
CIS 371: Computer Organization | Prof. Milo Martin | Introduction 1

CIS 371
Digital Systems Organization and Design

Unit 1: Introduction

Computer

Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania
with sources that included University of Wisconsin slides

by Mark Hill, Guri Sohi, Jim Smith, and David Wood.

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 2

Today’s Agenda
•  Course overview and administrivia

•  What is computer organization anyway?
•  …and the forces that drive it

•  Motivational experiments

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 3

Course Overview

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 4

Pervasive Idea: Abstraction and Layering
•  Abstraction: only way of dealing with complex systems

•  Divide world into objects, each with an…
•  Interface: knobs, behaviors, knobs → behaviors
•  Implementation: “black box” (ignorance+apathy)

•  Only specialists deal with implementation, rest of us with interface
•  Example: car, only mechanics know how implementation works

•  Layering: abstraction discipline makes life even simpler
•  Divide objects in system into layers, layer n objects…

•  Implemented using interfaces of layer n – 1
•  Don’t need to know interfaces of layer n – 2 (sometimes helps)

•  Inertia: a dark side of layering
•  Layer interfaces become entrenched over time (“standards”)
–  Very difficult to change even if benefit is clear (example: Digital TV)

•  Opacity: hard to reason about performance across layers

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 5

Abstraction, Layering, and Computers

•  Computers are complex, built in layers
•  Several software layers: assembler, compiler, OS, applications
•  Instruction set architecture (ISA)
•  Several hardware layers: transistors, gates, CPU/Memory/IO

•  99% of users don’t know hardware layers implementation
•  90% of users don’t know implementation of any layer

•  That’s okay, world still works just fine
•  But sometimes it is helpful to understand what’s “under the hood”

CPU
Hardware

Software

ISA

Mem I/O

System software

App App App

Transistors

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 6

CIS 240: Abstraction and Layering

•  Build computer bottom up by raising level of abstraction

•  Solid-state semi-conductor materials → transistors
•  Transistors → gates
•  Gates → digital logic elements: latches, muxes, adders

•  Key insight: number representation

•  Logic elements → datapath + control = processor
•  Key insight: stored program (instructions just another form of data)
•  Another one: few insns can be combined to do anything (software)

•  Assembly language → high-level language
•  Code → graphical user interface

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 7

Beyond CIS 240

•  CIS 240: Introduction to Computer Systems
•  Bottom-up overview of the entire hardware/software stack
•  Subsequent courses look at individual pieces in more detail

•  CIS 380: Operating Systems
•  A closer look at system level software

•  CIS 277, 330, 341, 350, 390, 391, 455, 460, 461, 462…
•  A closer look at different important application domains

•  CIS 371: Computer Organization and Design
•  A closer look at hardware layers

CPU Mem I/O

System software

App App App

240
380
330, 341, 350, 390, 391, 534, …

371

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 8

Why Study Hardware?
•  Understand where computers are going

•  Future capabilities drive the (computing) world
•  Real world-impact: no computer architecture → no computers!

•  Understand high-level design concepts
•  The best system designers understand all the levels

•  Hardware, compiler, operating system, applications

•  Understand computer performance
•  Writing well-tuned (fast) software requires knowledge of hardware

•  Write better software
•  The best software designers also understand hardware
•  Understand the underlying hardware and its limitations

•  Design hardware
•  Intel, AMD, IBM, ARM, Qualcomm, Apple, Oracle, NVIDIA, Samsung, …

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 9

Penn Legacy

•  ENIAC: electronic numerical integrator and calculator
•  First operational general-purpose stored-program computer
•  Designed and built here by Eckert and Mauchly
•  Go see it (Moore building)

•  First seminars on computer design
•  Moore School Lectures, 1946
•  “Theory and Techniques

for Design of Electronic
Digital Computers”

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 10

Hardware Aspect of CIS 240 vs. CIS 371

•  Hardware aspect of CIS 240
•  Focus on one toy ISA: LC4
•  Focus on functionality: “just get something that works”
•  Instructive, learn to crawl before you can walk
•  Not representative of real machines: 240 hardware is circa 1975

•  CIS 371
•  De-focus from any particular ISA during lectures
•  Focus on quantitative aspects: performance, cost, power, etc.

