
NEUROSYMBOLIC PROGRAMMING IN SCALLOP:

DESIGN, IMPLEMENTATION, AND APPLICATIONS

Ziyang Li

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2025

Supervisor of Dissertation

Mayur Naik, Misra Family Professor, University of Pennsylvania

Graduate Group Chairperson

Anindya De, Associate Professor, University of Pennsylvania

Dissertation Committee

Rajeev Alur, Zisman Family Professor, University of Pennsylvania
Chris Callison-Burch, Professor, University of Pennsylvania
Armando Solar-Lezama, Distinguished Professor of Computing, MIT
Val Tannen, Professor, University of Pennsylvania

NEUROSYMBOLIC PROGRAMMING IN SCALLOP:

DESIGN, IMPLEMENTATION, AND APPLICATIONS

COPYRIGHT

2025

Ziyang Li

To my parents, for their endless support. To Jiani, for walking every step with me.

iii

ACKNOWLEDGEMENT

This dissertation is a culmination of not just years of research, engineering, and reflection, but also a

deeply personal journey shaped by the wisdom, support, laughter, music, and love shared with many

wonderful people. I owe each of you a note in this symphony.

First and foremost, I am endlessly grateful to my advisor, Mayur Naik. Mayur, your mastery of

our field and your unwavering support have been a compass throughout my PhD. Your attention

to detail and relentless pursuit of clarity have sharpened my thinking. Yet, it is your trust, your

willingness to let me spend hours tinkering with engineering, and your pride in giving me the freedom

to explore, that made all the difference. Thank you for giving me the opportunity to be your PhD

student, even though we first met by chance, in an unplanned half-hour conversation. Thank you for

giving me the stage at summer schools, letting me stand alongside accomplished professors to teach

the Scallop language. And thank you for every false alarm about my papers being doomed—I’ve

never felt so prepared for heartbreak, only to be blindsided by surprises of acceptance emails. Those

moments became milestones. I feel truly blessed to have had you as my advisor.

To my partner, my love, and my comrade-in-research, Jiani Huang. There are no words that can

fully capture what you’ve given me. From the very first walk through the campus of Penn to the

final days of writing this dissertation, you’ve been with me. Our research conversations flowed like

music, ideas bouncing in rhythm with scribbles on scratch paper. You are not just my intellectual

partner, but also the heart of our band, the brightest star in every outfit, and the chef behind our

most comforting dinners. Thank you for your love, your brilliance, and for walking this road with

me. Also, thank you for every dead joke you told, followed by my confused stare and your patient

(and occasionally smug) explanation. I may never understand half of them, but I laughed anyway

because they came from you.

I owe a lifelong debt of gratitude to my parents and grandparents, for their unwavering emotional and

financial support through every chapter of my academic life. To my grandfather and grandmother,

thank you for planting the seed. I still remember living in university faculty housing as a child,

iv

surrounded by chalkboards, books, and the quiet hum of thought. The light of academia has been

with me since the beginning, long before I knew the word “research.” It is you who passed to me

that passion to search for light, to find and share knowledge, and to chase down ideas like fireflies,

no matter how late it gets.

To Rajeev Alur, thank you for being not just a committee chair, but a steadfast guide. Your insights

both on research and the larger rhythm of academic life have helped me grow into the researcher

and person I hoped to become. To my committee members Val Tannen, Chris Callison-Burch, and

Armando Solar-Lezama, thank you for your thoughtful feedback, inspiring questions, and for shaping

this work with your expertise and care.

I extend my gratitude to the mentors who generously shared their guidance and belief in me:

Baishakhi Ray and Isil Dillig. Thank you for your encouragement and support.

To the teachers who first set me on this path: Deian Stefan, thank you for introducing me to the

beauty of programming languages and security; Ranjit Jhala, for letting me TA and discover the

joy of logic programming; and Ravi Ramamoorthi, who opened my eyes to the magic of computer

graphics and the wonder of research during my undergraduate days.

To my brilliant collaborators: thank you not only for your expertise but also for your friendship. I’ve

been lucky to work with and learn from: Xujie Si, Elizabeth Dinella, Saikat Dutta, Aravind Machiry,

Ke Wang, Yinjun Wu, Xin Zhang, Sernam-Lim, Hanjun Dai, Hanlin Zhang, Kexin Pei, Alex Gu,

Binghong Chen, Anton Xue, Paul Biberstein, Claire Wang, Neelay Velingker, Mayank Keoliya, Alaia

Solko-Breslin, Aaditya Naik, Adam Stein, Avishree Khare, Harsh Parekh, Shu Yang, Li Zhang, Qing

Lyu, Pengyuan Lu, Fengjun Yang, Junyao Shi, Zhiyang Wang, Mingyuan Zhang, and Yishuai Li.

To my mentees, especially Jason Liu, thank you for trusting me to walk alongside you, even as I was

learning myself.

To my bandmates, who brought music into my life every other week: Li Zhang, Zhenglong Zhou,

Yilong Huang, Muyang Cheng, and of course, Jiani Huang again. Thank you for the joy, the jamming,

v

and the shared passion that transcended the work. Special thanks to all my labmates who came out

to cheer us on. You made every performance feel like home.

And most importantly, to my inner circle, who supported me through every challenge and triumph.

A special note of gratitude to my high school classmates who grew into fellow PhD travelers: Weichen

Liu, Yizhe Huang, Qiwei Dong, Risheng Tan, and Siyang Zhang. You kept me grounded, lifted me

up when I faltered, and made this long journey feel less solitary. This dissertation is not mine alone;

it is a mosaic of all the people who believed in me, piece by piece, moment by moment.

With all my heart, thank you.

vi

ABSTRACT

NEUROSYMBOLIC PROGRAMMING IN SCALLOP:

DESIGN, IMPLEMENTATION, AND APPLICATIONS

Ziyang Li

Mayur Naik

Neurosymbolic programming combines the otherwise complementary worlds of deep learning and

symbolic reasoning. It thereby enables more accurate, interpretable, and domain-aware AI solutions

that surpass purely neural or symbolic approaches. While significant advances have been made in

domain-specific neurosymbolic methods, the field lacks a unified programming system for general

neurosymbolic applications.

This dissertation proposes Scallop, a language for neurosymbolic programming. Scallop is relational

and declarative, offering expressive reasoning capabilities such as recursion, negation, and aggregation.

Scallop supports discrete, probabilistic, and differentiable modes of reasoning, allowing for seamless

integration with diverse neurosymbolic pipelines. Scallop employs a provenance framework, which

supports numerous reasoning back-ends that balance reasoning accuracy and scalability. Additionally,

Scallop offers extensive tooling to integrate with PyTorch and a foreign interface for incorporating

modern foundation models.

Beyond presenting the design and implementation of Scallop, this dissertation demonstrates its

versatility through applications in the domains of computer vision, natural language processing,

security, program analysis, planning, and bioinformatics. These applications span natural language

reasoning, image and video scene graph generation, program vulnerability detection, and RNA

secondary structure prediction. Through extensive empirical studies, we demonstrate that Scallop-

based neurosymbolic solutions achieve superior accuracy, interpretability, and data efficiency.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENT . iv

ABSTRACT . vii

LIST OF TABLES . xi

LIST OF ILLUSTRATIONS . xiii

CHAPTER 1 : Introduction . 1

1.1 Neurosymbolic Programming . 1

1.2 Scallop: What and Why . 4

1.3 Building Blocks for Neurosymbolic Methods . 5

1.4 Application Domains . 9

1.5 Contributions . 11

1.6 Thesis Structure . 13

CHAPTER 2 : Basics of Programming in Scallop . 14

2.1 Relations, Data Types, and Facts . 14

2.2 Logic Rules . 17

2.3 Recursion, Negation, and Aggregation . 20

2.4 Programming with Probabilities . 24

2.5 On-Demand Computations . 26

2.6 Algebraic Data Types . 28

2.7 Foreign Interface . 30

CHAPTER 3 : Core Reasoning Provenance Framework . 36

3.1 Provenance Framework . 36

3.2 SclRam Intermediate Language . 38

3.3 Operational Semantics of SclRam . 39

viii

3.4 External Interface and Execution Pipeline . 45

3.5 Exact Probabilistic Reasoning with Provenance . 46

3.6 Approximated Provenance for Scalable Reasoning . 49

3.7 Differentiable Reasoning . 60

3.8 Practical Extensions . 62

CHAPTER 4 : Programming with Scallop and Foundation Models 66

4.1 Extensible Plugin Library . 67

4.2 Large Language Models . 68

4.3 Embedding Models and Vector Databases . 75

4.4 Vision and Multi-Modal Models . 76

4.5 Case Study: Face Tagging by Foundation Model Relations 78

4.6 Case Study: Visual Question Answering on Scene Images 80

CHAPTER 5 : Scallop Benchmarks and Evaluations . 89

5.1 Basic Scallop Benchmarks . 89

5.2 Scallop Benchmarks with Foundation Models . 99

5.3 Case Study: Summing Two MNIST Digits . 108

5.4 Case Study: Evaluating Handwritten Formulas . 111

5.5 Case Study: Playing the PacMan-Maze Game . 115

5.6 Case Study: Learning Composition Rules for Kinship Reasoning 120

CHAPTER 6 : Application: Video Scene Graph Generation 128

6.1 Illustrative Overview . 130

6.2 Problem Definition . 131

6.3 Neurosymbolic Solution with Scallop . 132

6.4 Empirical Evaluation . 144

6.5 Related Work . 150

CHAPTER 7 : Application: Security Vulnerability Detection 152

ix

7.1 Illustrative Overview . 154

7.2 Problem Definition . 156

7.3 Neurosymbolic Solution with Scallop . 157

7.4 Empirical Evaluation . 164

7.5 Related Work . 170

CHAPTER 8 : Application: RNA Secondary Structure Prediction 172

8.1 Problem Definition . 174

8.2 Neurosymbolic Solution with Scallop . 175

8.3 Empirical Evaluation . 183

8.4 Related Work . 185

CHAPTER 9 : Conclusions . 187

9.1 Limitations . 188

9.2 Future Works . 188

BIBLIOGRAPHY . 190

x

LIST OF TABLES

TABLE 2.1 The list of primitive types in Scallop along with their descriptions. 16

