This Unit: Arithmetic

App [ [ Ape [ [ App | o A little review
| System software | e Binary + 2s complement
Ripple- iti RCA
CIS 371 Ve /o . |?pe carry add_lt_lon( CA)
¢ Fast integer addition

Computer Organization and Design . Camy-select (CSe)

Shifters
Integer multiplication and division
Floating point arithmetic

Unit 3: Arithmetic

Based on slides by Prof. Amir Roth & Prof. Milo Martin

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 1 CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 2
Readings Pre-Class Exercise
Y P&H Add:
Divide:
e Chapter 3 rvice
43 00101011

¢ You can skim Section 3.5 (Floating point)

+ 29 00011101 —
3 |29 = 0011 |oO011101
19 = 010011
* 12 = 001100

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 3 CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 4



The Importance of Fast Arithmetic Review: Binary Integers

[ ] ’ | e Computers represent integers in binary (base2)
3 =11, 4 = 100, 5 = 101, 30 = 11110
L ) + Natural since only two values are represented
Register ¢ Addition, etc. take place as usual (carry the 1, etc.)
> 1% gl T o
L Jr N 17 = 10001
— — — — | +5 = 101
Tinsn-mem Tregfile TALU Tdata-mem Tregfile 22 = 10110
¢ Addition of two numbers is most common operation
* Programs use addition frequently ¢ Some old machines use decimal (base10) with only 0/1
¢ Loads and stores use addition for address calculation 30 = 011 000
¢ Branches use addition to test conditions and calculate targets — Unnatural for digial logic, implementation complicated & slow

e All insns use addition to calculate default next PC
e Fast addition critical to high performance

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 5 CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic
Fixed Width What About Negative Integers?
¢ On pencil and paper, integers have infinite width ¢ Sign/magnitude

¢ Unsigned plus one bit for sign
. . . 10 = 000001010, -10 = 100001010
* In hardware, integers have fixed width + Matches our intuition from “by hand” decimal arithmetic
e N bits: 16, 32 or 64 Both 0 and -0
* LSBis 2%, MSB is 2\ Addition is difficult
Range: —(2N1-1) to 2V-1-1

¢ Range: 0 to 2N-1
¢ Numbers >2N represented using multiple fixed-width integers * Option .H' two's com_plement (ZC_) .
¢ Leading Os mean positive number, leading 1s negative
* In software 10 = 00001010, -10 = 11110110
+ One representation for 0
+ Easy addition
e Range: —(2N1) to 2N-1-1

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 7 CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic



The Tao of 2C

Still More On 2C

e How did 2C come about?
e “Let's design a representation that makes addition easy”
o Think of subtracting 10 from 0 by hand
¢ Have to “borrow” 1s from some imaginary leading 1

0 100000000
-10 00001010
-10 = 011110110

¢ Now, add the conventional way...

-10 = 11110110
+10 = 00001010
0 = 100000000

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

Addition

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

11

e What is the interpretation of 2C?
e Same as binary, except MSB represents —2N-1, not 2N-1
e —10 = 11110110 = —27+26425+24+224 21
+ Extends to any width
e —10 = 110110 = —2°+24+22+21
o Why? 2N = 2*2N-1
o 25424422491 = (=2642%25)=25+24422421 = —264254 24422421

e Trick to negating a number quickly: =B = B + 1
e —(1) = (0001)+1 =1110+1 =1111=-1
e —(-1) = (1111)'+1 = 0000+1 = 0001 = 1
e —(0) = (0000)+1 = 1111+1 = 0000 =0
¢ Think about why this works

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 10

1st Grade: Decimal Addition

1

43
+29

72

e Repeat N times
¢ Add least significant digits and any overflow from previous add
o Carry “overflow” to next addition
» Overflow: any digit other than least significant of sum
¢ Shift two addends and sum one digit to the right

e Sum of two N-digit numbers can yield an N+1 digit number

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 12



Binary Addition: Works the Same Way

1 111111
43 = 00101011
+29 = 00011101
72 = 01001000

Repeat N times
¢ Add least significant bits and any overflow from previous add

¢ Carry the overflow to next addition

¢ Shift two addends and sum one bit to the right
Sum of two N-bit numbers can yield an N+1 bit number

More steps (smaller base)
+ Each one is simpler (adding just 1 and 0)

¢ So simple we can do it in hardware

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

The Other Half

13

The Half Adder

¢ We could chain half adders together, but to do that...

