How to Compute This Fast?

- Performing the **same** operations on **many** data items
 - Example: SAXPY

```plaintext
for (I = 0; I < 1024; I++) {
    Z[I] = A*X[I] + Y[I];
}
```

- Instruction-level parallelism (ILP) - fine grained
 - Loop unrolling with static scheduling —or— dynamic scheduling
 - Wide-issue superscalar (non-)scaling limits benefits

- Thread-level parallelism (TLP) - coarse grained
 - Multicore
 - Can we do some “medium grained” parallelism?

Data-Level Parallelism

- **Data-level parallelism (DLP)**
 - Single operation repeated on multiple data elements
 - SIMD (Single-Instruction, Multiple-Data)
 - Less general than ILP: parallel insns are all same operation
 - Exploit with **vectors**

- Old idea: Cray-1 supercomputer from late 1970s
 - Eight 64-entry x 64-bit floating point “Vector registers”
 - 4096 bits (0.5KB) in each register! 4KB for vector register file
 - Special vector instructions to perform vector operations
 - Load vector, store vector (wide memory operation)
 - Vector+Vector addition, subtraction, multiply, etc.
 - Vector+Constant addition, subtraction, multiply, etc.
 - In Cray-1, each instruction specifies 64 operations!
 - ALUs were expensive, did not perform 64 operations in parallel!

Today’s CPU Vectors / SIMD
Example Vector ISA Extensions (SIMD)

- Extend ISA with floating point (FP) vector storage ...
 - **Vector register**: fixed-size array of 32- or 64- bit FP elements
 - **Vector length**: For example: 4, 8, 16, 64, ...
- ... and example operations for vector length of 4
 - Load vector: \texttt{ldf.v [X+r1] -> v1}

 \begin{align*}
 \texttt{ldf [X+r1+0] -> v1}_0 \\
 \texttt{ldf [X+r1+1] -> v1}_1 \\
 \texttt{ldf [X+r1+2] -> v1}_2 \\
 \texttt{ldf [X+r1+3] -> v1}_3
 \end{align*}
 - Add two vectors: \texttt{addf.vv v1, v2 -> v3}

 \begin{align*}
 \texttt{add f1, v2} & \rightarrow v3_i \text{ (where } i = 0, 1, 2, 3) \\
 \texttt{add v1, f2} & \rightarrow v3_i \text{ (where } i = 0, 1, 2, 3)
 \end{align*}
 - Today’s vectors: short (128 bits), but fully parallel

Vector Datapath & Implementation

- Vector insn. are just like normal insn... only “wider”
 - Single instruction fetch (no extra N^2 checks)
 - Wide register read & write (not multiple ports)
 - Wide execute: replicate floating point unit (same as superscalar)
 - Wide bypass (avoid N^2 bypass problem)
 - Wide cache read & write (single cache tag check)

- Execution width (implementation) vs vector width (ISA)
 - Example: Pentium 4 and “Core 1” executes vector ops at half width
 - “Core 2” executes them at full width

- Because they are just instructions...
 - ...superscalar execution of vector instructions
 - Multiple n-wide vector instructions per cycle

Example Use of Vectors – 4-wide

\begin{align*}
\texttt{ldf [X+r1] -> v1} \\
\texttt{mul f0, f1 -> f2} \\
\texttt{ldf [Y+r1] -> v3} \\
\texttt{add f2, f3 -> f4} \\
\texttt{stf f4 -> [Z+r1]} \\
\texttt{add r1, 4 -> r1} \\
\texttt{blti r1, 4096, L1}
\end{align*}

- Operations
 - Load vector: \texttt{ldf.v [X+r1] -> v1}
 - Multiply vector to scalar: \texttt{mulf.vs v1, f2 -> v3}
 - Add two vectors: \texttt{addf.vv v1, v2 -> v3}
 - Store vector: \texttt{stf.v v1 -> [X+r1]}

- Performance?
 - Best case: 4x speedup
 - But, vector instructions don’t always have single-cycle throughput
 - Execution width (implementation) vs vector width (ISA)

Intel’s SSE2/SSE3/SSE4...