TABLE 5.1 Characteristics of Scallop solutions for each task. Structured input which
is not learnt is denoted by ∗. Neural models used are RoBERTa (Liu et al.,
2019), DistilBERT (Sanh et al., 2019), and BiLSTM (Graves et al., 2013) for
natural language (NL), CNN and FastRCNN (Girshick, 2015) for images, and
S3D (Xie et al., 2018) for video. We show the three key features of Scallop used
by each solution: (R)ecursion, (N)egation, and (A)ggregation. †: For MNIST-R,
the LoC is 2 for every subtask. 93

TABLE 5.2 PacMan-Maze performance comparison to DQN. 94
TABLE 5.3 Runtime efficiency comparison on selected benchmark tasks. Numbers shown are

average training time (sec.) per epoch. Our variants attaining the best accuracy
are indicated in bold. 96

TABLE 5.4 Testing accuracy of various methods on HWF when trained with only a portion
of the data. Numbers are in percentage (%). 98

TABLE 5.5 Characteristics of benchmark tasks including the dataset used, its size, and
evaluation metrics. Metrics include exact match (EM), normalized discounted
cumulative gain (nDCG), and manual inspection (MI). We also denote the
foundation models used in our solution for each task. 100

TABLE 5.6 The lines-of-code (LoC) numbers of our solutions for each dataset. The LoC
includes empty lines, comments, natural language prompts, and DSL definitions.
We note specifically the LoC of prompts in the table. 104

TABLE 5.7 The performance on the natural language reasoning datasets. Numbers are in
percentage (%). 104

TABLE 5.8 The performance on the HotpotQA and Amazon ESCI. We also include perfor-
mance numbers from methods which are fine-tuned on the corresponding dataset.
. 104

TABLE 5.9 Quantitative results on the VQA datasets. 107
TABLE 5.10 Quantitative results on object tagging and image editing tasks. We manually

evaluate the tagged entities and the edited images for semantic correctness rates. 108
TABLE 5.11 Higher-order predicate examples. 122
TABLE 5.12 Showcase of the learnt logic rules (expressed as first order Horn rules) with

top@20 confidence of CLUTRR rule learning. 127

TABLE 6.1 We show the performance improvements of base backbone models and their
fine-tuned version, on the R@k metrics of unary and binary predicate prediction.
As shown by the increments, Scallop’s weak supervisory learning framework
significantly enhances all three models’ performance on the STSG extraction
tasks. 146

TABLE 7.1 Overall performance comparison of CodeQL vs IRIS-Scallop on Detection Rate
(↑), Average FDR (↓), and Average F1 (↑). We present results of IRIS-Scallop
with LLMs including GPT-4 and GPT-3.5, L3 8B and 70B, Q2.5C 32B, G2 27B,
and DSC 7B. 167

xi

TABLE 7.2 Per-CWE statistics of number of vulnerabilities detected (#Detected) by baselines
and IRIS. The compared baselines are CodeQL (QL), Facebook Infer (Infer),
Spotbugs (SB), and Snyk. The values in parentheses show the differences of
detection by IRIS-Scallop against CodeQL. 168

TABLE 8.1 Performance of ScallopFold on ArchiveII dataset compared to baselines. 183

xii

LIST OF ILLUSTRATIONS

FIGURE 1.1 Comparison of different paradigms. Logic program λ accepts only structured
input r whereas neural model Mθ with parameter θ can operate on unstructured
input x. Supervision is provided on data indicated in double boxes. Under algo-
rithmic supervision, a neurosymbolic program must learn θ without supervision
on r. 2

FIGURE 1.2 Neurosymbolic compositions of neural component (Mθ) and symbolic component
(λ), which serve as building-blocks for more complex neurosymbolic applications.
We use solid arrows to denote forward data-flows, and dashed arrows to denote
backward data-flows used to supervise the learning of the target component. . 6

FIGURE 2.1 A sample graph with three nodes. 17
FIGURE 2.2 The dependency graph associated with the edge-path program. 20
FIGURE 2.3 A simple language for integer arithmetic expressions. An expression can be

either a simple integer i, an addition of two expressions, or a subtraction of
two expressions. 29

FIGURE 3.1 Core algebraic interface for provenance T . 37
FIGURE 3.2 Abstract syntax of core fragment of SclRam. 38
FIGURE 3.3 Annotations of semantic domains for SclRam. 39
FIGURE 3.4 Operational semantics of core fragment of SclRam. 40
FIGURE 3.5 A grid based maze used as a motivating example in this section. Shown in (a),

the grid is 3× 3 with a PacMan located in location (1,C), two enemies located
in locations (2,B) and (2,C), and the goal flag located in location (3,C). For
illustration purpose, we assume entities are located in a given cell with a certain
probability shown in (b) and (c). The Scallop program that describes the maze
configuration is shown in (d). 41

FIGURE 3.6 In (a), we demonstrate a Scallop rule computing the safe_cells, which are
cells that do not contain an enemy. The rule makes use of negation, and the
compiled SclRam code, shown in (b) involves a difference operation (−) on
grid_cell and enemy relations. Figures (c), (d), and (e) illustrate evaluation of
the SclRam code under different semantics, where (e) instantiates the tagged
semantics with max-min-prob provenance. 42

FIGURE 3.7 An example counting enemies in the PacMan maze shown in Figure 3.5a. Shown
in (a) and (b) are the Scallop rule and compiled SclRam rule with aggregation.
In (c), we show two normalized (⟨.⟩ defined in Figure 3.4) evaluation results
under abstract tagged semantics and with mmp provenance. Under the mmp
provenance, the outcome with two enemies has the highest probability, which
aligns with our intuition. 43

xiii

FIGURE 3.8 A demonstration of the fixed-point iteration to check whether actor at (1, C)
can reach (3, C) without hitting an enemy (within the maze configuration shown
in Figure 3.5a). The Scallop rule to derive this is defined on the top, and we
assume bidirectional edges are populated and tagged by 1. Let t(1,C)-(3,C) be
the tag associated with path(1,C,3,C). 2nd iter is the first time t(1,C)-(3,C) is
derived, but the path is blocked by an enemy. On 6th iter, the best path

is derived in the tag. After that, under the mmp provenance, both the tag
t(1,C)-(3,C) and the database Fmmp are saturated, causing the iteration to stop.
Compared to untagged semantics in Datalog which will stop after 4 iterations,
SclRam with mmp saturates slower but allowing to explore better reasoning
chains. 44

FIGURE 3.9 Execution pipeline with external interface. 45
FIGURE 3.10 Definitions related to boolean formulas in disjunctive normal form 46
FIGURE 3.11 The SclRam evaluation result with proofs-prob on the rule shown in Fig-

ure 3.6. As shown in the first row, we assume that facts in grid_cell and
enemy are provided as base facts with given probabilities. Therefore, each of
the 4 shown facts on the second row is assigned a unique boolean variable
v1, . . . , v4. The third row has the two IDB facts tagged by boolean formulas
such as v1∧¬v3. In the end, the output facts are tagged by probabilities derived
by WMC-based recovery procedure. 48

FIGURE 3.12 Derivation of set-of-proofs under different operations. 50
FIGURE 3.13 Illustration of top-k conjunction using k = 3. Each ellipse represents a

proof of the fact shown in the box. Given the top 3 proofs for each of
“label(o2, "animal")” and “subgoal(o2)”, we wish to derive the top 3 proofs
for their conjunction, “target(o2)”. The join yields 9 possible proofs. After
computing the likelihood for each of the 9 proofs, we keep the top 3 most likely
ones (green ellipses) and discard the rest (white ellipses). 51

FIGURE 3.14 Operations on dual-number D ≜ [0, 1] × Rn, where n is the number of input
probabilities. 60

FIGURE 3.15 Definitions of three differentiable provenances. 61

FIGURE 4.1 Two example programs in Scallop using foundation models. 67
FIGURE 4.2 Conversation history between User (messages generated by gpt FA) and GPT-

4 (gpt-4-0613) Assistant via OpenAI API after executing the program in
Listing 4.4. 70

FIGURE 4.3 The GPT-4 conversation history after executing the program in Listing 4.7,
with annotations and redactions in italics. 74