¢ Need to incorporate a carry out from previous adder

C

PR, RPRKFPOOODO
PRRPOORKRHKH OO

e S=CAB+CAB'+CAB"+CAB=C~A~"B

A

B

PORPRORKROHRO

co
0

HRrRHROROO

S

RPROOKRORKRHKEFHO

ICI

)

=)

v co

e CO=CAB+CAB+CAB'+CAB=CA +CB + AB
e This is called a full adder

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

> \\\\\ ICI
A
7
B.
ICO

15

e How to add two binary integers in hardware?

e Start with adding two bits
o When all else fails ... look at truth table

I
Q

= =N
HroOoRroWw
Hr o oolo
oORr R On

RES
« S=A”B Ay—is
e CO (carry out) = AB 5 A
e This is called a half adder lco
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 14
Ripple-Carry Adder
0
e N-bit ripple-carry adder |
« N 1-bit full adders “chained” together Al eal™ So
« CO, = Cl,, CO, = CL,, etc. Bg T
L4 CIO = 0 A»]_’ — S1
e COy_, is carry-out of entire adder B 74
e CO\_; = 1 — “overflow” |
Al Al %2
o B,
e Example: 16-bit ripple carry adder ]
e How fast is this?
e How fast is an N-bit ripple-carry adder? |
Ais— FA — Si5
Bis—
lco

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

16



Quantifying Adder Delay

e Combinational logic dominated by gate (transistor) delays
¢ Array storage dominated by wire delays
¢ Longest delay or “critical path” is what matters

¢ Can implement any combinational function in “2" logic levels
¢ 1 level of AND + 1 level of OR (PLA)
¢ NOTs are “free”: push to input (DeMorgan’s) or read from latch
e Example: delay(FullAdder) = 2
¢ d(CarryOut) = delay(AB + AC + BC)
e d(Sum) =d(A~ B~ C)=d(AB'C’' + ABC' + ABC' + ABC) = 2
¢ Note ‘" means Xor (just like in C & Java)

e Caveat: “2” assumes gates have few (<8 ?) inputs

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 17

Fast Addition

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 19

Ripple-Carry Adder Delay

0
* Longest path is to CO,s (or S;5) |
* d(CO,s) = 2 + MAX(d(A;5),d(B15),d(CLys)) a7
e d(A;5) = d(B;s) = 0, d(Cl;5) = d(CO,,) 0 T
e d(CO;5) =2 4+ d(COy4) =2 + 2 + d(COy3) ... A N S,
o d(CO,;) = 32 B—| :
A — S
e D(CO\_,) = 2N 32: FA 2
- Too slow! 2 I
— Linear in number of bits
A l S
o Number of gates is also linear Y
15
lco
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 18
Bad idea: a PLA-based Adder?
¢ If any function can be expressed as two-level logic...
¢ ..why not use a PLA for an entire 8-bit adder?
¢ Not small
e Approx. 215 AND gates, each with 216 inputs
e Then, 216 OR gates, each with 216 inputs
¢ Number of gates exponential in bit width!
o Not that fast, either
¢ An AND gate with 65 thousand inputs != 2-input AND gate
e Many-input gates made a tree of, say, 4-input gates
¢ 16-input gates would have at least 8 logic levels
e So, at least 16 levels of logic for a 16-bit PLA
e Even so, delay is still logarithmic in number of bits
e There are better (faster, smaller) ways
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 20



Theme: Hardware != Software

Hardware can do things that software fundamentally can't
¢ And vice versa (of course)

In hardware, it's easier to trade resources for latency

One example of this: speculation
¢ Slow computation is waiting for some slow input?
¢ Input one of two things?
¢ Compute with both (slow), choose right one later (fast)

Does this make sense in software? Not on a uni-processor
Difference? hardware is parallel, software is sequential

