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Power/Energy Are Increasingly Important

e Battery life for mobile devices
e Laptops, phones, cameras

e Tolerable temperature for devices without active cooling

e Power means temperature, active cooling means cost
 No room for a fan in a cell phone, no market for a hot cell phone

o Electric bill for compute/data centers
e Pay for power twice: once in, once out (to cool)

e Environmental concerns
e “Computers” account for growing fraction of energy consumption
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Energy & Power

e Energy: measured in Joules or Watt-seconds
e Total amount of energy stored/used
o Battery life, electric bill, environmental impact
e Instructions per Joule (car analogy: miles per gallon)

e Power: energy per unit time (measured in Watts)
e Related to “performance” (which is also a “per unit time” metric)
e Power impacts power supply and cooling requirements (cost)
o Power-density (Watt/mm?2): important related metric
e Peak power vs average power
e E.g., camera, power “spikes” when you actually take a picture

e Joules per second (car analogy: gallons per hour)
e TwoO sources:

e Dynamic power: active switching of transistors
o Static power: leakage of transistors even while inactive
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Energy Data from Homework 1 (SAXPY)
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Power Data from Homework 1 (SAXPY)
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Technology Basis of Transistor Speed

e Physics 101: delay through an electrical component ~ RC
 Resistance (R) JV\/\/— ~ length / cross-section area
e Slows rate of charge flow
e Capacitance (C) —||— ~ length * area / distance-to-other-plate
e Stores charge
Voltage (V)
e Electrical pressure
Threshold Voltage (V)
e Voltage at which a transistor turns “on”
e Property of transistor based on fabrication technology
Switching time ~to (R*C) / (V—-Vyp

e Components contribute to capacitance & resistance

e Transistors
e Wires (longer the wire, the more the capacitance & resistance)
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Dynamic Power

e Dynamic power (Py,,.mic): aka switching or active power
e Energy to switchagate (Oto 1, 1 to 0)
e Each gate has capacitance (C)
e Charge stored is o< C * V
e Energy to charge/discharge a capacitor is o< to C * V2
e Time to charge/discharge a capacitor is o< to V .
e Result: frequency ~ to V g L
® Pyynamic S N ¥ C*V2*fxA 0
e N: number of transistors = 1
e C: capacitance per transistor (size of transistors)
e V: voltage (supply voltage for gate) N
e f: frequency (transistor switching freq. is o< to clock freq.)
e A: activity factor (not all transistors may switch this cycle)
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Reducing Dynamic Power

e Target each component: Pgynamic ® N*¥ C*¥ V2 * f* A
e Reduce number of transistors (N)
o Use fewer transistors/gates

e Reduce capacitance (C)
e Smaller transistors (Moore’s law)

e Reduce voltage (V)
e (Quadratic reduction in energy consumption!
e But also slows transistors (transistor speed is ~ to V)

e Reduce frequency (f)
e Slower clock frequency (reduces power but not energy) Why?

e Reduce activity (A)
e “Clock gating” disable clocks to unused parts of chip
e Don't switch gates unnecessarily
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Static Power

e Static power (P..:.): aka idle or leakage power
e Transistors don't turn off all the way
Transistors “leak” /q
e Analogy: leaky valve 0]
Pstatic B N*V*eVi
N: number of transistors _l
e V: voltage

e V, (threshold voltage): voltage at which
transistor conducts (begins to switch)

e Switching speed vs leakage trade-off 1
e The lower the Vi:

e Faster transistors (linear) \
e Transistor speed o to V -V,

e Leakier transistors (exponential)
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Reducing Static Power

Target each component: Py ;. & N *V * eVt

Reduce number of transistors (N)

o Use fewer transistors/gates

Disable transistors (also targets N)

e “Power gating” disable power to unused parts (long latency to power up)
e Power down units (or entire cores) not being used

Reduce voltage (V)

e Linear reduction in static energy consumption

e But also slows transistors (transistor speed is ~ to V)

Dual V,— use a mixture of high and low V, transistors

e Use slow, low-leak transistors in SRAM arrays

e Requires extra fabrication steps (cost)

Low-leakage transistors

o High-K/Metal-Gates in Intel’s 45nm process, “tri-gate” in Intel’s 22nm

Reducing frequency can hurt energy efficiency due to leakage power
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Continuation of Moore’s Law
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Dynamic Voltage/Frequency Scaling

e Dynamically trade-off power for performance
e Change the voltage and frequency at runtime
e Under control of operating system
o Recall: Pynamic ® N * C* V2 * f*A
e Because frequency o« to V - V...
* denamic oc to VZ(V - vt) r V3
e Reduce both voltage and frequency linearly
e Cubic decrease in dynamic power
e Linear decrease in performance (actually sub-linear)
e Thus, only about quadratic in energy

e Linear decrease in static power
e Thus, static energy can become dominant

e Newer chips can adjust frequency on a per-core basis
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Dynamic Voltage/Frequency Scaling