FIGURE 4.4 The face-tagging input (left) and output (right) of the image with descriptive
filename microsoft_ceos.jpeg. 78

FIGURE 4.5 An example problem in CLEVR. Our model is supposed to answer the given
question based on the image shown on the left. 80

FIGURE 4.6 An illustration of the segment_image relation. 81

xiv

FIGURE 4.7 A “conversation” between Scallop and the LLM for semantically parsing the
NL question into programmatic query in our domain specific language (List-
ing 4.18). We use few-shot prompting in order to generate accurate program-
matic query. Everything except the last bubble (green) is generated by our
@gpt_semantic_parse foreign attribute–the assistance response for few-shot
examples are also mocked to give the LLM an impression of the expected output
format. 85

FIGURE 4.8 The functional semantics of our defined DSL. We show the type of each “function”
as well as their concrete definitions. Here, S = {big, small} represents the
set of shapes and C = {red, blue, . . . } represents the set of all possible colors
appearing in the dataset. 87

FIGURE 5.1 Visualization of benchmark tasks. Beside the name of each task we specify the
size of the training dataset and the output domain. PacMan-Maze is omitted
since it will be presented in detail in Section 5.5. 90

FIGURE 5.2 MNIST-R suite accuracy comparison. 94
FIGURE 5.3 HWF learning curve. 94
FIGURE 5.4 Overall benchmark accuracy comparison. The best-performing provenance

structure for our solution is indicated for each task. Among the shown tasks,
dtkp performs the best on 6 tasks, damp on 2, and dmmp on 1. 95

FIGURE 5.6 Systematic generalizability on CLUTRR dataset. 97
FIGURE 5.7 The predicted most likely (action, mod) pair for example video segments from

Mugen dataset. 97
FIGURE 5.8 Benchmark tasks. The top of each box lists the dataset(s) and the foundation

models used in our solutions. 101
FIGURE 5.9 Illustrative comparisons between our solution and GPT-4 (zero-shot CoT) on

selected questions from DR, CLUTRR, and GSM8K datasets. We also include
the extracted relations used for subsequent reasoning. 106

FIGURE 5.10 Systematic generalizability comparisons on the CLUTRR and TSO datasets. 107
FIGURE 5.11 Qualitative comparison of image editing. Compared to InstructPix2Pix, our

image editing method follows the instructed edits better, as it successfully
changed the bowl into plate and apples to oranges. 108

FIGURE 5.12 Illustration of applying Scallop’s top-k-proofs provenance on the task +
= 10 using different values of parameter k. 109

FIGURE 5.13 One hand-written formula 1 + 3÷ 5 which should evaluate to 1.6. 111
FIGURE 5.14 Illustration of a planning application PacMan-Maze in Scallop. 116
FIGURE 5.15 Overview of kinship reasoning with an example where “Anne is the niece of

Dorothy” can be inferred from the context. We abbreviate the names with their
first initials in the relational symbols, and the composite relationship with “co”. 120

FIGURE 5.16 The family graph corresponding to the story shown in Figure 5.15. Edges
representing family relations directly extracted from the story are colored in
black, while those requiring derivation using common sense knowledge are
colored in blue. Additionally, names are abbreviated using their initials. . . . 121

xv

FIGURE 6.1 An example from 20BN demonstrating the end-to-end learning pipeline. The
model Mθ processes a video to generate a probabilistic STSG. With 3-shot
GPT-4, an STSL specification is derived from the video caption, which describes
a temporal sequence of two events: “the box is on the desk touched by a hand”
and “the box is not above the desk.” The alignment checker then aligns the
STSL program with the probabilistic STSG. 128

FIGURE 6.2 Two illustrative examples of videos and captions and their spatio-temporal
alignment, from the 20BN and the MUGEN dataset. 130

FIGURE 6.3 Pipeline illustration with SigLIP (Zhai et al., 2023) as the backbone model for
probabilistic STSG generation. 132

FIGURE 6.4 The formal syntax of STSL, where a represents relational predicates, c represents
constants, and v represents variables. Here, ∧, and ¬ represents logical “and”,
“or”, and “not”. Formula may also contain temporal operators ⃝ (next), U
(until), □ (global), and ♢ (finally). 133

FIGURE 6.5 An illustration of our pipeline for natural language caption to programmatic
spatio-temporal specification. 135

FIGURE 6.6 Formal semantics of STSL. ⟨w, s⟩ |= ψ means the STSL specification ψ is aligned
with the ST-SG w starting from time s. We use w |= ψ as an abbreviation for
⟨w, 1⟩ |= ψ. 136

FIGURE 6.7 The evaluation process aligning a spatio-temporal scene graph (DB) with a
specification climb U walk. This figure elides showing the arguments of the
relational predicates and focuses only on matching sequential events. 136

FIGURE 6.8 Illustration of the inference modes of SGClip for three types of concepts: entity
classes, attributes, and binary relations. While the model stays the same, the
three inference modes perform different pre- and post-processing for a more
accurate semantic estimation of probabilities. 141

FIGURE 6.9 Illustration of the construction of ESCA-Video-87K dataset and the model-
driven self-supervised fine-tuning pipeline of our SGClip model. In addi-
tion to videos and their natural language captions, ESCA-Video-87K in-
cludes object traces, open-domain concepts, and programmatic specifications
for 87K video-caption pairs. The dataset is then used to train SGClip via
LASER (Huang et al., 2025), a neurosymbolic learning procedure based on
spatial-temporal alignment. 143

FIGURE 6.10 Data-efficient fine-tuning on OpenPVSG dataset with Scallop: Providing only
10%, 50%, and 100% of the training dataset significantly enhances the perfor-
mance of CLIP model. 147

FIGURE 6.11 Per-predicate F1 score performance comparison of LASER, LASER-P, and
GPA, all trained on the full 20BN dataset. LASER-P outperforms GPA on
71% of predicates, and LASER outperforms GPA on 59% of the predicates. . 148

FIGURE 6.12 Qualitative study of the model trained with Scallop on the full 20BN dataset.
Each row displays a sequence of frames from a video, with bounding boxes
labeled by object IDs. The left side of each row shows the action label, while
the bottom of each row lists the attributes and relationships associated with
the objects, along with the corresponding likelihoods of these facts holding true. 149

xvi

FIGURE 6.13 The zero-shot performance of SGClip compared to CLIP (shown in dashed
lines) on OpenPVSG, Action Genome, and VidVRD datasets. We showcase the
Recall@1 metrics on entity class prediction, as well as the Recall@10 metrics
on binary relation prediction. To illustrate data-efficiency, we include the
performance of checkpoints of SGClip when trained on 1K, 10K, or 87K (full)
portion of ESCA-Video-87K. 150

FIGURE 6.14 Down-stream fine-tunability on action recognition, evaluated on ActivityNet
dataset. We also illustrate zero-shot baselines (BIKE and Text4vis) as well as
a fully-supervised baseline (InternVL-6B). 150

FIGURE 7.1 Overview of the IRIS neurosymbolic system. It checks a given whole repository
for a given type of vulnerability (CWE) and outputs a set of potential vulnerable
paths with explanations. 153

FIGURE 7.2 An example of Code Injection (CWE-94) vulnerability found in cron-utils (CVE-
2021-41269) that CodeQL fails to detect. We number the program points of
the vulnerable path. 155

FIGURE 7.3 An illustration of the IRIS-Scallop pipeline. 157
FIGURE 7.4 LLM user prompt and response for contextual analysis of dataflow paths. In

the user prompt, we mark with color the CWE and path information that is
filling the prompt template. For cleaner presentation, we modify the snippets
and left out the system prompt. 163

FIGURE 7.5 Steps for curating CWE-Bench-Java, and dataset statistics. 164
FIGURE 7.6 A previously unknown vulnerability found in alluxio 2.9.4. The snippets are

slightly modified for presentation purpose. A user with database restoration
permission may supply a database checkpoint Zip file with malicious entry
name. When unzipped, the entry may be written to an arbitrary directory,
causing a Zip-Slip vulnerability (CWE-022) that could corrupt the hosting
server. 168

FIGURE 7.7 Recall of LLM-inferred taint specifications against CodeQL’s taint specifications.169
FIGURE 7.8 Estimated precision of LLM-inferred specifications on randomly sampled labels. 169

FIGURE 8.1 Illustration of the RNA folding problem. We visualize the output RNA sec-
ondary structure in the bottom. The grey arrow indicates the direction in
which the indexes of nucleotides are increasing. 173

FIGURE 8.2 The set of terminal symbols used to represent RNA secondary structure tokens,
along with a context-free grammar (CFG) that parses a sequence of these tokens
into a valid secondary structure. 176

FIGURE 8.3 We illustrate two plausible ways of parsing the RNA subsequence AAUG...GAUU:
one more probable (solid arrow) and one less probable (dashed arrow). The
difference is whether the subsequence is parsed into a helix stack or a loop. . 178

FIGURE 8.4 The ScallopFold pipeline. Relations in red illustrates the computation that are
off-loaded to GPU accelerated Scallop runtime, Lobster. 179

FIGURE 8.5 In this example, we compile a part of the rule shown in Listing 8.1 (line 22).
The code block on the top shows the Scallop rule, while bottom-left illustrates
the abstract syntax tree of the APM program compiled from it. We expand
the node r1 and r4 on the right to show their low-level APM code. 181

xvii

FIGURE 8.6 An illustration of the top-1-proof provenance in action. Consider the RNA se-
quence adapted from our motivating example in Figure 8.1 and Figure 8.3. While
(a) shows the derivation process of the top-1-proof for the fact paired_ss(18,28),
(b) illustrates the corresponding memory layout after derivation. 182

FIGURE 8.7 The speedup of Lobster across different RNA sequence lengths relative to Scallop. 184

xviii

CHAPTER 1

Introduction

1.1 Neurosymbolic Programming

Classical algorithms and deep learning embody two prevalent paradigms of modern programming.

