
CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 1 

CIS 371 
Computer Organization and Design 

Unit 4: Single-Cycle Datapath 

Based on slides by Prof. Amir Roth & Prof. Milo Martin 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 2 

This Unit: Single-Cycle Datapath 

•  Overview of ISAs  
•  Datapath storage elements 
•  MIPS Datapath 
•  MIPS Control 

CPU Mem I/O 

System software 

App App App 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 3 

Readings 

•  P&H 
•  Sections 4.1 – 4.4 



Recall from CIS240… 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 4 



240 Review: Applications 

•  Applications (Firefox, iTunes, Skype, Word, Google) 
•  Run on hardware … but how?  

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 5 

CPU Mem I/O 

System software 

App App App 



240 Review: I/O 

•  Apps interact with us & each other via I/O (input/output) 
•  With us: display, sound, keyboard, mouse, touch-screen, camera 
•  With each other: disk, network (wired or wireless) 
•  Most I/O proper is analog-digital and domain of EE 
•  I/O devices present rest of computer a digital interface (1s and 0s)  

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 6 

CPU Mem I/O 

System software 

App App App 



240 Review: OS 

•  I/O (& other services) provided by OS (operating system) 
•  A super-app with privileged access to all hardware 
•  Abstracts away a lot of the nastiness of hardware 
•  Virtualizes hardware to isolate programs from one another 

•  Each application is oblivious to presence of others 
•  Simplifies programming, makes system more robust and secure 
•  Privilege is key to this 

•  Commons OSes are Windows, Linux, MACOS 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 7 

CPU Mem I/O 

System software 

App App App 



240 Review: ISA 

•  App/OS are software … execute on hardware 
•  HW/SW interface is ISA (instruction set architecture) 

•  A “contract” between SW and HW 
•  Encourages compatibility, allows SW/HW to evolve independently 
•  Functional definition of HW storage locations & operations 

•  Storage locations: registers, memory 
•  Operations: add, multiply, branch, load, store, etc. 

•  Precise description of how to invoke & access them 
•  Instructions (bit-patterns hardware interprets as commands) 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 8 

CPU Mem I/O 

System software 

App App App 



240 Review: LC4 ISA 

•  LC4: a toy ISA you know 
•  16-bit ISA (what does this mean?) 
•  16-bit insns 
•  8 registers (integer) 
•  ~30 different insns 
•  Simple OS support 

•  Assembly language 
•  Human-readable ISA representation 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 9 

CPU Mem I/O 

System software 

App App App 



371 Preview: A Real ISA 

•  MIPS: example of real ISA 
•  32/64-bit operations 
•  32-bit insns 
•  64 registers  

•  32 integer, 32 floating point 
•  ~100 different insns 
•  Full OS support 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 10 

CPU Mem I/O 

System software 

App App App 

Example code is MIPS, but  
all ISAs are similar at some level 



240 Review: Program Compilation 

•  Program written in a “high-level” programming language 
•  C, C++, Java, C# 
•  Hierarchical, structured control: loops, functions, conditionals 
•  Hierarchical, structured data: scalars, arrays, pointers, structures  

•  Compiler: translates program to assembly 
•  Parsing and straight-forward translation 
•  Compiler also optimizes 
•  Compiler itself another application … who compiled compiler? 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 11 

CPU Mem I/O 

System software 

App App App 
int array[100], sum;!
void array_sum() {!
   for (int i=0; i<100;i++) {!
      sum += array[i];!
   }!
}!



