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CIS 501 
Computer Architecture 

Unit 7: Superscalar 

Slides originally developed by Amir Roth with contributions by Milo Martin 
at University of Pennsylvania with sources that included University of 
Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood. 
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Remainder of CIS501: Parallelism 

•  Last unit: pipeline-level parallelism 
•  Work on execute of one instruction in parallel with decode of next  

•  Next: instruction-level parallelism (ILP) 
•  Execute multiple independent instructions fully in parallel 
•  Today: multiple issue 
•  After that: dynamic scheduling 

•  Extract much more ILP via out-of-order processing 

•  Data-level parallelism (DLP) 
•  Single-instruction, multiple data 
•  Example: one instruction, four 16-bit adds (using 64-bit registers) 

•  Thread-level parallelism (TLP) 
•  Multiple software threads running on multiple cores 

This Unit: Superscalar Execution 

•  Superscalar scaling issues 
•  Multiple fetch and branch prediction 
•  Dependence-checks & stall logic 
•  Wide bypassing 
•  Register file & cache bandwidth 

•  Multiple-issue designs  
•  Superscalar 
•  VLIW and EPIC (Itanium) 
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CPU Mem I/O 

System software 

App App App 

Readings 

•  Textbook (MA:FSPTCM) 
•  Sections 3.1, 3.2 (but not “Sidebar” in 3.2), 3.5.1 
•  Sections 4.2, 4.3, 5.3.3 
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Scalar Pipeline and the Flynn Bottleneck 

•  So far we have looked at scalar pipelines 
•  One instruction per stage 

•  With control speculation, bypassing, etc. 
–  Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1 
–  Limit is never even achieved (hazards) 
–  Diminishing returns from “super-pipelining” (hazards + overhead) 
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Multiple-Issue Pipeline 

•  Overcome this limit using multiple issue 
•  Also called superscalar 
•  Two instructions per stage at once, or three, or four, or eight… 
•  “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC’81] 

•  Today, typically “4-wide” (Intel Core i7, AMD Opteron) 
•  Some more (Power5 is 5-issue; Itanium is 6-issue) 
•  Some less (dual-issue is common for simple cores) 
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Superscalar Pipeline Diagrams - Ideal 
scalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)!r2 F D X M W 
lw 4(r1)!r3 F D X M W 
lw 8(r1)!r4  F D X M W 
add r14,r15!r6 F D X M W 
add r12,r13!r7 F D X M W 
add r17,r16!r8 F D X M W 
lw 0(r18)!r9 F D X M W 

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)!r2 F D X M W 
lw 4(r1)!r3 F D X M W 
lw 8(r1)!r4  F D X M W 
add r14,r15!r6 F D X M W 
add r12,r13!r7 F D X M W 
add r17,r16!r8 F D X M W 
lw 0(r18)!r9 F D X M W 
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Superscalar Pipeline Diagrams - Realistic 
scalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)!r2 F D X M W 
lw 4(r1)!r3 F D X M W 
lw 8(r1)!r4  F D X M W 
add r4,r5!r6 F d* D X M W 
add r2,r3!r7 F D X M W 
add r7,r6!r8 F D X M W 
lw 0(r8)!r9 F D X M W 

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12 
lw 0(r1)!r2 F D X M W 
lw 4(r1)!r3 F D X M W 
lw 8(r1)!r4  F D X M W 
add r4,r5!r6 F d* d* D X M W 
add r2,r3!r7 F d* D X M W 
add r7,r6!r8 F D X M W 
lw 0(r8)!r9 F d* D X M W 
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Superscalar CPI Calculations 
•  Base CPI for scalar pipeline is 1 
•  Base CPI for N-way superscalar pipeline is 1/N 

–  Amplifies stall penalties 
•  Assumes no data stalls (an overly optimistic assumption) 

•  Example: Branch penalty calculation 
•  20% branches, 75% taken, 2 cycle penalty, no branch prediction 

•  Scalar pipeline 
•  1 + 0.2*0.75*2 = 1.3 ! 1.3/1 = 1.3 ! 30% slowdown 

•  2-way superscalar pipeline 
•  0.5 + 0.2*0.75*2 = 0.8 ! 0.8/0.5 = 1.6 ! 60% slowdown 