Classical algorithms are well suited for exactly-defined tasks, such as sorting a list of numbers or

finding a shortest path in a graph. Deep learning, on the other hand, is well suited for tasks that are

not tractable or feasible to perform procedurally, such as detecting objects in an image or parsing

natural language text. These tasks are typically specified using a set of input-output training data,

and solving them involves learning the parameters of a deep neural network to fit the data using

gradient-based methods.

The two paradigms are complementary in nature. For instance, a classical algorithm such as the logic

program λ shown in Figure 1.1a is interpretable but operates on limited, structured input r. On the

other hand, a deep neural network such as Mθ shown in Figure 1.1b can operate on rich, unstructured

input x but is not interpretable. Modern applications demand the capabilities of both paradigms.

Examples include question answering (Rajpurkar et al., 2016), code completion (Chen et al., 2021),

and mathematical problem solving (Lewkowycz et al., 2022), among many others. For instance,

code completion requires deep learning to comprehend programmer intent from the code context,

and classical algorithms to ensure that the generated code is correct. A natural and fundamental

question then is how to program such applications by integrating the two paradigms.

Neurosymbolic programming is an emerging paradigm that aims to fulfill this goal (Chaudhuri et al.,

2021). It seeks to integrate symbolic knowledge and reasoning with neural architectures for better

efficiency, interpretability, and generalizability than the neural or symbolic counterparts alone.

Consider the task of hand-written formula evaluation (Li et al., 2020a), which takes as input a

formula as an image, and outputs a number corresponding to the result of evaluating it. An

input-output example for this task is ⟨x = , y = 1.6⟩. A neurosymbolic program for this

1

r λ y

(a) Logic program.

x Mθ y

∂y
∂θ

(b) Neural model.

x Mθ r λ y

∂y
∂r

∂r
∂θ

(c) A basic neurosymbolic program.

Figure 1.1: Comparison of different paradigms. Logic program λ accepts only structured input r
whereas neural model Mθ with parameter θ can operate on unstructured input x. Supervision is
provided on data indicated in double boxes. Under algorithmic supervision, a neurosymbolic program
must learn θ without supervision on r.

task, such as the one shown in Figure 1.1c, might first apply a convolutional neural network Mθ to

the input image to obtain a structured intermediate form r as a sequence of symbols [‘1’, ‘+’, ‘3’,

‘/’, ‘5’], followed by a classical algorithm λ to parse the sequence, evaluate the parsed formula, and

output the final result 1.6.

Despite significant strides in individual neurosymbolic applications (Yi et al., 2018; Mao et al., 2019;

Chen et al., 2020b; Li et al., 2020a; Minervini et al., 2020; Wang et al., 2019), there is a lack of a

language with compiler support to make the benefits of the neurosymbolic paradigm more widely

accessible. We set out to develop such a language and identified five key criteria that it should

satisfy in order to be practical. These criteria, annotated by the components of the neurosymbolic

program in Figure 1.1c, are as follows:

1. A symbolic data representation for r that supports diverse kinds of data, such as image, video,

natural language text, tabular data, and their combinations.

2. A symbolic reasoning language for λ that expresses common reasoning patterns such as recursion,

negation, and aggregation.

3. An automatic and efficient differentiable reasoning engine for learning (∂y∂r) under algorithmic

supervision, i.e., supervision on observable input-output data (x, y) but not r.

4. The ability to tailor learning (∂y∂r) to individual applications’ characteristics, since non-continuous

loss landscapes of symbolic programs hinder learning using a one-size-fits-all method.

5. A mechanism to leverage and integrate with existing training pipelines (∂r∂θ), implementations of

2

neural architectures and models Mθ, and hardware (e.g. GPU) optimizations.

In addition to the above criteria, we identified three general challenges that any practical neurosym-

bolic system must address:

Programmability Many neurosymbolic approaches are hard-coded or specialized to specific tasks,

requiring deep expertise in both symbolic systems and machine learning. This leads to brittle

pipelines and poor developer ergonomics. A major challenge is to design an abstraction that enables

high-level, concise, and maintainable programs while preserving expressivity. Programmers should

be able to declaratively specify reasoning tasks without managing low-level numerical details or

system-specific glue code.

Scalability Neurosymbolic systems must reason over large symbolic structures (e.g., knowledge

graphs, programs, scene graphs) while integrating with high-dimensional neural representations.

However, symbolic reasoning engines traditionally lack the performance characteristics—such as

parallelism and efficient memory usage—needed to scale to real-world data sizes. At the same time,

differentiable execution over symbolic rules introduces additional computational burdens that strain

typical inference engines. Thus, achieving efficient and scalable reasoning across multiple modalities

remains a significant barrier.

Adaptability Applications of neurosymbolic methods vary widely from vision and language

tasks to planning, security, and biology. Yet most existing tools are tightly coupled to specific

representations or reasoning semantics. A general-purpose system must support multiple reasoning

modes (e.g., discrete, probabilistic, differentiable), flexible integration with neural components,

and extensibility for domain-specific customization. Achieving this adaptability without sacrificing

coherence or performance is a key technical challenge.

3

1.2 Scallop: What and Why

We have developed Scallop, a programming language that realizes all of the above criteria and

addressing programmability, scalability, and adaptability challenges. The key insight underlying

Scallop is its choice of three inter-dependent design decisions: a relational model for symbolic data

representation, a declarative language for symbolic reasoning, and a provenance framework for

differentiable reasoning.

Our design choices were inspired by the following key observations. First, much of the world’s data

is stored in relational databases. Relations are also flexible enough to represent diverse kinds of

data ranging from high-level visual and language features, to formal programs and even molecular

structures. Second, a declarative language for symbolic reasoning allows computation to be expressed

concisely via high-level rules, thereby alleviating programmer effort. Finally, the relational paradigm

offers a suitable abstraction for advanced features needed for neurosymbolic programming, such as

query planning, hardware (GPU) acceleration, and probabilistic and differentiable reasoning.

Scallop is a Datalog-based programming language (Abiteboul et al., 1994) that allows rules to be

written as Horn clauses (Robinson, 1965). It is strongly typed, and symbolic data is represented

uniformly as predicate-named tuples. Operations over symbolic values—such as strings, integers,

and booleans—are supported through a general foreign function interface. Scallop also supports

stratified negation and stratified aggregation, enabling reasoning over multiple tuples with well-defined

semantics.

To support probabilistic and differentiable reasoning, Scallop employs a provenance framework

based on abstract tags. This design abstracts away the underlying algorithmic complexity, allowing

programmers to focus purely on symbolic reasoning. The framework unifies discrete, probabilistic,

and differentiable reasoning modes under a single abstraction. Users can select from a built-in library

of provenances tailored to different reasoning needs, or implement custom provenance modules to

extend the system’s capabilities.

To bridge symbolic values and provenance tags, Scallop provides extensible systems for foreign

4

predicates and aggregations, further enhancing its expressiveness. These features make Scallop a

versatile platform for developing neurosymbolic programs that combine high-level symbolic logic

with low-level numerical computation. Our aim with Scallop is to provide a cohesive language

and framework for integrating neural and symbolic components. In doing so, we seek to enable

programmers to build neurosymbolic solutions that are more efficient, generalizable, and interpretable.

Moreover, as a rapidly evolving area, neurosymbolic research continues to generate new building

blocks and design patterns. A key challenge is to build a system that can adapt to these emerging

paradigms, offering a unified interface that enables their composition and evaluation. In this

dissertation, we will characterize several of these building blocks and show how the Scallop system

can be used to instantiate and experiment with them across a wide range of applications.

1.3 Building Blocks for Neurosymbolic Methods

A language that integrates neural and symbolic components can be applied to construct diverse

and adaptable solutions. Broadly, a neurosymbolic solution to any given task involves the flexible

interplay of neural and symbolic components, each serving distinct yet complementary roles in

problem-solving. From the existing literature, several building blocks have emerged as crucial for

effective neurosymbolic solutions, as depicted in Figure 1.2. We proceed to discuss each of these core

building blocks in detail.

Feature extraction The feature extraction process involves deriving symbolic features from an

input x through a symbolic component, denoted here as λ, before passing these features to a neural

model Mθ for training. Although feature extraction is an established practice in machine learning

and typically not classified as neurosymbolic, it nevertheless exemplifies a functional integration of

symbolic and neural elements. In this approach, learning is confined to the neural component, while

the symbolic aspect serves to pre-process the input data.