240 Review: Assembly Language 

•  Assembly language 
•  Human-readable representation 

•  Machine language 
•  Machine-readable representation 
•  1s and 0s (often displayed in “hex”) 

•  Assembler 
•  Translates assembly to machine 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 12 

CPU Mem I/O 

System software 

App App App 
Machine code Assembly code 



240 Review: Insn Execution Model 
•  The computer is just finite state machine 

•  Registers (few of them, but fast) 
•  Memory (lots of memory, but slower) 
•  Program counter (next insn to execute) 

•  Sometimes called “instruction pointer” 

•  A computer executes instructions 
•  Fetches next instruction from memory 
•  Decodes it (figure out what it does) 
•  Reads its inputs (registers & memory) 
•  Executes it (adds, multiply, etc.) 
•  Write its outputs (registers & memory) 
•  Next insn (adjust the program counter) 

•  Program is just “data in memory” 
•  Makes computers programmable (“universal”) 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 13 

CPU Mem I/O 

System software 

App App App 

Instruction → Insn  



Role of the Compiler 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 14 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 15 

Compiler Optimizations 
•  Primarily goal: reduce instruction count 

•  Eliminate redundant computation, keep more things in registers 
+ Registers are faster, fewer loads/stores 
–  An ISA can make this difficult by having too few registers 

•  But also… 
•  Reduce branches and jumps (later) 
•  Reduce cache misses (later) 
•  Reduce dependences between nearby insns (later) 

–  An ISA can make this difficult by having implicit dependences 

•  How effective are these? 
+  Can give 4X performance over unoptimized code 
–  Collective wisdom of 40 years (“Proebsting’s Law”): 4% per year 
+  Allows higher-level languages to perform adequately (Javascript) 



Compiler Optimization Example (LC4) 

•  Left: common sub-expression elimination 
•  Remove calculations whose results are already in some register 

•  Right: register allocation 
•  Keep temporary in register across statements, avoid stack spill/fill 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 16 



What is an ISA? 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 17 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 18 

What Is An ISA? 

•  ISA (instruction set architecture) 
•  A well-defined hardware/software interface 
•  The “contract” between software and hardware 

•  Functional definition of storage locations & operations 
•  Storage locations: registers, memory 
•  Operations: add, multiply, branch, load, store, etc 

•  Precise description of how to invoke & access them 

•  Not in the “contract”: non-functional aspects 
•  How operations are implemented 
•  Which operations are fast and which are slow and when 
•  Which operations take more power and which take less 

•  Instructions  
•  Bit-patterns hardware interprets as commands 
•  Instruction → Insn (instruction is too long to write in slides) 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 19 

A Language Analogy for ISAs 

•  Communication 
•  Person-to-person → software-to-hardware 

•  Similar structure 
•  Narrative → program 
•  Sentence → insn 
•  Verb → operation (add, multiply, load, branch) 
•  Noun → data item (immediate, register value, memory value) 
•  Adjective → addressing mode 

•  Many different languages, many different ISAs 
•  Similar basic structure, details differ (sometimes greatly) 

•  Key differences between languages and ISAs 
•  Languages evolve organically, many ambiguities, inconsistencies 
•  ISAs are explicitly engineered and extended, unambiguous 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 20 

LC4 vs Real ISAs 
•  LC4 has the basic features of a real-world ISAs 

±  LC4 lacks a good bit of realism 
•  Address size is only 16 bits  
•  Only one data type (16-bit signed integer) 
•  Little support for system software, none for multiprocessing (later) 

•  Many real-world ISAs to choose from: 
•  Intel x86 (laptops, desktop, and servers) 
•  MIPS (used throughout in book) 
•  ARM (in all your mobile phones) 
•  PowerPC (servers & game consoles) 
•  SPARC (servers) 
•  Intel’s Itanium 
•  Historical: IBM 370, VAX, Alpha, PA-RISC, 68k, … 



Some Key Attributes of ISAs 
•  Instruction encoding 

•  Fixed length (16-bit for LC4, 32-bit for MIPS & ARM) 
•  Variable length (1 byte to 16 bytes, average of ~3 bytes) 

•  Number and type of registers 
•  LC-4 has 8 registers 
•  MIPS has 32 “integer” registers and 32 “floating point” registers 
•  ARM & x86 both have 16 “integer” regs and 16 “floating point” regs 

•  Address space 
•  LC4: 16-bit addresses at 16-bit granularity (128KB total) 
•  ARM: 32-bit addresses at 8-bit granularly (4GB total) 
•  Modern x86 and future “ARM64”: 64-bit addresses (16 exabytes!) 