•  4-way superscalar 
•  0.25 + 0.2*0.75*2 = 0.55 ! 0.55/0.25 = 2.2 ! 120% slowdown 
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Simplest Superscalar: Split Floating Point 

•  Split integer and 
floating point 

•  1 integer + 1 FP 
+  Limited modifications 
–  Limited speedup 

•  Floating points loads 
in “integer” pipe 
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A Four-issue Pipeline (2 integer, 2 FP) 

•  2 integer + 2 FP 
•  Similar to  

Alpha 21164 
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A Typical Dual-Issue Pipeline 

•  Fetch an entire 16B or 32B cache block 
•  4 to 8 instructions (assuming 4-byte average instruction length) 
•  Predict a single branch per cycle 

•  Parallel decode 
•  Need to check for conflicting instructions 
•  Output of I1 is an input to I2 
•  Other stalls, too (for example, load-use delay) 
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A Typical Dual-Issue Pipeline 

•  Multi-ported register file 
•  Larger area, latency, power, cost, complexity 

•  Multiple execution units 
•  Simple adders are easy, but bypass paths are expensive 

•  Memory unit 
•  Single load per cycle (stall at decode) probably okay for dual issue 
•  Alternative: add a read port to data cache 

•  Larger area, latency, power, cost, complexity 
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Superscalar Challenges - Front End 

•  Superscalar instruction fetch 
•  Modest: need multiple instructions per cycle 
•  Aggressive: predict multiple branches 

•  Superscalar instruction decode 
•  Replicate decoders 

•  Superscalar instruction issue 
•  Determine when instructions can proceed in parallel 
•  Not all combinations possible 
•  More complex stall logic - order N2 for N-wide machine 

•  Superscalar register read 
•  One port for each register read 

•  Each port needs its own set of address and data wires 
•  Example, 4-wide superscalar ! 8 read ports 
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Superscalar Challenges - Back End 

•  Superscalar instruction execution 
•  Replicate arithmetic units 
•  Perhaps multiple cache ports 

•  Superscalar bypass paths 
•  More possible sources for data values 
•  Order (N2 * P) for N-wide machine with execute pipeline depth P 

•  Superscalar instruction register writeback 
•  One write port per instruction that writes a register 
•  Example, 4-wide superscalar ! 4 write ports 

•  Fundamental challenge: 
•  Amount of ILP (instruction-level parallelism) in the program 
•  Compiler must schedule code and extract parallelism 
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How Much ILP is There? 

•  The compiler tries to “schedule” code to avoid stalls 
•  Even for scalar machines (to fill load-use delay slot) 
•  Even harder to schedule multiple-issue (superscalar) 

•  How much ILP is common? 
•  Greatly depends on the application 

•  Consider memory copy 
•  Unroll loop, lots of independent operations 

•  Other programs, less so 

•  Even given unbounded ILP,  
superscalar has implementation limits 
•  IPC (or CPI) vs clock frequency trade-off 
•  Given these challenges, what is reasonable today?   

•  ~4 instruction per cycle maximum  
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Superscalar Decode & Register Read 

•  What is involved in decoding multiple (N) insns per cycle? 
•  Actually doing the decoding?  

•  Easy if fixed length (multiple decoders), doable if variable length 

•  Reading input registers? 
–  2*N register read ports (latency " #ports) 

•  What about the stall logic? 

regfile 
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N2 Dependence Cross-Check 

•  Stall logic for 1-wide pipeline with full bypassing 
•  Full bypassing ! load/use stalls only 

X/M.op==LOAD && (D/X.rs1==X/M.rd || D/X.rs2==X/M.rd) 
•  Two “terms”: " 2N 

•  Now: same logic for a 2-wide pipeline 
X/M1.op==LOAD && (D/X1.rs1==X/M1.rd || D/X1.rs2==X/M1.rd) || 
X/M1.op==LOAD && (D/X2.rs1==X/M1.rd || D/X2.rs2==X/M1.rd) || 
X/M2.op==LOAD && (D/X1.rs1==X/M2.rd || D/X1.rs2==X/M2.rd) || 
X/M2.op==LOAD && (D/X2.rs1==X/M2.rd || D/X2.rs2==X/M2.rd) 

•  Eight “terms”: " 2N2  
•  N2 dependence cross-check 

•  Not quite done, also need 
•  D/X2.rs1==D/X1.rd || D/X2.rs2==D/X1.rd 
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Superscalar Execute 

•  What is involved in executing N insns per cycle? 
•  Multiple execution units … N of every kind? 

