a location of their choice, within 10 m from the wireless sensor. The

individuals were recorded both in sitting and standing positions via the wireless sensor.

They were allowed to pick any orientation with respect to the wireless sensor (that is, face

the sensor or show their sides to it) except for having their back facing the sensor.

RF sensing technology. Recent advances in RF sensing have developed systems that can

capture human motion and infer biometric information, such as respiration, heart rate,

gait speed, mobility, sleep stages and human pose [8, 68, 55, 1, 197, 2, 6]. Similarly to

this past work, we used a radio sensor that employs FMCW and antenna arrays. The

system works by transmitting low-power RF signals (1,000 times weaker than Wi-Fi) and

receiving reflections from nearby people. Because up to 60% of the human body is water,

it reflects the radio signals and modulates them with the person’s movements, capturing

important information about the person’s MSA technique. The radio is equipped with

vertical and horizontal antenna arrays, each of which has 12 antennas. It transmits an

FMCW chirp sweeping the frequencies from 5.4 to 7.2 GHz. The combination of FMCW

and antenna arrays allows the radio to separate RF reflections from different areas based

on their distance (that is, range) and spatial direction (that is, angle of arrival) with respect

to the radio sensor [8, 2]. This property allows the system to separate reflections from

different people and process them independently.

We processed the RF signal into three-dimensional (3D) tensors indicating the amount

of RF reflection from each point in the 3D space. We generated 30 such tensors (that is,
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frames) every second.

Building the AI-based model. Our AI-based model processes RF signals through three

stages to detect and assess MSA events. The first stage uses a neural network model to

localize and track people in the environment, zooming in on each individual while elimi-

nating noise and interference from other people and objects in the environment. The sec-

ond stage uses another neural network model to perform frame-wise prediction of MSA

steps, where each frame is a snapshot of the 3D RF tensor at one point in time. Finally, the

third stage decodes the frame-wise predictions into start time and end time of each MSA

step and analyzes the sequence of steps to determine whether an MSA event has occurred.

Below, we describe all three stages in detail.

Stage 1: The first stage of the processing takes a stream of radio signals as input and out-

puts bounding boxes43 representing the spatial locations of each individual. By focusing

on RF reflections from the spatial locations indicated by the bounding boxes, our model

zooms in on each individual while eliminating noise and interference from other people

and objects in the environment. We used the same neural network as previous work [2] to

localize and track people in the environment. This neural network model uses a 12-layer

ResNet to extract features from RF signals together with a region proposal network that

outputs bounding boxes [2].

Stage 2: The second stage takes the RF frames focused on a specific individual from

the previous stage as input and outputs for each RF frame a probability score of the frame

belonging to each of the MSA steps. The neural network used in this stage has a UNet

structure [198] with 3D convolutional layers. Specifically, it has eight residual blocks, each

of which consists of three convolutional layers, along with group normalization layers and

exponential linear unit layers [182, 199]. It also interleaves four long short-term memory

layers [200] within the last four residual blocks to capture temporal information. This sub-

network is trained using human annotations of MSA steps. The model is implemented in

PyTorch. During training, the weights of the model are randomly initialized, and we use

cross-entropy loss computed for each RF frame. Adam optimizer is used with a learning

rate of 3× 10−4. We use a batch size of 4 on four NVIDIA TITAN Xp graphical processing

units with distributed data parallelization. The model is trained for 100,000 iterations with

a 10× learning rate decay after 20,000 and 50,000 iterations.

Stage 3: The third stage of the processing decodes the frame-wise MSA step probabil-
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ities to estimate the start time and end time of each MSA step and determine whether an

MSA event has occurred. We adopt beam search decoding, which is widely used in speech

and handwritten text recognition for decoding the output of neural network models [201].

At a high level, there is an analogy between recognizing a spoken word by detecting the

sequence of its phonemes and detecting an MSA event by detecting the sequence of its

steps (and their corresponding RF frames). The beam search decoding algorithm consid-

ers all the frames jointly and uses language models as prior knowledge to output a coher-

ent sequence of characters/words as opposed to a greedy decoding scheme that decodes

each frame independently. Similarly, the beam search decoding algorithm in our model

uses priors of the transition probability between MSA steps and the step duration, which

are based on the statistics of the training data. The beam search decoding also computes

a score (that is, log likelihood) for the decoded results. The score is normalized by the

duration of the detected MSA event, and our model rejects all MSA events if their final

score is less than a threshold. (The threshold is set to 0.4, which balances sensitivity with

specificity).

Statistical methods. To evaluate the performance of MSA event detection, we used the fol-

lowing metrics: sensitivity, specificity, ROC curves, AUC and the estimation error of start

time and end time, with sample sizes as given. To evaluate the performance of MSA error

detection, we used the following metrics: estimation error of step duration, sensitivity and

specificity of MSA error detection, ROC curves and AUC.

Sensitivity and specificity are calculated as (TP: true positive; FN: false negative; TN:

true negative; FP: false positive):

Sensitivity =
TP

TP + FN
, (6.1)

Specificity =
TN

TN + FP
. (6.2)

We plotted ROC curves that demonstrate the tradeoff between sensitivity and speci-

ficity, as the detection thresholds are varied. When reporting the sensitivity and specificity,

we used a detection threshold of 0.6 for MSA event detecting, a detection threshold of 0.25

s for detecting missing steps and a detection threshold of 8 s for detecting the error of

failing to comply with duration-based requirements. We followed standard procedures to
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calculate the 95% CI for sensitivity and specificity [202]. We also reported AUC, which is

the area under the corresponding ROC curves showing an aggregate measure of detection

performance.

We computed the error between the predicted start (or end) time and the ground truth

start (or end) time of events as (ts: ground truth start time: te: ground truth end time: t̂s:

predicted start time; t̂e: predicted end time):

errors = |t̂s − ts|, (6.3)

errors = |t̂s − ts|. (6.4)

The error of step duration estimation is computed as (d: ground truth duration; d̂:

predicted duration):

errord = |d̂− d|. (6.5)

We reported the error of start/end time estimation and step duration estimation with

box plots. For each box plot, the central line indicates the median, and the bottom and top

edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend

to 1.5 times the interquartile range. Points beyond the whiskers are plotted individually

using the ‘+’ symbol.

� 6.2 Evaluation

Our system was built and validated on a large dataset that consists of 47,788 examples of

MSA events and home activities that do not involve MSA from 107 participants (53 females

and 54 males), where each example is a recording of radio signals up to 2min. A total of 40

different locations (such as offices, lounges, seminar rooms, kitchens and halls) were cho-

sen to allow for variation between environmental conditions. Participants were allowed

to move freely in the space and perform the MSA at a location of their choice, within 10

m from the wireless sensor. They were either standing or sitting when performing MSA

and were allowed to pick any orientation with respect to the wireless sensor except for

having their back to the sensor. For the MSA events with insulin pens, 150 events missed a

common step, and 155 of them failed to comply with a specific duration requirement. For
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the MSA events with inhaler devices, 149 of them missed a required step, and 168 of them

failed to comply with duration requirements.

We trained a neural network model that takes a stream of radio signals as input. It first

detects and tracks the location of each individual in the environment. It then zooms in

on the radio signals pertaining to each individual and predicts the occurrence of an MSA

event. Instead of detecting the whole MSA event directly, our model detects the steps

involved during administration and only claims an occurrence of an MSA event when

multiple steps happen one after another. Detecting MSA events in this way improves our

model’s robustness to variations among different people and enables the detection of MSA

errors. Details of the model are described in the Methods section.

We performed K-fold cross-validation (K=5) to evaluate our model. Specifically, the

dataset was randomly split into five equal-sized subsets. A single fold was retained as

test data, and the remaining four folds were used for training. This process was repeated

five times, with each of the five folds used exactly once as the test data. The folds were

divided such that participants who appear in the training data do not appear in the testing

data and vice versa. To balance the number of participants across folds, we imposed no

constraints on allocating sites to folds. We note that the cross-validation was not used for

hyperparameter tuning.

� 6.2.1 Detection of MSA events

Our model detects MSA events in a sliding-window fashion. Specifically, it detects whether

an MSA has happened for each 2-min window. To evaluate the performance of our model,

we compared its predictions with ground truth provided by human annotations. Figure

6-3.a-b show the receiver operating characteristic (ROC) curves for detecting MSA events

with insulin pens and inhaler devices, respectively. When computing sensitivity and speci-

ficity, positive examples indicate MSA events, whereas negative examples indicate non-

MSA events. Our system detected the occurrence of an insulin pen administration event

with a sensitivity of 87.58% (95% confidence interval (CI), 84.7–90.0%) and a specificity of

96.06% (95% CI, 95.9–96.2%) and an AUC of 0.967. Similarly, inhaler administration events

were detected with a sensitivity of 91.08% (95% CI, 88.4–93.2%) and a specificity of 99.22%

(95% CI, 99.1–99.3%) and an AUC of 0.992. We note that the specificity or the false-positive

ratio is computed for windows of non-MSA events such as eating, drinking or putting on
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clothes, not just any window of radio frequency (RF) signals. The number of false positives

when considering any window of RF signals is significantly smaller in real-world deploy-

ment. Specifically, we leveraged a dataset in which the radio was used to monitor patients

with Parkinson’s disease and control individuals (that is, healthy individuals) for over 1

month [127]. Because none of the individuals in this dataset used inhalers or insulin pens,

all detected MSA events could be considered false positives. We considered five homes

from the study and used one full month of RF signals from each home. On average, the

number of false positives over a whole month was 2.2 for insulin pens and 6.6 for inhalers.

We also looked at errors that our model made when estimating the start time and end

time of an MSA event. Figure 6-3.c shows the box plots for the estimation errors, and Fig-

ure 6-3.d-e shows the cumulative distribution functions of the absolute estimation errors.

Our system made an unbiased (that is, median-unbiased) estimation of the start time and

the end time for both devices. For the start time estimation, the 50th percentile error was

0.6 s and 0.4 s, whereas the 90th percentile error was 2.0 s and 1.3 s for insulin pens and in-

haler devices, respectively. Similarly, for the end time estimation, the 50th percentile error

was 0.4 s and 0.3 s, whereas the 90th percentile error was 1.4 s and 0.9 s for insulin pens

and inhaler devices, respectively. To put these errors in context, the average duration of

MSA events based on human annotations was 65.27 ± 13.22 s for insulin pens and 34.30 ±
7.12 s for inhalers.

� 6.2.2 Evaluation of MSA techniques.

To evaluate the MSA technique, we partitioned an MSA event into constituent key steps

based on recommendations pertaining to insulin pen and inhaler device administration [45,

46]. Figure 6-4 illustrates the details of these steps. Besides detecting the occurrence of an

MSA event, our model also predicts the time window for each of the individual steps

involved during the administration. To evaluate its performance, we compared the pre-

dicted duration of each individual step with human annotations. 6-5.a shows the box plots

of the duration estimation errors for eight different steps during MSA events with insulin

pens. Similarly, 6-5.b plots the duration estimation errors for six different steps during

MSA events with inhaler devices. Our model made an unbiased duration estimation for

all the steps, and the interquartile range was smaller than 1.5 seconds for all the steps.

Based on the detection of individual steps and estimation of their duration, we further
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Figure 6-3: Evaluation results for the detection of MSA events with insulin pens
and inhaler devices. a,b ROC curves for detecting insulin (n=47,205) and inhaler
(n=47,168) administration. ROC curves demonstrate the tradeoff between sensitivity
and specificity as the detection thresholds are varied. The AUC is an aggregate mea-
sure of detection performance (a model whose predictions are 100% correct will have
an AUC of 1.0). c, Distribution of the errors for start time and end time estimation
(n = 620 for insulin pens and n = 583 for inhalers). On each box plot, the central line
indicates the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to 1.5 times the interquartile range.
Points beyond the whiskers are plotted individually using the ‘+’ symbol. d,e, Cumu-
lative distribution functions (CDFs) of the absolute error for start time and end time
estimation (n=620 for insulin pens and n=583 for inhalers).
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Step 1:
Pick up insulin pen
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Load dose
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Administrate & Hold

Step 7:
Remove needle

Step 8:
Put down insulin pen
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Pick up inhaler

Step 2:
Shake inhaler
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Put down inhaler
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Figure 6-4: Partitioning of key constituent steps of insulin pen and inhaler device
self-administration enabling evaluation of administration technique. Based on rec-
ommendations pertaining to insulin pen and inhaler device administration, we parti-
tioned an MSA event into eight steps and six steps for insulin and inhaler administra-
tion, respectively. (We obtained informed consent from the participant for the use of
his photographs).

looked at two common errors of MSA: 1) missing a key step during the administration

process and 2) failure to comply with the duration requirements of device administration.