•  Memory addressing modes 
•  MIPS & LC4: address calculated by “reg+offset” 
•  x86 and others have much more complicated addressing modes 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 21 



ISA Code Examples 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 22 



Array Sum Loop: LC4 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 23 

   .DATA!
array .BLKW #100!
sum   .FILL #0!
   .CODE!
   .FALIGN!
array_sum!
    CONST R5, #0!
    LEA R1, array!
    LEA R2, sum!

L1!
    LDR R3, R1, #0!
    LDR R4, R2, #0!
    ADD R4, R3, R4!
    STR R4, R2, #0!
    ADD R1, R1, #1!
    ADD R5, R5, #1!
    CMPI R5, #100!
    BRn L1!

int array[100];!
int sum;!
void array_sum() {!
   for (int i=0; i<100;i++) 

{!

      sum += array[i];!
   }!
}!



Array Sum Loop: LC4  MIPS 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 24 

   .DATA!
array .BLKW #100!
sum   .FILL #0!
   .CODE!
   .FALIGN!
array_sum!
    CONST R5, #0!
    LEA R1, array!
    LEA R2, sum!

L1!
    LDR R3, R1, #0!
    LDR R4, R2, #0!
    ADD R4, R3, R4!
    STR R4, R2, #0!
    ADD R1, R1, #1!
    ADD R5, R5, #1!
    CMPI R5, #100!
    BRn L1!

    .data!
array: .space 100!
sum:   .word 0!

    .text!
array_sum:!
    li $5, 0!
    la $1, array!
    la $2, sum!

L1:!
    lw $3, 0($1)!
    lw $4, 0($2)!
    add $4, $3, $4!
    sw $4, 0($2)!
    addi $1, $1, 1!
    addi $5, $5, 1!
    li $6, 100!
    blt $5, $6, L1!

Syntactic differences: 
register names begin with $ 
immediates are un-prefixed 

MIPS (right) similar to LC4 

Left-most register is generally 
destination register 



Array Sum Loop: LC4  x86 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 25 

   .DATA!
array .BLKW #100!
sum   .FILL #0!
   .CODE!
   .FALIGN!
array_sum!
    CONST R5, #0!
    LEA R1, array!
    LEA R2, sum!

L1!
    LDR R3, R1, #0!
    LDR R4, R2, #0!
    ADD R4, R3, R4!
    STR R4, R2, #0!
    ADD R1, R1, #1!
    ADD R5, R5, #1!
    CMPI R5, #100!
    BRn L1!

    .LFE2!
    .comm array,400,32!
    .comm sum,4,4!

    .globl array_sum!
array_sum:!
    movl $0, -4(%rbp)!

.L1:!
    movl -4(%rbp), %eax!
    movl array(,%eax,4), %edx!
    movl sum(%rip), %eax !
    addl %edx, %eax!
    movl %eax, sum(%rip)!
    addl $1, -4(%rbp)!
    cmpl $99,-4(%rbp)!
    jle .L1!

x86 (right) is different 

Syntactic differences: 
register names begin with % 
immediates begin with $ 

%rbp is base (frame) pointer 

Many addressing modes 



x86 Operand Model 

•  x86 uses explicit accumulators 
•  Both register and memory 
•  Distinguished by addressing mode 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 26 

Register accumulator: %eax = %eax + %edx 

“L” insn suffix and “%e…” reg. 
prefix mean “32-bit value” 



Implementing an ISA 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 27 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 28 

Implementing an ISA 

•  Datapath: performs computation (registers, ALUs, etc.) 
•  ISA specific: can implement every insn (single-cycle: in one pass!) 