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 21

Multi-Segment Carry-Select Adder

Carry-Select Adder

/
Multiple segments AroFl gy 7 Sie
o Example: 5, 5, 6 bit = 16 bit 540
00—
AS-QL' 5+ —
Hardware cost By 7 ] S
o Still mostly linear (~2x) L N
o Compute each segment Ag 7 12
with 0 and 1 carry-in By S+ I"
¢ Serial mux chain
o—
Del A1571(;+. 6+
- 15-10
e 5-bit adder (10) + '—I 12| F—14
Two muxes (4) = 14 Ass 1 /S1510 - co
15-1 6+ 7
B15 1 I U

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 23

e Carry-select adder
e Do A;55+B;s5 g twice, once assuming Cg (CO;) = 0, once = 1
¢ Choose the correct one when CO, finally becomes available
+ Effectively cuts carry chain in half (break critical path)
— But adds mux

¢ Delay? -,
A
0_1 Bloi 8+ |7 Sro
A15-07L‘ 7L‘S 0 16
15-0 —
Bis.o 16+ A 0 /Siss
15-8 g+ [
B15—87L. - r
0 A 1+~ 1315,36;;:;-’
15-8 7
A [T
Bisg
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 22

Carry-Select Adder Delay

e What is carry-select adder delay (two segment)?
 d(CO;5) = MAX(d(CO;s.5), d(CO,)) + 2
o d(CO;s) = MAX(2*8, 2*8) + 2 = 18
e Ingeneral: 2%¥(N/2) + 2 = N+2 (vs 2N for RCA)

e What if we cut adder into 4 equal pieces?
e Would it be 2*(N/4) + 2 = 10? Not quite
d(CO;s5) = MAX(d(CO;s.1,),d(CO;14)) + 2
d(CO,5) = MAX(2*4, MAX(d(COy;.4),d(CO,)) +2) + 2

d(CO,5) = MAX(2*%4,MAX(2*4, MAX(2*4,2%4) + 2) + 2) + 2
d(CO,;) = 2%4 + 3%2 = 14

¢ N-bit adder in M equal pieces: 2*(N/M) + (M—1)*2
e 16-bit adder in 8 parts: 2*(16/8) + 7¥2 = 18
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 24

d(CO,5) = MAX(2*4,MAX(2%4,MAX(d(CO,.,),d(CO5,)) + 2) + 2) + 2



Another Option: Carry Lookahead

¢ Is carry-select adder as fast as we can go?
¢ Nope

¢ Another approach to using additional resources
¢ Instead of redundantly computing sums assuming different carries
¢ Use redundancy to compute carries more quickly
e This approach is called carry lookahead (CLA)

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 25

Adders In Real Processors

Carry Lookahead Adder (CLA)

e Real processors super-optimize their adders
¢ Ten or so different versions of CLA

Highly optimized versions of carry-select
Other gate techniques: carry-skip, conditional-sum
Sub-gate (transistor) techniques: Manchester carry chain
Combinations of different techniques

¢ Alpha 21264 used CLA+CSeA+RippleCA

» Used a different levels

e Even more optimizations for incrementers
e Why?

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 27

¢ Calculate “propagate” and “generate” based on A, B
¢ Not based on carry in

. . I
e Combine with tree structure Co | |
AO_. GO
: B,—| P,
* Prior years: CLA covered Chom —2 g‘“’
. . 1-0
in great detail A—] G, C,
¢ Dozen slides or so B, —1 Py 23‘0
¢ Not this year C. L3 0320
AZ_. G2
B,— P, Gs,
o Take aways Coemr——Ps2
" - " A.— G C3
¢ Tree gives logarithmic delay Bs Ps
—
 Reasonable area s 4 I
C, C,
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

Prefix Tree

5
/ Carry Lookahead

| / Carry Select @ 32-bit
Ny m 64-bit
u L. J / Ripple Carry

AL
| IV

Area (MA2)
w

1 — | Q9
KA
0 T ; ‘ ‘ .
0 20 40 60 80 100
Delay (FO4)