The above MSA errors occur frequently and are associated with poor disease control out-

comes [125, 126, 203]. For example, studies have reported that 37% of patients fail to shake

their inhalers [203], and patients not holding their breath after inhalation was a prevalent

(53%) error during inhalation device administration [203].

MSA errors with a missing step considered in this study were not priming the insulin

pen (Step 4) and not shaking the inhaler device before use (Step 2). These steps are crucial

to make sure these devices deliver the medication at the right dose. Specifically, priming

the insulin pen ensures an unobstructed and free flow of insulin [126], and shaking the in-

haler ensures proper mixture of particles and consistent dose delivery [192]. Figure 6-5.c-d

show the ROC curves for detecting such errors during insulin and inhaler administration,

respectively. Our system detected not priming the insulin pen with a sensitivity of 84.00%

(95% CI, 76.9–89.2%) and a specificity of 92.55% (95% CI, 89.7–94.7%) and an AUC of 0.905.

Similarly, our system detected not shaking the inhaler device before use with a sensitivity

of 96.64% (95% CI, 91.9–98.7%) and a specificity 94.47% (95%, CI 91.8–96.3%) and an AUC

of 0.967.

To evaluate our system’s performance in detecting errors of failing to comply with du-

ration requirements, we considered two duration-related common steps—namely, holding

the insulin pen still for 10s after injection (Step 6 of insulin administration) and holding
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Figure 6-5: Evaluation results for estimating the duration for constituent key steps
and detecting MSA errors during MSA events with insulin pens and inhaler de-
vices. a,b, Distribution of the step duration estimation errors for insulin (n=620) and
inhaler (n=583) administration, respectively. On each box plot, the central line indi-
cates the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to 1.5 times the interquartile range.
Points beyond the whiskers are plotted individually using the ‘+’ symbol. c,d, ROC
curves for detecting MSA errors of missing a key step during insulin (n=620) and
inhaler (n=583) administration. ROC curves demonstrate the tradeoff between sensi-
tivity and specificity as the detection thresholds are varied. The shaded AUC is an ag-
gregate measure of detection performance. e,f, ROC curves for detecting MSA errors
of failing to comply with duration requirements during insulin (n=620) and inhaler
(n=583) administration.
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one’s breath for 10 s after inhaling a dose (Step 4 of inhaler administration). We use the

cutoff of 10 s base on clinical recommendations [126, 192, 204]. Specifically, holding the in-

sulin pen for 10 s after injection ensures no insulin leakage or dribbling [126], and holding

the breath after dose inhalation ensures adequate lung deposition, which occurs through

sedimentation of particles [126, 192]. Figure 6-5.e-f show the ROC curves for detecting

MSA errors when individuals failed to comply with the duration requirements during in-

sulin and inhaler administration, respectively. Our system detected not holding the insulin

pen still for 10 s after injection with a sensitivity of 94.19% (95% CI, 88.9–97.1%) and a speci-

ficity of 95.48% (95% CI, 93.1–97.1%) and an AUC of 0.981. Similarly, our system detected

not holding breath after inhaling a dose with a sensitivity of 89.88% (95% CI, 84.0–93.8%)

and a specificity of 92.04% (95% CI, 88.9–94.4%) and an AUC of 0.953. This performance

rose further for detecting significant deviations from the recommendations (for example,

failing to hold breath/pen even for a few seconds). For the insulin pen, the AUC increased

to 0.986 and 0.993 for detecting duration shorter than 5s and 3s, respectively. Similarly, the

AUC increased to 0.983 and 0.988 in the case of inhalers.

In Fig. 6 we show example outputs from our system. Figure 6a shows an example

MSA event with the insulin pen. The top panel plots the predictions of our system on the

time axis—that is, a detected MSA event with multiple boxes corresponding to all eight

steps when using an insulin pen. The bottom panel shows the human annotation during

the corresponding MSA event. Figure 6b shows an example when the individual missed

a key step during the administration process. Note that the box corresponding to the step

of priming the insulin dose (Step 4) is missing, and this error was successfully detected by

our AI model. Figure 6c shows another insulin pen example where the individual failed to

comply with administration duration requirements—namely, the individual failed to hold

the pen for 10s after injecting the dose. Again, our model was able to detect this error, as

the detected step of holding the insulin pen after injection (Step 6) was much shorter than

10 s. Similarly, Fig. 6d–f show example outputs with inhalers.

In Figure 6-6.a we show example outputs from our system. Figure 6a shows an example

MSA event with the insulin pen. The top panel plots the predictions of our system on the

time axis—that is, a detected MSA event with multiple boxes corresponding to all eight

steps when using an insulin pen. The bottom panel shows the human annotation during

the corresponding MSA event. Figure 6-6.b shows an example when the individual missed
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Figure 6-6: Example outputs from our AI-based system. a, An insulin administration
event without any error. b, An insulin administration event that missed the step of
priming the insulin pen (Step 4). c, An insulin administration event where the indi-
vidual did not hold the pen for 10 s after injection (Step 6). d, An inhaler administra-
tion event without any error. e, An inhaler administration event that missed the step
of shaking the inhaler device before use (Step 2). f, An inhaler administration event
where the individual did not hold their breath after inhaling a dose (Step 4).
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a key step during the administration process. Note that the box corresponding to the step

of priming the insulin dose (Step 4) is missing, and this error was successfully detected by

our AI model. Figure 6-6.c shows another insulin pen example where the individual failed

to comply with administration duration requirements—namely, the individual failed to

hold the pen for 10s after injecting the dose. Again, our model was able to detect this error,

as the detected step of holding the insulin pen after injection (Step 6) was much shorter

than 10 s. Similarly, Figure 6-6.d–f show example outputs with inhalers.

� 6.3 Discussion

Here we described an AI-based solution for contactless at-home assessment of patient

MSA using inhalers and insulin pens. Our solution is characterized by three properties:

low overhead, informative and accurate. It is low overhead because it works in a passive

and contactless manner without requiring patients or health professionals to observe, re-

port or measure any parameters. It is informative because, in addition to detecting patient

medication administration, it also assesses the patient’s self-administration technique and

informs her of errors and omissions of required steps. It is also accurate as demonstrated

through our empirical results.

We think that the above three properties are important for the success of an MSA as-

sessment solution. Past solutions for assessing MSA at home fall short of delivering all

three properties. In particular, solutions that attach sensors to medication devices to moni-

tor MSA [122, 123, 124] can impose a new burden on the patient, as they require the patient

to regularly charge or replace their battery and bring the devices in the vicinity of a smart-

phone so they can upload their data. Although such solutions can detect dose release, they

lack information on whether the patient followed the proper MSA technique to ensure ad-

equate dose delivery – that is, the sensor captures the actuation and movements of the

medication device itself but cannot capture the patient’s actions and their sequence, which

are crucial for correct MSA. To our knowledge, this system is the first to introduce an au-

tomated solution for assessing an individual’s MSA technique and whether it follows the

proper steps. Being able to assess MSA techniques is essential because failures to follow

the proper techniques are common and have been associated with high non-adherence

levels and subsequent poor disease outcomes [125, 126, 127, 128].
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Another feature of our approach is its ability to generalize to different types of insulin

pens and inhalers. The neural network models used in this study support both reusable

and disposable insulin pens and the widely used metered-dose inhalers, as the constituent

key steps that our system learned are similar regardless of the type of insulin or the medi-

cation delivered by the inhaler. Specifically, in the case of insulin pens, our model is trained

to support both reusable and disposable pens by considering the cartridge-loading step as

optional. In the case of inhalers, our model is trained on the MSA steps recommended

for the widely used metered-dose inhalers. Because the main difference between differ-

ent types of metered-dose inhalers is the actual drug administered (for example, salbuta-

mol, ipratropium ot fluticasone) rather than the administration technique itself, our system

works with all such inhalers. Furthermore, our model can be extended to work with dry

powder inhalers, which do not require shaking before use. This can be done by using a

flag to indicate that the patient uses a dry powder inhaler and, therefore, not declaring an

MSA error when the shaking step is missed.

We think that the clinical implications of our system could be significant. We envision

that this system will be able to provide continuous feedback for clinicians on their patients’

MSA. Based on the feedback from our system, health professionals can then make a clin-

ical judgment (for example, whether more training and education on medication device

administration techniques is needed for the patient). Additionally, this system could con-

tribute to patient empowerment and engagement in their health by giving them feed- back

about their MSA technique and allowing them to avoid common MSA errors.

Although our AI-based solution provides an important improvement over the status

quo, we also note that it has several limitations. First, our system was developed and

tested with healthy individuals in laboratory conditions. We designed the experiment in

this study to emulate the real-world scenarios of how patients use medication delivery

devices after the initial training from pharmacists or other health professionals. Thus, we

chose individuals without prior experience with the insulin pen and inhaler and had them

trained by a pharmacist to use these devices. This also ensured that our participants’ level

of education and training in using medication devices was standardized, therefore miti-

gating reported barriers associated with individuals’ lack of training and education when

using an insulin pen and inhaler device [125, 205]. We think that this study provides an

important first step toward enabling automatic MSA assessment at home. We envision
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that future work would validate the system with actual patients in their homes and study

the effect of having such a system for automatic at-home MSA assessment on medication

adherence. Future work could also evaluate potential confounding factors that might af-

fect MSA errors, such as the patient’s chronic conditions, dexterity issues, health literacy

and education level.

Second, we focused on insulin pens and metered-dose inhalers and their common er-

rors, but there are many other MSA devices and potential technique errors. Although this

is a limitation of the specific neural network that we trained, the AI approach that we

propose is general and can be adapted to other MSA devices and MSA errors.

Third, the ability of our system to detect MSA events in various locations in the home

is limited by the coverage area of the radio. The radio device that we used in this study

can assess MSA events in locations up to 10 m from the device. This is usually enough to

cover several rooms in a home. If desirable, however, the whole home can be covered by

deploying multiple radio devices. Still, patients might take their medications outside the

home (for example, at work), leading to some MSA events being missed. Even when MSA

detection is incomplete, the system continues to be useful. Specifically, it would provide

health professionals with a list of missing MSA events, which allows them to discuss this

information with patients to clarify whether the missing MSA events are due to incomplete

information or the patients indeed did not take their medication. Furthermore, it would

detect MSA technique errors, which are typically repeated by patients, and today often go

undetected until direct observation from clinicians or poor disease outcomes [187, 206].

Fourth, the system does not detect MSA events if the person has his back to the ra-

dio, because most of the RF signals are blocked by the person’s own body. Similarly to

the previous limitation, this issue can be addressed by deploying a second radio in the

environment with a different orientation.

Additionally, the exposition in this work focused on scenarios where the house has a

single person who uses an inhaler and/or insulin pen. For homes with multiple patients

who use inhalers or insulin pens, a user identification system based on RF reflections [1,

197, 14, 31] can be employed to resolve the ambiguity. Such systems use RF signals to

accurately identify a person from a small set of people—for example, other residents in

a home or co-workers in an office scenario. Because we only require identification from

others at home, their methods apply to this scenario.
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In summary, we developed an AI system that can successfully detect MSA events and

assess a patient’s MSA technique. Our system demonstrates how AI can be applied to

ensure medication safety, specifically with device-based administration, in a manner that

has minimal potential overhead for patients and health professionals.
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CHAPTER 7

Learning Sleep Stages from Radio

Signals

Sleep plays a vital role in an individual’s health and well-being. Sleep progresses in cy-

cles that involve multiple sleep stages: Awake, Light sleep, Deep sleep and REM (Rapid

Eye Movement). Different stages are associated with different physiological functions. For

example, deep sleep is essential for tissue growth, muscle repair, and memory consoli-

dation, while REM helps procedural memory and emotional health. At least, 40 million

Americans each year suffer from chronic sleep disorders [207]. Most sleep disorders can

be managed once they are correctly diagnosed [207]. Monitoring sleep stages is beneficial

for diagnosing sleep disorders, and tracking the response to treatment [208].

Prevailing approaches for monitoring sleep stages are inconvenient and intrusive. The

medical gold standard relies on Polysomnography (PSG), which is typically conducted

in a hospital or sleep lab, and requires the subject to wear a plethora of sensors, such

as EEG-scalp electrodes, an ECG monitor, multiple chest bands, and nasal probes. As

a result, patients can experience sleeping difficulties, which renders the measurements

unrepresentative [209]. Furthermore, the cost and discomfort of PSG limit the potential for

long term sleep studies.