•  Control: determines which computation is performed  
•  Routes data through datapath (which regs, which ALU op) 

•  Fetch: get insn, translate opcode into control 
•  Fetch → Decode → Execute “cycle” 

PC 
Insn 

memory 
Register 

File 
Data 

Memory 

control 

datapath 

fetch 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 29 

Two Types of Components 

•  Purely combinational: stateless computation 
•  ALUs, muxes, control 
•  Arbitrary Boolean functions 

•  Combinational/sequential: storage 
•  PC, insn/data memories, register file 
•  Internally contain some combinational components 

PC 
Insn 

memory 
Register 

File 
Data 

Memory 

control 

datapath 

fetch 



Example Datapath 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 30 



PC 

Memory 
216 by  
16 bit 

16 16 

16 

3’b111 

insn[11:9] 3 

Branch 
Logic 

16 

16 

LC4 Datapath 

Reg. 
File 

 wdata 

3’b111 

insn[11:9] 3 

insn[11:9] 

insn[2:0] 3 

Reg. 
File 

r1sel r2sel 

r1data 

r2data 

wsel we 

NZP Reg 
we 

NZP Reg 
3 

16 

16 

16 

Memory 
216 by 16 bit 

in 

outaddr we 

16 

n/z/p 

3 

insn[8:6] 

16 

A
LU

 

+1 

31 CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 



MIPS Datapath 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 32 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 33 

Unified vs Split Memory Architecture 

•  Unified architecture: unified insn/data memory 
•  “Harvard” architecture: split insn/data memories 

PC 
Register 

File 

Insn/Data Memory 

control 

datapath 

fetch 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 34 

Datapath for MIPS ISA 

•  MIPS: 32-bit instructions, registers are $0, $2… $31 

•  Consider only the following instructions 
add $1,$2,$3      $1 = $2 + $3       (add) 
addi $1,$2,3      $1 = $2 + 3        (add immed) 
lw $1,4($3)       $1 = Memory[4+$3]  (load) 
sw $1,4($3)       Memory[4+$3] = $1  (store) 
beq $1,$2,PC_relative_target  (branch equal) 
j absolute_target       (unconditional jump) 

•  Why only these? 
•  Most other instructions are the same from datapath viewpoint 
•  The one’s that aren’t are left for you to figure out 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 35 

Start With Fetch 

•  PC and instruction memory (split insn/data architecture, for now) 
•  A +4 incrementer computes default next instruction PC 
•  How would Verilog for this look given insn memory as interface? 

P 
C 

Insn 
Mem 

+ 
4 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 36 

First Instruction: add 

•  Add register file 
•  Add arithmetic/logical unit (ALU) 

P 
C 

Insn 
Mem 

Register 
File 

s1 s2 d 

+ 
4 



Wire Select in Verilog 

•  How to rip out individual fields of an insn? Wire select 
wire [31:0] insn;!
wire [5:0] op = insn[31:26];!
wire [4:0] rs = insn[25:21];!
wire [4:0] rt = insn[20:16];!
wire [4:0] rd = insn[15:11];!
wire [4:0] sh = insn[10:6];!
wire [5:0] func = insn[5:0];!

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 37 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 38 

Second Instruction: addi 

•  Destination register can now be either Rd or Rt 
•  Add sign extension unit and mux into second ALU input 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

+ 
4 



Verilog Wire Concatenation 

•  Recall two Verilog constructs 
•  Wire concatenation: {bus0, bus1, … , busn}!
•  Wire repeat: {repeat_x_times{w0}}!

•  How do you specify sign extension? Wire concatenation 
wire [31:0] insn;!
wire [15:0] imm16 = insn[15:0];!
wire [31:0] sximm16 = {{16{imm16[15]}}, imm16};!

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 39 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 40 

Third Instruction: lw 

•  Add data memory, address is ALU output 
•  Add register write data mux to select memory output or ALU output 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 41 

Fourth Instruction: sw 

•  Add path from second input register to data memory data input 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 42 

Fifth Instruction: beq 

•  Add left shift unit and adder to compute PC-relative branch target 
•  Add PC input mux to select PC+4 or branch target 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

<< 
2 

z 



Another Use of Wire Concatenation 

•  How do you do <<2? Wire concatenation 
wire [31:0] insn;!
wire [25:0] imm26 = insn[25:0]!
wire [31:0] imm26_shifted_by_2 = {4’b0000, imm26, 2’b00};!

