
CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 1

CIS 371
Computer Organization and Design

Unit 14: Instruction Set Architectures

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 2

Instruction Set Architecture (ISA)

•  What is an ISA?
•  A functional contract

•  All ISAs similar in high-level ways
•  But many design choices in details
•  Two “philosophies”: CISC/RISC

•  Difference is blurring

•  Good ISA…
•  Enables high-performance
•  At least doesn’t get in the way

•  Compatibility is a powerful force
•  Tricks: binary translation, µISAs

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 3

Readings

•  Readings
•  Introduction

•  P&H, Chapter 1
•  ISAs

•  P&H, Chapter 2

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 4

Recall: What Is An ISA?

•  ISA (instruction set architecture)
•  A well-defined hardware/software interface
•  The “contract” between software and hardware

•  Functional definition of storage locations & operations
•  Storage locations: registers, memory
•  Operations: add, multiply, branch, load, store, etc

•  Precise description of how to invoke & access them

•  Not in the “contract”: non-functional aspects
•  How operations are implemented
•  Which operations are fast and which are slow and when
•  Which operations take more power and which take less

•  Instructions
•  Bit-patterns hardware interprets as commands
•  Instruction → Insn (instruction is too long to write in slides)

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 5

What Makes a Good ISA?

•  Programmability
•  Easy to express programs efficiently?

•  Performance/Implementability
•  Easy to design high-performance implementations?
•  More recently

•  Easy to design low-power implementations?
•  Easy to design low-cost implementations?

•  Compatibility
•  Easy to maintain as languages, programs, and technology evolve?
•  x86 (IA32) generations: 8086, 286, 386, 486, Pentium, PentiumII,

PentiumIII, Pentium4, Core2, Core i7, …

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 6

Programmability

•  Easy to express programs efficiently?
•  For whom?

•  Before 1980s: human
•  Compilers were terrible, most code was hand-assembled
•  Want high-level coarse-grain instructions

•  As similar to high-level language as possible

•  After 1980s: compiler
•  Optimizing compilers generate much better code that you or I
•  Want low-level fine-grain instructions

•  Compiler can’t tell if two high-level idioms match exactly or not

•  This shift changed what is considered a “good” ISA…

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 7

Implementability

•  Every ISA can be implemented
•  Not every ISA can be implemented efficiently

•  Classic high-performance implementation techniques
•  Pipelining, parallel execution, out-of-order execution

•  Certain ISA features make these difficult
–  Variable instruction lengths/formats: complicate decoding
–  Special-purpose registers: complicate compiler optimizations
–  Difficult to interrupt instructions: complicate many things

•  Example: memory copy instruction

Performance, Performance, Performance

•  Instructions per program:
•  Determined by program, compiler, instruction set architecture (ISA)

•  Cycles per instruction: “CPI”
•  Typical range today: 2 to 0.5
•  Determined by program, compiler, ISA, micro-architecture

•  Seconds per cycle: “clock period”
•  Typical range today: 2ns to 0.25ns
•  Reciprocal is frequency: 0.5 Ghz to 4 Ghz (1 Htz = 1 cycle per sec)
•  Determined by micro-architecture, technology parameters

•  For minimum execution time, minimize each term
•  Difficult: often pull against one another

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 8

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 9

Example: Instruction Granularity

•  CISC (Complex Instruction Set Computing) ISAs
•  Big heavyweight instructions (lots of work per instruction)
+  Low “insns/program”
–  Higher “cycles/insn” and “seconds/cycle”

•  We have the technology to get around this problem

•  RISC (Reduced Instruction Set Computer) ISAs
•  Minimalist approach to an ISA: simple insns only
+  Low “cycles/insn” and “seconds/cycle”
–  Higher “insn/program”, but hopefully not as much

•  Rely on compiler optimizations

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 10

Compatibility

•  In many domains, ISA must remain compatible
•  IBM’s 360/370 (the first “ISA family”)
•  Another example: Intel’s x86 and Microsoft Windows