•  N ALUs? OK, ALUs are small 
•  N floating point dividers? No, dividers are big, fdiv is uncommon 
•  How many branches per cycle? How many loads/stores per cycle? 
•  Typically some mix of functional units proportional to insn mix 

•  Intel Pentium: 1 any + 1 “simple” (such as ADD, etc.) 
•  Alpha 21164: 2 integer (including 2 loads) + 2 floating point 

CIS 501 (Martin): Superscalar 20 

Superscalar Memory Access 

•  What about multiple loads/stores per cycle? 
•  Probably only necessary on processors 4-wide or wider 

•  Core i7: is one load & one store per cycle 
•  More important to support multiple loads than multiple stores 

•  Insn mix: loads (~20–25%), stores (~10–15%) 
•  Alpha 21164: two loads or one store per cycle  

D$ 
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D$ Bandwidth: Multi-Porting, Replication 

•  How to provide additional D$ bandwidth? 
•  Have already seen split I$/D$, but that gives you just one D$ port 
•  How to provide a second (maybe even a third) D$ port? 

•  Option#1: multi-porting 
+  Most general solution, any two accesses per cycle 
–  Lots of wires; expensive in terms of latency, area (cost), and power 

•  Option #2: replication 
•  Additional read bandwidth only, but writes must go to all replicas 
+  General solution for loads, little latency penalty 
–  Not a solution for stores (that’s OK), area (cost), power penalty 
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D$ Bandwidth: Banking 
•  Option#3: banking (or interleaving) 

•  Divide D$ into “banks” (by address), one access per bank per cycle 
•  Bank conflict: two accesses to same bank ! one stalls 
+  No latency, area, power overheads (latency may even be lower) 
+  One access per bank per cycle, assuming no conflicts 
–  Complex stall logic ! address not known until execute stage 
–  To support N accesses, need 2N+ banks to avoid frequent conflicts 

•  Which address bit(s) determine bank? 
•  Offset bits? Individual cache lines spread among different banks 

+ Fewer conflicts 
– Must replicate tags across banks, complex miss handling 

•  Index bits? Banks contain complete cache lines 
– More conflicts 
+ Tags not replicated, simpler miss handling 
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Superscalar Register Read/Write 

•  How many register file ports to execute N insns per cycle? 
•  Nominally, 2N read + N write (2 read + 1 write per insn) 

–  Latency, area " #ports2 
•  In reality, fewer than that 

•  Read ports: some instructions read only one register 
•  Write ports: stores, branches (35% insns) don’t write registers 

•  Multi-porting and replication both work for reg. files  
•  Alpha 21264 uses replication (more later) 

•  Banking? Not really a good option 

regfile 
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Superscalar Bypass 

•  N2 bypass network 
–  N+1 input muxes at each ALU input 
–  N2 point-to-point connections 
–  Routing lengthens wires (slow) 
•  And this is just one bypass stage (MX)! 

•  There is also WX bypassing 
•  Even more for deeper pipelines 

•  One of the big problems of superscalar 

versus 
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Not All N2 Created Equal 

•  N2 bypass vs. N2 stall logic & dependence cross-check 
•  Which is the bigger problem? 

•  N2 bypass … by far 
•  64- bit quantities (vs. 5-bit) 
•  Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic) 
•  Must fit in one clock period with ALU (vs. not) 

•  Dependence cross-check not even 2nd biggest N2 problem 
•  Regfile is also an N2 problem (think latency where N is #ports) 
•  And also more serious than cross-check 
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Mitigating N2 Bypass: Clustering 
•  Clustering: mitigates N2 bypass 

•  Group ALUs into K clusters 
•  Full bypassing within a cluster 
•  Limited bypassing between clusters 

•  With 1 or 2 cycle delay 
•  (N/K) + 1 inputs at each mux 
•  (N/K)2 bypass paths in each cluster 

•  Steering: key to performance 
•  Steer dependent insns to same cluster 
•  Statically (compiler) or dynamically 

•  Hurts IPC, allows wide issue at same clock 

•  E.g., Alpha 21264 
•  Bypass wouldn’t fit into clock cycle 
•  4-wide, 2 clusters 
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Mitigating N2 RegFile: Clustering++ 

•  Clustering: split N-wide execution pipeline into K clusters 
•  With centralized register file, 2N read ports and N write ports 

•  Clustered register file: extend clustering to register file 
•  Replicate the register file (one replica per cluster) 
•  Register file supplies register operands to just its cluster 
•  All register writes go to all register files (keep them in sync) 
•  Advantage: fewer read ports per register! 