Notably, advanced feature extraction goes beyond simple tabular data and often incorporates

sophisticated reasoning mechanisms to construct complex data structures. For instance, in program

5

x λ Mθ y

(a) Feature extraction

x Mθ λ y

(b) Symbolic inference

x Mθ λ y

(c) Algorithmic supervision

x λ y
Mθ

(d) Neurosymbolic program synthesis

x
λ

Mθ

y

(e) Neural relaxation

x
λ

Mθ

y

(f) Symbolic distillation

Figure 1.2: Neurosymbolic compositions of neural component (Mθ) and symbolic component (λ),
which serve as building-blocks for more complex neurosymbolic applications. We use solid arrows to
denote forward data-flows, and dashed arrows to denote backward data-flows used to supervise the
learning of the target component.

analysis, source code can be pre-processed into intricate structures such as abstract syntax trees

(ASTs), data-flow graphs, symbolic constraints, or relational databases (Dinella et al., 2020; Li et al.,

2021d; Zhu et al., 2024). Neural networks may thus benefit from more comprehensive, structured

information for downstream tasks, such as proposing bug fixes, detecting vulnerabilities, and analyzing

type information even within binary code.

Symbolic inference Symbolic inference involves performing posterior analysis on the outputs of

a neural network Mθ using a symbolic component λ provided by a programmer. This analysis can

serve various purposes, such as filtering nonsensical outputs, verifying output integrity, or combining

multiple information sources symbolically to derive additional insights. Though straightforward in

concept, an advanced symbolic inference component λ may handle probabilistic information, deriving

a distribution rather than just the most likely output.

For instance, in the task of handwritten formula recognition ⟨x = , y = 1.6⟩, after the

neural network generates probability distributions for individual symbols, a probabilistic symbolic

inference engine could synthesize a distribution over possible rational numbers. Another example is

RNA secondary structure prediction, where a neural network predicts per-nucleotide structures, and

6

a probabilistic RNA folding algorithm then parses this probabilistic sequence to generate the top-k

most likely structural parses. In Chapter 4, we cover many symbolic inference solutions where the

Mθ are foundation models.

Algorithmic supervision Algorithmic supervision extends symbolic inference by enabling the

symbolic component λ to propagate learning signals to the neural network Mθ. As before, we assume

that λ is provided by the programmer. While Figure 1.1 demonstrates one example of algorithmic

supervision through differentiability in λ, it generally suffices for λ to propagate the learning signal.

In this way, the symbolic “algorithm” λ serves as a guiding supervisor for the neural network Mθ.

Algorithmic supervision also functions as a form of weak supervision, as it does not require direct,

fully supervised labels for Mθ; only the end label y is needed. This reduces the need for extensive

data labeling or feature engineering, simplifying the training process. Numerous applications in

Scallop leverage this approach, including the previously mentioned task of learning to evaluate

handwritten formulas (Li et al., 2020a, 2023b). This dissertation explores additional, advanced

examples of algorithmic weak supervision in Chapter 6.

Neurosymbolic program synthesis Neurosymbolic program synthesis involves learning the

symbolic program λ with the support of neural networks. This paradigm resembles the classical

syntax-guided synthesis task (Alur et al., 2013), but replaces the traditional algorithmic synthesis

procedure with a neural network Mθ. Here, the symbolic program λ is responsible for generating the

expected outputs, and it may be iteratively refined to better align with a dataset.

This approach offers the advantage of interpretability, as the learned symbolic component is a

white-box program that can be inspected and verified by humans (Ellis et al., 2022). Tradition-

ally, synthesizing λ requires defining a limited domain-specific language (Ellis et al., 2020) since

general-purpose languages render synthesis computationally intractable. However, with the recent

development of large language models (LLMs) capable of generating programs in general-purpose

languages like Python, the synthesis of λ can now be achieved more efficiently (Ma et al., 2024).

7

Neural relaxation Neural relaxation involves relaxing a deterministic and discrete symbolic

reasoning component λ by replacing certain components in the pipeline with neural networks Mθ.

This enables portions of previously symbolic components to be approximated by neural networks,

improving adaptability to unseen scenarios.

For instance, consider the challenge of designing a neurosymbolic controller for drones: while effective

deterministic controllers exist for standard maneuvers, they may struggle to adapt to out-of-domain

scenarios, such as operating near the ground, in strong winds, or in proximity to other drones. By

relaxing certain aspects of the controller into a neural network Mθ, the system gains greater flexibility

and responsiveness in handling such scenarios, while being able to learn rapidly (O’Connell et al.,

2022; Csomay-Shanklin et al., 2024).

Symbolic distillation Symbolic distillation extracts information from a black-box neural network

and converts it into a symbolic form λ. Although this process involves generating and refining λ,

similar to neurosymbolic program synthesis, symbolic distillation focuses on translating otherwise

uninterpretable weights from a well-trained neural network Mθ into an interpretable form.

This technique has been applied to scientific discovery in fields such as animal behavior analy-

sis (Sun et al., 2022). A symbolic program describing behaviors like “two mice running towards

each other” can be distilled from a neural network trained on data of mice interactions. Another

application is explanation synthesis for predicting cancer patient mortality (Wu et al., 2024). For

a model trained to predict 6-month mortality, symbolic distillation can generate explanations of

specific predictions, providing clearer insights for clinical decision-making supported by machine

learning systems.

Other compositions In addition to the primary building blocks, there are other notable neu-

rosymbolic compositions. For example, AlphaGo (Silver et al., 2016) is centered around a symbolic

algorithm—Monte Carlo Tree Search—with neural networks for policy evaluation and move selection,

creating a synergistic decision-making process. On the other hand, ChatGPT plugins (OpenAI,

2023a) use a large language model as the primary system, which can invoke symbolic components

8

like a Python interpreter, database retrieval, or web search to enhance functionality. As the field of

neurosymbolic AI continues to evolve, we anticipate that more diverse and innovative compositions

will emerge, broadening the scope and applications of neurosymbolic approaches.

1.4 Application Domains

In this section, we discuss the data modalities for which Scallop is best suited and explore the

application domains where Scallop has shown effectiveness. We also identify the limitations of

Scallop, highlighting tasks where it may be less effective.

Scallop can be broadly applied to applications that require both neural models and programmatic

reasoning modules. It is particularly useful when the neural model requires additional training. With

a fully differentiable, end-to-end neurosymbolic pipeline, strong supervision is not necessary for the

neural model. Instead, algorithmic supervision can be used, offering benefits such as data efficiency

and generalizability.

Data modalities Scallop is capable of handling diverse data modalities by virtue of being based

on the relational data model. The relational paradigm enables it to work seamlessly with existing

relational databases and tabular data, encompassing information from knowledge bases, electronic

health records, and internet documents. Additionally, natural language data from NLP tasks can be

ingested in various forms: as raw sentences, embeddings (tensors), or structured representations such

as relational databases or functional programs. Image data from computer vision can be converted

into semantic representations like scene graphs. Videos, which extend images with a temporal

dimension, can similarly be represented as spatio-temporal scene graphs for analysis in Scallop.

Computer programs can be transformed into relational databases, capturing detailed information

such as abstract syntax trees and control-flow graphs.

Application domains We have applied Scallop across diverse domains, including natural language

processing (NLP), computer vision (CV), planning, program and security analysis, bioinformatics,

and healthcare. In the domain of NLP, we have applied Scallop to tasks that require reasoning, such

9

as retrieving documents in a database, or analyzing data from sources such as electronic health

records or legal documents. In the domain of computer vision, rather than focusing on low-level

perception tasks like object segmentation and tracking, we have applied Scallop to hybrid tasks such

as visual question answering and for supporting the training of scene graph generation models. In

security analysis, we have applied Scallop to tasks like taint analysis, vulnerability detection, and

fault localization. In bioinformatics, we have employed Scallop in applications such as predicting

RNA secondary structures and RNA splicing. It is important to note that not all Scallop solutions

follow a uniform architecture. We adapt different building blocks (Figure 1.2) depending upon each

task’s unique characteristics.

Applications where Scallop may be less effective We identify three examples where Scallop

may not significantly enhance the task-solving process due to challenges in defining the reasoning

component or the appropriate intermediate representation.

1. Generating Text with Subjective Criteria. A common use-case of language models like GPT

is generating text that satisfies subjective criteria in style or content, such as empathy or

political neutrality. While language models can generate coherent paragraphs, identifying

specific logical components for integration is challenging. The abstract nature of such tasks

makes it difficult to pinpoint areas where logical reasoning would offer substantial value beyond

what current language models provide.

2. Basic Math Calculations (e.g., +, −, ×, ÷). This task is inherently symbolic and straightforward.

Existing tools like Python or MATLAB can perform these operations directly, and there is no

clear need for a perceptual model. The task is purely logical and lacks components that would

benefit from Scallop’s relational or perceptual capabilities.

3. Low-Level Motor Control for Robots. Scallop’s syntax is more suited to defining high-level

discrete logical rules rather than handling low-level numerical processing of sensory signals.

Thus, for tasks like motor control based on raw sensor inputs, imperative languages such as C

or Python may be more effective for specifying the numerical algorithms.

10

1.5 Contributions

This dissertation makes contributions along the dimensions of language design, system implementation,

and application-driven evaluation. The key contributions are as follows:

Design of the Scallop Language for Neurosymbolic Programming

1. Designed the core Scallop language, a Datalog-based, declarative, and strongly typed language

for symbolic reasoning.