- **Intel SSE2 (Streaming SIMD Extensions 2) - 2001**
 - 16 128bit floating point registers (\texttt{xmm0- xmm15})
 - Each can be treated as 2x64b FP or 4x32b FP (“packed FP”)
 - Or 2x64b or 4x32b or 8x16b or 16x8b ints (“packed integer”)
 - Or 1x64b or 1x32b FP (just normal scalar floating point)
 - Original SSE: only 8 registers, no packed integer support

- Other vector extensions
 - AMD 3DNow!: 64b (2x32b)
 - PowerPC AltiVEC/VMX: 128b (2x64b or 4x32b)

- Looking forward for x86
 - Intel’s “Sandy Bridge” (2011) brings 256-bit vectors to x86
 - Intel’s “Knights Ferry” multicore will bring 512-bit vectors to x86
Other Vector Instructions

- These target specific domains: e.g., image processing, crypto
 - Vector reduction (sum all elements of a vector)
 - Geometry processing: 4x4 translation/rotation matrices
 - Saturating (non-overflowing) subword add/sub: image processing
 - Byte asymmetric operations: blending and composition in graphics
 - Byte shuffle/permute: crypto
 - Population (bit) count: crypto
- More advanced (but in Intel’s Larrabee/Knights Ferry)
 - Scatter/gather loads: indirect store (or load) from a vector of pointers
 - Vector mask: predication (conditional execution) of specific elements

Using Vectors in Your Code

- Write in assembly
 - Ugh
- Use "intrinsic" functions and data types
 - For example: _mm_mul_ps() and "__m128" datatype
- Use vector data types
 - typedef double v2df __attribute__ ((vector_size (16)));
- Use a library someone else wrote
 - Let them do the hard work
 - Matrix and linear algebra packages
- Let the compiler do it (automatic vectorization, with feedback)
 - GCC’s "-fno-vectorize" option, -fno-vectorizer-verbose=n
 - Limited impact for C/C++ code (old, hard problem)

SAXPY Example: Best Case

- Code
  ```c
  void saxpy(float* x, float* y, float* z, float a, int length) {
    for (int i = 0; i < length; i++) {
      z[i] = a*x[i] + y[i];
    }
  }
  ```
- Scalar
  ```assembly
  .L3:
  movss (%rdi,%rax), %xmm1
  mulss %xmm0, %xmm1
  addps (%rsi,%rax), %xmm1
  movaps %xmm1, (%rdx,%rax)
  addq $4, %rax
  cmpl %r8d, %r9d
  jne .L3
  ```
- Auto Vectorized
  ```assembly
  .L6:
  movaps (%rdi,%rax), %xmm1
  mulps %xmm2, %xmm1
  addps (%rsi,%rax), %xmm1
  movaps %xmm1, (%rdx,%rax)
  addq $16, %rax
  incl %r8d
  cmpl %r8d, %r9d
  ja .L6
  ```
 - + Scalar loop to handle last few iterations (if length % 4 != 0)
 - "mulps": multiply packed 'single'
SAXPY Example: Actual

- **Code**
  ```c
  void saxpy(float* x, float* y, float* z, float a, int length) {
    for (int i = 0; i < length; i++) {
      z[i] = a*x[i] + y[i];
    }
  }
  ```

- **Scalar**
  ```assembly
  movss (%rdi,%rax), %xmm1
  subss (%rsi,%rax), %xmm1
  movss %xmm1l, %xmm1
  addq $4, trax
  cmpq %rcx, trax
  jne .L3
  
  movss (%rdi,%rax), %xmm1
  subss (%rsi,%rax), %xmm1
  movss %xmm1l, %xmm1
  addq $16, trax
  addps %xmm0, %xmm1
  cmp %ecx, %r8d
  ja .L7
  ```

