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CIS 371 
Computer Organization and Design 

Unit 14: Instruction Set Architectures 
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Instruction Set Architecture (ISA) 

•  What is an ISA? 
•  A functional contract 

•  All ISAs similar in high-level ways 
•  But many design choices in details 
•  Two “philosophies”: CISC/RISC 

•  Difference is blurring 

•  Good ISA… 
•  Enables high-performance 
•  At least doesn’t get in the way 

•  Compatibility is a powerful force 
•  Tricks: binary translation, µISAs  

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Readings 

•  Readings 
•  Introduction 

•  P&H, Chapter 1 
•  ISAs 

•  P&H, Chapter 2 
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Recall: What Is An ISA? 

•  ISA (instruction set architecture) 
•  A well-defined hardware/software interface 
•  The “contract” between software and hardware 

•  Functional definition of storage locations & operations 
•  Storage locations: registers, memory 
•  Operations: add, multiply, branch, load, store, etc 

•  Precise description of how to invoke & access them 

•  Not in the “contract”: non-functional aspects 
•  How operations are implemented 
•  Which operations are fast and which are slow and when 
•  Which operations take more power and which take less 

•  Instructions  
•  Bit-patterns hardware interprets as commands 
•  Instruction → Insn (instruction is too long to write in slides) 
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What Makes a Good ISA? 

•  Programmability 
•  Easy to express programs efficiently? 

•  Performance/Implementability 
•  Easy to design high-performance implementations? 
•  More recently 

•  Easy to design low-power implementations? 
•  Easy to design low-cost implementations? 

•  Compatibility 
•  Easy to maintain as languages, programs, and technology evolve? 
•  x86 (IA32) generations: 8086, 286, 386, 486, Pentium, PentiumII, 

PentiumIII, Pentium4, Core2, Core i7, … 



CIS 371: Comp. Org.  |  Prof. Milo Martin  |  Instruction Sets 6 

Programmability 

•  Easy to express programs efficiently? 
•  For whom? 

•  Before 1980s: human 
•  Compilers were terrible, most code was hand-assembled 
•  Want high-level coarse-grain instructions 

•  As similar to high-level language as possible 

•  After 1980s: compiler 
•  Optimizing compilers generate much better code that you or I 
•  Want low-level fine-grain instructions 

•  Compiler can’t tell if two high-level idioms match exactly or not 

•  This shift changed what is considered a “good” ISA… 



CIS 371: Comp. Org.  |  Prof. Milo Martin  |  Instruction Sets 7 

Implementability 

•  Every ISA can be implemented 
•  Not every ISA can be implemented efficiently 

•  Classic high-performance implementation techniques 
•  Pipelining, parallel execution, out-of-order execution 

•  Certain ISA features make these difficult 
–  Variable instruction lengths/formats: complicate decoding 
–  Special-purpose registers: complicate compiler optimizations 
–  Difficult to interrupt instructions: complicate many things 

•  Example: memory copy instruction 



Performance, Performance, Performance 

•  Instructions per program: 
•  Determined by program, compiler, instruction set architecture (ISA) 

•  Cycles per instruction: “CPI” 
•  Typical range today: 2 to 0.5 
•  Determined by program, compiler, ISA, micro-architecture 

•  Seconds per cycle: “clock period” 
•  Typical range today: 2ns to 0.25ns 
•  Reciprocal is frequency: 0.5 Ghz to 4 Ghz (1 Htz = 1 cycle per sec) 
•  Determined by micro-architecture, technology parameters 

•  For minimum execution time, minimize each term 
•  Difficult: often pull against one another 
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Example: Instruction Granularity 

•  CISC (Complex Instruction Set Computing) ISAs 
•  Big heavyweight instructions (lots of work per instruction) 
+  Low “insns/program” 
–  Higher “cycles/insn” and “seconds/cycle”  

•  We have the technology to get around this problem  

•  RISC (Reduced Instruction Set Computer) ISAs 
•  Minimalist approach to an ISA: simple insns only 
+  Low “cycles/insn” and “seconds/cycle”  
–  Higher “insn/program”, but hopefully not as much 

•  Rely on compiler optimizations 
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Compatibility 

•  In many domains, ISA must remain compatible 
•  IBM’s 360/370 (the first “ISA family”) 
•  Another example: Intel’s x86 and Microsoft Windows 