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 43 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 44 

Sixth Instruction: j 

•  Add shifter to compute left shift of 26-bit immediate 
•  Add additional PC input mux for jump target 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

<< 
2 

<< 
2 



MIPS Control 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 45 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 46 

What Is Control? 

•  9 signals control flow of data through this datapath 
•  MUX selectors, or register/memory write enable signals 
•  A real datapath has 300-500 control signals  

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

<< 
2 

<< 
2 

Rwe 

ALUinB 

DMwe 

JP 

ALUop 

BR 

Rwd 

Rdst 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 47 

Example: Control for add 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

<< 
2 

<< 
2 

BR=0 

JP=0 

Rwd=0 

DMwe=0 ALUop=0 

ALUinB=0 Rdst=1 

Rwe=1 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 48 

Example: Control for sw 

•  Difference between sw and add is 5 signals 
•  3 if you don’t count the X (don’t care) signals 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

<< 
2 

<< 
2 

Rwe=0 

ALUinB=1 

DMwe=1 

JP=0 

ALUop=0 

BR=0 

Rwd=X 

Rdst=X 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 49 

Example: Control for beq 

•  Difference between sw and beq is only 4 signals 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

<< 
2 

<< 
2 

Rwe=0 

ALUinB=0 

DMwe=0 

JP=0 

ALUop=1 

BR=1 

Rwd=X 

Rdst=X 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 50 

How Is Control Implemented? 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

<< 
2 

<< 
2 

Rwe 

ALUinB 

DMwe 

JP 

ALUop 

BR 

Rwd 

Rdst 

Control? 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 51 

Implementing Control 

•  Each instruction has a unique set of control signals 
•  Most are function of opcode 
•  Some may be encoded in the instruction itself 

•  E.g., the ALUop signal is some portion of the MIPS Func field 
+ Simplifies controller implementation 
•  Requires careful ISA design 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 52 

Control Implementation: ROM 

•  ROM (read only memory): like a RAM but unwritable 
•  Bits in data words are control signals 
•  Lines indexed by opcode 
•  Example: ROM control for 6-insn MIPS datapath 
•  X is “don’t care” 

BR JP ALUinB ALUop DMwe Rwe Rdst Rwd 

add 0 0 0 0 0 1 0 0 

addi 0 0 1 0 0 1 1 0 

lw 0 0 1 0 0 1 1 1 

sw 0 0 1 0 1 0 X X 

beq 1 0 0 1 0 0 X X 

j 0 1 0 0 0 0 X X 

opcode 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 53 

Control Implementation: Logic 

•  Real machines have 100+ insns 300+ control signals 
•  30,000+ control bits (~4KB) 
–  Not huge, but hard to make faster than datapath (important!) 

•  Alternative: logic gates or “random logic” (unstructured) 
•  Exploits the observation: many signals have few 1s or few 0s 
•  Example: random logic control for 6-insn MIPS datapath 

ALUinB 

op
co

de
 

add 
addi 
lw 
sw 
beq 
j 

BR JP DMwe Rwd Rdst ALUop Rwe 



Control Logic in Verilog 
wire [31:0] insn;!
wire [5:0] func = insn[5:0]!
wire [5:0] opcode = insn[31:26];!
wire is_add = ((opcode == 6’h00) & (func == 6’h20));!
wire is_addi = (opcode == 6’h0F);!
wire is_lw = (opcode == 6’h23);!
wire is_sw = (opcode == 6’h2A);!
wire ALUinB = is_addi | is_lw | is_sw; !
wire Rwe = is_add | is_addi | is_lw;!
wire Rwd = is_lw;!
wire Rdst = ~is_add;!
wire DMwe = is_sw;!