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 11

CIS 371 Topics

•  Review of CIS 240 level hardware
•  Instruction set architecture
•  Single-cycle datapath and control

•  New
•  Performance, cost, and technology
•  Fast arithmetic
•  Pipelining and superscalar execution
•  Memory hierarchy and virtual memory
•  Multicore
•  Power & energy

Course Goals

•  Three primary goals
•  Understand key hardware concepts

•  Pipelining, parallelism, caching, locality, abstraction, etc.

•  Hands-on design lab
•  A bit of scientific/experimental exposure and/or analysis

• Not found too many other places in the major

•  My role:
•  Trick you into learning something

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 12

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 13

CIS371 Administrivia

•  Instructor
•  Prof. Milo Martin (milom@cis), Levine 606

•  “Lecture” TA
•  Laurel Emurian

•  “Lab” TAs
•  Mishal Awadah, Jinyan Cao, Connie Ho, Jason Mow,

Allison Pearce, Alex Zhang

•  Contact e-mail:
•  cis371@cis.upenn.edu

•  Lectures
•  Please do not be disruptive (I’m easily distracted as it is)

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 14

The CIS371 Lab

•  Lab project
•  “Build your own processor” (pipelined 16-bit CPU for LC4)
•  Use Verilog HDL (hardware description language)

•  Programming language compiles to gates/wires not insns
•  Implement and test on FPGA (field-programmable gate array)
+  Instructive: learn by doing
+  Satisfying: “look, I built my own processor”

•  No scheduled “lab sessions”
•  But you’ll need to use the hardware in the lab for the projects

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 15

Lab Logistics

•  K-Lab: Moore 204
•  Home of the boards, computers, and later in semester … you
•  Good news/bad news: 24 hour access, keycode for door lock
•  “Lab” TA office hours, project demos here, too

•  Tools
•  Digilent XUP-V2P boards
•  Xilinx ISE
•  Warning: all such tools notorious for being buggy and fragile

•  Logistics
•  All projects must run on the boards in the lab
•  Boards and lockers handout … sometime in next few weeks

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 16

CIS371 Resources
•  Three different web sites

•  Course website: syllabus, schedule, lecture notes, assignments
•  http://www.cis.upenn.edu/~cis371/

•  “Piazza”: announcements, questions & discussion
•  https://piazza.com/class#spring2013/cis371
•  The way to ask questions/clarifications
•  Can post to just me & TAs or anonymous to class
•  As a general rule, no need to email me directly
•  Please sign up!

•  “Canvas”: grade book, turning in of assignments
•  https://upenn.instructure.com

•  Textbook
•  P+H, “Computer Organization and Design”, 4th edition? (~$80)
•  New this year: available online from Penn library!

•  https://proxy.library.upenn.edu/login?url=http://site.ebrary.com/lib/upenn/Top?id=10509203

•  Course will largely be lecture note driven

Large Class Size

•  Question: CIS371 keeps growing, how are we going to
handle so many students in a project-based class?

•  Answer: we’ll do the best we can
•  Just one instructor, one lecture TA, but we have six “lab TAs”.

•  We’ll need your help!
•  Post questions on Piazza, so others can see responses

•  Only use email for private & non-technical sort of issues
•  Help out by answering other student’s questions on Piazza
•  Work in the labs during “lab hours” when TAs are present
•  Come to class on time to avoid disrupting others
•  Start labs & homework assignments early

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 17

Coursework (1 of 2)

•  A few homework assignments – individual work
•  Written questions
•  Two total “grace” periods, hand in late, no questions asked

•  48 hour extension
•  Max of one late period per assignment

• Why? so solutions can posted promptly

•  Labs – all done in groups of 3 students
•  Lab 0: getting started, tools intro
•  Lab 1: arithmetic unit
•  Lab 2: single-cycle LC4 & register file
•  Lab 3: single-cycle with “cache” (tentative plan)
•  Lab 4: pipelined LC4: bypassing, branch prediction, with cache

