How to Compute This Fast?

- Performing the **same** operations on **many** data items
 - Example: SAXPY

```c
for (I = 0; I < 1024; I++) {
  Z[I] = A*X[I] + Y[I];
}
```

- Instruction-level parallelism (ILP) - fine grained
 - Loop unrolling with static scheduling or dynamic scheduling
 - Wide-issue superscalar (non-)scaling limits benefits

- Thread-level parallelism (TLP) - coarse grained
 - Multicore

- Can we do some “medium grained” parallelism?

Data-Level Parallelism

- **Data-level parallelism (DLP)**
 - Single operation repeated on multiple data elements
 - SIMD (Single Instruction, Multiple Data)
 - Less general than ILP: parallel insns are all same operation
 - Exploit with **vectors**

- Old idea: Cray-1 supercomputer from late 1970s
 - Eight 64-entry x 64-bit floating point “vector registers”
 - 4096 bits (0.5KB) in each register! 4KB for vector register file
 - Special vector instructions to perform vector operations
 - Load vector, store vector (wide memory operation)
 - Vector+Vector or Vector+Vector
 - addition, subtraction, multiply, etc.
 - In Cray-1, each instruction specifies 64 operations!
 - ALUs were expensive, so one operation per cycle (not parallel)

Today’s “CPU” Vectors / SIMD
Example Vector ISA Extensions (SIMD)

- Extend ISA with floating point (FP) vector storage ...
 - **Vector register**: fixed-size array of 32- or 64-bit FP elements
 - **Vector length**: For example: 4, 8, 16, 64, ...
- ... and example operations for vector length of 4
 - Load vector: \(\text{ldf} \cdot v \; [X+r1] \to v1 \)

 \begin{align*}
 \text{ldf} \; [X+r1+0] & \to v1_0 \\
 \text{ldf} \; [X+r1+1] & \to v1_1 \\
 \text{ldf} \; [X+r1+2] & \to v1_2 \\
 \text{ldf} \; [X+r1+3] & \to v1_3
 \end{align*}

 - Add two vectors: \(\text{addf} \cdot vv \; v1,v2 \to v3 \)

 \begin{align*}
 \text{addf} \; v1_i,v2 & \to v3_i \quad \text{(where } i \text{ is 0,1,2,3)}
 \end{align*}

 - Add vector to scalar: \(\text{addf} \cdot vs \; v1,f2 \to v3 \)

 \begin{align*}
 \text{addf} \; v1_i,f2 & \to v3_i \quad \text{(where } i \text{ is 0,1,2,3)}
 \end{align*}

- Today’s vectors: short (128 or 256 bits), but fully parallel

Example Use of Vectors – 4-wide

- Operations
 - Load vector: \(\text{ldf} \cdot v \; [X+r1] \to v1 \)

 \begin{align*}
 \text{ldf} \; [X+r1] & \to f1 \\
 \text{mulf} \; f0,f1 & \to f2 \\
 \text{ldf} \; [Y+r1] & \to f3 \\
 \text{addf} \; f2,f3 & \to f4 \\
 \text{stf} \; f4 & \to [Z+r1] \\
 \text{addi} \; r1,4 & \to r1 \\
 \text{blti} \; r1,4096,L1
 \end{align*}

 - Multiply vector to scalar: \(\text{mulf} \cdot vs \; v1,f2 \to v3 \)

 \begin{align*}
 \text{mulf} \; v1_i,f2 & \to v3_i \quad \text{(where } i \text{ is 0,1,2,3)}
 \end{align*}

 - Add two vectors: \(\text{addf} \cdot vv \; v1,v2 \to v3 \)

 \begin{align*}
 \text{addf} \; v1_i,v2 & \to v3_i \quad \text{(where } i \text{ is 0,1,2,3)}
 \end{align*}

 - Store vector: \(\text{stf} \cdot v \; v1 \to [X+r1] \)

- Performance?
 - Best case: 4x speedup
 - But, vector instructions don’t always have single-cycle throughput
 - Execution width (implementation) vs vector width (ISA)

Vector Datapath & Implementation

- Vector insn. are just like normal insn... only “wider”
 - Single instruction fetch (no extra \(N^2 \) checks)
 - Wide register read & write (not multiple ports)
 - Wide execute: replicate floating point unit (same as superscalar)
 - Wide bypass (avoid \(N^2 \) bypass problem)
 - Wide cache read & write (single cache tag check)

- Execution width (implementation) vs vector width (ISA)
 - Example: Pentium 4 and “Core 1” executes vector ops at half width
 - “Core 2” executes them at full width

- Because they are just instructions...
 - ...superscalar execution of vector instructions
 - Multiple n-wide vector instructions per cycle

Intel’s SSE2/SSE3/SSE4...

- **Intel SSE2 (Streaming SIMD Extensions 2)** - 2001
 - 16 128bit floating point registers (xmm0–xmm15)
 - Each can be treated as 2x64b FP or 4x32b FP (“packed FP”)
 - Or 2x64b or 4x32b or 8x16b or 16x8b ints (“packed integer”)
 - Or 1x64b or 1x32b FP (just normal scalar floating point)
 - Original SSE: only 8 registers, no packed integer support

- Other vector extensions
 - AMD 3DNow!: 64b (2x32b)
 - PowerPC AltiVEC/VMX: 128b (2x64b or 4x32b)

- Looking forward for x86
 - Intel’s “Sandy Bridge” brings 256-bit vectors to x86
 - Intel’s “Knights Ferry” multicore will bring 512-bit vectors to x86
Other Vector Instructions