•  K register files, each with 2N/K read ports and N write ports 
•  Alpha 21264: 4-way superscalar, two clusters 

DM 

RF0 

RF1 

cluster 0 

cluster 1 

Simple Superscalar Fetch 

•  What is involved in fetching multiple instructions per cycle? 
•  In same cache block? ! no problem 

•  64-byte cache block is 16 instructions (~4 bytes per instruction) 
•  Favors larger block size (independent of hit rate) 

•  What if next instruction is last instruction in a block? 
•  Fetch only one instruction that cycle 
•  Or, some processors may allow fetching from 2 consecutive blocks 

•  Compilers align code to I$ blocks (.align directive in asm) 
•  Reduces I$ capacity 
•  Increases fetch bandwidth utilization (more important) 

CIS 501 (Martin): Superscalar 28 

I$ 

B 
P 



Limits of Simple Superscalar Fetch 

•  How many instructions can be fetched on average? 
•  BTB predicts the next block of instructions to fetch 

•  Support multiple branch (direction) predictions per cycle 
•  Discard post-branch insns after first branch predicted as “taken” 

•  Lowers effective fetch width and IPC 
•  Average number of instructions per taken branch? 

•  Assume: 20% branches, 50% taken ! ~10 instructions 
•  Consider a 5-instruction loop with an 4-issue processor 

•  Without smarter fetch, ILP is limited to 2.5 (not 4) 
•  Compiler could “unroll” the loop (reduce taken banchs) 
•  How else can we increase fetch rate? 
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Increasing Superscalar Fetch Rate 

•  Option #1: over-fetch and buffer 
•  Add a queue between fetch and decode (18 entries in Intel Core2) 
•  Compensates for cycles that fetch less than maximum instructions 
•  “decouples” the “front end” (fetch) from the “back end” (execute) 

•  Option #2: predict next two blocks (extend BTB) 
•  Transmits two PCs to fetch stage: “next PC” and “next-next PC” 
•  Access I-cache twice (requires multiple ports or banks) 
•  Requires extra merging logic to select and merge correct insns 
–  Elongates pipeline, increases branch penalty 
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Increasing Superscalar Fetch Rate 

•  Option #3: “loop stream detector” (Core 2, Core i7) 
•  Put entire loop body into a small cache 

•  Core2: 18 macro-ops, up to four taken branches 
•  Core i7: 28 micro-ops (avoids re-decoding macro-ops!) 

•  Any branch mis-prediction requires normal re-fetch 

•  Option #4: trace cache (Pentium 4) 
•  Tracks “traces” of disjoint but dynamically consecutive instructions 
•  Pack (predicted) taken branch & its target into a one “trace” entry 
•  Fetch entire “trace” while predicting the “next trace” 
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Multiple-Issue Implementations 
•  Statically-scheduled (in-order) superscalar 

+  Executes unmodified sequential programs 
–  Hardware must figure out what can be done in parallel 
•  E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide) 

•  Very Long Instruction Word (VLIW) 
-  Compiler identifies independent instructions, requires new binaries 
+  Hardware can be dumb and low power 
•  E.g., TransMeta Crusoe (4-wide) 

•  Explicitly Parallel Instruction Computing (EPIC) 
•  A compromise: compiler does some, hardware does the rest 
•  E.g., Intel Itanium (6-wide) 

•  Dynamically-scheduled superscalar 
•  Core 2, Core i7 (4-wide), Alpha 21264 (4-wide)  

•  We’ve already talked about statically-scheduled superscalar 
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VLIW 
•  Hardware-centric multiple issue problems 

–  Wide fetch/branch prediction, N2 bypass, N2 dependence checks 
–  Hardware solutions have been proposed: clustering, etc. 