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 18

Coursework (2 of 2)

•  Exams
•  In-class midterm (time & date yet to be determined)
•  Cumulative final exam (time & date set by registrar)

•  [Last year] Attend two research seminars
•  I’m looking into who is visiting this semester

•  Class participation

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 19

Grading

•  A necessary evil
•  Tentative grade contributions:

•  Exams: 50%
• Midterm: 17%
•  Final: 33%

•  Labs: 35%
•  Homework assignments: 9%
•  Class participation: 1%

•  Historical grade distribution: median grade is B+
•  2012: A’s: 42%, B’s: 49%, C’s: 7%, D/F’s: 2%
•  2011: A’s: 40%, B’s: 50%, C’s: 7%, D/F’s: 3%

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 20

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 21

Academic Misconduct
•  Cheating will not be tolerated

•  General rule:
•  Anything with your name on it must be YOUR OWN work
•  Example: individual work on homework assignments

•  Possible penalties
•  Zero on assignment (minimum)
•  Fail course
•  Note on permanent record
•  Suspension
•  Expulsion

•  Penn’s Code of Conduct
•  http://www.vpul.upenn.edu/osl/acadint.html

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 22

Full Disclosure
•  Potential sources of bias or conflict of interest

•  Most of my funding governmental (your tax $$$ at work)
•  National Science Foundation (NSF), DARPA, ONR

•  My non-governmental sources of research funding
•  NVIDIA (sub-contract of large DARPA project, ended last year)
•  Intel
•  Sun/Oracle (hardware donation)

•  Consulting
•  Qualcomm

•  Sabbatical for 2013-2014 academic year
•  Google

•  Collaborators and colleagues
•  Intel, IBM, AMD, Oracle, Microsoft, Google, VMWare, ARM, etc.
•  (Just about every major computer hardware company)

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 23

Recap: CIS 371 in Context
•  Prerequisite: CIS 240

•  Absolutely required as prerequisite
•  Focused on “function”
•  Exposure to logic gates and assembly language programming

•  The “lecture” component of the course:
•  Mostly focuses on “performance”
•  Some coverage of “experimental evaluation”

•  The “lab” component of the course:
•  Focuses on “design”
•  Design a working processor

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 24

Computer Science as an Estuary
Engineering

Design
Handling complexity
Real-world impact

Examples: Internet,
microprocessor

Science
Experiments
Hypothesis
Examples:

Internet behavior,
Protein-folding supercomputer
Human/computer interaction

Mathematics
Limits of computation
Algorithms & analysis

Cryptography
Logic

Proofs of correctness Other Issues
Public policy, ethics, law, security

Where does CIS371 fit into computer science?
 most engineering, some science

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 25

Some CIS 371
(In)Frequently Asked Questions

(FAQs)

FAQs
•  Question: Why is the course (and labs) so difficult?

•  [3.41 out of 4 for “difficulty”, 3.42 for “work required”]

•  Answer:
•  The final lab is just complicated enough to that it cannot be solved via

“brute force” alone
•  Pushes design & debugging skills beyond what you’ve done so far

•  “…there were a few times that it took several hours to find just one
error in our code.” -- 2012 course eval. comment

•  Often more time consuming than “difficult”

•  Question: Ok, then why are they so time consuming?
•  Time spent varies widely from group-to-group
•  Solid design & careful debugging makes a huge difference
•  Another unfortunate reason: the tools are buggy

•  We’re working on some ways to mitigate that this year
•  Much time is spent the last few weeks (when everyone is busy)

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 26

Comments from 2012 Course Evals.

•  “Is this course some sort of a military exercise trying
to test us if we can survive in extreme situations?
Given that every semester, the labs become longer
and harder at some point I expect that students'
health will get damaged. You should see that people
eat junk food and drink a lot of RedBulls and Monsters
which already does damage your body. This is not
okay, think about it.”

•  “Though I found the course to be extremely valuable
and interesting, the amount of work required is very
high, especially in the final month”

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 27

Comments from 2012 Course Evals.

•  “I learned more from this course, especially the
project, than anything else I’ve taken so far.”