- These target specific domains: e.g., image processing, crypto
 - Vector reduction (sum all elements of a vector)
 - Geometry processing: 4x4 translation/rotation matrices
 - Saturating (non-overflowing) subword add/sub: image processing
 - Byte asymmetric operations: blending and composition in graphics
 - Byte shuffle/permute: crypto
 - Population (bit) count: crypto
 - Max/min/argmax/argmin: video codec
 - Absolute differences: video codec
 - Multiply-accumulate: digital-signal processing
 - Special instructions for AES encryption

- More advanced (but in Intel’s Larrabee/Knights Ferry)
 - Scatter/gather loads: indirect store (or load) from a vector of pointers
 - Vector mask: predication (conditional execution) of specific elements

Using Vectors in Your Code

- Write in assembly
 - Ugh
- Use "intrinsic" functions and data types
 - For example: _mm_mul_ps() and "_m128" datatype
- Use vector data types
 - typedef double v2df __attribute__ ((vector_size (16)));
- Use a library someone else wrote
 - Let them do the hard work
 - Matrix and linear algebra packages
- Let the compiler do it (automatic vectorization, with feedback)
 - GCC’s "-ftree-vectorize" option, -ftree-vectorizer-verbose=n
 - Limited impact for C/C++ code (old, hard problem)

SAXPY Example: Best Case

```c
void saxpy(float* x, float* y, float* z, float a, int length) {
    for (int i = 0; i < length; i++) {
        z[i] = a * x[i] + y[i];
    }
}
```

- **Scalar**
 - .L3:
 - movss (%rdi,%rax), %xmm0
 - muls %xmm0, %xmm1
 - addps (%rsi,%rax), %xmm1
 - movaps %xmm1, (%rdx,%rax)
 - addq $4, %rax
 - cmpl %r8d, %r9d
 - jne .L3

- **Auto Vectorized**
 - .L6:
 - movaps (%rdi,%rax), %xmm1
 - mulps %xmm2, %xmm1
 - addps (%rsi,%rax), %xmm1
 - movaps %xmm1, (%rdx,%rax)
 - addq $16, %rax
 - incl %r8d
 - cmpl %r8d, %r9d
 - ja .L6
 - + Scalar loop to handle last few iterations (if length % 4 != 0)
 - "mulps": multiply packed ‘single’
SAXPY Example: Actual

- Code
  ```c
  void saxpy(float* x, float* y, float* z, float a, int length) {
    for (int i = 0; i < length; i++) {
      z[i] = a*x[i] + y[i];
    }
  }
  ```

- Auto Vectorized
  ```c
  .L8:
  movaps xmm1, xmm0
  movaps (trdi, trax), xmm1
  incl rcrd
  subps (trsi, trax), xmm0
  addq $16, trax
  addps xmm0, xmm1
  cmpl tr9d, tr8d
  jae .L7
  haddps xmm1, xmm1
  haddps xmm1, xmm1
  movaps xmm1, xmm0
  je .L3
  ```
 + “haddps”: Packed Single-FP Horizontal Add

Bridging “Best Case” and “Actual”

- Align arrays
  ```c
  typedef float afloat __attribute__((__aligned__(16)));
  void saxpy(afloat* x, afloat* y, afloat* z, float a, int length) {
    for (int i = 0; i < length; i++) {
      z[i] = a*x[i] + y[i];
    }
  }
  ```

- Avoid aliasing check
  ```c
  typedef float afloat __attribute__((__aligned__(16)));
  void saxpy(afloat* __restrict__ x, afloat* __restrict__ y, afloat* __restrict__ z, float a, int length)
  ```

- Even with both, still has the “last few iterations” code

Reduction Example

- Code
  ```c
  float diff = 0.0;
  for (int i = 0; i < N; i++) {
    diff += (a[i] - b[i]);
  }
  return diff;
  ```

- Auto Vectorized
  ```c
  .L7:
  movaps (trdi, trax), xmm0
  incl trcx
  subps (trsi, trax), xmm0
  addq $16, trax
  addps xmm0, xmm1
  cmpl tr9d, tr8d
  ja .L7
  ```

- Scalar
  ```c
  movss (trdi, trax), xmm1
  subss (trsi, trax), xmm1
  addq $4, trax
  addss xmm1, xmm0
  cmpq trdx, trax
  jne .L4
  ```
 + Explicit alignment test
 + Explicit aliasing test

- “haddps”: Packed Single-FP Horizontal Add
Today’s GPU’s “SIMT” Model

GPUs and SIMD/Vector Data Parallelism

- Graphics processing units (GPUs)
 - How do they have such high peak FLOPS?
 - Exploit massive data parallelism
- “SIMT” execution model
 - Single instruction multiple threads
 - Similar to both “vectors” and “SIMD”
 - A key difference: better support for conditional control flow
- Program it with CUDA or OpenCL
 - Extensions to C
 - Perform a “shader task” (a snippet of scalar computation) over many elements
 - Internally, GPU uses scatter/gather and vector mask operations

Data Parallelism Recap

- Data Level Parallelism
 - “medium-grained” parallelism between ILP and TLP
 - Still one flow of execution (unlike TLP)
 - Compiler/programmer explicitly expresses it (unlike ILP)
- Hardware support: new “wide” instructions (SIMD)
 - Wide registers, perform multiple operations in parallel
- Trends
 - More advanced and specialized instructions
- GPUs
 - Embrace data parallelism via “SIMT” execution model
 - Becoming more programmable all the time
- Today’s chips exploit parallelism at all levels: ILP, DLP, TLP

Graphics Processing Units (GPU)

- Killer app for parallelism: graphics (3D games)
- A quiet revolution and potential build-up
 - Calculation: 367 GFLOPS vs. 32 GFLOPS
 - Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 - Until recently, programmed through graphics API
- GPU in every desktop, laptop, mobile device
 - massive volume and potential impact