Recent advances in wireless systems have demonstrated that radio technologies can

capture physiological signals without body contact [79, 68, 6]. These technologies transmit

a low power radio signal (i.e., 1000 times lower power than a cell phone transmission)

101
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and analyze its reflections. They extract a person’s breathing and heart beats from the

radio frequency (RF) signal reflected off her body. Since the cardio-respiratory signals

are correlated with sleep stages, in principle, one could hope to learn a subject’s sleep

stages by analyzing the RF signal reflected off her body. Such a system would significantly

reduce the cost and discomfort of today’s sleep staging, and allow for long term sleep stage

monitoring.

There are multiple challenges in realizing the potential of RF measurements for sleep

staging. In particular, we must learn RF signal features that capture the sleep stages and

their temporal progression, and the features should be transferable to new subjects and

different environments. The problem is that RF signals carry much information that is

irrelevant to sleep staging, and are highly dependent on the individuals and the measure-

ment conditions. Specifically, they reflect off all objects in the environment including walls

and furniture, and are affected by the subject’s position and distance from the radio device.

These challenges were not addressed in past work which used hand-crafted signal features

to train a classifier [210, 211]. The accuracy was relatively low (∼64%) and the model did

not generalize beyond the environment where the measurements were collected.

We present a new model that delivers a significantly higher accuracy and generalizes

well to new environments and subjects. The model adapts a convolutional neural net-

work (CNN) to extract stage-specific features from RF spectrograms, and couples it with a

recurrent neural network (RNN) to capture the temporal dynamics of sleep stages.

However, a CNN-RNN combination alone would remain liable to distracting features

pertaining to specific individuals or measurement conditions (i.e., the source domains),

and hence would not generalize well. To address this issue, we introduce a new adver-

sarial training regime that discards extraneous information specific to individuals or mea-

surement conditions, while retaining all information relevant to the predictive task –i.e.,

the adversary ensures conditional independence between the learned representation and

the source domains.

Our training regime involves 3 players: the feature encoder (CNN-RNN), the sleep

stage predictor, and the source discriminator. The encoder plays a cooperative game with

the predictor to predict sleep stages, and a minimax game against the source discriminator.

Our source discriminator deviates from the standard domain-adversarial discriminator

in that it takes as input also the predicted distribution of sleep stages in addition to the
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encoded features. This dependence facilitates accounting for inherent correlations between

stages and individuals, which cannot be removed without degrading the performance of

the predictive task.

We analyze this game and demonstrate that at equilibrium, the encoded features dis-

card all extraneous information that is specific to the individuals or measurement condi-

tions, while preserving all information relevant to predicting the sleep stages. We also

evaluate our model on a dataset of RF measurements and corresponding sleep stages1.

Experimental results show that our model significantly improves the prediction accuracy

of sleep stages as shown in Table 7-1. In particular, our model has a prediction accuracy

of 79.8% and a Cohen’s Kappa of 0.70, whereas the best prior result for predicting sleep

stages from RF signals [211] has an accuracy of 64% and a Cohen’s Kappa of 0.49. This

improvement is due to intrinsic differences between past models and the model in our

work, which avoids hand-crafted features, and learns features that capture the temporal

dependencies and transfer well to new subjects and different environments.

Table 7-1: Automated Sleep Staging Systems

Signal Source Accuracy (acc/κ)1 Comfort
EEG High (83%/0.76)2 Low

Cardiorespiratory Medium (71%/0.56) Medium
Actigraphy Low (65%/-)3 High

RF
State-of-the-art Low (64%/0.49) High

Ours High (79.8%/0.70) High
1 Four-class subject-independent classification accuracy
on every 30-second segment.
2 Some studies achieve accuracy over 90% [212] but they
discard artifacts and use segments from the same night to
train and test.
3 Three-class classification based on 5-minute segment.

� 7.1 Conditional Adversarial Model

Let x ∈ Ωx be an input sample, and y ∈ {1, 2, ..., ny} an output label. Let s ∈ {1, 2, ..., ns}
denote an auxiliary label that refers to the source of a specific input sample. We define

x = [x1, x2..., xt] ∈ Ωx as the sequence of input samples from the beginning of time until

the current time t.
1Dataset is available at:

http://sleep.csail.mit.edu/

http://sleep.csail.mit.edu/
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(a) Model (Ideal Game)

x

E

E(x)

F D

QF (y) QD(s)

(b) Extended Game

Figure 7-1: Model and Extended Game. Dotted arrow indicates that the information
does not propagate back on this link.

In the context of our application, the above notation translates into the following: The

input sample x is a 30-second RF spectrogram, and the output label y is a sleep stage that

takes one of four values: Awake, Light Sleep, Deep Sleep, or REM. The vector x refers to

the sequence of RF spectrograms from the beginning of the night until the current time.

Since RF signals carry information about the subject and the measurement environment,

we assign each input x an auxiliary label s which identifies the subject-environment pair,

hereafter referred to as the source.

Our goal is to learn a latent representation (i.e., an encoder) that can be used to predict

label y; yet, we want this representation to generalize well to predict sleep stages for new

subjects without having labeled data from them. Simply making the representation invari-

ant to the source domains could hamper the accuracy of the predictive task. Instead we

would like to remove conditional dependencies between the representation and the source domains.

We introduce a multi-domain adversarial model that achieves the above goal. Our

model is shown in Figure 7-1(a). It has three components: An encoder E, a label predictor

F , and a source discriminator D. Our model is set up as a game, where the representation

encoder plays a cooperative game with the label predictor to allow it to predict the correct

labels using the encoded representation. The encoder also plays a minimax game against

the source discriminator to prevent it from decoding the source label from the encoded

representation.

A key characteristic of our model is the conditioning of the source discriminator on the
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label distribution, Py(·|x) (see Figure 7-1(a)). This conditioning of the adversary allows the

learned representation to correlate with the domains, but only via the label distribution

–i.e., removes conditional dependencies between the representation and the sources.

The rest of this section is organized as follows. We first formally define three players

E, F , and D and the representation invariance they are trained to achieve. In Section 7.1.1,

we analyze the game and prove that at equilibrium the encoder discards all extraneous

information about the source that is not beneficial for label prediction (i.e., predicting y).

Training the ideal model in Figure 7-1(a) is challenging because it requires access to the

label distribution Py(·|x). To drive an efficient training algorithm, we define in Section 7.1.2

an extended game where the source discriminator uses the output of the label predictor as

an approximation of the posterior probabilities, as shown in Figure 7-1(b). We prove that

the equilibriums of the original game are also equilibriums in the extended one.

Encoder E: An encoder E(·) : Ωx → Ωz is a function that takes a sequence of input

samples x, and returns a vector summary of x as z = E(x).

Label Predictor F : A label predictor F (·) : Ωz → [0, 1]ny takes a latent representa-

tion E(x) as input and predicts the probability of each label y associated with input x as

QF (y|E(x)). The goal of an ideal predictor F is to approximate Py(·|x) with QF (·|E(x)).

The loss of the label predictor, F , given the encoder E, is defined as the cross-entropy

between the label distribution Py(·|x) and QF (·|E(x)):

Lf (F ;E) = Ex,y[− logQF (y|E(x))] (7.1)

During training, the encoder E and predictor F play a co-operative game to minimize the

label prediction loss.

Source Discriminator D: We define a source discriminator as D(·, ·) : Ωz × [0, 1]ny →
[0, 1]ns . It takes the latent representation E(x) and the label distribution Py(·|x) as inputs,

and predicts which source domain (i.e., subject and environment) they are sampled from

as QD(·|E(x), Py(·|x)).

Next, we define the desired representation invariance.

Definition 7 (Representation invariance). We say that representation E is invariant if E(x)

contains no information about s beyond what is already contained in Py(·|x); that is,

QD(·|E(x), Py(·|x)) = QD(·|Py(·|x)) for the optimal D.
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To measure the invariance of an encoder E, we define the loss of the source discrimi-

nator D as the cross-entropy between Ps(·|x) and QD(·|E(x), Py(·|x)):

Ld(D;E) = Ex,s[− logQD(s|E(x), Py(·|x))] (7.2)

During training, encoder E and discriminator D play a minimax game: while D is trained

to minimize the source prediction loss, encoder E is trained to maximize it in order to

achieve the above invariance.

� 7.1.1 Ideal Game

During training, encoder E plays a co-operative game with predictor F , and a minimax

game with discriminator D. We define a value function of E, F and D with λ > 0:

V(E,F,D) = Lf (F ;E)− λ · Ld(D;E) (7.3)

The training procedure can be viewed as a three-player minimax game of E, F and D:

min
E

min
F

max
D
V(E,F,D) = min

E,F
max
D
V(E,F,D) (7.4)

Proposition 8 (Optimal predictor). Given encoder E,

Lf (E) , min
F
Lf (F ;E) ≥ H(y|E(x)), (7.5)

where H(·) is entropy.

The optimal predictor F ∗ that achieves equality is:

QF ∗(y|E(x)) = p(y|E(x)) (7.6)
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Proof.

Lf (F ;E)

=Ex,y[− logQF (y|E(x))]

=EE(x),y[− logQF (y|E(x))]

=Ez∼P (E(x)) Ey∼P (y|z)[− logQF (y|z)]

=Ez∼P (E(x))[H(y|z) +DKL(P (y|z) ‖QF (y|z))]

≥Ez∼P (E(x))[H(y|z)]

=H(y|E(x))

The equality holds whenDKL(P (y|E(x)) ‖QF (y|E(x))) = 0 for almost everyx ∈ Supp(Px).

That is QF ∗(y|E(x)) = p(y|E(x)) for almost every y and x ∈ Supp(Px).

Similarly we can prove the following Proposition.

Proposition 9 (Optimal discriminator). Given encoder E,

Ld(E) , min
D
Ld(D;E) ≥ H(s|E(x), Py(·|x)) (7.7)

The optimal discriminator D∗ that achieves this value is:

QD∗(s|E(x), Py(·|x)) = P (s|E(x), Py(·|x)) (7.8)

Corollary 9.1. H(s) is an upper bound of the loss of the optimal discriminator D∗ for any encoder

E.

Next, we state the virtual training criterion of the encoder.

Proposition 10. If predictor F and discriminator D have enough capacity and are trained to

achieve their optimal losses, the minimax game Equation 7.4 can be rewritten as the following

training procedure of encoder E:

min
E

[H(y|E(x))− λ ·H(s|E(x), Py(·|x))] (7.9)

Proof. Based on the losses of the optimal predictor F ∗ and the optimal discriminator D∗ in

Proposition 8 and Proposition 9, the minimax game Equation 7.4 can be rewritten as (7.9).
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Thus, encoder E is trained to minimize a virtual training criterion C(E) = H(y|E(x))−λ ·
H(s|E(x), Py(·|x)).

Next, we describe the optimal encoder.

Theorem 11 (Optimal encoder). If encoder E, predictor F and discriminator D have enough

capacity and are trained to reach optimum, any global optimal encoder E∗ has the following prop-

erties:

H(y|E∗(x)) = H(y|x) (7.10a)

H(s|E∗(x), Py(·|x)) = H(s|Py(·|x)) (7.10b)

Proof. Since E(x) is a function of x:

Lf (E) = H(y|E(x)) ≥ H(y|x) (7.11a)

Ld(E) = H(s|E(x), Py(·|x)) ≤ H(s|Py(·|x)) (7.11b)

Hence,C(E) = H(y|E(x))−λ·H(s|E(x), Py(·|x)) ≥ H(y|x)−λ·H(s|Py(·|x)). The equality

holds if and only if both Equation 7.10a and Equation 7.10b are satisfied. Therefore, we

only need to prove that the optimal value of C(E) is equal to H(y|x)− λ ·H(s|Py(·|x)) in

order to prove that any global encoderE∗ satisfies both Equation 7.10a and Equation 7.10b.

We show that C(E) can achieve H(y|x) − λ · H(s|Py(·|x)) by considering the follow-

ing encoder E0: E0(x) = Py(·|x). It can be examined that H(y|E0(x)) = H(y|x) and

H(s|E0(x), Py(·|x)) = H(s|Py(·|x)).

Adversarial training ofD can be viewed as a regularizer, which leads to a common rep-

resentation space for multiple source domains. From Theorem 11, the optimal encoder E∗

using adversarial training satisfies H(y|E∗(x)) = H(y|x), which is the maximal discrimi-

native capability that any encoder E can achieve. Thus, we have the following corollary.