•  Software-centric: very long insn word (VLIW) 
•  Effectively, a 1-wide pipeline, but unit is an N-insn group 

•  Started with “horizontal microcode” 
•  Compiler guarantees insns within a VLIW group are independent 

•  If no independent insns, slots filled with nops  
•  Group travels down pipeline as a unit 

+ Simplifies pipeline control 
+ Cross-checks within a group unnecessary 
•  Downstream cross-checks still necessary 

•  Typically “slotted”: 1st insn must be ALU, 2nd mem, etc. 
+ Further simplification 
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What Does VLIW Actually Buy You? 

+  Simpler I$/branch prediction 
•  Relies on compiler and predication to avoid taken branches 

+  Simpler dependence check logic 
•  Compiler guarantees all instructions in bundle independent 

•  Doesn’t help bypasses or register file 
•  Which are the much bigger problems! 
•  Although clustering and replication can help VLIW, too 

–  Not compatible across machines of different widths 
•  Is non-compatibility worth all of this? 

•  How did TransMeta deal with compatibility problem? 
•  Dynamically translates x86 to internal VLIW 
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EPIC 

•  EPIC (Explicitly Parallel Insn Computing) 
•  New VLIW (Variable Length Insn Words) 
•  Implemented as “bundles” with explicit dependence bits 
•  Code is compatible with different “bundle” width machines 
•  Compiler discovers as much parallelism as it can, hardware does rest 
•  E.g., Intel Itanium (IA-64) 

•  128-bit bundles (three 41-bit insns + 4 dependence bits) 
•  Still does not address bypassing or register file issues 
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Trends in Single-Processor Multiple Issue 

•  Issue width has saturated at 4-6 for high-performance cores 
•  Canceled Alpha 21464 was 8-way issue 
•  No justification for going wider 
•  Hardware or compiler “scheduling” needed to exploit 4-6 effectively 

•  Out-of-order execution (or VLIW/EPIC)  

•  For high-performance per watt cores, issue width is ~2 
•  Advanced scheduling techniques not needed 
•  Multi-threading (a little later) helps cope with cache misses 

486 Pentium PentiumII Pentium4 Itanium ItaniumII Core2 

Year 1989 1993 1998 2001 2002 2004 2006 

Width 1 2 3 3 3 6 4 
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Multiple Issue Redux 
•  Multiple issue 

•  Needed to expose insn level parallelism (ILP) beyond pipelining 
•  Improves performance, but reduces utilization 
•  4-6 way issue is about the peak issue width currently justifiable 

•  Problem spots 
•  N2 bypass ! clustering 
•  Register file ! replication 
•  Fetch + branch prediction ! buffering, loop streaming, trace cache 

•  Implementations 
•  (Statically-scheduled) superscalar, VLIW/EPIC 

•  Are there more radical ways to address these challenges? 
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Research: Grid Processor 
•  Grid processor (TRIPS) [Nagarajan+, MICRO’01] 

•  EDGE (Explicit Dataflow Graph Execution) execution model 
•  Holistic attack on many fundamental superscalar problems 

•  Specifically, the nastiest one: N2 bypassing 
•  But also N2 dependence check 
•  And wide-fetch + branch prediction 

•  Two-dimensional VLIW 
•  Horizontal dimension is insns in one parallel group 
•  Vertical dimension is several vertical groups 

•  Executes atomic code blocks 
•  Uses predication and special scheduling to avoid taken branches 

•  UT-Austin research project 
•  Fabricated an actual chip with help from IBM 
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Grid Processor 

•  Components 
•  next block logic/predictor (NH), I$, D$, regfile 
•  NxN ALU grid: here 4x4 

•  Pipeline stages 
•  Fetch block to grid 
•  Read registers 
•  Execute/memory 

•  Cascade 
•  Write registers 

•  Block atomic 
•  No intermediate regs 
•  Grid limits size/shape 

ALU 

read read read read 
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Aside: SAXPY 
•  SAXPY (Single-precision A X Plus Y) 

•  Linear algebra routine (used in solving systems of equations) 
•  Part of early “Livermore Loops” benchmark suite 

for (i=0;i<N;i++) 
 Z[i]=A*X[i]+Y[i]; 