•  x86 one of the worst designed ISAs EVER, but survives 

•  Backward compatibility 
•  New processors supporting old programs 

•  Can’t drop features (caution in adding new ISA features) 
•  Or, update software/OS to emulate dropped features (slow)  

•  Forward (upward) compatibility 
•  Old processors supporting new programs 

•  Include a “CPU ID” so the software can test of features 
•  Add ISA hints by overloading no-ops (example: x86’s PAUSE) 
•  New firmware/software on old processors to emulate new insn 
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Translation and Virtual ISAs 

•  New compatibility interface: ISA + translation software 
•  Binary-translation: transform static image, run native 
•  Emulation: unmodified image, interpret each dynamic insn 

•  Typically optimized with just-in-time (JIT) compilation 
•  Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86) 
•  Performance overheads reasonable (many advances over the years) 

•  Virtual ISAs: designed for translation, not direct execution 
•  Target for high-level compiler (one per language) 
•  Source for low-level translator (one per ISA) 
•  Goals: Portability (abstract hardware nastiness), flexibility over time 
•  Examples: Java Bytecodes, C# CLR (Common Language Runtime) 

NVIDIA’s “PTX” 
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Ultimate Compatibility Trick 

•  Support old ISA by… 
•  …having a simple processor for that ISA somewhere in the system 
•  How did PlayStation2 support PlayStation1 games? 

•  Used PlayStation processor for I/O chip & emulation 



Aspects of ISAs 
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Instruction Length and Encoding 

•  Length 
•  Fixed length 

•  Most common is 32 bits 
+ Simple implementation (next PC often just PC+4) 
–  Code density: 32 bits to increment a register by 1 

•  Variable length 
+ Code density (x86 averages 3 bytes, ranges from 1 to 16) 
–  Complex fetch (where does next instruction begin?) 

•  Compromise: two lengths 
•  E.g., MIPS16 or ARM’s Thumb 

•  Encoding 
•  A few simple encodings simplify decoder 

•  x86 decoder one nasty piece of logic  
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LC4/MIPS/x86 Length and Encoding 

•  LC4: 2-byte insns, 3 formats 

•  MIPS: 4-byte insns, 3 formats 

•  x86: 1–16 byte insns, many formats 
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How Many Registers? 

•  Registers faster than memory, have as many as possible? 
•  No 

•  One reason registers are faster: there are fewer of them 
•  Small is fast (hardware truism) 

•  Another: they are directly addressed (no address calc) 
–  More registers, means more bits per register in instruction 
–  Thus, fewer registers per instruction or larger instructions 

•  Not everything can be put in registers 
•  Structures, arrays, anything pointed-to 
•  Although compilers are getting better at putting more things in 

–  More registers means more saving/restoring 
•  Across function calls, traps, and context switches 

•  Trend toward more registers:  
•  8 (x86) → 16 (x86-64),  16 (ARM v7) → 32 (ARM v8)  
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Memory Addressing 

•  Addressing mode: way of specifying address 
•  Used in memory-memory or load/store instructions in register ISA 

•  Examples 
•  Displacement:  R1=mem[R2+immed]  
•  Index-base:  R1=mem[R2+R3]  
•  Memory-indirect: R1=mem[mem[R2]]  
•  Auto-increment: R1=mem[R2], R2= R2+1 
•  Auto-indexing: R1=mem[R2+immed], R2=R2+immed 
•  Scaled:  R1=mem[R2+R3*immed1+immed2] 
•  PC-relative: R1=mem[PC+imm] 

•  What high-level program idioms are these used for? 
•  What implementation impact? What impact on insn count? 
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Addressing Modes Examples 

•  MIPS 
•  Displacement: R1+offset (16-bit) 
•  Why? Experiments on VAX (ISA with every mode) found: 

•  80% use small displacement (or displacement of zero) 
•  Only 1% accesses use displacement of more than 16bits 

•  Other ISAs (SPARC, x86) have reg+reg mode, too 
•  Impacts both implementation and insn count?  (How?) 