2. Developed a foreign interface for integrating external modules and databases.

3. Introduced a general relational interface for invoking and coordinating foundation models.

4. Developed a plugin library for Scallop, supporting large language models and vision-language

models.

Unified Semantics via Provenance Framework

1. Introduced a compiler from Scallop to SclRam, a low-level intermediate language based on

relational algebra.

2. Designed a provenance framework for SclRam, enabling tagged symbolic computation.

3. Formalized the semantics of SclRam with provenance support.

4. Proposed practically useful provenances for descrete, probabilistic, and differentiable reasoning.

5. Introduced top-k-proofs, top-bottom-k-proofs, and optimal-k-proofs provenance for scalable

approximated probabilistic inference.

Tooling and System Integration

1. Developed an end-to-end implementation of the Scallop programming language, including (a) a

compiler supporting type inference, syntax desugaring, and query planning, and (b) a runtime

11

with a low-level in-memory database and support for GPU execution.

2. Implemented native support for PyTorch and seamless integration with foundation models.

3. Designed extensible system for foreign predicates and aggregations to bridge symbolic and

numerical computation.

Application to Diverse Domains and Neurosymbolic Paradigms

1. Applied Scallop to synthetic neurosymbolic reasoning tasks, including MNIST-R, Hand-Written

Formula, and PathFinder.

2. Proposed and evaluated a new synthetic planning benchmark, PacMan-Maze, using Scallop for

neurosymbolic planning.

3. Developed neurosymbolic solutions for natural language rasoning, including CLUTRR (kinship

reasoning).

4. Applied Scallop to visual question answering benchmarks: CLEVR and VQAR.

5. Demonstrated Scallop’s use with foundation models on a wide range of benchmarks: GSM8K,

Date Reasoning, Tracking Shuffled Objects, Amazon Product Search, among others.

6. Demonstrated the use of Scallop for video scene graph generation, which results in the training

of SGClip, a foundation model for multi-modal scene graph generation.

7. Illustrated the use of Scallop on the application of whole-project vulnerability detection,

including the construction of a new dataset (CWE-Bench-Java).

8. Proposed a neurosymbolic solution to RNA secondary structure prediction, with an evaluation

on the ArchiveII dataset.

12

1.6 Thesis Structure

The remainder of this dissertation is organized as follows. Chapter 2 introduces the Scallop language

and its foundational constructs. Chapter 3 presents the provenance framework that powers Scallop’s

unified reasoning backend, including several proposed probabilistic and differentiable provenances

that enhance its versatility. Chapter 4 describes how Scallop integrates with neural and foundation

models via foreign interfaces. Chapter 5 evaluates Scallop on a suite of standard neurosymbolic

benchmarks, as well as on tasks involving foundation models. In the chapter, we present end-to-end

programs and case studies to illustrate Scallop’s expressiveness and practical utility.

We then cover three advanced applications where the neurosymbolic paradigm and Scallop is applied.

Due to the tasks’ complexity, we elide the end-to-end Python and Scallop code. Rather, we focus on

the conceptual advancements that each application brings, such as unique symbolic representation

of unstructured data, special logical reasoning patterns, and newly adapted learning paradigms.

Specifically, we explore the following three tasks: video scene graph generation in computer vision

(Chapter 6), vulnerability detection in cybersecurity (Chapter 7), and RNA secondary structure

prediction in bioinformatics (Chapter 8).

Parts of this dissertation are based on previously published or submitted work. In particular,

Chapter 2 draws from material presented in Li et al. (2023b) and Li et al. (2024b), Chapter 3 is based

on Li et al. (2023b) and Huang et al. (2021), Chapter 4 incorporates content from Li et al. (2024c)

and Li et al. (2024b), and Chapter 5 incorporates benchmarks and evaluations from both Li et al.

(2023b) and Li et al. (2024c). The advanced applications in Chapters 6, 7, and 8 are partially based

on Huang et al. (2025), Li et al. (2025), Biberstein et al. (2025), and ongoing work currently under

submission.

13

CHAPTER 2

Basics of Programming in Scallop

In this chapter, we present Scallop as a relational logic programming language. It is a Datalog-based

language extended with features such as negation, aggregation, disjunctive heads, algebraic data

types, foreign functions, and foreign predicates. We provide a comprehensive overview of the core

language encompassing all of these constructs.

2.1 Relations, Data Types, and Facts

The fundamental data type in Scallop is a relation which comprises a set of tuples of statically-typed

primitive values. The primitive data types include signed and unsigned integers of various sizes

(e.g. i32, usize), single- and double-precision floating point numbers (f32, f64), boolean (bool),

character (char), and string (String). A comprehensive list is provided in Table 2.1. For example,

Listing 2.1 declares two binary relations, mother and father. Note that we declare multiple relations

with one type keyword. Values of relations can be specified via individual tuples or a set of tuples

of constant literals, as shown in line 5 and line 8 in Listing 2.1. The type of facts must conform

to the statically declared relation type. All the tuples under mother and father are of arity 2 and

both elements are strings. Note that the keyword rel is chosen as a shorthand for relation, which

is used to define relations.

As a shorthand, primitive values can be named and declared as constant variables, as shown in line

2 in Listing 2.2. Type declarations are optional since Scallop supports type inference. The type of

the composition relation is inferred as (usize, usize, usize) since the default type of constant

unsigned integers is usize. Similarly, the type of the kinship relation will be inferred as (String,

usize, String). We note that this new representation of family graph is equivalent to the one

defined in Listing 2.1, albeit just using one relation (kinship) instead of two (father and mother).

14

1 type mother(m: String , c: String),
2 father(f: String , c: String)
3
4 // Christine is Bob 's mother
5 rel mother("Christine", "Bob")
6
7 // Bob is father of two kids , Alice and John
8 rel father = {("Bob", "Alice"), ("Bob", "John")}

Listing 2.1: Basic relation and fact definitions representing a family.

1 // Relationships declared as constants
2 const FATHER = 0, MOTHER = 1, GRANDMOTHER = 2, ...
3
4 // father 's mother is grandmother
5 rel composition(FATHER , MOTHER , GRANDMOTHER)
6 // mother 's brother is uncle
7 rel composition(MOTHER , BROTHER , UNCLE)
8
9 // A family kinship graph

10 rel kinship = {
11 ("Christine",MOTHER ,"Bob"), // Bob 's mother is Christine
12 ("Bob",FATHER ,"Alice"), // Alice 's father is Bob
13 ("Bob",FATHER ,"John"), // John 's father is also Bob
14 }

Listing 2.2: An alternative way to declare kinship relations. Here, kinship relations are abstracted
into constant integers. We use the relation composition to represent higher-order kinship rules.

2.1.1 Nullary, Unary, and Binary Relations

Nullary or Boolean Relations Many things can be represented as relations. We start with

the most basic programming construct, boolean. While Scallop allows values to have the boolean

type, relations themselves can encode boolean values. The example shown in Listing 2.3 contains an

arity-0 relation named is_target. There is only one possible tuple that could form a fact in this

relation, that is the empty tuple (). Consider the relation is_target as a set. If the set contains no

element (i.e., empty), then it encodes boolean “false”; otherwise, the set could contain at most and

exactly one tuple, and the relation encodes the boolean “true”.

15

Type Primitive Types in Scallop

Unsigned Integers u8, u16, u32, u64, u128, usize
Signed Integers i8, i16, i32, i64, i128, isize
Floating Points f32, f64
Character char
Boolean bool
String String
Time Duration, DateTime
Tensor Tensor

Table 2.1: The list of primitive types in Scallop along with their descriptions.

1 // Declaration of the type of a 0-arity relation
2 type is_target ()
3
4 // Declaring a single fact
5 rel is_target ()
6
7 // Declaring a set of facts but with only a single empty tuple
8 rel is_target = {()}

Listing 2.3: Declaration of type and fact for a 0-arity (or boolean) relation.

Unary Relations Unary relations are relations of arity 1. We can define unary relations for

“variables” as we see in other programming languages. Listing 2.4 declares a relation named greeting

containing one single string of “hello world!”. It shows three ways of declaring a single fact in the

relation. The first two were introduced earlier but the third one omits the parenthesis since the

relation is unary.

Binary Relations As the name suggests, binary relations are relations of arity 2. We demonstrate

binary relations using a graph (Figure 2.1) and its Scallop representation (Listing 2.5). As shown in

the code, we define an enum type named Node containing three variants, A, B, and C, corresponding

to the three nodes in the graph. The unary relation node is thus a set containing the three nodes,

and the edge relation is a binary relation containing directed edges in the graph.

16

1 rel greeting("hello world!")
2 // or
3 rel greeting = {("hello world!",)}
4 // or
5 rel greeting = {"hello world!"}

Listing 2.4: Declaration of a unary relation greeting.

A

B C

Figure 2.1: A sample graph
with three nodes.

1 // An enum type Node
2 type Node = A | B | C
3
4 // The relations replicating the graph
5 rel node = {A, B, C}
6 rel edge = {(A, B), (B, A), (B, C)}

Listing 2.5: The relations and facts representing the graph shown
in Figure 2.1.