•  x86 one of the worst designed ISAs EVER, but survives

•  Backward compatibility
•  New processors supporting old programs

•  Can’t drop features (caution in adding new ISA features)
•  Or, update software/OS to emulate dropped features (slow)

•  Forward (upward) compatibility
•  Old processors supporting new programs

•  Include a “CPU ID” so the software can test of features
•  Add ISA hints by overloading no-ops (example: x86’s PAUSE)
•  New firmware/software on old processors to emulate new insn

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 11

Translation and Virtual ISAs

•  New compatibility interface: ISA + translation software
•  Binary-translation: transform static image, run native
•  Emulation: unmodified image, interpret each dynamic insn

•  Typically optimized with just-in-time (JIT) compilation
•  Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)
•  Performance overheads reasonable (many advances over the years)

•  Virtual ISAs: designed for translation, not direct execution
•  Target for high-level compiler (one per language)
•  Source for low-level translator (one per ISA)
•  Goals: Portability (abstract hardware nastiness), flexibility over time
•  Examples: Java Bytecodes, C# CLR (Common Language Runtime)

NVIDIA’s “PTX”

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 12

Ultimate Compatibility Trick

•  Support old ISA by…
•  …having a simple processor for that ISA somewhere in the system
•  How did PlayStation2 support PlayStation1 games?

•  Used PlayStation processor for I/O chip & emulation

Aspects of ISAs

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 13

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 14

Instruction Length and Encoding

•  Length
•  Fixed length

•  Most common is 32 bits
+ Simple implementation (next PC often just PC+4)
–  Code density: 32 bits to increment a register by 1

•  Variable length
+ Code density (x86 averages 3 bytes, ranges from 1 to 16)
–  Complex fetch (where does next instruction begin?)

•  Compromise: two lengths
•  E.g., MIPS16 or ARM’s Thumb

•  Encoding
•  A few simple encodings simplify decoder

•  x86 decoder one nasty piece of logic

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 15

LC4/MIPS/x86 Length and Encoding

•  LC4: 2-byte insns, 3 formats

•  MIPS: 4-byte insns, 3 formats

•  x86: 1–16 byte insns, many formats

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 16

How Many Registers?

•  Registers faster than memory, have as many as possible?
•  No

•  One reason registers are faster: there are fewer of them
•  Small is fast (hardware truism)

•  Another: they are directly addressed (no address calc)
–  More registers, means more bits per register in instruction
–  Thus, fewer registers per instruction or larger instructions

•  Not everything can be put in registers
•  Structures, arrays, anything pointed-to
•  Although compilers are getting better at putting more things in

–  More registers means more saving/restoring
•  Across function calls, traps, and context switches

•  Trend toward more registers:
•  8 (x86) → 16 (x86-64), 16 (ARM v7) → 32 (ARM v8)

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 17

Memory Addressing

•  Addressing mode: way of specifying address
•  Used in memory-memory or load/store instructions in register ISA

•  Examples
•  Displacement: R1=mem[R2+immed]
•  Index-base: R1=mem[R2+R3]
•  Memory-indirect: R1=mem[mem[R2]]
•  Auto-increment: R1=mem[R2], R2= R2+1
•  Auto-indexing: R1=mem[R2+immed], R2=R2+immed
•  Scaled: R1=mem[R2+R3*immed1+immed2]
•  PC-relative: R1=mem[PC+imm]

•  What high-level program idioms are these used for?
•  What implementation impact? What impact on insn count?

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 18

Addressing Modes Examples

•  MIPS
•  Displacement: R1+offset (16-bit)
•  Why? Experiments on VAX (ISA with every mode) found:

•  80% use small displacement (or displacement of zero)
•  Only 1% accesses use displacement of more than 16bits

•  Other ISAs (SPARC, x86) have reg+reg mode, too
•  Impacts both implementation and insn count? (How?)