•  x86 (MOV instructions) 
•  Absolute: zero + offset (8/16/32-bit) 
•  Register indirect: R1 
•  Displacement: R1+offset (8/16/32-bit) 
•  Indexed: R1+R2 
•  Scaled: R1 + (R2*Scale) + offset(8/16/32-bit)    Scale = 1, 2, 4, 8 
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Access Granularity & Alignment 
•  Byte addressability   

•  An address points to a byte (8 bits) of data 
•  The ISA’s minimum granularity to read or write memory 
•  ISAs also support wider load/stores 

•  “Half” (2 bytes), “Longs” (4 bytes), “Quads” (8 bytes) 

•  Load.byte [6] -> r1             Load.long [12] -> r2 

However, physical memory systems operate on even larger chunks 

•  Load.long [4] -> r1             Load.long [11] -> r2                 “unaligned” 

•  Access alignment: if address % size is not 0, then it is “unaligned”  
•  A single unaligned access may require multiple physical memory accesses  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
01001001 00101101 01101001 11001011 00001001 01011000 00111001 11011101 01001001 00101101 01101001 11001011 00001001 01011000 00111001 11011101 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
01001001 00101101 01101001 11001011 00001001 01011000 00111001 11011101 01001001 00101101 01101001 11001011 00001001 01011000 00111001 11011101 
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Handling Unaligned Accesses 
•  Access alignment: if address % size is not 0, then it is “unaligned”  

•  A single unaligned access may require multiple physical memory accesses  

•  How do handle such unaligned accesses? 
1. Disallow (unaligned operations are considered illegal) 

•  MIPS takes this route 
2. Support in hardware? (allow such operations)  

•  x86 allows regular loads/stores to be unaligned 
•  Unaligned access still slower, adds significant hardware complexity 

3. Trap to software routine?  (allow, but hardware traps to software) 
•  Simpler hardware, but high penalty when unaligned  

4. In software (compiler can use regular instructions when possibly unaligned 
•  Load, shift, load, shift, and  (slow, needs help from compiler) 

5. MIPS? ISA support: unaligned access by compiler using two instructions 
•  Faster than above, but still needs help from compiler 

 lwl @XXXX10; lwr @XXXX10 
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Operand Model: Register or Memory? 
•  “Load/store” architectures 

•  Memory access instructions (loads and stores) are distinct 
•  Separate addition, subtraction, divide, etc. operations 
•  Examples: MIPS, ARM, SPARC, PowerPC 

•  Alternative: mixed operand model (x86, VAX) 
•  Operand can be from register or memory 
•  x86 example:  addl 100, 4(%eax)  

•  1. Loads from memory location [4 + %eax] 
•  2. Adds “100” to that value 
•  3. Stores to memory location [4 + %eax] 
•  Would requires three instructions in MIPS, for example.   
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How Much Memory? Address Size 
•  What does “64-bit” in a 64-bit ISA mean? 

•  Each program can address (i.e., use) 264 bytes 

•  64 is the address size 
•  Alternative (wrong) definition: width of arithmetic operations 

•  Most critical, inescapable ISA design decision 
•  Too small? Will limit the lifetime of ISA 
•  May require nasty hacks to overcome (E.g., x86 segments) 

•  x86 evolution: 
•  4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),  
•  32-bit + protected memory (80386) 
•  64-bit (AMD’s Opteron & Intel’s Pentium4) 

•  All ISAs moving to 64 bits (if not already there) 
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Control Transfers 

•  Default next-PC is PC + sizeof(current insn) 
•  Branches and jumps can change that 

•  Computing targets: where to jump to 
•  For all branches and jumps 
•  PC-relative: for branches and jumps with function 
•  Absolute: for function calls 
•  Register indirect: for returns, switches & dynamic calls 

•  Testing conditions: whether to jump at all 
•  Implicit condition codes or “flags” (x86) 

cmp R1,10   // sets “negative” flag 
branch-neg target 

•  Use registers & separate branch insns (MIPS) 
set-less-than R2,R1,10 
branch-not-equal-zero R2,target 

Fetch 
Decode 

Read Inputs 
Execute 

Write Output 
Next Insn 



ISAs Also Include Support For… 

•  Function calling conventions 
•  Which registers are saved across calls, how parameters are passed 

•  Operating systems & memory protection 
•  Privileged mode 
•  System call (TRAP) 
•  Exceptions & interrupts 
•  Interacting with I/O devices 

•  Multiprocessor support 
•  “Atomic” operations for synchronization 

•  Data-level parallelism 
•  Pack many values into a wide register 

•  Intel’s SSE2: four 32-bit float-point values into 128-bit register 
•  Define parallel operations (four “adds” in one cycle) 
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The RISC vs. CISC Debate 
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RISC and CISC 
•  RISC: reduced-instruction set computer 

•  Coined by Patterson in early 80’s 
•  RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke) 
•  Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC 

•  CISC: complex-instruction set computer 
•  Term didn’t exist before “RISC” 
•  Examples: x86, VAX, Motorola 68000, etc. 