Corollary 11.1. Adversarial training of the discriminator does not reduce the discriminative capa-

bility of the representation.

Remark 11.1. During the proof of Theorem 11, we construct an encoder E0(x) = Py(·|x) that

can achieve the optimal value of C(E). However, we argue that training will not converge to this
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trivial encoder in practice. This is because Py(·|x) is a mapping from the full signal history to the

distribution over stages at the current step, therefore itself highly complex. Since we use the RNN

state as the encoding E(x), and it feeds into the LSTM gates, distribution over stages at previous

step does not represent a sufficient summary of the history until the current one. Therefore, E(x)

must be able to anticipate the temporal evolution of the signal and contain a more effective summary

than Py(·|x) would be.

Corollary 11.2. If encoder E and predictor F have enough capacity and are trained to reach opti-

mum, the output of F is equal to Py(·|x).

Proof. When predictor F is optimal (Proposition 8), QF (y|E(x)) = p(y|E(x)). When E

is optimal (Theorem 11), H(y|E(x)) = H(y|x), that is p(y|E(x)) = p(y|x). Therefore,

QF (y|E(x)) = p(y|x).

� 7.1.2 Extended Game

In practice, estimating the posterior label distribution Py(·|x) from labeled data is a non-

trivial task. Fortunately however our predictor F and encoder E are playing a cooperative

game to approximate this posterior label distribution Py(·|x) with QF (·|E(x)). Therefore,

we use QF (·|E(x)), the output of predictor F , as a proxy of Py(·|x) and feed it as input to

discriminator D (Figure 7-1(b)).

An extended three-player game arises: while encoder E still plays a cooperative game

with predictor F and a minimax game with discriminator D, discriminator D depends

strategically on predictor F but not vice versa. The dotted line in Fig. 7-1(b) illustrates this

dependency.

The relationship between the ideal minimax game (Section 7.1.1) and the extended one

is stated below.

Proposition 12. If encoder E, predictor F and discriminator D have enough capacity, the solu-

tion that encompasses the optimal encoder, E∗, predictor, F ∗ and discriminator, D∗, in the ideal

minimax game is also an equilibrium solution of the extended game.

Proof. By Corollary 11.2, when encoderE and predictor F are optimal,QF (·|E(x)) is equal

to Py(·|x). Thus, the extended game becomes equivalent to the ideal game, andE∗, F ∗ and

D∗ is an equilibrium solution of both games.
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Algorithm 1 Encoder, predictor and discriminator training

Input: Labeled data {(xi, yi, si)}Mi=1, and learning rate η.
Compute stop criterion for inner loop: δd ← H(s)
for number of training iterations do

Sample a mini-batch of training data {(xi, yi, si)}mi=1:
Lif ← − logQF (yi|E(xi))

wi ← QF (·|E(xi)) I stop gradient along this link
Lid ← − logQD(si|E(xi),wi)

Vi = Lif − λ · Lid

Update encoder E:
θe ← θe − ηe∇θe 1

m

∑m
i=1 V i

Update predictor F :
θf ← θf − ηf∇θf 1

m

∑m
i=1 V i

repeat
Update discriminator D:

θd ← θd + ηd∇θd 1
m

∑m
i=1 V i

until 1
m

∑m
i=1 Lid ≤ δd

� 7.1.3 Training Algorithm

We implement the extended three-player game with iterative updates of the players (Al-

gorithm 1). Note that, since the output of the label predictor is a proxy of the underlying

posterior, and since the source discriminator depends strategically on the predictor but not

vice versa, the gradient does not back-propagate from the discriminator to the predictor

(i.e., the dotted link in Figure 7-1(b)).

The number of training steps in the inner loop usually needs to be carefully cho-

sen [107]. A large number of steps is computationally inefficient but a small one will cause

the model to collapse. This is because the outer players, E and F , can be over-trained

against a non-optimal inner player D, and they will try to maximize Ld at the cost of in-

creasing Lf . To prevent the model collapse phenomenon, we use an adaptive number of

training steps in the inner loop and adjust it dynamically based on Ld (Algorithm 1). The

idea is to use the upper bound in Corollary 9.1 as the stopping criterion for the inner loop.

� 7.1.4 Discussion of the Model Benefits

While we described our model in the context of sleep staging, we believe the model can

be applied more broadly. Our model is characterized by the 3-way game and the ad-
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versarial conditioning on the label distribution. This combination yields the following

benefits: 1) It guarantees an equilibrium solution that fully preserves the ability to per-

form the predictive task while removing any distracting information specific to the source

domains. Guarantees of this kind are particularly important in healthcare where the mea-

surements are noisy and have a variety of dependencies that need to be controlled. 2) It

allows to properly leverage the adversarial feedback even when the target labels are un-

certain. For example, in the sleep staging problem, each 30-second window is given one

label. Yet, many such windows include transitions between sleep stages, e.g., a transition

from light to deep sleep. These transitions are gradual and hence the transition windows

can be intrinsically different from both light and deep sleep. It would be desirable to have

the learned representation capture the concept of transition and make it invariant to the

source (see the results in Section 7.2.5). 3) It allows the conditioning to remain available

for additional guiding of representations based on unlabeled data. The model can incor-

porate unlabeled data for either semi-supervised learning or transductive learning within

a unified framework.

� 7.2 Experiments

In this section, we empirically evaluate our model.

� 7.2.1 RF-Sleep Dataset

RF-Sleep is a dataset of RF measurements during sleep with corresponding sleep stage

labels. All studies that involve human subjects were approved by our IRB.

Study setup: The sleep studies are done in the bedroom of each subject. We install a

radio device in the bedroom. It transmits RF signals and measure their reflections while

the subject is sleeping alone in the bed.

Ground truth: During the study, each subject sleeps with an FDA-approved EEG-

based sleep monitor [132], which collects 3-channel frontal EEG. The monitor labels every

30-second of sleep with the subject’s sleep stage. This system has human-level comparable

accuracy [132], and has already been used in several sleep studies[213, 214].

Size of dataset: The dataset collects 100 nights of sleep from 25 young healthy subjects

(40% females). It contains over 90k 30-second epochs of RF measurements and their corre-
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Table 7-2: Sleep Stage Classification Accuracy and Kappa.

Approach Accuracy κ

Tataraidze et al. [211] 0.635 0.49
Zaffaroni et al. [210] 0.641 0.45

Ours 0.798 0.70

sponding sleep stages provided by the EEG-based sleep monitor. Each epochs has one of

four labels Awake, REM, Light Sleep (N1 or N2) and Deep Sleep (N3).

� 7.2.2 Parameterization

We parameterize encoder E, predictor F and discriminator D as neural networks. En-

coder E is parameterized by a hybrid CNN-RNN model. We adapt a residual networks

architecture [164] with 24 convolutional layers to extract features from each 30-second RF

spectrogram, and an RNN with LSTM cell [200] that takes sequences of CNN features as

input. Both predictor F and discriminator D are parameterized by networks with two

fully-connected layers.

� 7.2.3 Classification Results

We evaluate the model on every subject while training on the data collected from the other

subjects (i.e., the model is never trained on data from the test subject). The training data is

randomly split into a training set and validation set (75%/25%).

We use two metrics commonly used in automated sleep staging, namely Accuracy and

Cohen’s Kappa. While accuracy measures the percent agreement with ground truth, Co-

hen’s Kappa coefficient κ [125] takes into account the possibility of the agreement occur-

ring by chance and is usually a more robust metric. κ > 0.4, κ > 0.6, κ > 0.8 are considered

to be moderate, substantial and almost perfect agreement [215].

Table 7-2 shows the accuracy and Cohen’s Kappa of our model compared to the state-

of-the-art in classifying sleep stages using RF reflections. Since neither the dataset nor the

code used in past papers is publicly available, we compare with their published results.

We note however that the Cohen’s Kappa provides some normalization since it accounts

for the underlying uncertainty in the data. The table shows that our model has an accuracy

of 79.8% and a κ = 0.70, which significantly outperforms past solutions.

Figure 7-2(a) shows the confusion matrix of our model. Figure 7-2(b) also shows the

accuracy on each subject. It has a standard deviation of 2.9%, suggesting that our model is
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Figure 7-2: Sleep Staging Accuracy. 7-2(a) shows that our model can distinguish
different sleep stages with high accuracy. And 7-2(b) illustrates that our model works
well for different subjects and environments.

capable of adapting to different subjects and environments.

Finally, we show in Figure 7-3 the full-night predictions along with the ground truth

for the average, best, and worst classification accuracy.

� 7.2.4 Understanding the Role of CNN & RNN

We analyze the role of CNN and RNN in predicting sleep stages. To do so, we use t-SNE

embedding [216] to visualize the response of our network after CNN and RNN, respec-

tively. Figure 7-4 shows the visualization results from one of the subjects. Data points

are randomly sub-sampled for better viewing. The result shows that the CNN succeeds at

separating the Wake, REM from Light and Deep Sleep. However it fails at separate Light

Sleep and Deep Sleep from each other. In contrast, Light Sleep and Deep Sleep form differ-

ent clusters in the RNN response. These results demonstrate the role of CNN and RNN in

our model: CNN learns stage-specific features that can distinguish Wake, REM and from

Deep and Light Sleep. RNN captures the dynamics of those features to further determine

whether the sleep is light or deep. Note that Light and Deep Sleep are more similar to each

other and are typically referred to as NREM, i.e., non-REM.

We have trained a similar model without the RNN layer on top of CNN. In this case,

the overall accuracy decreases by 12.8%, specifically the precision light and deep sleep

decreases by 23.5%. This suggests that there are stage-specific information embedded in

the temporal dynamics of the RF measurements, and therefore can only be captured and

exploited with RNN. Moreover, these temporal dynamics are particularly crucial for dis-

tinguishing light and deep sleep. Indeed, there are known temporal patterns that govern
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Figure 7-3: Example outputs of RF-Sleep. Three examples of full night predictions
corresponding to the average, best and worst classification accuracy.

the progression of light and deep sleep through the night [217]. For example, the proba-

bility of being in deep sleep decreases as sleep progresses. Also, people usually need to

go through light sleep before they can get into deep sleep. These temporal dynamics of

sleep stages can be captured by RNN and might be exploited to distinguish light and deep

sleep.

� 7.2.5 Role of Our Adversarial Discriminator

We evaluate the role of our adversarial discriminator in learning transferable features for

predicting sleep stages. We first look at the losses on the validation set as training pro-

gresses to check whether the extraneous information specific to the individuals and envi-

ronments can be removed. As a baseline, we compare with a version of our model without

the source discriminator. For this baseline, we train a (non-adversarial) discriminator to
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Figure 7-4: Visualizations of the CNN and RNN responses. CNN can separate Wake
REM and from the other stages, yet Deep and Light Sleep can only be distinguished
by RNN.
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Figure 7-5: Baseline model and ours are evaluated on same dataset. A higher source
loss indicates the removal of source specific information, and a lower test loss shows
that the proposed setup can better avoid overfitting.

determine the source of features. Figure 7-5 shows that the loss of the source discriminator

in the baseline model decreases very quickly while ours stays high (upper bounded by

H(s) = 2.81 in this case), suggesting that our learned representation is invariant across

sources. The figure also shows that adding an adversarial discriminator increases the per-

formance on the test set and can be helpful in reducing over-fitting.

To check that our adversarial model has learned transferable features, we visualize the

learned features E(x) on the test data for both models. Color-coding the sources, Figure 7-

6 shows that our learned features have almost the same distribution on different sources,

while the baseline model learns features that are separable.

Next, we illustrate the benefits of conditioning on the posterior distribution, and that

it can recover underlying concepts not specified in the labels. We consider the learned

features for transition periods between light and deep sleep, which might be a class that is

different from both light and deep sleep. We define transition periods as epochs that have

both light and deep sleep as neighbors. We visualize it with a different color. Color-coding

stages and shape-coding sources, Figure 7-7 shows the learned features from transition

periods are segregated, as those from light sleep and deep sleep. This indicates that our
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Figure 7-6: Visualization of learned latent representations from two sources. Data-
points are separated when no adversary, yet they are well aligned by proposed setup.
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Figure 7-7: Visualization of fine-grained alignment on test data. Our model, which
conditions the adversary on the posterior distribution, not only aligns deep and light
stages, but also aligns the transition periods, which are not directly specified by the
labels.

learned features have recovered the concept of a transition period, which is helpful in

understanding and predicting sleep stages.