AWV Area vs. delay of synthesized adders

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 28



Subtraction: Addition’s Tricky Pal

¢ Sign/magnitude subtraction is mental reverse addition
¢ 2C subtraction is addition
e How to subtract using an adder?
e sub A B =add A -B
* Negate B before adding (fast negation trick: =B = B" + 1)
e Isn't a subtraction then a negation and two additions?
+ No, an adder can implement A+B+1 by setting the carry-in to 1

0
1
A
B
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 29

Shift and Rotation Instructions

e Left/right shifts are useful...
¢ Fast multiplication/division by small constants (next)
¢ Bit manipulation: extracting and setting individual bits in words

¢ Right shifts
¢ Can be logical (shift in 0s) or arithmetic (shift in copies of MSB)
srl 110011, 2 = 001100
sra 110011, 2 = 111100
e Caveat: sra is not equal to division by 2 of negative numbers

¢ Rotations are less useful...
e But almost “free” if shifter is there
¢ MIPS and LC4 have only shifts, x86 has shifts and rotations

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 31

Shifts & Rotates

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 30

Compiler Opt: Strength Reduction

e Strength reduction: compilers will do this (sort of)

A * 4 =A< 2
A* 5= (A<<2) +A
A/ 8=A>3 (only if A is unsigned)

o Useful for address calculation: all basic data types are 2™ in size
int A[100];
&A[N] = A+ (N*sizeof(int)) = A+N*4 = A+N<<2

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 32



A Simple Shifter Barrel Shifter

e The simplest 16-bit shifter: can only shift left by 1 e What about shifting left by any amount 0-15?
¢ Implement using wires (no logic!)

¢ Slightly more complicated: can shift left by 1 or 0
¢ Implement using wires and a multiplexor (mux16_2to1)

e 16 consecutive “left-shift-by-1-or-0” blocks?
— Would take too long (how long?)
e Barrel shifter: 4 “shift-left-by-X-or-0" blocks (X = 1,2,4,8)

0 Ay e What is the delay?
\ \ 0O
=) L :
Ass shift[3] shift[2] shift[1] shift[0]

shift

[: | A— ¢
A © e Similar barrel designs for right shifts and rotations

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 33 CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 34

3rd Grade: Decimal Multiplication

19 // multiplicand
* 12 // multiplier
38
+ 190

228 /[ product

o Start with product 0, repeat steps until no multiplier digits
o Multiply multiplicand by least significant multiplier digit
¢ Add to product
« Shift multiplicand one digit to the left (multiply by 10)

Mu Itiplication « Shift multiplier one digit to the right (divide by 10)
¢ Product of N-digit, M-digit numbers may have N+M digits

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 35 CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 36



Binary Multiplication: Same Refrain

Software Multiplication

19 = 010011 // multiplicand
* 12 = 001100 // multiplier
0 = 000000000000
0 = 000000000000
76 = 000001001100
152 = 000010011000
0 = 000000000000
+ 0 = 000000000000
228 = 000011100100 // product

+ Smaller base — more steps, each is simpler
¢ Multiply multiplicand by least significant multiplier digit
+ 0 or 1 — no actual multiplication, add multiplicand or not
¢ Add to total: we know how to do that
« Shift multiplicand left, multiplier right by one digit

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

Hardware Multiply: Iterative

37

e Can implement this algorithm in software
e Inputs: md (multiplicand) and mr (multiplier)

int pd = 0; // product
int i = 0;
for (i = 0; i < 16 & mr '= 0; i++) {
if (mr & 1) {
pd = pd + md;
}

md = md << 1; // shift left
mr = mr >> 1; // shift right
}
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 38

Hardware Multiply: Multiple Adders

— —

=1 Multiplicand Multiplier
(32 bit) (16 bit)
\ 4 * Isb==1?
\/ -
32
Product
(32 bit) e

e Control: repeat 16 times
o If least significant bit of multiplier is 1...
¢ Then add multiplicand to product
¢ Shift multiplicand left by 1

» Shift multiplier right by 1
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