2.1.2 Type Inference

Scallop supports type inference, meaning that not all types need to be explicitly annotated. In

Scallop, types are inferred during the compilation process. When taking the code shown in Listing 2.5,

Scallop is capable of inferring that node relation is of type (Node,), while the edge relation is of

type (Node, Node). Type inference will fail if conflicts are detected. For instance, the Listing 2.6

shows one piece of Scallop code which results in an error message during compilation. This is due to

that both a value of type Node and one of String are observed as the second element of the edge

relation.

2.2 Logic Rules

Since Scallop’s language is based on Datalog, it supports “if-then” rule-like Horn clauses. Each rule

is composed of a head atom and a body, connected by the symbol =. If the body “holds”, then we

derive the atom of the head. Listing 2.7 shows three rules defining the grandmother relation. We

say that the body of a rule can be grounded if every single variable can be substituted by values

in existing facts in the database. For instance, the body of the rule on line 6 in Listing 2.7 can be

grounded by two facts, father("Bob", "Alice") and mother("Christine", "Bob"). The variable

17

1 > rel edge = {(A, B), (B, "1")}
2
3 [Error] cannot unify types `Node ` and `String `, where
4 the first is declared here
5 REPL:0 | rel edge = {(A, B), (B, "1")}
6 | ^
7 and the second is declared here
8 REPL:0 | rel edge = {(A, B), (B, "1")}
9 | ^^^

Listing 2.6: A piece of Scallop code that has a conflict detected by type inference. We also show the
error message thrown when compiling the code.

1 // A few facts under the base relations
2 rel father = {("Bob", "Alice"), ("John", "Harry")}
3 rel mother = {("Christine", "Bob")}
4
5 // Father 's mother is grandmother
6 rel grandmother(c, a) = mother(c, b) and father(b, a)
7 // Mother 's mother is also grandmother
8 rel grandmother(c, a) = mother(c, b) and mother(b, a)
9

10 // == is equivalent to... ==
11
12 // Mother or father 's mother is grandmother
13 rel grandmother(c, a) = mother(c, b) and
14 (mother(b, a) or father(b, a))

Listing 2.7: A set of logic rules computing the grandmother relation from father and mother
relations. Given the facts declared at the top, we can derive the fact grandmother("Christine",
"Alice"), which means that “Christine is the grandmother of Alice.”

c can be grounded with “Christine”, b can be grounded with “Bob”, while a can be grounded with

“Alice”. Notably, the variable b appears in both the mother(c, b) atom as well as the father(b,

a) atom, meaning that the value being used to ground the variable b has to appear in both facts.

In a rule, conjunction is specified using and-separated atoms within the rule body whereas disjunction

can be specified by multiple rules with the same head predicate. Each variable appearing in the

head must also appear in some positive atom in the body. Conjunctions and disjunctions can also

be expressed using logical connectives like and, or, and implies. For instance, the last rule (line

18

1 // E1: Computing body mass index (BMI) by arithmetic
2 type person(name: String , weight_kg: f32 , height_m: f32)
3 rel bmi(name , w / (h * h)) = person(name , w, h)
4
5 // E2: Computing ful name by concatenating strings
6 rel first_name("John"), last_name("Doe")
7 rel full_name($string_concat(x, " ", y)) =
8 first_name(x) and last_name(y)
9

10 // E3: Potentially failing
11 rel denominator = {0, 1, 2} // three denominators
12 rel result (6 / x) = denominator(x) // results = {3, 6}

Listing 2.8: A set of logic rules that make use of the foreign functions in Scallop.

9-10 of Listing 2.7) is equivalent to the two rules above combined.

Scallop performs a few compilation checks to ensure that the program is well-formed. First of all,

the rules need to type check. In the case of Listing 2.7, all the shown relations are binary String

relations, and therefore type inference succeeds. Moreover, all the variables appearing in the head

atom must be bounded by atoms in the body. Consider the first rule (line 2) as an example, in which

variable a is bounded by the father relation, while variable c is bounded by mother. Therefore,

the head atom of the rule is bounded and well-formed. For the last rule (line 9-10) where the body

contains disjunctions, head variables need to be bounded for all branches in the body. This is indeed

true since a is bounded by both atoms in the disjunction.

Scallop supports value creation by means of foreign functions (FFs). FFs are polymorphic and include

arithmetic operators such as + and -, comparison operators such as != and >=, type conversions such

as [i32] as String, and built-in functions like $hash and $string_concat. They only operate on

primitive values but not relational tuples or atoms. Listing 2.8 shows a few examples. Specifically,

the first shows that floating point weight and height can be used to compute body mass index

(BMI). In the second example, strings are concatenated together using FF, producing the result

full_name("John Doe").

Note that FFs can fail due to runtime errors such as division-by-zero and integer overflow, in which

19

1 // Type declaration of edge relation
2 type edge(x: Node , y: Node)
3
4 // Transitive closure computing path
5 rel path(x, y) = edge(x, y)
6 rel path(x, z) = path(x, y) and edge(y, z)

Listing 2.9: The edge-path program defining a transitive closure
that computes paths given a set of edges.

edge path

Figure 2.2: The dependency
graph associated with the
edge-path program.

case the computation for that single fact is omitted. In the last example shown in Listing 2.8 (line

10-12), when dividing 6 by denominator, the result is not computed for denominator 0 since it

causes a FF failure. The purpose of this semantics is to support probabilistic extensions rather than

silent suppression of runtime errors. When dealing with floating-point numbers, tuples with NaN

(not-a-number) are also discarded.

2.3 Recursion, Negation, and Aggregation

In this section we discuss some slightly advanced features of logic rules in Scallop, namely recursion,

negation, and aggregation. These features are key to an expressive language for Scallop and making

it applicable to a diverse set of applications.

2.3.1 Recursion

A powerful programming construct in Scallop is to declaratively define recursion. Within a rule, if a

relational predicate appearing in the head appears in the body, the rule is recursive. More generally,

a relation r is dependent on s if an atom s appears in the body of a rule with head atom r. A

recursive relation is one that depends on itself, directly or transitively. For instance, Listing 2.9

shows a program with recursion. In the program, path depends on edge (line 5-6) and path itself

(line 6). Based on this information, we can draw a dependency graph for the program, shown in

Figure 2.2. Since there is a self-loop on the path relation, we say that the program is recursive.

Recursion is also very useful in recursive mathematical definitions. For example, the definition of

20

1 type fib(bound x: i32 , y: i32) // type definition
2 rel fib = {(0, 1), (1, 1)} // base cases
3 rel fib(x, y1 + y2) = // recursive case
4 fib(x - 1, y1) and fib(x - 2, y2) and x > 1
5 query fib(5, y) // result: fib(5, 8)

Listing 2.10: Definition of Fibonacci number in Scallop. We note that fib is by definition an infinite
relation. To make computations feasible, we add the bound keyword on the first line, which we delay
the discussion till Section 2.5.

Fibonacci numbers is recursive. Recall the formal definition of Fibonacci numbers:

fib(x) =

 fib(x− 1) + fib(x− 2) if x > 1,

1 otherwise

In Scallop, we encode the function fib as a binary relation between the integer input and output,

shown in Listing 2.10. On line 2, we define the base cases for fib(0) and fib(1). In terms of the

recursive case, we obtain the sum y1 + y2 where y1 = fib(x− 1) and y2 = fib(x− 2). This almost

literally translates to the recursive rule on line 4. We note that an extra constraint x > 1 must be

added in order for the computation to terminate. At the end, when the atom fib(5, y) is queried,

Scallop will return that a fact fib(5, 8) suggesting that 8 is the result of computing fib(5).

2.3.2 Negation

Scallop supports stratified negation using the not operator on atoms in the rule body. Listing 2.11

shows a rule defining the has_no_children relation as any person p who is neither a father nor

a mother (line 7-8). In the rule, the underscore (_) stands for wildcard which is used to match

any value. Note that we need to bound p by a positive atom person in order for the rule to be

well-formed. In the rule that does not compile, the variable p can be anything other than "Bob" or

"Christine", meaning that it is impossible to enumerate the values. Scallop rejects these kinds of

programs by ensuring that all variables that occur in the head are bounded by positive atoms in the

body. At the end, we have the relation has_no_children containing one single tuple ("Alice"),

since according to the facts defined above, "Alice" is not a parent of anyone.

21

1 // A family containing three people
2 rel person = {"Alice", "Bob", "Christine"}
3 rel father("Bob", "Alice") // Bob is Alice 's father
4 rel mother("Christine", "Bob") // Christine is Bob 's mother
5
6 // Compute the person who has no children
7 rel has_no_children(p) = person(p) and
8 not father(p, _) and not mother(p, _)
9

10 // !! This rule does not compile: p is not bounded !!
11 rel error(p) = not father(p, _) and not mother(p, _)

Listing 2.11: A Scallop program that computes the person who has no children given the kinship
relations within a family. Note that we also show one rule (line 11) which cannot compile due to the
existance of an unbounded variable p.

1 // compilation error!
2 rel something_is_true () = not something_is_true ()

Listing 2.12: A rule with a negative circular dependency—where the predicate something_is_true
depends on itself—will lead the compiler to reject the program.

A relation r is negatively dependent on s if a negated atom s appears in the body of a rule with head

atom r. In the example shown in Listing 2.11, has_no_children negatively depends on father. A

relation cannot be negatively dependent on itself, directly or transitively, as Scallop supports only

stratified negation. The rule shown in Listing 2.12 is rejected by the compiler, as the negation is not

stratified.