� 7.3 Conclusion

We introduced a new predictive model that learns sleep stages from RF signals and achieves

a significant improvement over the state-of-the-art. We believe this work marks an impor-

tant step in sleep monitoring. We also believe that the proposed adversarial setup, which

extracts task-specific domain-invariant features, is applicable to other predictive tasks, par-

ticularly in health sensing where variations across subjects and measurement conditions

could be a major challenge.



CHAPTER 8

Emotion Recognition using Wireless

Signals

Emotion recognition is an emerging field that has attracted much interest from both the

industry and the research community [218, 219, 220, 221, 222]. It is motivated by a simple

vision: Can we build machines that sense our emotions? If we can, such machines would

enable smart homes that react to our moods and adjust the lighting or music accordingly.

Movie makers would have better tools to evaluate user experience. Advertisers would

learn customer reaction immediately. Computers would automatically detect symptoms

of depression, anxiety, and bipolar disorder, allowing early response to such conditions.

More broadly, machines would no longer be limited to explicit commands, and could in-

teract with people in a manner more similar to how we interact with each other.

Existing approaches for inferring a person’s emotions either rely on audiovisual cues,

such as images and audio clips [143, 220, 223], or require the person to wear physiological

sensors like an ECG monitor [53, 224, 145, 225]. Both approaches have their limitations.

Audiovisual techniques leverage the outward expression of emotions, but cannot measure

inner feelings [52, 224, 226]. For example, a person may be happy even if she is not smiling,

or smiling even if she is not happy. Also, people differ widely in how expressive they are in

showing their inner emotions, which further complicates this problem [227]. The second

approach recognizes emotions by monitoring the physiological signals that change with

our emotional state, e.g., our heartbeats. It uses on-body sensors – e.g., ECG monitors –

117
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to measure these signals and correlate their changes with joy, anger, etc. This approach is

more correlated with the person’s inner feelings since it taps into the interaction between

the autonomic nervous system and the heart rhythm [50, 228]. However, the use of body

sensors is cumbersome and can interfere with user activity and emotions, making this

approach unsuitable for regular usage.

In this section, we introduce a new method for emotion recognition that achieves the

best of both worlds –i.e., it directly measures the interaction of emotions and physiological

signals, but does not require the user to carry sensors on his body.

Our design uses RF signals to sense emotions. Specifically, RF signals reflect off the

human body and get modulated with bodily movements. Recent research has shown that

such RF reflections can be used to measure a person’s breathing and average heart rate

without body contact [68, 69, 77, 78, 79]. However, the periodicity of the heart signal (i.e.,

its running average) is of little relevance to emotion recognition. Specifically, to recognize

emotions, we need to measure the minute variations in each individual beat length [50, 51,

52].

Yet, extracting individual heartbeats from RF signals incurs multiple challenges, which

can be seen in Figure 8-1. First, RF signals reflected off a person’s body are modulated by

both breathing and heartbeats. The impact of breathing is typically orders of magnitude

larger than that of heartbeats, and tends to mask the individual beats (see the top graph

in Figure 8-1); to separate breathing from heart rate, past systems operate over multiple

seconds (e.g., 30 seconds in [68]) in the frequency domain, forgoing the ability to mea-

sure the beat-to-beat variability. Second, heartbeats in the RF signal lack the sharp peaks

which characterize the ECG signal, making it harder to accurately identify beat bound-

aries. Third, the difference in inter-beat-intervals (IBI) is only a few tens of milliseconds.

Thus, individual beats have to be segmented to within a few milliseconds. Obtaining such

accuracy is particularly difficult in the absence of sharp features that identify the beginning

or end of a heartbeat. Our goal is to address these challenges to enable RF-based emotion

recognition.

We present EQ-Radio, a wireless system that performs emotion recognition using RF

reflections off a person’s body. EQ-Radio’s key enabler is a new algorithm for extracting

individual heartbeats and their differences from RF signals. Our algorithm first mitigates

the impact of breathing. The intuition underlying our mitigation mechanism is as follows:
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Figure 8-1: Comparison of RF signal with ECG signal. The top graph plots the RF
signal reflected off a person’s body. The envelop of the RF signal follows the inhale-
exhale motion. The small dents in the signal are due to heartbeats. The bottom graph
plots the ECG of the subject measured concurrently with the RF signal. Individual
beats are marked by grey and white shades. The numbers report the beat-length in
seconds. Note the small variations in consecutive beat lengths.

while chest displacement due to the inhale-exhale process is orders of magnitude larger

than minute vibrations due to heartbeats, the acceleration of breathing is smaller than

that of heartbeats. This is because breathing is usually slow and steady while a heartbeat

involves rapid contraction of the muscles (which happen at localized instances in time).

Hence, EQ-Radio operates on the acceleration of RF signals to dampen the breathing signal

and emphasize the heartbeats.

Next, EQ-Radio needs to segment the RF reflection into individual heartbeats. In con-

trast to the ECG signal which has a known expected shape (see the bottom graph in Fig. 8-

1), the shape of a heartbeat in RF reflections is unknown and varies depending on the

person’s body and exact posture with respect to the device. Thus, we cannot simply look

for a known shape as we segment the signal; we need to learn the beat shape as we per-

form the segmentation. We formulate the problem as a joint optimization, where we iterate

between two sub-problems: the first sub-problem learns a template of the heartbeat given

a particular segmentation, while the second finds the segmentation that maximizes resem-

blance to the learned template. We keep iterating between the two sub-problems until we

converge to the best beat template and the optimal segmentation that maximizes resem-

blance to the template. Finally, we note that our segmentation takes into account that beats

can shrink and expand and hence vary in beat length. Thus, the algorithm finds the beat

segmentation that maximizes the similarity in the morphology of a heartbeat signal across

consecutive beats while allowing for flexible warping (shrinking or expansion) of the beat
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signal.

We have built EQ-Radio into a full-fledged emotion recognition system. EQ-Radio’s

system architecture has three components: The first component is an FMCW radio that

transmits RF signals and receives their reflections. The radio leverages the approach in [68]

to zoom in on human reflections and ignore reflections from other objects in the scene.

Next, the resulting RF signal is passed to the beat extraction algorithm described above.

The algorithm returns a series of signal segments that correspond to the individual heart-

beats. Finally, the heartbeats – along with the captured breathing patterns from RF reflec-

tions – are passed to an emotion classification sub-system as if they were extracted from

an ECG monitor. The emotion classification sub-system computes heartbeat-based and

respiration-based features recommended in the literature [145, 52, 224] and uses an SVM

classifier to differentiate among various emotional states.

We evaluate EQ-Radio by conducting user experiments with 30 subjects. We design

our experiments in accordance with the literature in the field [145, 52, 224]. Specifically, the

subject is asked to evoke a particular emotion by recalling a corresponding memory (e.g.,

sad or happy memories). She/he may use music or photos to help evoking the appropriate

memory. In each experiment, the subject reports the emotion she/he felt, and the period

during which she/he felt that emotion. During the experiment, the subject is monitored

using both EQ-Radio and a commercial ECG monitor. Further, a video is taken of the

subject then passed to the Microsoft image-based emotion recognition system [229].

Our experiments show that EQ-Radio’s emotion recognition is on par with state-of-

the-art ECG-based systems, which require on-body sensors [53]. Specifically, if the system

is trained on each subject separately, the accuracy of emotion classification is 87% in EQ-

Radio and 88.2% in the ECG-based system. If one classifier is used for all subjects, the

accuracy is 72.3% in EQ-Radio and 73.2% in the ECG-based system.1 For the same exper-

iments, the accuracy of the image-based system is 39.5%; this is because the image-based

system performed poorly when the emotion was not visible on the subject’s face.

Our results also show that EQ-Radio’s performance is due to its ability to accurately

extract heartbeats from RF signals. Specifically, even errors of 40-50 milliseconds in esti-

mating heartbeat intervals would reduce the emotion recognition accuracy to 44% (as we

1The ECG-based system and EQ-Radio use exactly the same classification features but differ in how they
obtain the heartbeat series. In all experiments, training and testing are done on different data.
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show in Figure 8-12 in Section 8.5.3). In contrast, our algorithm achieves an average error

in inter-beat-intervals (IBI) of 3.2 milliseconds, which is less than 0.4% of the average beat

length.

EQ-Radiomakes the following three contributions:

• To our knowledge, this is the first system that demonstrates the feasibility of emotion

recognition using RF reflections off one’s body. As such, this work both expands the

scope of wireless systems and advances the field of emotion recognition.

• We introduce a new algorithm for extracting individual heartbeats from RF reflections

off the human body. The algorithm presents a new mathematical formulation of the

problem, and is shown to perform well in practice.

• We also present a user study of the accuracy of emotion recognition using RF reflections,

and an empirical comparison with both ECG-based and image-based emotion recogni-

tion systems.

� 8.1 EQ-Radio Overview

Joy
Pleasure
Sadness
Anger

RF Reflection

Heartbeat Segmentation

Respiration Signal

IBI Features

Resp. Features

Feature Selection

Classification

Figure 8-2: EQ-Radio Architecture. EQ-Radio has three components: a radio for cap-
turing RF reflections (Section 8.2), a heartbeat extraction algorithm (Section 8.3), and
a classification subsystem that maps the learned physiological signals to emotional
states (Section 8.4).

EQ-Radio is an emotion recognition system that relies purely on wireless signals. It

operates by transmitting an RF signal and capturing its reflections off a person’s body.

It then analyzes these reflections to infer the person’s emotional state. It classifies the

person’s emotional state according to the known arousal-valence model into one of four

basic emotions [230, 145]: anger, sadness, joy, and pleasure (i.e., contentment).

EQ-Radio’s system architecture consists of three components that operate in a pipelined
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manner, as shown in Figure 8-2:

• An FMCW radio, which transmits RF signals and captures their reflections off a person’s

body.

• A beat extraction algorithm, which takes the captured reflections as input and returns a

series of signal segments that correspond to the person’s individual heartbeats.

• An emotion-classification subsystem, which computes

emotion-relevant features from the captured physiological signals – i.e., the person’s

breathing pattern and heartbeats – and uses these features to recognize the person’s

emotional state.

In the following sections, we describe each of these components in detail.

� 8.2 Capturing the RF Signal

EQ-Radio operates on RF reflections off the human body. To capture such reflections, EQ-

Radio uses a RADAR technique called Frequency Modulated Carrier Waves (FMCW) [8].

There is a significant literature on FMCW radios and their use for obtaining an RF signal

that is modulated by breathing and heartbeats [68, 231, 232]. We refer the reader to [68]

for a detailed description of such methods, and summarize below the basic information

relevant to our emotion recognition system.

The radio transmits a low power signal and measures its reflection time. It separates

RF reflections from different objects/bodies into buckets based on their reflection time. It

then eliminates reflections from static objects which do not change across time and zooms

in on human reflections. It focuses on time periods when the person is quasi-static. It then

looks at the phase of the RF wave which is related to the traveled distance as follows [233]:

φ(t) = 2π
d(t)

λ
,

where φ(t) is the phase of the signal, λ is the wavelength, d(t) is the traveled distance, and t

is the time variable. The variations in the phase correspond to the compound displacement

caused by chest expansion and contraction due to breathing, and body vibration due to

heartbeats.2

2When blood is ejected from the heart, it exercises a force on the rest of the body causing small jitters in the
head and skin, which are picked up by the RF signal [68].



8.3. BEAT EXTRACTION ALGORITHM 123

The phase of the RF signal is illustrated in the top graph in Figure 8-1. The envelop

shows the chest displacements as the inhale-exhale process. The small dents are due to

minute skin vibrations associated with blood pulsing. EQ-Radio operates on this phase

signal.

� 8.3 Beat Extraction Algorithm

Recall that a person’s emotions are correlated with small variations in her/his heartbeat

intervals; hence, to recognize emotions, EQ-Radio needs to extract these intervals from the

RF phase signal described above.

The main challenge in extracting heartbeat intervals is that the morphology of heart-

beats in the reflected RF signals is unknown. Said differently, EQ-Radio does not know

how these beats look like in the reflected RF signals. Specifically, these beats result in

distance variations in the reflected signals, but the measured displacement depends on

numerous factors including the person’s body and her exact posture with respect to EQ-

Radio’s antennas. This is in contrast to ECG signals where the morphology of heartbeats

has a known expected shape, and simple peak detection algorithms can extract the beat-

to-beat intervals. However, because we do not know the morphology of these heartbeats

in RF a priori, we cannot determine when a heartbeat starts and when it ends, and hence

we cannot obtain the intervals of each beat. In essence, this becomes a chicken-and-egg

problem: if we know the morphology of the heartbeat, that would help us in segmenting

the signal; on the other hand, if we have a segmentation of the reflected signal, we can use

it to recover the morphology of the human heartbeat.