•  x86 (MOV instructions)
•  Absolute: zero + offset (8/16/32-bit)
•  Register indirect: R1
•  Displacement: R1+offset (8/16/32-bit)
•  Indexed: R1+R2
•  Scaled: R1 + (R2*Scale) + offset(8/16/32-bit) Scale = 1, 2, 4, 8

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 19

Access Granularity & Alignment
•  Byte addressability

•  An address points to a byte (8 bits) of data
•  The ISA’s minimum granularity to read or write memory
•  ISAs also support wider load/stores

•  “Half” (2 bytes), “Longs” (4 bytes), “Quads” (8 bytes)

•  Load.byte [6] -> r1 Load.long [12] -> r2

However, physical memory systems operate on even larger chunks

•  Load.long [4] -> r1 Load.long [11] -> r2 “unaligned”

•  Access alignment: if address % size is not 0, then it is “unaligned”
•  A single unaligned access may require multiple physical memory accesses

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01001001 00101101 01101001 11001011 00001001 01011000 00111001 11011101 01001001 00101101 01101001 11001011 00001001 01011000 00111001 11011101

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01001001 00101101 01101001 11001011 00001001 01011000 00111001 11011101 01001001 00101101 01101001 11001011 00001001 01011000 00111001 11011101

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 20

Handling Unaligned Accesses
•  Access alignment: if address % size is not 0, then it is “unaligned”

•  A single unaligned access may require multiple physical memory accesses

•  How do handle such unaligned accesses?
1. Disallow (unaligned operations are considered illegal)

•  MIPS takes this route
2. Support in hardware? (allow such operations)

•  x86 allows regular loads/stores to be unaligned
•  Unaligned access still slower, adds significant hardware complexity

3. Trap to software routine? (allow, but hardware traps to software)
•  Simpler hardware, but high penalty when unaligned

4. In software (compiler can use regular instructions when possibly unaligned
•  Load, shift, load, shift, and (slow, needs help from compiler)

5. MIPS? ISA support: unaligned access by compiler using two instructions
•  Faster than above, but still needs help from compiler

 lwl @XXXX10; lwr @XXXX10

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 21

Operand Model: Register or Memory?
•  “Load/store” architectures

•  Memory access instructions (loads and stores) are distinct
•  Separate addition, subtraction, divide, etc. operations
•  Examples: MIPS, ARM, SPARC, PowerPC

•  Alternative: mixed operand model (x86, VAX)
•  Operand can be from register or memory
•  x86 example: addl 100, 4(%eax)

•  1. Loads from memory location [4 + %eax]
•  2. Adds “100” to that value
•  3. Stores to memory location [4 + %eax]
•  Would requires three instructions in MIPS, for example.

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 22

How Much Memory? Address Size
•  What does “64-bit” in a 64-bit ISA mean?

•  Each program can address (i.e., use) 264 bytes

•  64 is the address size
•  Alternative (wrong) definition: width of arithmetic operations

•  Most critical, inescapable ISA design decision
•  Too small? Will limit the lifetime of ISA
•  May require nasty hacks to overcome (E.g., x86 segments)

•  x86 evolution:
•  4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),
•  32-bit + protected memory (80386)
•  64-bit (AMD’s Opteron & Intel’s Pentium4)

•  All ISAs moving to 64 bits (if not already there)

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 23

Control Transfers

•  Default next-PC is PC + sizeof(current insn)
•  Branches and jumps can change that

•  Computing targets: where to jump to
•  For all branches and jumps
•  PC-relative: for branches and jumps with function
•  Absolute: for function calls
•  Register indirect: for returns, switches & dynamic calls

•  Testing conditions: whether to jump at all
•  Implicit condition codes or “flags” (x86)

cmp R1,10 // sets “negative” flag
branch-neg target

•  Use registers & separate branch insns (MIPS)
set-less-than R2,R1,10
branch-not-equal-zero R2,target

Fetch
Decode

Read Inputs
Execute

Write Output
Next Insn

ISAs Also Include Support For…

•  Function calling conventions
•  Which registers are saved across calls, how parameters are passed

•  Operating systems & memory protection
•  Privileged mode
•  System call (TRAP)
•  Exceptions & interrupts
•  Interacting with I/O devices

•  Multiprocessor support
•  “Atomic” operations for synchronization

•  Data-level parallelism
•  Pack many values into a wide register

•  Intel’s SSE2: four 32-bit float-point values into 128-bit register
•  Define parallel operations (four “adds” in one cycle)

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 24

The RISC vs. CISC Debate

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 25

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 26

RISC and CISC
•  RISC: reduced-instruction set computer

•  Coined by Patterson in early 80’s
•  RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
•  Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

•  CISC: complex-instruction set computer
•  Term didn’t exist before “RISC”
•  Examples: x86, VAX, Motorola 68000, etc.