•  Philosophical war started in mid 1980’s 
•  RISC “won” the technology battles 
•  CISC won the high-end commercial space (1990s to today) 

•  Compatibility was a strong force 
•  RISC winning the embedded computing space 
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CISCs and RISCs 

•  The CISCs: x86, VAX (Virtual Address eXtension to PDP-11) 
•  Variable length instructions: 1-321 bytes!!! 
•  14 registers + PC + stack-pointer + condition codes 
•  Data sizes: 8, 16, 32, 64, 128 bit, decimal, string 
•  Memory-memory instructions for all data sizes 
•  Special insns: crc, insque, polyf, and a cast of hundreds 
•  x86: “Difficult to explain and impossible to love” 

•  The RISCs: MIPS, PA-RISC, SPARC, PowerPC, Alpha, ARM 
•  32-bit instructions 
•  32 integer registers, 32 floating point registers 

•  ARM has 16 registers 
•  Load/store architectures with few addressing modes 
•  Why so many basically similar ISAs?  Everyone wanted their own  
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Historical Development 

•  Pre 1980 
•  Bad compilers (so assembly written by hand) 
•  Complex, high-level ISAs (easier to write assembly) 
•  Slow multi-chip micro-programmed implementations 

•  Vicious feedback loop 

•  Around 1982 
•  Moore’s Law makes single-chip microprocessor possible… 

•  …but only for small, simple ISAs 
•  Performance advantage of this “integration” was compelling 

•  RISC manifesto: create ISAs that… 
•  Simplify single-chip implementation 
•  Facilitate optimizing compilation 



CIS 371: Comp. Org.  |  Prof. Milo Martin  |  Instruction Sets 29 

The RISC Design Tenets 
•  Single-cycle execution 

•  CISC: many multicycle operations 
•  Hardwired (simple) control 

•  CISC: “microcode” for multi-cycle operations 

•  Load/store architecture 
•  CISC: register-memory and memory-memory 

•  Few memory addressing modes 
•  CISC: many modes 

•  Fixed-length instruction format 
•  CISC: many formats and lengths 

•  Reliance on compiler optimizations 
•  CISC: hand assemble to get good performance 

•  Many registers (compilers can use them effectively) 
•  CISC: few registers 
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RISC vs CISC Performance Argument 

•  Performance equation: 
•  (instructions/program) * (cycles/instruction) * (seconds/cycle) 

•  CISC (Complex Instruction Set Computing) 
•  Reduce “instructions/program” with “complex” instructions 

•  But tends to increase “cycles/instruction” or clock period 
•  Easy for assembly-level programmers, good code density 

•  RISC (Reduced Instruction Set Computing) 
•  Improve “cycles/instruction” with many single-cycle instructions 
•  Increases “instruction/program”, but hopefully not as much 

•  Help from smart compiler 
•  Perhaps improve clock cycle time (seconds/cycle)  

•  via aggressive implementation allowed by simpler insn 
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The Debate 
•  RISC argument 

•  CISC is fundamentally handicapped 
•  For a given technology, RISC implementation will be better (faster) 

•  Current technology enables single-chip RISC 
•  When it enables single-chip CISC, RISC will be pipelined 
•  When it enables pipelined CISC, RISC will have caches 
•  When it enables CISC with caches, RISC will have next thing... 