•  “I didn't think there could be a class better than
CIS 240, and from a "fun" perspective I still
believe that, but from an academic perspective I
have learned more in CIS 371 than any other
single class that I have had at Penn.”

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 28

Comments from 2012 Course Evals.

•  “You will come out of this course with a much
better understanding of what a computer is, how
it is made, and how it actually works. Was building
a pipelined processor easy? No. Did I spend a lot
of nights-into-mornings in the KLab debugging?
Yes. Was it worth it? Definitely.“

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 29

FAQs

•  Question: If the labs are so difficult, why aren’t they worth a
larger percent of the course grade?
•  “It would be much nicer if the lab, which requires 20-60 hours, be

worth much more than 30%, while exams could be weighted lower.”
– 2012 course evaluation comment

•  Answer:
•  Group nature of labs & grade uniformity/distribution

•  That is, the lab grades are uniform, what varies is time spent
•  Material covered in lectures is important, too

•  Bigger picture answer:
•  You’ll learn a lot from the labs; learning by doing

(no matter how much they are “worth” grade-wise)
•  Again, grades not the main focus; my goal is provide an

environment that tricks you into learning

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 30

FAQs

•  Question: if CIS371 is so hard, why do students generally
like it?

•  Answer:
•  Not sure. I dunno, maybe stockholm syndrome?

•  “Stockholm syndrome, or capture-bonding, is a psychological
phenomenon in which hostages express empathy, sympathy and
have positive feelings towards their captors, sometimes to the
point of defending them.” – wikipedia

•  Or, maybe students did learn a thing or two about a thing or two

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 31

So, Should I Really Take CIS371?

•  Are you a Junior/Senior BSE CIS or CMPE major?
•  Welcome aboard, please fasten your seatbelts

•  Are you a Sophomore BSE CIS or CMPE major?
•  Did you really excel at CIS 240? If not, take it next year

•  Are you a CIS BAS, BA, or minor?
•  Not required, right? Are you really sure you want to take CIS371?

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 32

Should I Really Take CIS371?

Red pill or blue pill?
CIS 371: Computer Organization | Prof. Milo Martin | Introduction 33 CIS 371: Computer Organization | Prof. Milo Martin | Introduction 34

Any other questions?

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 35

What is Computer Organization?

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 36

“Computer Organization”
•  “Digital Systems Organization and Design”

•  Don’t really care about “digital systems” in general
•  “Computer Organization and Design”

•  Computer architecture
•  Definition of ISA to facilitate implementation of software layers
•  The hardware/software interface

•  Computer micro-architecture
•  Design processor, memory, I/O to implement ISA
•  Efficiently implementing the interface

•  CIS 371 is mostly about processor micro-architecture
•  Confusing: architecture also means micro-architecture

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 37

What is Computer Architecture?

•  “Computer Architecture is the science and art of selecting
and interconnecting hardware components to create
computers that meet functional, performance and cost
goals.” - WWW Computer Architecture Page

•  An analogy to architecture of buildings…

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 38

What is Computer Architecture?

Plans

The role of a building architect:

Materials
Steel

Concrete
Brick
Wood
Glass

Goals
Function

Cost
Safety

Ease of Construction
Energy Efficiency
Fast Build Time

Aesthetics

Buildings
Houses
Offices

Apartments
Stadiums
Museums

Design

Construction

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 39

What is Computer Architecture?
The role of a computer architect:

“Technology”
Logic Gates

SRAM
DRAM

Circuit Techniques
Packaging

Magnetic Storage
Flash Memory

Goals
Function

Performance
Reliability

Cost/Manufacturability
Energy Efficiency
Time to Market

Computers
Desktops
Servers

Mobile Phones
Supercomputers
Game Consoles

Embedded

Plans
Design

Manufacturing

Important differences: age (~60 years vs thousands), rate of change,
 automated mass production (magnifies design)

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 40

Computer Architecture Is Different…

•  Age of discipline
•  60 years (vs. five thousand years)

•  Rate of change
•  All three factors (technology, applications, goals) are changing
•  Quickly

