CIS 371 Computer Organization and Design

Unit 14: (Low) Power and Energy

Power/Energy Are Increasingly Important

- **Battery life** for mobile devices
 - Laptops, phones, cameras

- **Tolerable temperature** for devices without active cooling
 - Power means temperature, active cooling means **cost**
 - No room for a fan in a cell phone, no market for a hot cell phone

- **Electric bill** for compute/data centers
 - Pay for power twice: once in, once out (to cool)

- **Environmental concerns**
 - Electronics account for growing fraction of energy consumption

Energy & Power

- **Energy**: measured in Joules or Watt-seconds
 - Total amount of energy stored/used
 - Battery life, electric bill, environmental impact
 - Instructions per Joule (car analogy: miles per gallon)

- **Power**: energy per unit time (measured in Watts)
 - Related to "performance" (which is also a "per unit time" metric)
 - Power impacts power supply and cooling requirements (cost)
 - Power-density (Watt/mm²): important related metric
 - Peak power vs average power
 - E.g., camera, power "spikes" when you actually take a picture
 - Joules per second (car analogy: gallons per hour)

- Two sources:
 - **Dynamic power**: active switching of transistors
 - **Static power**: leakage of transistors even while inactive

Dynamic Power

- **Dynamic power** (P_{dynamic}): aka switching or active power
 - Energy to switch a gate (0 to 1, 1 to 0)
 - Each gate has capacitance (C)
 - Charge stored is $\sim C \times V$
 - Energy to charge/discharge a capacitor is $\sim C \times V^2$
 - Time to charge/discharge a capacitor is $\sim to V$
 - Result: frequency $\sim to V$
 - $P_{\text{dynamic}} \sim N \times C \times V^2 \times f \times A$
 - N: number of transistors
 - C: capacitance per transistor (size of transistors)
 - V: voltage (supply voltage for gate)
 - f: frequency (transistor switching freq. is $\sim to clock freq.$)
 - A: activity factor (not all transistors may switch this cycle)
Reducing Dynamic Power

- Target each component: \(P_{\text{dynamic}} \sim N \cdot C \cdot V^2 \cdot f \cdot A \)
- **Reduce number of transistors** \((N) \)
 - Use fewer transistors/gates
- **Reduce capacitance** \((C) \)
 - Smaller transistors (Moore's law)
- **Reduce voltage** \((V) \)
 - Quadratic reduction in energy consumption!
 - But also slows transistors (transistor speed is \(\sim \) to \(V \))
- **Reduce frequency** \((f) \)
 - Lower clock frequency (reduces power but not energy) Why?
- **Reduce activity** \((A) \)
 - "Clock gating" disable clocks to unused parts of chip
 - Don’t switch gates unnecessarily

Reducing Static Power

- Target each component: \(P_{\text{static}} \sim N \cdot V \cdot e^{-Vt} \)
- **Reduce number of transistors** \((N) \)
 - Use fewer transistors/gates
- **Disable transistors** (also targets \(N \))
 - "Power gating" disable power to unused parts (long latency to power up)
 - Power down units (or entire cores) not being used
- **Reduce voltage** \((V) \)
 - Linear reduction in static energy consumption
 - But also slows transistors (transistor speed is \(\sim \) to \(V \))
- **Dual \(V_t \)** – use a mixture of high and low \(V_t \) transistors
 - Use slow, low-leak transistors in SRAM arrays
 - Requires extra fabrication steps (cost)
- **Low-leakage transistors**
 - High-K/Metal-Gates in Intel’s 45nm process

Static Power

- **Static power** \((P_{\text{static}}) \): aka idle or leakage power
 - Transistors don’t turn off all the way
 - Transistors "leak"
 - \(P_{\text{static}} \sim N \cdot V \cdot e^{-Vt} \)
 - \(N \): number of transistors
 - \(V \): voltage
 - \(V_t \) (**threshold voltage**): voltage at which transistor conducts (begins to switch)
- Switching speed vs leakage trade-off
 - The higher the \(V_t \):
 - Faster transistors (linear)
 - Leakier transistors (exponential!)

Dynamic Voltage/Frequency Scaling

- **Dynamically trade-off power for performance**
 - Change the voltage and frequency at runtime
 - Under control of operating system
 - Recall: \(P_{\text{dynamic}} \sim N \cdot C \cdot V^2 \cdot f \cdot A \)
 - Because frequency \(\sim \) to \(V \)...
 - \(P_{\text{dynamic}} \sim V^3 \)
- Reduce both \(V \) and \(f \) linearly
 - **Cubic decrease in dynamic power**
 - Linear decrease in performance (actually sub-linear)
 - Thus, only about quadratic in energy
 - Linear decrease in static power
 - Thus, only modest static energy improvement
- Newer chips can do this on a per-core basis
Dynamic Voltage/Frequency Scaling

- Dynamic voltage/frequency scaling
 - Favors parallelism
- Example: Intel Xscale
 - 1 GHz ➔ 200 MHz reduces energy used by 30x
 - But around 5x slower
 - 5 x 200 MHz in parallel, use \(\frac{1}{6} \)th the energy
- Power is driving the trend toward multi-core

<table>
<thead>
<tr>
<th>Mobile Pentium III “SpeedStep”</th>
<th>Transmeta 5400 “LongRun”</th>
<th>Intel X-Scale (StrongARM2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f (MHz)</td>
<td>300–1000 (step=50)</td>
<td>200–700 (step=33)</td>
</tr>
<tr>
<td>V (V)</td>
<td>0.9–1.7 (step=0.1)</td>
<td>1.1–1.6V (cont)</td>
</tr>
<tr>
<td>High-speed</td>
<td>3400MIPS @ 34W</td>
<td>1600MIPS @ 2W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800MIPS @ 0.9W</td>
</tr>
<tr>
<td>Low-power</td>
<td>1100MIPS @ 4.5W</td>
<td>300MIPS @ 0.25W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62MIPS @ 0.01W</td>
</tr>
</tbody>
</table>

Trends in Power

- Supply voltage decreasing over time
 - But “voltage scaling” is (perhaps) reaching its limits
- Emphasis on power starting around 2000
 - Resulting in slower frequency increases

Processor Power Breakdown

- Power breakdown for IBM POWER4
 - Two 4-way superscalar, 2-way multi-threaded cores, 1.5MB L2
 - Big power components are L2, D$, out-of-order logic, clock, I/O
 - Implications on out-of-order vs in-order

Implications on Software

- Software-controlled dynamic voltage/frequency scaling
 - OS? Application?
 - Example: video decoding
 - Too high a clock frequency – wasted energy (battery life)
 - Too low a clock frequency – quality of video suffers
- Managing low-power modes
 - Don’t want to “wake up” the processor every millisecond
- Tuning software
 - Faster algorithms can be converted to lower-power algorithms
 - Via dynamic voltage/frequency scaling
- Exploiting parallelism