39

C<<

6+,
o

6+

e Multiply by N bits at a time using N adders
o Example: N=5, terms (P=product, C=multiplicand, M=multiplier)
e P=(M[0]?(C):0)+ (M[1]?(C<<1):0) +
(M[2] ? (C<<2):0) + (M[3]? (C<<3):0) + ...
¢ Arrange like a tree to reduce gate delay critical path
e Delay? N2vs N*log N? Not that simple, depends on adder

e Approx “2N” versus "N + log N”, with optimization: O(log N)
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic



Consecutive Addition: Carry Save Adder

Hardware != Software: Part Deux

BBy QoBy QB ABoCeo o 5 NLpit RC adders

—-[‘ITA FA FA FA + 2 + d(add) gate delays

0 Tl D3 T Dy T Dy Tyl DoCpyo

r‘ﬁj._rﬁﬁ._rﬁﬁ_rﬁ._rﬁ e M N-bit RC adders delay

7 T 7 T 7 ¢ Naive: O(M*N)
CO S, S, Sy So e Actual: O(M+N)

AaBs DaAuBy DyAB: DiAB Do o M N-bit Carry Select?
FA FA

‘|oI |J_L|‘|FA |:/_\‘|oI e Delay calculation tricky

WA AR WA WA LTS

|| e« Carry Save Adder (CSA)
r‘ﬁo\ﬁ.—rﬁ"l—r I?AL|~—|_I?°~L|‘—|_FA o 3-to-2 CSA tree + adder

v ! v ! v

CO S, S, S, So ¢ Delay: O(log M + log N)
CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 41
Division

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 43

Recall: hardware is parallel, software is sequential
Exploit: evaluate independent sub-expressions in parallel

ExampleI: S=A+B+C+D
e Software? 3 steps: (1) S1 = A+B, (2) S2 = S1+C, (3) S = S24D
+ Hardware? 2 steps: (1) S1 = A+B, S2=C+D, (2) S = S1+S2

ExampleII: S=A+B+C

o Software? 2 steps: (1) S1 = A+B, (2) S = S1+C

e Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C

+ Actually hardware can do this in 1.2 steps! (CSA adder)

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 42

4th Grade: Decimal Division

_9 // quotient
3 129 // divisor | dividend
=27
2 // remainder

o Shift divisor left (multiply by 10) until MSB lines up with dividend’s
¢ Repeat until remaining dividend (remainder) < divisor

 Find largest single digit q such that (g*divisor) < dividend

¢ Set LSB of quotient to q

¢ Subtract (g*divisor) from dividend

« Shift quotient left by one digit (multiply by 10)

« Shift divisor right by one digit (divide by 10)

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 44



Binary Division

Binary Division Hardware

_ _ 1001 =29
3 |29 = 0011 |011101
-24 = - 011000
5 = 000101
- 3= - 000011
2 = 000010

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

Software Divide Algorithm

45

e Same as decimal division, except (again)

— More individual steps (base is smaller)

+ Each step is simpler

¢ Find largest bit q such that (g*divisor) < dividend

egq=0orl1

e Subtract (g*divisor) from dividend

¢ g = 0 or 1 — no actual multiplication, subtract divisor or not

e Complication: largest q such that (g*divisor) < dividend
¢ How do you know if (1*divisor) < dividend?

¢ Human can “eyeball” this
¢ Computer does not have eyeballs

¢ Subtract and see if result is negative

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

Divide Example

46

e Can implement this algorithm in software
e Inputs: dividend and divisor

for (int i1 = 0; i < 32; i++) {

remainder = (remainder << 1) | (dividend >> 31);

if (remainder >= divisor) {
quotient = (quotient << 1) | 1;
remainder = remainder - divisor;

} else {

quotient = (quotient << 1) | 0;
}
dividend = dividend << 1;