•  Automated mass production
•  Design advances magnified over millions of chips

•  Boot-strapping effect
•  Better computers help design next generation

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 41

Design Goals & Constraints
•  Functional

•  Needs to be correct
•  And unlike software, difficult to update once deployed

•  What functions should it support (Turing completeness aside)

•  Reliable
•  Does it continue to perform correctly?
•  Hard fault vs transient fault
•  Google story - memory errors and sun spots
•  Space satellites vs desktop vs server reliability

•  High performance
•  “Fast” is only meaningful in the context of a set of important tasks
•  Not just “Gigahertz” – truck vs sports car analogy
•  Impossible goal: fastest possible design for all programs

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 42

Design Goals & Constraints
•  Low cost

•  Per unit manufacturing cost (wafer cost)
•  Cost of making first chip after design (mask cost)
•  Design cost (huge design teams, why? Two reasons…)
•  (Dime/dollar joke)

•  Low power/energy
•  Energy in (battery life, cost of electricity)
•  Energy out (cooling and related costs)
•  Cyclic problem, very much a problem today

•  Challenge: balancing the relative importance of these goals
•  And the balance is constantly changing

•  No goal is absolutely important at expense of all others
•  Our focus: performance, only touch on cost, power, reliability

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 43

Shaping Force: Applications/Domains
•  Another shaping force: applications (usage and context)

•  Applications and application domains have different requirements
•  Domain: group with similar character

•  Lead to different designs

•  Scientific: weather prediction, genome sequencing
•  First computing application domain: naval ballistics firing tables
•  Need: large memory, heavy-duty floating point
•  Examples: CRAY T3E, IBM BlueGene

•  Commercial: database/web serving, e-commerce, Google
•  Need: data movement, high memory + I/O bandwidth
•  Examples: Sun Enterprise Server, AMD Opteron, Intel Xeon

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 44

More Recent Applications/Domains
•  Desktop: home office, multimedia, games

•  Need: integer, memory bandwidth, integrated graphics/network?
•  Examples: Intel Core 2, Core i7, AMD Athlon

•  Mobile: laptops, mobile phones
•  Need: low power, integer performance, integrated wireless
•  Laptops: Intel Core 2 Mobile, Atom, AMD Turion
•  Smaller devices: ARM chips by Samsung, Qualcomm; Intel Atom

•  Embedded: microcontrollers in automobiles, door knobs
•  Need: low power, low cost
•  Examples: ARM chips, dedicated digital signal processors (DSPs)
•  Over 6 billion ARM cores sold in 2010 (multiple per phone)

•  Deeply Embedded: disposable “smart dust” sensors
•  Need: extremely low power, extremely low cost

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 45

Application Specific Designs

•  This class is about general-purpose CPUs
•  Processor that can do anything, run a full OS, etc.
•  E.g., Intel Core i7, AMD Athlon, IBM Power, ARM, Intel Itanium

•  In contrast to application-specific chips
•  Or ASICs (Application specific integrated circuits)

•  Also application-domain specific processors
•  Implement critical domain-specific functionality in hardware

•  Examples: video encoding, 3D graphics
•  General rules

-  Hardware is less flexible than software
+ Hardware more effective (speed, power, cost) than software
+ Domain specific more “parallel” than general purpose

•  But general mainstream processors becoming more parallel

•  Trend: from specific to general (for a specific domain)
CIS 371: Computer Organization | Prof. Milo Martin | Introduction 46

Technology Trends

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 47

Constant Change: Technology
“Technology”
Logic Gates

SRAM
DRAM

Circuit Techniques
Packaging

Magnetic Storage
Flash Memory

Applications/Domains
Desktop
Servers

Mobile Phones
Supercomputers
Game Consoles

Embedded

•  Absolute improvement, different rates of change
•  New application domains enabled by technology advances

Goals
Function

Performance
Reliability

Cost/Manufacturability
Energy Efficiency
Time to Market

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 48

“Technology”

•  Basic element
•  Solid-state transistor (i.e., electrical switch)
•  Building block of integrated circuits (ICs)

•  What’s so great about ICs? Everything
+  High performance, high reliability, low cost, low power
+  Lever of mass production

•  Several kinds of integrated circuit families
•  SRAM/logic: optimized for speed (used for processors)
•  DRAM: optimized for density, cost, power (used for memory)
•  Flash: optimized for density, cost (used for storage)
•  Increasing opportunities for integrating multiple technologies

•  Non-transistor storage and inter-connection technologies
•  Disk, optical storage, ethernet, fiber optics, wireless

channel

source drain

gate

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 49

Funny or Not Funny?

