CIS 7000-008: Special Topics on
Wireless and Mobile Sensing

Mingmin Zhao (mingminz@cis.upenn.edu)

Lecture 6
Wireless Sensing: Heartbeats, Emotions, and Stress.
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Last Lecture

Vital Ratio: Extracting vital signs
(average breathing rate and heart
rate)

This Lecture

EQ-Radio: emotions from
wireless signals

RF-SCG: seismocardiography
from wireless signals

WiStress: stress level from
wireless signals



Can you tell people’s emotions even if
they don’t show up on their faces”

Smart Homes that adapt to our mood

Did | get the Job? .... No
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Learn the difference.




EXisting approaches measure vital signs

« Use ECG to get very accurate heartbeats
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Electrodes NN Heart




Use wireless reflections off the human body



Use wireless reflections off the human body

Wireless device
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Solution: Use the phase of the wireless

reflection

Wireless device
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Emotion recognition
using wireless signals

Respiration Signal
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Key challenge: Inter-Beat Interval (IBI)

« Emotion recognition needs accurate measurements of
the length of every single heartbeat

.824 | .848 | .828
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We need to extract IBI with accuracy over 99%




Input signal

Wireless reflection of the human body

)

Reflection

<




Input signal

Heartbeats
Inhale Exhale /
Our signal: \ /

ECG signal:




Step 1: Remove breathing signal

e Breathing masks heartbeats

« \We use acceleration filter
e Heartbeat involves rapid contraction of muscle

e Breathing is slow and steady



Heartbeat signal

« Qutput of acceleration filter

« ECG signal



Heartbeat signal

« Other typical examples:

How to segment the signal into individual heartbeats?
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Step 2: Heartbeat segmentation

- Intuition: heartbeat repeats with certain shape (template)

e |f we can somehow discover the template, then we can
segment into individual heartbeats



Step 2: Heartbeat segmentation

- Intuition: heartbeat repeats with certain shape (template)

Random template:
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Segmentation Update
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Step 2: Heartbeat segmentation
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Step 2: Heartbeat segmentation

- Intuition: heartbeat repeats with certain shape (template)

Random template:
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Caveat: Shrinking & Expanding

e |Bl are not always the same

.824 | .848 | .828
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e Template subject to shrink and expanding

e Linear warping



Algorithm

Need to recover both segmentation and template

« Joint optimization: m1n1m1ze Z 15 — w(p, |s:])]|?

$;ES
segmentation template warping
‘ Segmentation Update \ ‘ Template Update \
1 = argmin Y s —w(p!, siDI?| a7 =argmin 3o s - winlsi)]?
S;ES s;ESt+1

(dynamic programming) (weighted least squares)
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-xample run



-xample run

lteration 1:

Template Segmentation




-xample run

lteration 2:

Template Segmentation
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-xample run

lteration 2:

Template Segmentation

e




-xample run

lteration 3:

Template Segmentation




-xample run

lteration 3:

Template Segmentation
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-xample run

lteration 7:

Template Segmentation
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-xample run

lteration 7:

Template Segmentation




From vital signs to emotions



Physiological Features
for Emotion Recognition

e 37 Features similar to ECG-based methods
« Variability of IBI

e [rregularity of breathing



—motion Classification

« Recognize emotion using physiological features
o Used L1-SVM classifier

e Select features and train classifier at the same time



-motion Model

o Standard 2D emotion model

« Classity into anger, sadness, pleasure and

High Excitement
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Implementation

— FMCW radio

e sweeps from 5.5 GHz to 7.2
GHz every 4ms

« sub-mW power in compliance
with FCC regulations




Does it capture IBl accurately”

Median IBl estimation error: 0.4%

90th percentile error: 0.8%

« Ground truth: ECG
« 30 subjects, over 130,000 heartbeats
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Does it detect emotion accurately?

High Excitement
A
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Person-dependent Classitication

e Train and test on the same person

Anger High Excitement Joy
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Person-independent Classification

Train and test on the different person

Anger High Excitement Joy
< >
Negativity Positivity
Sadness Pleasure

Low Excitement



Comparison with ECG-based system

. EQ-Radio - ECG-based system
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Comparison with Image-based system

EQ-Radio Microsoft
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You know, | just read that a team at MIT developed a device



Stress level Monitoring

« HRV, Movement, and Breathing are used for stress level
classification.

FMCW Radio
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Morphology of Heartbeat Signals

« EQ-Radio leverage the HRV (segmentation) to capture
emotional state.

« What about the shape of heartbeat signal (template)?
Does it tell us something interesting?




Contactless Seismocardiography

e The shape of the template captures five micro-cardiac
movements: opening and closing of the aortic valve, opening

and closing of the mitral valve, and isovolumetric contraction (of
the ventricles)
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RF-10-SCG

ranslation

Supervised 1D signal translation with paired time series.
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RF-10-SCG

F-SCG

SCG
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Time (seconds)
(a) Standard Case
RF-SCG
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(d) Accelerometer Attachment Problem




SCG Labeling:
Micro-Cardiac Movements Detection

1D U-Net produces 5-channel outputs corresponding to 5 micro-cardiac events.

5-channel outputs represent probabilities of micro-cardiac events at each sample point.

— Conv 3, BN, RelLU

Unlabeled | Maxpool 2
SCG o -> Concatenation

t Up-conv 2, ZeroPadding
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SCG Labeling:
Micro-Cardiac Movements Detection

e Systolic micro-cardiac movements: MC, IM, and AO

o Diastolic micro-cardiac movements: AC and MO

Error (%) Error (%)
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(a) CDF of Accuracies for Systolic Fiducial Points. (b) CDF of Accuracies for Diastolic Fiducial Points.