This problem is exacerbated by two additional factors. First, the reflected signal is

noisy; second, the chest displacement due to breathing is orders of magnitude higher than

the heartbeat displacements. In other words, we are operating in a low SINR (signal-to-

interference-and-noise) regime, where “interference” results from the chest displacement

due to breathing.

To address these challenges, EQ-Radio first processes the RF signal to mitigate the in-

terference from breathing. It then formulates and solves an optimization problem to re-

cover the beat-to-beat intervals. The optimization formulation neither assumes nor relies

on perfect separation of the respiration effect. In what follows, we describe both of these
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steps.

� 8.3.1 Mitigating the Impact of Breathing

The goal of the preprocessing step is to dampen the breathing signal and improve the

signal-to-interference-and-noise ratio (SINR) of the heartbeat signal. Recall that the phase

of the RF signal is proportional to the composite displacement due to the inhale-exhale

process and the pulsing effect. Since displacements due to the inhale-exhale process are

orders of magnitude larger than minute vibrations due to heartbeats, the RF phase signal

is dominated by breathing. However, the acceleration of breathing is smaller than that

of heartbeats. This is because breathing is usually slow and steady while a heartbeat in-

volves rapid contraction of the muscles. Thus, we can dampen breathing and emphasize

the heartbeats by operating on a signal proportional to acceleration as opposed to displace-

ment.

By definition, acceleration is the second derivative of displacement. Thus, we can sim-

ply operate on the second derivative of the RF phase signal. Since we do not have an

analytic expression of the RF signal, we have to use a numerical method to compute the

second derivative. There are multiple such numerical methods which differ in their prop-

erties. We use the following second order differentiator because it is robust to noise [234]:

f ′′0 =
4f0 + (f1 + f−1)− 2(f2 + f−2)− (f3 + f−3)

16h2
, (8.1)

where f ′′0 refers to the second derivative at a particular sample, fi refers to the value of the

time series i samples away, and h is the time interval between consecutive samples.

In Figure 8-3, we show an example RF phase signal with the corresponding acceler-

ation signal. The figure shows that in the RF phase, breathing is more pronounced than

heartbeats. In contrast, in the acceleration signal, there is a periodic pattern corresponding

to each heartbeat cycle, and the breathing effect is negligible.

� 8.3.2 Heartbeat Segmentation

Next, EQ-Radio needs to segment the acceleration signal into individual heartbeats. Recall

that the key challenge is that we do not know the morphology of the heartbeat to bootstrap

this segmentation process. To address this challenge, we formulate an optimization prob-
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Figure 8-3: RF Signal and Estimated Acceleration. The figure shows the RF signal
(top) and the acceleration of that signal (bottom). In the RF acceleration signal, the
breathing motion is dampened and the heartbeat motion is emphasized. Note that
while we can observe the periodicity of the heartbeat signal in the acceleration, delin-
eating beat boundaries remains difficult because the signal is noisy and lacks sharp
features.

lem that jointly recovers the morphology of the heartbeats and the segmentation.

The intuition underlying this optimization is that successive human heartbeats should

have the same morphology; hence, while they may stretch or compress due to differ-

ent beat lengths, they should have the same overall shape. This means that we need to

find a segmentation that minimizes the differences in shape between the resulting beats,

while accounting for the fact that we do not know a priori the shape of a beat and that

the beats may compress or stretch. Further, rather than seeking locally optimal choices

using a greedy algorithm, our formulation is an optimization problem over all possible

segmentations, as described below.

Let x = (x1, x2, ..., xn) denote the sequence of length n. A segmentation S = {s1, s2, ...}
of x is a partition of it into non-overlapping contiguous subsequences (segments), where

each segment si consists of |si| points.

In order to identify each heartbeat cycle, our idea is to find a segmentation with seg-

ments most similar to each other –i.e., to minimize the variation across segments. Since

statistical variance is only defined for scalars or vectors with the same dimension, we ex-

tend the definition for vectors with different lengths as follows.

Definition 8.3.1. Variance of segments S = {s1, s2, ...} is

Var(S) = min
µ

∑

si∈S
‖si − ω(µ, |si|)‖2, (8.2)
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where ω(µ, |si|) is linear warping3 of µ into length |si|.

Note that the above definition is exactly the same as statistical variance when all the

segments have the same length. µ in the definition above represents the central tendency

of all the segments –i.e., a template for the beat shape (or morphology).

The goal of our algorithm is to find the optimal segmentation S∗ that minimizes the

variance of segments, which can be formally stated as follows:

S∗ = arg min
S

Var(S). (8.3)

We can rewrite it as the following optimization problem:

minimize
S,µ

∑

si∈S
‖si − ω(µ, |si|)‖2,

subject to bmin ≤ |si| ≤ bmax, si ∈ S,
(8.4)

where bmin and bmax are constraints on the length of each heartbeat cycle.4 It is trying to

find the optimal segmentation S and template (i.e., morphology) µ that minimize the sum

of the square differences between segments and template. This optimization problem is

difficult as it involves both combinatorial optimization over S and numerical optimization

over µ. Exhaustively searching all possible segmentations has exponential complexity.

� 8.3.3 Algorithm

Instead of estimating the segmentation S and the template µ simultaneously, our algo-

rithm alternates between updating the segmentation and template, while fixing the other.

During each iteration, our algorithm updates the segmentation given the current tem-

plate, then updates the template given the new segmentation. For each of these two sub-

problems, our algorithms can obtain the global optimal with linear time complexity.

Update segmentation S. In the l-th iteration, segmentation S l+1 is updated given template

µl as follows:

S l+1 = arg min
S

∑

si∈S
‖si − ω(µl, |si|)‖2. (8.5)

3Linear warping is realized through a cubic spline interpolation [235].
4bmin and bmax capture the fact that human heartbeats cannot be indefinitely short or long. The default

setting of bmin and bmax is 0.5s and 1.2s respectively.
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Though the number of possible segmentations grows exponentially with the length of x,

the above optimization problem can be solved efficiently using dynamic programming.

The recursive relationship for the dynamic program is as follows: if Dt denotes the mini-

mal cost of segmenting sequence x1:t, then:

Dt = min
τ∈τt,B

{Dτ + ‖xτ+1:t − ω(µ, t− τ)‖2}, (8.6)

where τt,B specifies possible choices of τ based on segment length constraints. The time

complexity of the dynamic program based on Eqn. 8.6 is O(n) and the global optimum is

guaranteed.

Update template µ. In the l-th iteration, template µl+1 is updated given segmentation

S l+1 as follows:
µl+1 = arg min

µ

∑

si∈Sl+1

‖si − ω(µ, |si|)‖2

= arg min
µ

∑

si∈Sl+1

|si| · ‖µ− ω(si,m)‖2
(8.7)

wherem is the required length of template. The above optimization problem is a weighted

least squares with the following closed-form solution:

µl+1 =

∑
si∈Sl+1 |si|ω(si,m)∑

si∈Sl+1 |si|
=

1

n

∑

si∈Sl+1

|si|ω(si,m) (8.8)

Figure 8-4 shows the final beat segmentation for the data in Figure 8-3. The figure also

shows the ECG data of the subject. The segmented beat length matches the ECG of the

subject to within a few milliseconds. There is a small delay since the ECG measures the

electric signal of the heart, whereas the RF signal captures the heart’s mechanical motion

as it reacts to the electric signal [236].

Initialization. Initialization is typically important for optimization algorithms; however,

we found that our algorithm does not require sophisticated initialization. Our algorithm

can converge quickly with both random initialization and zero initialization. We choose to

initialize the template µ0 as the zero vector.

Running time analysis. The pseudocode of our algorithm is presented in 2. The complex-

ity of this algorithm is O(kn), where k is the number of iterations the algorithm takes be-
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Figure 8-4: Segmentation Result Compared to ECG. The figure shows that the length
of our segmented beats in RF (top) is very similar to the length of the segmented beats
in ECG (bottom). There is a small delay since the ECG measures the electric signal of
the heart, whereas the RF signal captures the heart’s mechanical motion as it reacts to
the electric signal.

Algorithm 2 Heartbeat Segmentation Algorithm
Input: Sequence x of n points, heart rate range B.
Output: Segments S, template µ of length m.

1: Initialize µ0 as zero vector
2: l← 0 . number of iterations
3: repeat
4: Sl+1 ← UPDATESEGMENTATION(x,µl)
5: µl+1 ← UPDATETEMPLATE(x,Sl+1)
6: l← l + 1
7: until convergence
8: return Sl and µl

9: procedure UPDATESEGMENTATION(x,µ)
10: S0 ← ∅
11: D0 ← 0
12: for t← 1 to n do
13: τ∗ ← arg minτ∈τt,B {Dτ + ‖xτ+1:t − ω(µ, t− τ)‖2}
14: Dt ← Dτ∗ + ‖xτ∗+1:t − ω(µ, t− τ)‖2
15: St ← Sτ∗ ∪ {xτ∗+1:t}
16: return Sn
17: procedure UPDATETEMPLATE(x,S)
18: µ← 1

n

∑
si∈S |si|ω(si,m)

19: return µ

fore it converges. The algorithm is guaranteed to converge because the number of possible

segmentations is finite and the cost function monotonically decreases with each iteration

before it converges. In practice, this algorithm converges very quickly: for the evaluation

experiments reported in Section 8.5, the number of iteration k is on average 8 and at most

16.

Finally, we note that the overall algorithm is not guaranteed to achieve a global opti-
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mum, but each of the subproblems achieves its global optimum. In particular, as detailed

above, the first subproblem has a closed form optimal solution, and the second subprob-

lem can be solved optimally with a dynamic program. As a result, the algorithm converges

to a local optimum that works very well in practice as we show in Section 8.5.2.

� 8.4 Emotion Classification

After EQ-Radio recovers individual heartbeats from RF reflections, it uses the heartbeat

sequence along with the breathing signal to recognize the person’s emotions. Below, we

describe the emotion model which EQ-Radio adopts, and we elaborate on its approach for

feature extraction and classification.

(a) 2D Emotion Model: EQ-Radio adopts a 2D emotion model whose axes are valence

and arousal; this model serves as the most common approach for categorizing human emo-

tions in past literature [230, 145]. The model classifies between four basic emotional states:

Sadness (negative valence and negative arousal), Anger (negative valence and positive

arousal), Pleasure (positive valence and negative arousal), and Joy (positive valence and

positive arousal).

(b) Feature Extraction: EQ-Radio extracts features from both the heartbeat sequence

and the respiration signal. There is a large literature on extracting emotion-dependent

features from human heartbeats [145, 224, 237], where past techniques use on-body sen-

sors. These features can be divided into time-domain analysis, frequency-domain analysis,

time-frequency analysis, Poincaré plot [238], Sample Entropy [239], and Detrend Fluctua-

tion Analysis [240]. EQ-Radio extracts 27 features from IBI sequences as listed in Table 8-1.

These particular features were chosen in accordance with the results in [145]. We refer the

reader to [145, 237] for a detailed explanation of these features.

EQ-Radio also employs respiration features. To extract the irregularity of breathing,

EQ-Radio first identifies each breathing cycle by peak detection after low pass filtering.

Since past work that studies breathing features recommends time-domain features [224],

EQ-Radio extracts the time-domain features in the first row of Table 8-1.

(c) Handling Dependence: Physiological features differ from one subject to another for

the same emotional state. Further, those features could be different for the same subject
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on different days. This is caused by multiple factors, including caffeine intake, sleep, and

baseline mood of the day.

In order to extract better features that are user-independent and day-independent, EQ-

Radio incorporates a baseline emotional state: neutral. The idea is to leverage changes of

physiological features instead of absolute values. Thus, EQ-Radio calibrates the computed

features by subtracting for each feature its corresponding values calculated at the neutral

state for a given person on a given day.

(d) Feature Selection and Classification: As mentioned earlier, the literature has many

features that relate IBI to emotions. Using all of those features with a limited amount of

training data can lead to over-fitting. Selecting a set of features that is most relevant to

emotions not only reduces the amount of data needed for training but also improves the

classification accuracy on the test data.

Previous work on feature selection [224, 145] uses wrapper methods which treat the

feature selection problem as a search problem. However, since the number of choices is

exponentially large, wrapper methods have to use heuristics to search among all possi-

ble subsets of relevant features. Instead, EQ-Radio uses another class of feature selection

mechanisms, namely embedded methods [241]; this approach allows us to learn which

features best contribute to the accuracy of the model while training the model. To do this,

EQ-Radio uses l1-SVM [242] which selects a subset of relevant features while training an

SVM classifier. Table 8-1 shows the selected IBI and respiration features in bold and italic

respectively. The performance of the resulting classifier is evaluated in Section 8.5.3.