0: ldf X(r1),f1      // loop 
1: mulf f0,f1,f2     // A in f0 
2: ldf Y(r1),f3      // X,Y,Z are constant addresses 
3: addf f2,f3,f4 
4: stf f4,Z(r1) 
5: addi r1,4,r1      // i in r1 
6: blt r1,r2,0       // N*4 in r2 
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Grid Processor SAXPY 

•  A code block for this Grid processor has five 4-insn words 
•  Atomic unit of execution 

•  Some notes about Grid ISA 
•   read: read register from register file 
•   pass: null operation 
•   –1,0,1: routing directives send result to next word 

•  one insn left (-1), insn straight down (0), one insn right (1) 
•  Directives specify value flow, no need for interior registers 

read r2,0 read f1,0 read r1,0,1 nop 
pass 0 pass 1 pass -1,1 ldf X,-1 
pass 0 pass 0,1 mulf 1 ldf Y,0 
pass 0 addi pass 1 addf 0 
blt  nop pass 0,r1 stf Z 

CIS 501 (Martin): Superscalar 42 

Grid Processor SAXPY Cycle 1 

•  Map code block to grid 

pass 

r2 f1 r1 

regfile 

pass 

pass pass 

pass addi 

ble 

pass ldf 

mulf ldf 

pass addf 

pass stf 

I$ 
D$ 

NH 
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Grid Processor SAXPY Cycle 2 

•  Read registers 

pass 

r2 f1 r1 

regfile 

pass 

pass pass 

pass addi 

ble 

pass ldf 

mulf ldf 

pass addf 

pass stf 

I$ 
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NH 
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Grid Processor SAXPY Cycle 3 

•  Execute first grid row 
•  Execution proceeds in “data flow” fashion 

•  Not lock step 

pass 

r2 f1 r1 

regfile 

pass 

pass pass 

pass addi 

ble 

pass ldf 

mulf ldf 

pass addf 

pass stf 
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Grid Processor SAXPY Cycle 4 

•  Execute second grid row 

pass 

r2 f1 r1 

regfile 

pass 

pass pass 

pass addi 

ble 

pass ldf 

mulf ldf 

pass addf 

pass stf 
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Grid Processor SAXPY Cycle 5 

•  Execute third grid row 
•  Recall, mulf takes 5 cycles 

pass 

r2 f1 r1 

regfile 

pass 

pass pass 

pass addi 

ble 

pass ldf 

mulf ldf 

pass addf 

pass stf 
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Grid Processor SAXPY Cycle 6 

•  Execute third grid row 

pass 

r2 f1 r1 

regfile 

pass 

pass pass 

pass addi 

ble 

pass ldf 

mulf ldf 

pass addf 

pass stf 

I$ 
D$ 

NH 

CIS 501 (Martin): Superscalar 48 

Grid Processor SAXPY 

•  When all instructions are done 
•  Write registers and next code block PC 

pass 

r2 f1 r1 

regfile 

pass 

pass pass 

pass addi 

ble 

pass ldf 

mulf ldf 

pass addf 

pass stf 
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NH 
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Grid Processor SAXPY Performance 

•  Performance 
•  1 cycle fetch 
•  1 cycle read regs 
•  8 cycles execute 
•  1 cycle write regs 
•  11 cycles total 

•  Utilization 
•  7 / (11 * 16) = 4% 

•  What’s the point? 
+  Simpler components 
+  Faster clock? 

pass 

r2 f1 r1 

regfile 

pass 

pass pass 

pass addi 

ble 

pass ldf 

mulf ldf 

pass addf 

pass stf 

I$ 
D$ 

NH 
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Grid Processor Redux 
+  No hardware dependence checks … period 

•  Insn placement encodes dependences, still get dynamic issue 
+  Simple, forward only, short-wire bypassing 

•  No wraparound routing, no metal layer crossings, low input muxes 
–  Code size 

•  Lots of nop and pass operations 
–  Non-compatibility 

•  Code assumes horizontal and vertical grid layout 
–  No scheduling between hyperblocks 

•  Can be overcome, but is pretty nasty 
–  Poor utilization 

•  Overcome by multiple concurrent executing hyperblocks 
•  Interesting: TRIPS has morphed into something else 

•  Grid is gone, replaced by simpler “window scheduler” 
•  Forward nature of ISA exploited to create tiled implementations 

Next Up… 

•  Extracting more ILP via dynamic scheduling in hardware 
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