•  CISC rebuttal  
•  CISC flaws not fundamental, can be fixed with more transistors 
•  Moore’s Law will narrow the RISC/CISC gap (true) 

•  Good pipeline: RISC = 100K transistors, CISC = 300K 
•  By 1995: 2M+ transistors had evened playing field 

•  Software costs dominate, compatibility is paramount 
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Intel’s x86 Trick: RISC Inside 

•  1993: Intel wanted “out-of-order execution” in Pentium Pro 
•  Hard to do with a coarse grain ISA like x86 

•  Solution? Translate x86 to RISC micro-ops (µops) in hardware 
push $eax  
becomes (we think, uops are proprietary) 
store $eax, -4($esp)  
addi $esp,$esp,-4 

+  Processor maintains x86 ISA externally for compatibility 
+  But executes RISC µISA internally for implementability 
•  Given translator, x86 almost as easy to implement as RISC 

•  Intel implemented “out-of-order” before any RISC company 
•  “out-of-order” also helps x86 more (because ISA limits compiler) 

•  Also used by other x86 implementations (AMD) 
•  Different µops for different designs 

•  Not part of the ISA specification, not publically disclosed 



Potential Micro-op Scheme 

•  Most instructions are a single micro-op 
•  Add, xor, compare, branch, etc. 
•  Loads   example:    mov -4(%rax), %ebx 
•  Stores   example:   mov %ebx, -4(%rax) 

•  Each memory access adds a micro-op 
•  “addl -4(%rax), %ebx” is two micro-ops (load, add) 
•  “addl %ebx, -4(%rax)” is three micro-ops (load, add, store) 

•  Function call (CALL) – 4 uops 
•  Get program counter, store program counter to stack,  

adjust stack pointer, unconditional jump to function start  

•  Return from function (RET) – 3 uops  
•  Adjust stack pointer, load return address from stack, jump register 

•  Again, just a basic idea, micro-ops are specific to each chip 
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Winner for Desktop PCs: CISC 
•  x86 was first mainstream 16-bit microprocessor by ~2 years 

•  IBM put it into its PCs… 
•  Rest is historical inertia, Moore’s law, and “financial feedback” 

•  x86 is most difficult ISA to implement and do it fast but… 
•  Because Intel sells the most non-embedded processors… 
•  It hires more and better engineers… 
•  Which help it maintain competitive performance … 
•  And given competitive performance, compatibility wins… 
•  So Intel sells the most non-embedded processors… 

•  AMD as a competitor keeps pressure on x86 performance 

•  Moore’s Law has helped Intel in a big way 
•  Most engineering problems can be solved with more transistors 
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Winner for Embedded: RISC 

•  ARM (Acorn RISC Machine → Advanced RISC Machine) 
•  First ARM chip in mid-1980s (from Acorn Computer Ltd). 
•  3 billion units sold in 2009 (>60% of all 32/64-bit CPUs) 
•  Low-power and embedded devices (phones, for example) 

•  Significance of embedded? ISA Compatibility less powerful force 

•  32-bit RISC ISA 
•  16 registers, PC is one of them 
•  Rich addressing modes, e.g., auto increment 
•  Condition codes, each instruction can be conditional 

•  ARM does not sell chips; it licenses its ISA & core designs 
•  ARM chips from many vendors 

•  Qualcomm, Freescale (was Motorola), Texas Instruments, 
STMicroelectronics, Samsung, Sharp, Philips, etc. 
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Redux: Are ISAs Important? 

•  Does “quality” of ISA actually matter? 
•  Not for performance (mostly) 

•  Mostly comes as a design complexity issue 
•  Insn/program: everything is compiled, compilers are good   
•  Cycles/insn and seconds/cycle: µISA, many other tricks 

•  What about power efficiency?  Maybe 
•  ARMs are most power efficient today… 

•  …but Intel is moving x86 that way (e.g, Intel’s Atom) 
•  Open question: can x86 be as power efficient as ARM?  

•  Does “nastiness” of ISA matter? 
•  Mostly no, only compiler writers and hardware designers see it 

•  Even compatibility is not what it used to be 
•  Software emulation 
•  Open question: will “ARM compatibility” be the next x86? 
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Instruction Set Architecture (ISA) 

•  What is an ISA? 
•  A functional contract 

•  All ISAs similar in high-level ways 
•  But many design choices in details 
•  Two “philosophies”: CISC/RISC 

•  Difference is blurring 

•  Good ISA… 
•  Enables high-performance 
•  At least doesn’t get in the way 

•  Compatibility is a powerful force 
•  Tricks: binary translation, µISAs  

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 