Table 8-1: Features used in EQ-Radio.

Domain Name
Mean, Median, SDNN,pNN50, RMSSD,Time
SDNNi, meanRate, sdRate, HRVTi, TINN.

Welch PSD: LF/HF, peakLF, peakHF.
Frequency Burg PSD: LF/HF, peakLF, peakHF.

Lomb-Scargle PSD: LF/HF, peakLF, peakHF.

Poincaré SD1, SD2, SD2/SD1.

Nonlinear SampEn1, SampEn2, DFAall, DFA1, DFA2.

selected IBI features in bold;
selected respiration features in italic.
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� 8.5 Evaluation

In this section, we describe our implementation of EQ-Radio and its empirical performance

with respect to extracting individual heartbeats and recognizing human emotional states.

All experiments were approved by our IRB.

� 8.5.1 Implementation

We reproduced a state-of-the-art FMCW radio designed by past work on wireless vital sign

monitoring [68]. The device generates a signal that sweeps from 5.46 GHz to 7.25 GHz ev-

ery 4 milliseconds, transmitting sub-mW power. The parameters were chosen as in [68]

such that the transmission system is compliant with FCC regulations for consumer elec-

tronics. The FMCW radio connects to a computer over Ethernet. The received signal is

sampled (digitized) and transmitted over the Ethernet to the computer. EQ-Radio’s algo-

rithms are implemented on an Ubuntu 14.04 computer with an i7 processor and 32 GB of

RAM.

� 8.5.2 Evaluation of Heartbeat Extraction

First, we would like to assess the accuracy of EQ-Radio’s segmentation algorithm in ex-

tracting heartbeats from RF signals reflected off a subject’s body.

Experimental Setup

Participants: We recruited 30 participants (10 females). Our subjects are between 19∼77

years old. During the experiments, the subjects wore their daily attire with different fab-

rics.

Experimental Environment: We perform our experiments in 5 different rooms in a standard

office building. The evaluation environment contains office furniture including desks,

chairs, couches, and computers. The experiments are performed while other users are

present in the room. The change in the experimental environment and the presence of

other users had a negligible impact on the results because the FMCW radio described in

Section 8.2 eliminates reflections from static objects (e.g., furniture) and isolates reflections

from different humans [68].

Metrics: To evaluate EQ-Radio’s heartbeat extraction algorithm, we use metrics that are

common in emotion recognition:
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Figure 8-5: Comparison of IBI Estimates Using EQ-Radio and a Commercial ECG
Monitor. The figure shows various metrics for evaluating EQ-Radio’s heartbeat seg-
mentation accuracy in comparison with an FDA-approved ECG monitor. Note that
the CDF in (b) jumps at 4 ms intervals because the RF signal was sampled every 4 ms.

• Inter-Beat-Interval (IBI): The IBI measures the accuracy in identifying the boundaries of

each individual beat.

• Root Mean Square of Successive Differences (RMSSD): This metric focuses on differences be-

tween successive beats. It is computed as RMSSD =
√

1/n
∑

(IBIi+1 − IBIi)2, where

n is the number of beats in the sum and i is a beat index. RMSSD is typically used

as a measure of the parasympathetic nervous activity that controls the heart [243]. We

calculate RMSSD for IBI sequences in a window of 2 minutes.

• Standard Deviation of NN Intervals (SDNN): The term NN-interval refers to the inter-beat-

interval (IBI). Thus, SDNN measures the standard deviation of the beat length over a

window of time. We use a window of 2 minutes.

Baseline: We obtain the ground truth for the above metrics using a commercial ECG moni-
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tor. We use the AD8232 evaluation board with a 3-lead ECG monitor to get the ECG signal.

The synchronization between the FMCW signal and the ECG signal is accomplished by

connecting both devices to a shared clock.

Accuracy in comparison to ECG We run experiments with 30 participants, collecting over

130,000 heart beats. Each subject is simultaneously monitored with EQ-Radio and the ECG

device. We process the data to extract the above three metrics.

We first compare the IBIs estimated by EQ-Radio to the IBIs obtained from the ECG

monitor. Figure 8-5(a) shows a scatter plot where the x and y coordinates are the IBIs

derived from EQ-Radio and the ECG respectively. The color indicates the density of points

in a specific region. Points on the diagonal have identical IBIs in EQ-Radio and ECG, while

the distance to the diagonal is proportional to the error. It can be visually observed that all

points are clustered around the diagonal, and hence EQ-Radio can estimate IBIs accurately

irrespective of the their lengths.

We quantitatively evaluate the errors in Figure 8-5(b), which shows a cumulative dis-

tribution function (CDF) of the difference between EQ-Radio’s IBI estimate and the ECG-

based IBI estimate for each beat. The CDF has jumps at 4ms intervals because the RF signal

was sampled every 4ms.5 The CDF shows that the 97th percentile error is 8ms. Our results

further show that EQ-Radio’s mean IBI estimation error is 3.2 ms. Since the average IBI in

our experiments is 740 ms, on average, EQ-Radio estimates a beat length to within 0.43%

of its correct value.

In Figure 8-5(c), we report results for beat variation metrics that are typically used

in emotion recognition. The figure shows the CDF of errors in recovering the SDNN

and RMSSD from RF reflections in comparison to contact-based ECG sensors. The plots

show that the median error for each of these metrics is less than 2% and that even the

90th percentile error is less than 8%. The high accuracy of these emotion-related metrics

suggests that EQ-Radio’s emotion recognition accuracy will be on par with contact-based

techniques, as we indeed show in Section 8.5.3.

Accuracy for different orientations & distances

In the above experiments, the subject sat relatively close to EQ-Radio, at a distance of

3 to 4 feet, and was facing the device. It is desirable, however, to allow emotion recognition

5The actual sampling rate of our receiver is 1MHz. However, because each FMCW sweep takes 4ms, we
obtain one phase measurement every 4ms. For a detailed explanation, please refer to [68].
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Figure 8-6: Error in IBI with Different Orientations and Distances. (a) plots the error
in IBI as a function of the user’s orientation with respect to the device. (b) plots the
error in IBI as a function of the distance between the user and the device.

even when the subject is further away or is not facing the device.

Thus, we evaluate EQ-Radio’s beat segmentation accuracy as a function of orientation

and distance. First, we fix the distance to 3 feet and repeat the above experiments for

four different orientations: subject faces the device, subject has his back to the device, and

the subject is facing left or right (perpendicular) to the device. We plot the median and

standard deviation of EQ-Radio’s IBI estimate for these four orientations in Figure 8-6(a).

The figure shows that, across all orientations, the median error remains below 8ms (i.e., 1%

of the beat length). As expected, however, the accuracy is highest when the user directly

faces the device.

Next, we test EQ-Radio’s beat segmentation accuracy as a function of its distance to the

subject. We run experiments where the subject sits on a chair at different distances from

the device. Figure 8-6(b) shows the median and standard deviation error in IBI estimate

as a function of distance. Even at 10 feet, the median error is less than 8 ms (i.e., 1% of the

beat length).

� 8.5.3 Evaluation of Emotion Recognition

In this section, we investigate whether EQ-Radio can accurately classify a person’s emo-

tions based on RF reflections off her/his body. We also compare EQ-Radio’s performance

with more traditional emotion classification methods that rely on ECG signals or images.

Experimental Setup
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Participants: We recruited 12 participants (6 females). Among them, 6 participants (3 fe-

males) have acting experience of 3∼7 years. People with acting experience are more skilled

in emotion management, which helps in gathering high-quality emotion data and provid-

ing a reference group [224]. All subjects were compensated for their participation, and all

experiments were approved by our IRB.

Experiment design: Obtaining high-quality data for emotion analysis is difficult, especially

in terms of identifying the ground truth emotion [224]. Thus, it is crucial to design ex-

periments carefully. We designed our experiments in accordance with previous work on

emotion recognition using physiological signals [145, 224]. Specifically, before the exper-

iment, the subjects individually prepare stimuli (e.g., personal memories, music, photos,

and videos); during the experiment, the subject sits alone in one out of the 5 conference

rooms and elicits a certain emotional state using the prepared stimuli. Some of these emo-

tions are associated with small movements like laughing, crying, smiling, etc.6 After the

experiment, the subject reports the period during which she/he felt that type of emotion.

Data collected during the corresponding period are labeled with the subject’s reported

emotion.

Throughout these experiments, each subject is monitored using three systems: 1) EQ-

Radio, 2) the AD8232 ECG monitor, and 3) a video camera focused on the subject’s face.

Ground Truth: As described above, subjects are instructed to evoke a particular emotion

and report the period during which they felt that emotion. The subject’s reported emotion

is used to label the data from the corresponding period. These labels provide the ground

truth for classification.

Baselines: We compare EQ-Radio’s emotion classification to more traditional emotion recog-

nition approaches based on ECG signals and image analysis. We describe the details of

these systems in the corresponding sub-sections.

Metrics & Visualization: When tested on a particular data point, the classifier outputs a

score for each of the considered emotional states. The data point is assigned the emotion

that corresponds to the highest score. We measure classification accuracy as the percent of

test data that is assigned the correct emotion.

6We note that the differentiation filter described in Section 8.3.1 mitigates such small movements. However,
it cannot deal with larger body movements like walking. Though the FMCW radio we used can isolate signals
from different users, as we show in Section 8.5.2, for better elicitation of emotional state, there is no other user
in the room during this experiment.
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We visualize the output of the classification as follows: Recall that the four emotions in

our system can be represented in a 2D plane whose axes are valence and arousal. Each emo-

tion occupies one of the four quadrants: Sadness (negative valence and negative arousal),

Anger (negative valence and positive arousal), Pleasure (positive valence and negative

arousal), and Joy (positive valence and positive arousal). Thus, we can visualize the clas-

sification result for a particular test data by showing it in the 2D valence-arousal space. If

the point is classified correctly, it would fall in the correct quadrant.

For any data point, we can calculate the valence and arousal scores as:

Svalence = max(Sjoy, Spleasure)−max(Ssadness, Sanger),

Sarousal = max(Sjoy, Sanger)−max(Spleasure, Ssadness),

where Sjoy, Spleasure, Ssadness, and Sanger are the classification score output by the classifier

for the four emotions. For example, consider a data point with the following scores Sjoy =

1, Spleasure = 0, Ssadness = 0, and Sanger = 0 –i.e., this data point is one unit of pure joy. Such

data point falls on the diagonal in the upper right quadrant. A data point that has a high

joy score but small scores for other emotions would still fall in the joy quadrant, but not

exactly on the diagonal. (Check Figure 8-8 for an example.)

EQ-Radio’s emotion recognition accuracy

To evaluate EQ-Radio’s emotion classification accuracy, we collect 400 two-minute sig-

nal sequences from 12 subjects, 100 sequences for each emotion. We train two types of

emotion classifiers: a person-dependent classifier, and a person-independent classifier.

Each person-dependent classifier is trained and tested on data from a particular subject.

Training and testing are done on mutually-exclusive data points using leave-one-out cross

validation [244]. As for the person-independent classifier, it is trained on 11 subjects and

tested on the remaining subject, and the process is repeated for different test subjects.

We first report the person-dependent classification results. Using the valence and

arousal scores as coordinates, we visualize the results of person-dependent classification

in Figure 8-7. Different types of points indicate the label of the data. We observe that

emotions are well clustered and segregated, suggesting that these emotions are distinctly

encoded in valence and arousal, and can be decoded from features captured by EQ-Radio.

We also observe that the points tend to cluster along the diagonal and anti-diagonal, show-
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Figure 8-7: Visualization of EQ-Radio’s Person-dependent Classification Results.
The figure shows the person-dependent emotion-classification results for each of our
12 subjects. The x-axis in each of the scatter plots corresponds to the valence, and the
y-axis corresponds to the arousal. For each data point, the label is our ground truth,
and the coordinate is the classification result. At the bottom of each sub-figure, we
show the classification accuracy for the corresponding subject.

ing that our classifiers have high confidence in the predictions. Finally, the accuracy of

person-dependent classification for each subject is also shown in the figure with an overall

average accuracy of 87.0%.

The results of person-independent emotion classification are visualized in Figure 8-8.
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Figure 8-8: Visualization of EQ-Radio’s Person-independent Classification Results.
The figure shows the results of person-independent emotion-classification. The x-axis
corresponds to valence, and the y-axis corresponds to arousal.