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 50

Moore’s Law - 1965

Today:
230 transistors

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 51

Technology Trends

•  Moore’s Law
•  Continued (up until now, at least) transistor miniaturization

•  Some technology-based ramifications
•  Absolute improvements in density, speed, power, costs
•  SRAM/logic: density: ~30% (annual), speed: ~20%
•  DRAM: density: ~60%, speed: ~4%
•  Disk: density: ~60%, speed: ~10% (non-transistor)
•  Big improvements in flash memory and network bandwidth, too

•  Changing quickly and with respect to each other!!
•  Example: density increases faster than speed
•  Trade-offs are constantly changing
•  Re-evaluate/re-design for each technology generation

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 52

Technology Change Drives Everything

•  Computers get 10x faster, smaller, cheaper every 5-6 years!
•  A 10x quantitative change is qualitative change
•  Plane is 10x faster than car, and fundamentally different travel mode

•  New applications become self-sustaining market segments
•  Recent examples: mobile phones, digital cameras, mp3 players, etc.

•  Low-level improvements appear as discrete high-level jumps
•  Capabilities cross thresholds, enabling new applications and uses

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 53

Revolution I: The Microprocessor

•  Microprocessor revolution
•  One significant technology threshold was crossed in 1970s
•  Enough transistors (~25K) to put a 16-bit processor on one chip
•  Huge performance advantages: fewer slow chip-crossings
•  Even bigger cost advantages: one “stamped-out” component

•  Microprocessors have allowed new market segments
•  Desktops, CD/DVD players, laptops, game consoles, set-top boxes,

mobile phones, digital camera, mp3 players, GPS, automotive

•  And replaced incumbents in existing segments
•  Microprocessor-based system replaced supercomputers,

“mainframes”, “minicomputers”, etc.

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 54

First Microprocessor

•  Intel 4004 (1971)
•  Application: calculators
•  Technology: 10000 nm

•  2300 transistors
•  13 mm2

•  108 KHz
•  12 Volts

•  4-bit data
•  Single-cycle datapath

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 55

Pinnacle of Single-Core Microprocessors
•  Intel Pentium4 (2003)

•  Application: desktop/server
•  Technology: 90nm (1/100x)

•  55M transistors (20,000x)
•  101 mm2 (10x)
•  3.4 GHz (10,000x)
•  1.2 Volts (1/10x)

•  32/64-bit data (16x)
•  22-stage pipelined datapath
•  3 instructions per cycle (superscalar)
•  Two levels of on-chip cache
•  data-parallel vector (SIMD) instructions, hyperthreading

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 56

Tracing the Microprocessor Revolution

•  How were growing transistor counts used?

•  Initially to widen the datapath
•  4004: 4 bits → Pentium4: 64 bits

•  … and also to add more powerful instructions
•  To amortize overhead of fetch and decode
•  To simplify programming (which was done by hand then)

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 57

Revolution II: Implicit Parallelism
•  Then to extract implicit instruction-level parallelism

•  Hardware provides parallel resources, figures out how to use them
•  Software is oblivious

•  Initially using pipelining …
•  Which also enabled increased clock frequency

•  … caches …
•  Which became necessary as processor clock frequency increased

•  … and integrated floating-point
•  Then deeper pipelines and branch speculation
•  Then multiple instructions per cycle (superscalar)
•  Then dynamic scheduling (out-of-order execution)

•  We will talk about these things
CIS 371: Computer Organization | Prof. Milo Martin | Introduction 58

Pinnacle of Single-Core Microprocessors
•  Intel Pentium4 (2003)