•  Philosophical war started in mid 1980’s
•  RISC “won” the technology battles
•  CISC won the high-end commercial space (1990s to today)

•  Compatibility was a strong force
•  RISC winning the embedded computing space

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 27

CISCs and RISCs

•  The CISCs: x86, VAX (Virtual Address eXtension to PDP-11)
•  Variable length instructions: 1-321 bytes!!!
•  14 registers + PC + stack-pointer + condition codes
•  Data sizes: 8, 16, 32, 64, 128 bit, decimal, string
•  Memory-memory instructions for all data sizes
•  Special insns: crc, insque, polyf, and a cast of hundreds
•  x86: “Difficult to explain and impossible to love”

•  The RISCs: MIPS, PA-RISC, SPARC, PowerPC, Alpha, ARM
•  32-bit instructions
•  32 integer registers, 32 floating point registers

•  ARM has 16 registers
•  Load/store architectures with few addressing modes
•  Why so many basically similar ISAs? Everyone wanted their own

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 28

Historical Development

•  Pre 1980
•  Bad compilers (so assembly written by hand)
•  Complex, high-level ISAs (easier to write assembly)
•  Slow multi-chip micro-programmed implementations

•  Vicious feedback loop

•  Around 1982
•  Moore’s Law makes single-chip microprocessor possible…

•  …but only for small, simple ISAs
•  Performance advantage of this “integration” was compelling

•  RISC manifesto: create ISAs that…
•  Simplify single-chip implementation
•  Facilitate optimizing compilation

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 29

The RISC Design Tenets
•  Single-cycle execution

•  CISC: many multicycle operations
•  Hardwired (simple) control

•  CISC: “microcode” for multi-cycle operations

•  Load/store architecture
•  CISC: register-memory and memory-memory

•  Few memory addressing modes
•  CISC: many modes

•  Fixed-length instruction format
•  CISC: many formats and lengths

•  Reliance on compiler optimizations
•  CISC: hand assemble to get good performance

•  Many registers (compilers can use them effectively)
•  CISC: few registers

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 30

RISC vs CISC Performance Argument

•  Performance equation:
•  (instructions/program) * (cycles/instruction) * (seconds/cycle)

•  CISC (Complex Instruction Set Computing)
•  Reduce “instructions/program” with “complex” instructions

•  But tends to increase “cycles/instruction” or clock period
•  Easy for assembly-level programmers, good code density

•  RISC (Reduced Instruction Set Computing)
•  Improve “cycles/instruction” with many single-cycle instructions
•  Increases “instruction/program”, but hopefully not as much

•  Help from smart compiler
•  Perhaps improve clock cycle time (seconds/cycle)

•  via aggressive implementation allowed by simpler insn

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 31

The Debate
•  RISC argument

•  CISC is fundamentally handicapped
•  For a given technology, RISC implementation will be better (faster)

•  Current technology enables single-chip RISC
•  When it enables single-chip CISC, RISC will be pipelined
•  When it enables pipelined CISC, RISC will have caches
•  When it enables CISC with caches, RISC will have next thing...