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 54 
ALUinB 

op
co

de
 

add 
addi 
lw 
sw 

DMwe Rwd Rdst Rwe 



Datapath Storage Elements 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 55 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 56 

Register File 

•  Register file: M N-bit storage words 
•  Multiplexed input/output: data buses write/read “random” word 

•  “Port”: set of buses for accessing a random word in array 
•  Data bus (N-bits) + address bus (log2M-bits) + optional WE bit 
•  P ports = P parallel and independent accesses 

•  MIPS integer register file 
•  32 32-bit words, two read ports + one write port (why?) 

Register File 

RegSource1Val 

RegSource2Val 

RegDestVal 

RD WE RS1 RS2 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 57 

Decoder 

•  Decoder: converts binary integer to “1-hot” representation 
•  Binary representation of 0…2N–1: N bits 
•  1 hot representation of 0…2N–1: 2N bits 

•  J represented as Jth bit 1, all other bits zero 
•  Example below: 2-to-4 decoder 

B[0] 

B[1] 
1H[0] 

1H[1] 

1H[2] 

1H[3] 

B 1H 



Decoder in Verilog (1 of 2) 
module decoder_2_to_4 (binary_in, onehot_out);!
   input [1:0] binary_in; !
   output [3:0] onehot_out;!
   assign onehot_out[0] = (~binary_in[0] & ~binary_in[1]);!
   assign onehot_out[1] = (~binary_in[0] & binary_in[1]);!
   assign onehot_out[2] = (binary_in[0] & ~binary_in[1]);!
   assign onehot_out[3] = (binary_in[0] & binary_in[1]);!
endmodule!

•  Is there a simpler way? 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 58 



Decoder in Verilog (2 of 2) 
module decoder_2_to_4 (binary_in, onehot_out);!
   input [1:0] binary_in; !
   output [3:0] onehot_out;!
   assign onehot_out[0] = (binary_in == 2’d0);!
   assign onehot_out[1] = (binary_in == 2’d1);!
   assign onehot_out[2] = (binary_in == 2’d2);!
   assign onehot_out[3] = (binary_in == 2’d3);!
endmodule!

•  How is “a == b“ implemented for vectors? 
•  |(a ^ b)      (this is an “and” reduction of bitwise “a xor b”) 
•  When one of the inputs to “==“ is a constant 

•  Simplifies to simpler inverter on bits with “one” in constant 
•  Exactly what was on previous slide! 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 59 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 60 

Register File Interface 

•  Inputs: 
•  RS1, RS2 (reg. sources to read), RD (reg. destination to write) 
•  WE (write enable), RDestVal (value to write) 

•  Outputs: RSrc1Val, RSrc2Val (value of RS1 & RS2 registers) 

RS1 

RSrc1Val 

RSrc2Val 

RS2 RD WE 

RDestVal 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 61 

Register File: Four Registers 

•  Register file with four registers 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 62 

Add a Read Port 

•  Output of each register into 4to1 mux (RSrc1Val) 
•  RS1 is select input of RSrc1Val mux 

RS1 

RSrc1Val 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 63 

Add Another Read Port 

•  Output of each register into another 4to1 mux (RSrc2Val) 
•  RS2 is select input of RSrc2Val mux 

RS1 

RSrc1Val 

RSrc2Val 

RS2 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 64 

Add a Write Port 

•  Input RegDestVal into each register 
•  Enable only one register’s WE: (Decoded RD) & (WE)  

•  What if we needed two write ports? 

RS1 

RSrc1Val 

RSrc2Val 

RS2 RD WE 

RDestVal 



Register File Interface (Verilog) 
module regfile4(rs1, rs1val, rs2, rs2val, rd, rdval, we, rst, clk);!
  parameter n = 1;   !
  input [1:0] rs1, rs2, rd; !
  input we, rst, clk;!
  input [n-1:0] rdval; !
  output [n-1:0] rs1val, rs2val;!
  …!

endmodule!

•  Building block modules: 
•  module register (out, in, wen, rst, clk);!
•  module decoder_2_to_4 (binary_in, onehot_out)!
•  module Nbit_mux4to1 (sel, a, b, c, d, out);  !