Mobile PentiumIII
“SpeedStep”

Transmeta 5400
“LongRun”

Intel X-Scale
(StrongARM2)

f (MHz)

300-1000 (step=50)

200-700 (step=33)

50-800 (step=50)

V (V)

0.9-1.7 (step=0.1)

1.1-1.6V (cont)

0.7-1.65 (cont)

High-speed

3400MIPS @ 34W

1600MIPS @ 2W

800MIPS @ 0.9W

Low-power

1100MIPS @ 4.5W

300MIPS @ 0.25W

62MIPS @ 0.01W

e Dynamic voltage/frequency scaling
e Favors parallelism

e Example: Intel Xscale

e 1 GHz — 200 MHz reduces energy used by 30x
e But around 5x slower

e 5x 200 MHz in parallel, use 1/6th the energy

e Power is driving the trend toward multi-core
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Moore’s Effect on Power

+ Moore’s Law reduces power/transistor...
e Reduced sizes and surface areas reduce capacitance (C)

— ...but increases power density and total power
e By increasing transistors/area and total transistors
e Faster transistors — higher frequency — more power
e Hotter transistors leak more (thermal runaway)

e What to do? Reduce voltage (V)

+ Reduces dynamic power quadratically, static power linearly
e Already happening: Intel 486 (5V) — Core2 (1.3V)

e Trade-off: reducing V means either...
— Keeping V, the same and reducing frequency (f)
— Lowering V, and increasing leakage exponentially

e Use techniques like high-K and dual-V;

e The end of voltage scaling & “dark silicon”
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Trends in Power

386 486 | Pentium | Pentium II | Pentium4 | Core2 | Core i7
Year 1985 | 1989 1993 1998 2001 2006 | 2009
Technode (nm) | 1500 | 800 350 180 130 65 45
Transistors (M) 0.3 1.2 3.1 5.5 42 291 /731
Voltage (V) 5 5 3.3 2.9 1.7 1.3 1.2
Clock (MHz) 16 25 66 200 1500 3000 | 3300
Power (W) 1 5 16 35 80 75 130
Peak MIPS 6 25 132 600 4500 24000 | 52800
MIPS/W 6 5 8 17 56 320 406

e Supply voltage decreasing over time
e But “voltage scaling” is perhaps reaching its limits

e Emphasis on power starting around 2000
e Resulting in slower frequency increases

e Also note number of cores increasing (2 in Core 2, 4 in Core i7)
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Processor Power Breakdown

e Power breakdown for IBM POWER4
e Two 4-way superscalar, 2-way multi-threaded cores, 1.5MB L2
e Big power components are L2, data cache, scheduler, clock, I/O
e Implications on “complicated” versus “simple” cores

L3TAG
2%

L2 Cache
239%
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Implications on Software

e Software-controlled dynamic voltage/frequency scaling
e Example: video decoding
e Too high a clock frequency — wasted energy (battery life)
e Too low a clock frequency — quality of video suffers
e “Race to sleep” versus “slow and steady” approaches
e Managing low-power modes
e Don’t want to “wake up” the processor every millisecond
e Tuning software
e Faster algorithms can be converted to lower-power algorithms
e Via dynamic voltage/frequency scaling

e Exploiting parallelism & heterogeneous cores
e NVIDIA Tegra 3: 5 cores (4 "normal” cores & 1 “low power” core)

e Specialized hardware accelerators
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Recent Technology Update
From Intel

CIS 371: Comp. Org. | Prof. Milo Martin | Power

20



22

Reduced Channel Doping

Planar Tri-Gate
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LA

Fully depleted Tri-Gate structure has reduced channel doping,

providing improved performance and reduced variability

INTEL DEVELOPER FORUM



Performance/Power Benefits
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Transistor Performance vs. Leakage
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22 nm SoC technology offers a wide range of transistors

IDF2012
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22 Nnm

Layer  Pitch
™ 14 um
M8 360 nm
M7 320 nm
M6 240 nm
M5 160 nm
M4 112 nm
M3 80 nm
M2 80 nm

M1

Interconnects

111 nonn-cnuu Tt M1
90 nm ulm s Jy

Minimum pitch scaled ~0.7x from 32 nm

for ~2x transistor density improvement
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22 nm Defect Density Trend

32 nm j 22 nm
Defect
Density
(cm2)
p ~2 year S
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22 nm defect density now at low levels
needed for volume manufacturing

IDF2012

INTEL DEVELOPER FORUM



27

3RD Generation Intel® Core™ Processor
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22 nm Tri-Gate Technology
4 Cores + Integrated Graphics
1.4 Billion Transistors, 160 mm?2
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