- **Auto Vectorized**
  ```assembly
  movaps (%rdi,%rax), %xmm1
  movaps (%rsi,%rax), %xmm2
  mulps (%rsi,%rax), %xmm2
  movaps 8(%rdi,%rax), %xmm1
  movaps 8(%rsi,%rax), %xmm2
  mulps %xmm4, %xmm1
  incl %r8d
  addps %xmm2, %xmm1
  movaps %xmm1l, %xmm1
  movlps (rdi,%rax), %xmm1
  movlps (rsi,%rax), %xmm2
  movhps 8(%rdi,%rax), %xmm1
  movhps 8(%rsi,%rax), %xmm2
  mulps %xmm4, %xmm1
  incl %r8d
  addps %xmm2, %xmm1
  cmp %edx, %r8d
  ja .L7
  ```

Reduction Example

- **Code**
  ```c
  float diff = 0.0;
  for (int i = 0; i < N; i++) {
    diff += (a[i] - b[i]);
  }
  return diff;
  ```

- **Scalar**
  ```assembly
  movss (%rdi,%rax), %xmm1
  movss (%rsi,%rax), %xmm1
  addq $4, trax
  addps %xmm0, %xmm1
  cmp %edx, %r8d
  ja .L7
  ```

- **Auto Vectorized**
  ```assembly
  movaps (%rdi,%rax), %xmm1
  movaps (%rsi,%rax), %xmm1
  incl %ecx
  subps (%rsi,%rax), %xmm0
  addq $16, trax
  addps %xmm0, %xmm1
  cmp %ecx, %r8d
  ja .L7
  ```

Bridging “Best Case” and “Actual”

- **Align arrays**
  ```c
  typedef float afloat __attribute__((aligned(16)));
  void saxpy(afloat* x, afloat* y, afloat* z, float a, int length) {
    for (int i = 0; i < length; i++) {
      z[i] = a*x[i] + y[i];
    }
  }
  ```

- **Auto Vectorized**
  ```assembly
  movaps (%rdi,%rax), %xmm1
  movaps (%rsi,%rax), %xmm1
  incl %ecx
  subps (%rsi,%rax), %xmm0
  addq $16, trax
  addps %xmm0, %xmm1
  cmp %ecx, %r8d
  ja .L7
  ```

- **Avoid aliasing check**
  ```c
  typedef float afloat __attribute__((aligned(16)));
  void saxpy(afloat* __restrict__ x, afloat* __restrict__ y, afloat* __restrict__ z, float a, int length) {
    for (int i = 0; i < length; i++) {
      z[i] = a*x[i] + y[i];
    }
  }
  ```

- **Even with both, still has the “last few iterations” code**

Today’s GPU’s “SIMT” Model

GPUs and SIMD/Vector Data Parallelism

- Graphics processing units (GPUs)
 - How do they have such high peak FLOPS?
 - Exploit massive data parallelism
- “SIMT” execution model
 - Single instruction multiple threads
 - Similar to both “vectors” and “SIMD”
 - A key difference: better support for conditional control flow
- Program it with CUDA or OpenCL
 - Extensions to C
 - Perform a “shader task” (a snippet of scalar computation) over many elements
 - Internally, GPU uses scatter/gather and vector mask operations

Data Parallelism Recap

- Data Level Parallelism
 - “medium-grained” parallelism between ILP and TLP
 - Still one flow of execution (unlike TLP)
 - Compiler/programmer explicitly expresses it (unlike ILP)
- Hardware support: new “wide” instructions (SIMD)
 - Wide registers, perform multiple operations in parallel
- Trends
 - More advanced and specialized instructions
- GPUs
 - Embrace data parallelism via “SIMT” execution model
 - Becoming more programmable all the time
- Today’s chips exploit parallelism at all levels: ILP, DLP, TLP