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 65 



Register File Interface (Verilog) 
module regfile4(rs1, rs1val, rs2, rs2val, rd, rdval, we, rst, clk);!
  input [1:0] rs1, rs2, rd; !
  input we, rst, clk;!
  input [15:0] rdval; !
  output [15:0] rs1val, rs2val;!

endmodule!

•  Warning: this code not tested, may contain typos, do not blindly trust! 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 66 



[intentionally blank] 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 67 



[intentionally blank] 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 68 



Register File Interface (Verilog) 
module regfile4(rs1, rs1val, rs2, rs2val, rd, rdval, we, rst, clk);!
  parameter n = 1;   !
  input [1:0] rs1, rs2, rd; !
  input we, rst, clk;!
  input [n-1:0] rdval; !
  output [n-1:0] rs1val, rs2val;!

endmodule!

•  Warning: this code not tested, may contain typos, do not blindly trust! 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 69 



Register File: Four Registers (Verilog) 
module regfile4(rs1, rs1val, rs2, rs2val, rd, rdval, we, rst, clk);!
  parameter n = 1;   !
  input [1:0] rs1, rs2, rd; !
  input we, rst, clk;!
  input [n-1:0] rdval; !
  output [n-1:0] rs1val, rs2val;!
  wire [n-1:0] r0v, r1v, r2v, r3v;!

  Nbit_reg #(n) r0 (r0v,      ,                  , rst, clk);!
  Nbit_reg #(n) r1 (r1v,      ,                  , rst, clk);!
  Nbit_reg #(n) r2 (r2v,      ,                  , rst, clk);!
  Nbit_reg #(n) r3 (r3v,      ,                  , rst, clk);!

endmodule!

•  Warning: this code not tested, may contain typos, do not blindly trust! 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 70 



Add a Read Port (Verilog) 
module regfile4(rs1, rs1val, rs2, rs2val, rd, rdval, we, rst, clk);!
  parameter n = 1;   !
  input [1:0] rs1, rs2, rd; !
  input we, rst, clk;!
  input [n-1:0] rdval; !
  output [n-1:0] rs1val, rs2val;!
  wire [n-1:0] r0v, r1v, r2v, r3v;!

  Nbit_reg #(n) r0 (r0v,      ,                  , rst, clk);!
  Nbit_reg #(n) r1 (r1v,      ,                  , rst, clk);!
  Nbit_reg #(n) r2 (r2v,      ,                  , rst, clk);!
  Nbit_reg #(n) r3 (r3v,      ,                  , rst, clk);!
  Nbit_mux4to1 #(n) mux1 (rs1, r0v, r1v, r2v, r3v, rs1val);!

endmodule!

•  Warning: this code not tested, may contain typos, do not blindly trust! 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 71 



Add Another Read Port (Verilog) 
module regfile4(rs1, rs1val, rs2, rs2val, rd, rdval, we, rst, clk);!
  parameter n = 1;   !
  input [1:0] rs1, rs2, rd; !
  input we, rst, clk;!
  input [n-1:0] rdval; !
  output [n-1:0] rs1val, rs2val;!
  wire [n-1:0] r0v, r1v, r2v, r3v;!

  Nbit_reg #(n) r0 (r0v,      ,                  , rst, clk);!
  Nbit_reg #(n) r1 (r1v,      ,                  , rst, clk);!
  Nbit_reg #(n) r2 (r2v,      ,                  , rst, clk);!
  Nbit_reg #(n) r3 (r3v,      ,                  , rst, clk);!
  Nbit_mux4to1 #(n) mux1 (rs1, r0v, r1v, r2v, r3v, rs1val);!
  Nbit_mux4to1 #(n) mux2 (rs2, r0v, r1v, r2v, r3v, rs2val);!

endmodule 
•  Warning: this code not tested, may contain typos, do not blindly trust! 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 72 



Add a Write Port (Verilog) 
module regfile4(rs1, rs1val, rs2, rs2val, rd, rdval, we, rst, clk);!
  parameter n = 1;   !
  input [1:0] rs1, rs2, rd; !
  input we, rst, clk;!
  input [n-1:0] rdval; !
  output [n-1:0] rs1val, rs2val;!
  wire [n-1:0] r0v, r1v, r2v, r3v;!
  wire [3:0] rd_select;  !
  decoder_2_to_4 dec (rd, rd_select);!