EQ-Radio is capable of recognizing a subject’s emotion with an average accuracy of 72.3%

purely based on data from other subjects, meaning that EQ-Radio succeeds in learning

person-independent features for emotion recognition.

As expected, the accuracy of person-independent classification is lower than the ac-

curacy of person-dependent classification. This is because person-independent emotion

recognition is intrinsically more challenging since an emotional state is a rather subjec-

tive conscious experience that could be very different among different subjects. We note,

however, that our accuracy results are consistent with the literature both for the case of

person-dependent and person-independent emotion classifications [53]. Further, our re-

sults present the first demonstration of RF-based emotion classification.

To better understand the classification errors, we show the confusion matrix of both

person-dependent and person-independent classification results in Figure 8-9. We find

that EQ-Radio achieves comparable accuracy in recognizing the four types of emotions.

We also observe that EQ-Radio typically makes fewer errors between emotion pairs that

are different in both valence and arousal (i.e., joy vs. sadness and pleasure vs. anger).

Emotion recognition accuracy versus data source

It is widely known that gathering data that genuinely corresponds to a particular emo-

tional state is crucial to recognizing emotions and that people with acting experience are
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Figure 8-9: Confusion Matrix of Person-dependent and Person-independent Clas-
sification Results. The diagonal of each of these matrices shows the classification
accuracy and the off-diagonal grid points show the confusion error.

better at emotion management. We would like to test whether there is a difference in the

performance of EQ-Radio’s algorithms in classifying the emotions of actors vs. non-actors,

as well as in classifying the emotions of males vs. females. We evaluate the performance of

a specific group of subjects in terms of mutual predictability/consistency, i.e., we predict

the emotion label of a data point by training on data obtained from within the same group

only. Figure 8-10 shows our results. These results show that our emotion recognition algo-

rithm works for both actors and non-actors, and for both genders. However, the accuracy

of this algorithm is higher for actors than non-actors and for females than males. This

could suggest that actors/females have better emotion management skills or that they are

indeed more emotional.

EQ-Radio versus ECG-based emotion recognition

In this section, we compare EQ-Radio’s emotion classification accuracy with that of an

ECG-based classifier. Note that both classifiers use the same set of features and decision

making process. However, the ECG-based classifier uses heartbeat information directly

extracted from the ECG monitor. In addition, we allow the ECG monitor to access the

breathing signal from EQ-Radio and use EQ-Radio’s breathing features. This mirrors to-

day’s emotion monitors which also use breathing data but require the subject to wear a

chest band in order to extract that signal.

The results in Table 8-2 show that EQ-Radio achieves comparable accuracy to emotion

recognition systems that use on-body sensors. Thus, by using EQ-Radio, one can eliminate
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Figure 8-10: Visualization of EQ-Radio’s Group-dependent Classification Results.
The figure shows the results of EQ-Radio’s classification within 4 different groups,
defined by gender and acting experience. The x-axis corresponds to valence and the
y-axis corresponds to arousal.

body sensors without jeopardizing the accuracy of emotion recognition based on physio-

logical signals.

EQ-Radio versus vision-based emotion recognition

In order to compare the accuracy of EQ-Radio with vision-based emotion recogni-

tion systems, we use the Microsoft Project Oxford Emotion API to process the images of

the subjects collected during the experiments, and analyze their emotions based on fa-

cial expressions. Since the Microsoft Emotion API and EQ-Radio use different emotion

models, we use the following four emotions that both systems share for our comparison:

joy/pleasure, sadness, anger, and neutral. For each data point, the Microsoft Emotion

API outputs scores for eight emotions. We consider their scores for the above four shared

emotions and use the label with highest score as their output.

Figure 8-11 compares the accuracy of EQ-Radio (both person-dependent and person-

independent) with the Microsoft Emotion API. The figure shows that that the Microsoft

Emotion API does not achieve high accuracy for the first three categories of emotions, but
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Method Person-dependent Person-independent
EQ-Radio 87% 72.3%

ECG-based 88.2% 73.2%

Table 8-2: Comparison with the ECG-based Method. The table compares the ac-
curacy of EQ-Radio’s person-dependent and person-independent emotion classifica-
tion accuracy with the emotion classification accuracy achieved using the ECG signals
(combined with the extracted respiration features).
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Figure 8-11: Comparison of EQ-Radio with Image-based Emotion Recognition. The
figure shows the accuracies (on the y-axis) of EQ-Radio and Microsoft’s Emotion API
in differentiating among the four emotions (on the x-axis).

achieves very high accuracy for neutral state. This is because vision-based methods can

recognize an emotion only when the person explicitly expresses it on her face, and fail to

recognize the innermost emotions and hence they report such emotions as neutral. We

also note that the Microsoft Emotion API has higher accuracy for positive emotions than

negative ones. This is because positive emotions typically have more visible features (e.g.,

smiling), while negative emotions are visually closer to a neutral state.

Emotion recognition versus accurate beat segmentation

Finally, we would like to understand how tolerant emotion recognition is to errors in

beat segmentation. We take the ground truth beats derived from the ECG monitor and add

to them different levels of Gaussian noise. The Gaussian distribution has zero mean and its

standard deviation varies between 0 and 60 milliseconds. We re-run the person-dependent

emotion recognition classifier using these noisy beats. Figure 8-12 shows that small errors
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Figure 8-12: Impact of Millisecond Errors in IBI on Emotion Recognition. The figure
shows that adding small errors to the IBI values (x-axis) significantly reduces the clas-
sification accuracy (y-axis). Given that we have four classes, a random guess would
have 25% accuracy.

in estimating the beat lengths can lead to a large degradation in classification accuracy.

In particular, an error of 30 milliseconds in inter-beat-interval can reduce the accuracy of

emotion recognition by over 35%. This result emphasizes the importance of extracting the

individual beats and delineating their boundaries at an accuracy of a few milliseconds.7

� 8.6 Conclusion

In this section, we present a technology capable of recognizing a person’s emotions by rely-

ing on wireless signals reflected off her/his body. We believe this marks an important step

in the nascent field of emotion recognition. It also builds on a growing interest in the wire-

less systems’ community in using RF signals for sensing, and as such, the work expands

the scope of RF sensing to the domain of emotion recognition. Further, while this work

has laid foundations for wireless emotion recognition, we envision that the accuracy of

such systems will improve as wireless sensing technologies evolve and as the community

incorporates more advanced machine learning mechanisms in the sensing process.

We also believe that the implications of this work extend beyond emotion recogni-

tion. Specifically, while we used the heartbeat extraction algorithm for determining the

beat-to-beat intervals and exploited these intervals for emotion recognition, our algorithm

recovers the entire human heartbeat from RF, and the heartbeat displays a very rich mor-

7Note that given that we have four classes, a random guess would have 25% accuracy. Adding small errors
to the IBI values significantly reduces the classification accuracy. The accuracy converges to about 40% instead
of 25% because the respiration features are left intact.
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phology. We envision that this result paves way for exciting research on understanding

the morphology of the heartbeat both in the context of emotion-recognition as well as in

the context of non-invasive health monitoring and diagnosis.
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CHAPTER 9

Conclusion

This thesis presents a data-driven approach to wireless sensing system design. By cus-

tomizing machine learning models and algorithms for radio signals, the presented tech-

nologies are able to extract rich semantic information from radio signals despite their

complex interaction with human bodies and the environment. We demonstrate the ef-

fectiveness of our approach and introduce two categories of new sensing capabilities –

through-wall human sensing and contactless health monitoring. These systems detect hu-

mans through walls, track their movements, and recognize their actions. The proposed

systems also passively and continuously monitor people’s health – they capture people’s

vital signs and emotions, monitor their sleep and sleep stages, and detect and assess med-

ication usage.

Our contributions span both wireless sensing and computer vision. From a wireless

sensing perspective, we introduce a new approach that fundamentally improves the sens-

ing capabilities of wireless systems. In particular, in contrast to traditional approaches

that use signal processing algorithms with simple approximations of how radio signals

interact with human bodies, our research learns these complex interactions from data with

custom machine learning methods. As a result, our approaches is able to extract rich se-

mantic information (e.g., human poses, body meshes, emotions, sleep stages, etc.) from

radio signals. From a computer vision perspective, this dissertation introduces a new ap-

proach to deal with occlusion, which is a fundamental challenge for any vision system.

Our approach could greatly improve the robustness and safety of modern vision systems

145
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by expanding them to work in the presence of occlusions and bad lighting conditions.

The work also has a broader impact on digital health and improving care and wellness.

Our smart radio sensor could be deployed in the home of the elderly and chronically ill to

monitor their sleep, vital signs, emotions, and activities. It could inform the caregiver of

changes in health status and help doctors better understand diseases and monitor symp-

toms, and detect exacerbations at an earlier time. It could also be used in clinical trials to

monitor patient’s reaction to drugs, improve safety, and speed up the drug development

process. In fact, some of the technologies presented in this dissertation have already been

adopted and deployed in the real world with patients. In particular, our sleep monitor

has been used in collaboration with University of Rochester Medical School to monitor

sleep in Parkinson’s patients [245], and in collaboration with the Washington’s University

Medical School to detect the impact of itch on sleep and sleep stages. More recently, these

technologies have been used to remotely monitor COVID-19 patients [246].

While our technical work has not directly addressed privacy and security, we note that

all experiments in this dissertation that involves human subjects have been reviewed and

approved by the Institutional Review Board (IRB) of the Massachusetts Institute of Tech-

nology. Further, monitored subjects provided informed consent in accordance with IRB

requirements. Additionally researchers who interacted with human subjects, including

myself, have obtain all necessary training and certificates.

� 9.1 Future Directions

This thesis represents only a first attempt at using wireless signals combined with machine

learning to perform the sensing function. Looking forward, connecting wireless and IoT

systems with other fields, including artificial intelligence and digital health, and working

across software-hardware boundaries could make wireless sensing an indispensable part

of people’s lives. Below we highlight some of the future research directions.

Multi-Modal Sensing for Robotics: An exciting research avenue is to develop multi-

modal sensing systems that integrate RF signals and IoT devices with other sensors such

as cameras, LiDAR, and ultrasound. The research in this dissertation on RF sensing sys-

tems that see through walls and clouds could empower robots to sense through obstacles

and occlusions. Exploring new cross-modal and multi-modal learning mechanisms could
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allow these systems to be trained with less or even zero human supervision. In addition,

the future of robotic sensing could go beyond the sensors on the robot itself and leverage

the increasing amount of IoT sensors embedded in the physical world. Since these IoT

devices communicate with RF signals (e.g., Wi-Fi, Bluetooth, 5G), future research could

re-purpose these signals to help robots understand the environment.

Digital Healthcare: Contactless human health sensing is a promising approach to improve

healthcare. This dissertation introduced new RF sensing capabilities with implications for

many disease areas. Future work could further investigate how such technologies can help

address unmet healthcare needs. While powerful, wireless sensing technologies capture

information that are not traditionally measured or used in clinical settings. Combining

this information with traditional health data (X-rays, blood tests, medical records, etc.)

through novel machine learning techniques would help develop new insights about pa-

tient health. It would also be important to validate these new solutions in clinical settings

and integrating them into the new standards of care.

Exploiting Sensing for Wireless Communication at Higher Frequencies: New genera-

tions of wireless networks are moving to higher frequency bands, e.g., millimeter-wave

and terahertz bands, which promise to significantly increase the network capacity. How-

ever, these high-frequency signals form highly directional beams, which require the trans-

mitter to be aimed accurately toward the receiver. For example, in virtual reality, it would

require the beam to accurately follow the moving player. Knowing how the user moves

and capturing the human skeleton through obstacles could enable accurate beams towards

receivers. While these high-frequency RF signals could bring in a new level of sensing res-

olution given larger bandwidth and denser antenna elements, they suffer from high path

loss and cannot penetrate thick walls. Future research could combine RF signals of dif-

ferent frequencies to achieve high sensing resolution while maintaining the ability to see

through walls and occlusions.

Environmental Health & Sustainability: Environmental health and sustainability are

among the most critical and most challenging problems facing humanity. RF signals with

large coverage areas (e.g., radio base stations and satellites) provide a unique opportunity

for sensing and monitoring our planet. For example, can we use RF signals for the mea-

surement of greenhouse gas from farms? Can we detect wildfires through smoke? While
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the research in this dissertation focused on indoor human sensing with RF signals, future

research could explore the use of RF sensing in other contexts.
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