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

47

e Input: Divisor = 00011 , Dividend = 11101

Step Remainder Quotient Remainder Dividend
0 00000 00000 1101
1 ooool] 0 00001 1101
2 00011 01 00000 101
3 00001 010 00001 01
4 00010 0100 00001 1
5 00101 01001 00010

e Result: Quotient: 1001, Remainder: 10

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic

48



Divider Circuit

Divisor ‘
ﬁ ‘ Quotient

| Remainder | Dividend

Shiftin 0

¢ N cycles for n-bit divide

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 49

Floating Point (FP) Numbers

Floating Point

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 50

Scientific Notation

¢ Floating point numbers: numbers in scientific notation
e Two uses

e Use I: real numbers (numbers with non-zero fractions)
o 3.1415926...
e 2.1878...
e 6.62 * 10-34

e Use II: really big numbers
e 3.0 %108
e 6.02 * 1023

¢ Aside: best not used for currency values

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 51

¢ Scientific notation:
e Number [S,F,E] =S * F * 2E
e S:sign
F: significand (fraction)
E: exponent
“Floating point”: binary (decimal) point has different magnitude

+ "Sliding window” of precision using notion of significant digits
¢ Small numbers very precise, many places after decimal point
¢ Big numbers are much less so, not all integers representable
¢ But for those instances you don't really care anyway

Caveat: all representations are just approximations
¢ Sometimes wierdos like 0.9999999 or 1.0000001 come up
+ But good enough for most purposes

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 52



IEEE 754 Standard Precision/Range

¢ Single precision: float in C
e 32-bit: 1-bit sign + 8-bit exponent + 23-bit significand
e Range: 2.0 * 1038 < N < 2.0 * 1038
e Precision: ~7 significant (decimal) digits
¢ Used when exact precision is less important (e.g., 3D games)

e Double precision: double in C
o 64-bit: 1-bit sign + 11-bit exponent + 52-bit significand
e Range: 2.0 * 107308 < N < 2.0 * 10308
¢ Precision: ~15 significant (decimal) digits
¢ Used for scientific computations

e Numbers >103% don't come up in many calculations
e 1080 ~ number of atoms in universe

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 53

Pentium FDIV Bug

Floating Point is Inexact

Pentium shipped in August 1994

Intel actually knew about the bug in July
« But calculated that delaying the project a month would cost ~$1M
¢ And that in reality only a dozen or so people would encounter it
¢ They were right... but one of them took the story to EE times

e Accuracy problems sometimes get bad
¢ FP arithmetic not associative: (A+B)+C not same as A+(B+C)
¢ Addition of big and small numbers (summing many small numbers)
¢ Subtraction of two big numbers

Example, what's (1*1030 + 1*100) — 1*1030?

o Intuitively: 1*100 = 1

e But: (1*10%0 + 1¥100) — 1*¥10% = (1*¥10%° — 1¥10%) = 0
Reciprocal math: “x/y” versus "x*(1/y)”

¢ Reciprocal & multiply is faster than divide, but less precise

Compilers are generally conservative by default
¢ GCC flag: —ffast-math (allows assoc. opts, reciprocal math)

Numerical analysis: field formed around this problem
¢ Re-formulating algorithms in a way that bounds numerical error

e In your code: never test for equality between FP numbers
¢ Use something like: if (abs(a-b) < 0.00001) then ...

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 54

Arithmetic Latencies

e Latency in cycles of common arithmetic operations

e Source: Software Optimization Guide for AMD Family 10h
Processors, Dec 2007
* Intel “Core 2” chips similar

By November 1994, firestorm was full on

o IBM said that typical Excel user would encounter bug every month
¢ Assumed 5K divisions per second around the clock

¢ People believed the story

o IBM stopped shipping Pentium PCs

By December 1994, Intel promises full recall

e Total cost: ~$550M

Recent example: Intel’s chipset (January 2011)

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 55

Int 32 Int 64 Fp 32 Fp 64
Add/Subtract 1 1 4 4
Multiply 3 5 4 4
Divide 14t0 40| 23 to 87 16 20

+ Divide is variable latency based on the size of the dividend

» Detect number of leading zeros, then divide
* Floating point divide faster than integer divide? Why?

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic




Summary

App | | App | | App

System software

Mem 110

Integer addition
¢ Most timing-critical operation in datapath
e Hardware != software
¢ Exploit sub-addition parallelism

Fast addition
e Carry-select: parallelism in sum

Multiplication
¢ Chains and trees of additions

Division
Floating point

Next: single-cycle datapath

CIS 371: Comp. Org. | Prof. Milo Martin | Arithmetic 57