•  CISC rebuttal
•  CISC flaws not fundamental, can be fixed with more transistors
•  Moore’s Law will narrow the RISC/CISC gap (true)

•  Good pipeline: RISC = 100K transistors, CISC = 300K
•  By 1995: 2M+ transistors had evened playing field

•  Software costs dominate, compatibility is paramount

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 32

Intel’s x86 Trick: RISC Inside

•  1993: Intel wanted “out-of-order execution” in Pentium Pro
•  Hard to do with a coarse grain ISA like x86

•  Solution? Translate x86 to RISC micro-ops (µops) in hardware
push $eax
becomes (we think, uops are proprietary)
store $eax, -4($esp)
addi $esp,$esp,-4

+  Processor maintains x86 ISA externally for compatibility
+  But executes RISC µISA internally for implementability
•  Given translator, x86 almost as easy to implement as RISC

•  Intel implemented “out-of-order” before any RISC company
•  “out-of-order” also helps x86 more (because ISA limits compiler)

•  Also used by other x86 implementations (AMD)
•  Different µops for different designs

•  Not part of the ISA specification, not publically disclosed

Potential Micro-op Scheme

•  Most instructions are a single micro-op
•  Add, xor, compare, branch, etc.
•  Loads example: mov -4(%rax), %ebx
•  Stores example: mov %ebx, -4(%rax)

•  Each memory access adds a micro-op
•  “addl -4(%rax), %ebx” is two micro-ops (load, add)
•  “addl %ebx, -4(%rax)” is three micro-ops (load, add, store)

•  Function call (CALL) – 4 uops
•  Get program counter, store program counter to stack,

adjust stack pointer, unconditional jump to function start

•  Return from function (RET) – 3 uops
•  Adjust stack pointer, load return address from stack, jump register

•  Again, just a basic idea, micro-ops are specific to each chip

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 33

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 34

Winner for Desktop PCs: CISC
•  x86 was first mainstream 16-bit microprocessor by ~2 years

•  IBM put it into its PCs…
•  Rest is historical inertia, Moore’s law, and “financial feedback”

•  x86 is most difficult ISA to implement and do it fast but…
•  Because Intel sells the most non-embedded processors…
•  It hires more and better engineers…
•  Which help it maintain competitive performance …
•  And given competitive performance, compatibility wins…
•  So Intel sells the most non-embedded processors…

•  AMD as a competitor keeps pressure on x86 performance

•  Moore’s Law has helped Intel in a big way
•  Most engineering problems can be solved with more transistors

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 35

Winner for Embedded: RISC

•  ARM (Acorn RISC Machine → Advanced RISC Machine)
•  First ARM chip in mid-1980s (from Acorn Computer Ltd).
•  3 billion units sold in 2009 (>60% of all 32/64-bit CPUs)
•  Low-power and embedded devices (phones, for example)

•  Significance of embedded? ISA Compatibility less powerful force

•  32-bit RISC ISA
•  16 registers, PC is one of them
•  Rich addressing modes, e.g., auto increment
•  Condition codes, each instruction can be conditional

•  ARM does not sell chips; it licenses its ISA & core designs
•  ARM chips from many vendors

•  Qualcomm, Freescale (was Motorola), Texas Instruments,
STMicroelectronics, Samsung, Sharp, Philips, etc.

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 36

Redux: Are ISAs Important?

•  Does “quality” of ISA actually matter?
•  Not for performance (mostly)

•  Mostly comes as a design complexity issue
•  Insn/program: everything is compiled, compilers are good
•  Cycles/insn and seconds/cycle: µISA, many other tricks

•  What about power efficiency? Maybe
•  ARMs are most power efficient today…

•  …but Intel is moving x86 that way (e.g, Intel’s Atom)
•  Open question: can x86 be as power efficient as ARM?

•  Does “nastiness” of ISA matter?
•  Mostly no, only compiler writers and hardware designers see it

•  Even compatibility is not what it used to be
•  Software emulation
•  Open question: will “ARM compatibility” be the next x86?

CIS 371: Comp. Org. | Prof. Milo Martin | Instruction Sets 37

Instruction Set Architecture (ISA)

•  What is an ISA?
•  A functional contract

•  All ISAs similar in high-level ways
•  But many design choices in details
•  Two “philosophies”: CISC/RISC

•  Difference is blurring

•  Good ISA…
•  Enables high-performance
•  At least doesn’t get in the way

•  Compatibility is a powerful force
•  Tricks: binary translation, µISAs

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