•  Application: desktop/server
•  Technology: 90nm (1/100x)

•  55M transistors (20,000x)
•  101 mm2 (10x)
•  3.4 GHz (10,000x)
•  1.2 Volts (1/10x)

•  32/64-bit data (16x)
•  22-stage pipelined datapath
•  3 instructions per cycle (superscalar)
•  Two levels of on-chip cache
•  data-parallel vector (SIMD) instructions, hyperthreading

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 59

Modern Multicore Processor
•  Intel Core i7 (2009)

•  Application: desktop/server
•  Technology: 45nm (1/2x)

•  774M transistors (12x)
•  296 mm2 (3x)
•  3.2 GHz to 3.6 Ghz (~1x)
•  0.7 to 1.4 Volts (~1x)

•  128-bit data (2x)
•  14-stage pipelined datapath (0.5x)
•  4 instructions per cycle (~1x)
•  Three levels of on-chip cache
•  data-parallel vector (SIMD) instructions, hyperthreading
•  Four-core multicore (4x)

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 60

Revolution III: Explicit Parallelism
•  Then to support explicit data & thread level parallelism

•  Hardware provides parallel resources, software specifies usage
•  Why? diminishing returns on instruction-level-parallelism

•  First using (subword) vector instructions…, Intel’s SSE
•  One instruction does four parallel multiplies

•  … and general support for multi-threaded programs
•  Coherent caches, hardware synchronization primitives

•  Then using support for multiple concurrent threads on chip
•  First with single-core multi-threading, now with multi-core

•  Graphics processing units (GPUs) are highly parallel
•  Converging with general-purpose processors (CPUs)?

To ponder…

Is this decade’s
 “multicore revolution”
comparable to the original

“microprocessor revolution”?

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 61

Technology Disruptions

•  Classic examples:
•  The transistor
•  Microprocessor

•  More recent examples:
•  Multicore processors
•  Flash-based solid-state storage

•  Near-term potentially disruptive technologies:
•  Phase-change memory (non-volatile memory)
•  Chip stacking (also called 3D die stacking)

•  Disruptive “end-of-scaling”
•  “If something can’t go on forever, it must stop eventually”
•  Can we continue to shrink transistors for ever?
•  Even if more transistors, not getting as energy efficient as fast

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 62

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 63

Managing This Mess

•  Architect must consider all factors
•  Goals/constraints, applications, implementation technology

•  Questions
•  How to deal with all of these inputs?
•  How to manage changes?

•  Answers
•  Accrued institutional knowledge (stand on each other’s shoulders)
•  Experience, rules of thumb
•  Discipline: clearly defined end state, keep your eyes on the ball
•  Abstraction and layering

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 64

Recap: Constant Change
“Technology”
Logic Gates

SRAM
DRAM

Circuit Techniques
Packaging

Magnetic Storage
Flash Memory

Applications/Domains
Desktop
Servers

Mobile Phones
Supercomputers
Game Consoles

Embedded Goals
Function

Performance
Reliability

Cost/Manufacturability
Energy Efficiency
Time to Market

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 65

Experimental Motivation

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 66

In-Class Exercise
•  Consider a binary tree

•  Left & right pointers
•  Integer value keys
•  Initialized to be fully balanced

•  Question#1:
•  The average lookup time for tree of size 1024 (1K = 210) is 50ns
•  What about for a a tree of size 1,048,576 (1M = 220)?

•  Question #2:
•  For each item in a tree, look it up (repeatedly)
•  What is the expected distribution of lookup times over all items

•  For a tree with height h
•  That is, what does the histogram of lookup times look like?

while (node != NULL) {!
 if (node->m_data == value) {!
 return node;!
 } else if (node->m_data < value){!
 node = node->m_right;!
 } else {!
 node = node->m_left; !
 }!
 }!

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 67

Limits of Abstraction: Question #1
•  Question#1:

•  The average lookup time for tree of size 1024 (1K) is 50ns
•  What is the expected lookup time for a tree of size 1048576 (1M)?