  Nbit_reg #(n) r0 (r0v, rdval, rd_select[0] & we, rst, clk);!
  Nbit_reg #(n) r1 (r1v, rdval, rd_select[1] & we, rst, clk);!
  Nbit_reg #(n) r2 (r2v, rdval, rd_select[2] & we, rst, clk);!
  Nbit_reg #(n) r3 (r3v, rdval, rd_select[3] & we, rst, clk);!
  Nbit_mux4to1 #(n) mux1 (rs1, r0v, r1v, r2v, r3v, rs1val);!
  Nbit_mux4to1 #(n) mux2 (rs2, r0v, r1v, r2v, r3v, rs2val);!

endmodule!

•  Warning: this code not tested, may contain typos, do not blindly trust! 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 73 



Final Register File (Verilog) 
module regfile4(rs1, rs1val, rs2, rs2val, rd, rdval, we, rst, clk);!
  parameter n = 1;   !
  input [1:0] rs1, rs2, rd; !
  input we, rst, clk;!
  input [n-1:0] rdval; !
  output [n-1:0] rs1val, rs2val;!
  wire [n-1:0] r0v, r1v, r2v, r3v;!

  Nbit_reg #(n) r0 (r0v, rdval, (rd == 2`d0) & we, rst, clk);!
  Nbit_reg #(n) r1 (r1v, rdval, (rd == 2`d1) & we, rst, clk);!
  Nbit_reg #(n) r2 (r2v, rdval, (rd == 2`d2) & we, rst, clk);!
  Nbit_reg #(n) r3 (r3v, rdval, (rd == 2`d3) & we, rst, clk);!
  Nbit_mux4to1 #(n) mux1 (rs1, r0v, r1v, r2v, r3v, rs1val);!
  Nbit_mux4to1 #(n) mux2 (rs2, r0v, r1v, r2v, r3v, rs2val);!

endmodule!

•  Warning: this code not tested, may contain typos, do not blindly trust! 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 74 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 75 

Another Useful Component: Memory 

•  Register file: M N-bit storage words 
•  Few words (< 256), many ports, dedicated read and write ports 

•  Memory: M N-bit storage words, yet not a register file 
•  Many words (> 1024), few ports (1, 2), shared read/write ports 

•  Leads to different implementation choices 
•  Lots of circuit tricks and such 
•  Larger memories typically only 6 transistors per bit 

•  In Verilog?  We’ll give you the code for large memories 

Memory 

DATAOUT DATAIN 

WE 

ADDRESS 



Single-Cycle Performance 

CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 76 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 77 

Single-Cycle Datapath Performance 

•  One cycle per instruction (CPI) 
•  Clock cycle time proportional to worst-case logic delay 

•  In this datapath: insn fetch, decode, register read, ALU, data memory 
access, write register 

•  Can we do better? 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 
Data 
Mem 

a 

d 

+ 
4 

<< 
2 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 78 

Foreshadowing: Pipelined Datapath 

•  Split datapath into multiple stages 
•  Assembly line analogy 
•  5 stages results in up to 5x clock & performance improvement 

PC Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 
Data 
Mem 

a 

d 

+ 
4 

<< 
2 

PC 

IR 

PC 

A 

B 

IR 

O 

B 

IR 

O 

D 

IR 



CIS 501: Comp. Arch.  |  Prof. Milo Martin  |  ISAs & Single Cycle 79 

Summary 

•  Overview of ISAs  
•  Datapath storage elements 
•  MIPS Datapath 
•  MIPS Control 

CPU Mem I/O 

System software 

App App App 