•  Analysis (from what you know from 121, 240, 320):
•  1024 is 210, 1048576 is 220

•  Binary search is O(log n)
•  Based on that, it will take roughly twice as long to lookup in a 220

tree than a 210 tree
•  Expected time: 100ns

•  Let’s evaluate this experimentally
•  Experiment: create a balanced tree of size n, lookup a random

node 100 million times, find the average lookup time, repeat

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 68

Average Time per Lookup

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 69

Average Time per Lookup

5x

1M

What is going on here?

5x difference

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 70

Average Time per Lookup

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 71

Average Instructions per Lookup

So number of instructions isn’t the problem
CIS 371: Computer Organization | Prof. Milo Martin | Introduction 72

Question #1 Discussion
•  Analytical answer assuming O(log n)

•  210 to 220 will have 2x slowdown

•  Experimental result
•  210 to 220 has a 10x slowdown

•  5x gap in expected from experimental!

•  What is going on?
•  Modern processor have “fast” and “slow” memories

•  Fast memory is called a “cache”
•  As tree gets bigger, it doesn’t fit in fast memory anymore
•  Result: average memory access latency becomes slower

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 73

Limits of Abstraction: Question #2
•  Question #2:

•  What is the expected distribution of lookup times?
•  That is, for a tree with height h, what is the histogram of

repeatedly looking up a random value in the tree?

•  Analysis:
•  50% of nodes are at level n (leaves), slowest
•  25% of nodes are at level n-1, a bit faster
•  12.5% of nodes are at level n-2, a bit faster yet
•  6.25%, 3%, 1.5%…

•  Let’s evaluate this experimentally
•  Experiment: create a balanced tree of size 219, for each node,

lookup it up 100 million times (consecutively), calculate lookup time
for each node, create a histogram

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 74

leaves

non-leaves

What about runtime? (not instructions)

Tree size is 219

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 75 What is going on here?

Min leaf: 25

One at: 62 (max)

Several at 56

Tree size is 219

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 76

Tree size is 219

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 77

Long tail (cut off)

Tree size is 219

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 78

Fastest and Slowest Leaf Nodes (Core2)
•  Expectation:

•  Let’s just consider the leaves
•  Same depth, similar instruction count -> similar runtime

•  Some of the fastest leaves (all ~24): L = Left, R = Right
•  LLLLLLLLLLLLLLLLLL
•  LLLLLLLLLLLLLLLLLR (or any with one “R”)
•  LLRRLLRRLLRRLLRRLL !
•  LLRRLRLRLRLRLRLRLR
•  LLRRRLRLLRRRLRLLRR!

•  RRRRRRRRRRRRRRRRRR
•  was worst than average (~41)!

•  Some of the slowest leaves:
•  RRRRLRRRRLRLRRLLLL (~62)
•  RRRRLRRRRRRLLLRRRL (~56)
•  RRRRRLRRRLRRLRLRLL (~56)

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 79

Question #2 Discussion
•  Analytical expectation

•  50%, 25%, 12.5%, 6.25%, 3%, 1.5%…
•  All leaf nodes with similar runtime

•  Experimental result
•  Significant variation, position in tree matters
•  All “left” is fastest, all “right” is slow, but not the slowest
•  Pattern of left/right seems to matter significantly

•  What is going on?
•  “Taken” branches are slower than “non-taken” branches
•  Modern processors learn and predict branch directions over time

•  Can detect simple patterns, but not complicated ones
•  Result: exact branching behavior matters

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 80

Computer Science as an Estuary
Engineering

Design
Handling complexity
Real-world impact

Examples: Internet,
microprocessor

Science
Experiments
Hypothesis
Examples:

Internet behavior,
Protein-folding supercomputer
Human/computer interaction

Mathematics
Limits of computation
Algorithms & analysis

Cryptography
Logic

Proofs of correctness Other Issues
Public policy, ethics, law, security

Where does CIS371 fit into computer science?
 most engineering, some science

CIS 371: Computer Organization | Prof. Milo Martin | Introduction 81

For Next Time…
•  Sign up for CIS371 on Piazza

•  Start to form a lab group

•  Read Chapter 1 of the textbook