2.3.3 Aggregation

Scallop also supports stratified aggregation. We use the assignment symbol := to retrieve the results

obtained from aggregations. The set of built-in aggregators include common ones such as count,

sum, max, and first-order quantifiers forall and exists. Besides the operator, the aggregation

construct specifies the binding variables, the aggregation body to bound those variables, and the

result variable(s) to assign the result. The rule with aggregation in Listing 2.13 reads, “variable n

is assigned the count of p, such that p is a person”. Specifically, n is the result of the aggregation,

count is the aggregator, p is the qualified variable for aggregation, and person(p) is the body of the

22

1 rel person = {"Alice", "Bob", "Christine"}
2
3 // count the number of people , which should be 3
4 rel num_people(n) = n := count(p: person(p))
5
6 // a syntax sugar that is equivalent to the above rule
7 rel num_people = count(p: person(p))

Listing 2.13: A simple rule with aggregation counting the number of people.

1 // Bob is a parent of Alice , Christine is a parent of Bob
2 rel person = {"Alice", "Bob", "Christine"}
3 rel parent = {("Bob", "Alice"), ("Christine", "Bob")}
4
5 // Implicit group -by:
6 // >> result: {("Bob", 1), (" Christine", 1)}
7 rel num_child(p, n) = n := count(c: parent(p, c))
8
9 // Explicit group -by:

10 // >> result: {(" Alice", 0), ("Bob", 1), (" Christine", 1)}
11 rel num_child(p, n) = n := count(c: parent(p, c) where p: person(p))

Listing 2.14: A few examples with group-by aggregation. Notice that the resulting fact ("Alice",
0) is not derived by the rule with implicit group-by operation.

aggregation. At the end, num_people(3) is derived since there are 3 facts in the person relation. In

the rule, p is the binding variable and n is the result variable. Depending on the aggregator, there

could be multiple binding variables or multiple result variables. On line 7 we also show a syntax

sugar when the result of the aggregation directly corresponds to the tuples to be stored in the head

relation.

Further, Scallop supports SQL-style group-by operations. If a variable is bounded in the aggregation

body and is also used in the head of the rule, we say that variable is a group-by variable. In

Listing 2.14, we compute the number of children of each person p, which serves as the group-by

variable, since it appears in both the aggregation body (parent(p, c)) and the head of the rule

(num_child(p, n)). However, depending on whether we explicitly bound the group-by variable p,

we get different results. On line 11, we explicitly use a where clause to bound the variable p with

everyone in the person relation. As such, we would also find the number of children of "Alice",

23

1 rel father("Bob", "Alice") // Bob is Alice 's father
2 rel daughter("Alice", "Bob") // Alice is Bob 's daughter
3
4 // An integrity constraint for kinship graphs
5 rel integrity_constraint(sat) = sat := forall(a, b:
6 father(a, b) implies (son(b, a) or daughter(b, a)))

Listing 2.15: A rule encoding an integrity constraint about kinship graphs, making use of the forall
and implies operators.

which is 0. For the rule on line 7, on the other hand, we do not explicitly bound the group-by

variable p, meaning that no information is present other than the parent relation. Since "Alice" is

not a parent of anyone, the entry ("Alice", 0) will not be presented in the result.

Finally, quantifier aggregators such as forall and exists return one boolean variable. For instance,

for the aggregation shown in Listing 2.15, variable sat is assigned the truthfulness (true or false)

of the following statement: “for all a and b, if b is a’s father, then a is b’s son or daughter”. At the

end, we would obtain a fact integrity_constraint(true), meaning that the constraint is satisfied

given the kinship facts shown on line 1-2.

There are a couple of syntactic checks on aggregations. First, similar to negation, aggregation also

needs to be stratified—a relation cannot be dependent on itself through an aggregation. Second, the

binding variables must be bounded by at least one positive atom in the body of the aggregation.

Lastly, the body of the rule and the body of an aggregation form nested scopes. A variable in the

inner scope is shadowed if the variable is redefined by an aggregation in the outer scope.

2.4 Programming with Probabilities

Although Scallop is designed primarily for neurosymbolic programming, its syntax also supports

probabilistic programming. This is especially useful when debugging Scallop code before integrating

it with a neural network. Consider a machine learning programmer who wishes to extract structured

relations from a natural language sentence “Bob takes his daughter Alice to the beach”. The

programmer could imitate a neural network producing a probability distribution of kinship relations

24

1 // An independent probabilistic fact
2 rel 0.95:: kinship(FATHER , A, B)
3
4 // A mutually exclusive set of probabilistic facts
5 rel kinship = {
6 0.95::(FATHER , A, B); // A is B's father with 0.95 prob
7 0.01::(MOTHER , A, B); // A is B's mother with 0.01 prob
8 ...
9 }

Listing 2.16: Probabilistic facts within the kinship relation written in Scallop in two different ways.
Note that in the second example, facts are separated by semicolons (;), meaning that the facts are
mutually exclusive.

1 rel top_1_kinship(r,a,b) = r := top <1>(rp: kinship(rp ,a,b))
2 // result: { 0.95:: top_1_kinship(FATHER , A, B) }

Listing 2.17: A Scallop rule using the top sampler. Following Listing 2.16, for each pair of people a
and b, we find the top 1 kinship relation between them.

between Alice (A) and Bob (B). As shown in Listing 2.16, we list out all possible kinship relations

between Alice and Bob. For each of them, we use the syntax [PROB]::[TUPLE] to tag the kinship

tuples with probabilities. The semicolon “;” separating them specifies that they are mutually

exclusive—Bob cannot be both the mother and father of Alice.

Scallop also supports operators to sample from probability distributions. They share the same

surface syntax as aggregations, allowing sampling with group-by. The following rule shown in

Listing 2.17 deterministically picks the most likely kinship relation between a given pair of people

a and b, which are implicit group-by variables in this aggregation. As the end, only one fact,

0.95::top_1_kinship(FATHER, A, B), will be derived according to the above probabilities. Other

types of sampling are also supported, including categorical sampling (categorical<K>) and uniform

sampling (uniform<K>), where a static constant K denotes the number of trials.

Finally, rules can also be tagged by probabilities which can reflect their confidence. The rule shown in

Listing 2.18 states that a grandmother’s daughter is one’s mother with 90% confidence. Probabilistic

rules are syntactic sugar. They are implemented by introducing in the rule’s body an auxiliary

25

1 // Grandmother 's daughter is 90% likely one 's mother
2 // Note: she could also be one 's aunt
3 rel 0.9:: mother(a,c) = grandmother(a,b) and daughter(b,c)
4
5 // == the above rule is desugared to... ==
6 rel 0.9:: prob_of_rule () // one auxilliary nullary relation
7 rel mother(a,c) = grandmother(a,b) and daughter(b,c) and
8 prob_of_rule ()

Listing 2.18: A probabilistic rule where the probability is encoded in the head.

nullary (i.e., boolean) fact that is regarded true with the tagged probability.

2.5 On-Demand Computations

In normal Scallop, facts are computed in a bottom-up fashion. That is, for each rule, we start from

grounding the body with existing facts, and derive the fact in the head. Typically, this would derive

all possible outcomes for a relation, which may be costly. Worse, it may even be impossible to derive

fully due to the derived relation being infinite. One example is the computation of Fibonacci number

(also shown previously in Listing 2.10). Fibonacci number itself is infinite, so given the base cases for

0 and 1, it is expected that the computation for all Fibonacci numbers will never terminate. Such

Scallop program is shown in Listing 2.19. However, often times we have a specific query for these

inifinite relations. As shown on line 6 in Listing 2.20, we are querying for the 5th Fibonacci number,

and nothing else is expected. For such cases, we might use on-demand computation to answer those

queries, without computing the full infinite relation. Specifically, the number 5 is the demand for

the fib relation.

We achieve on-demand computation in Scallop by doing the following (Listing 2.20). First, as

shown on line 2, we add a bound keyword to the x variable when defining the fib relation. This is

called an adornment, meaning that everytime the relation fib is computed, we are treating the first

argument x as the input. For the second variable y that is not adorned by the bound keyword, it

means that the value will be derived by rules. A variable not adorned by bound is treated a free

variable. We say that bound-free (or bf in short) is the on-demand pattern for the fib relation.

26

1 type fib(x: i32 , y: i32)
2 rel fib = {(0, 1), (1, 1)}
3 rel fib(x, y1 + y2) = fib(x - 1, y1) and fib(x - 2, y2)
4 // NOTE: will not terminate ...

Listing 2.19: First implementation of Fibonacci number, which would result in a non-terminating
execution due to the fib being an infinite relation.

1 // adding adornment to define on-demand pattern
2 type fib(bound x: i32 , y: i32)
3 rel fib = {(0, 1), (1, 1)}
4 rel fib(x, y1 + y2) = fib(x - 1, y1) and fib(x - 2, y2) and
5 x > 1 // avoid generating infinite demand
6 query fib(5, y)

Listing 2.20: Another implementation of Fibonacci number, which utilizes on-demand computation
by adding the bound keyword on x when defining the fib relation. In the rule on line 4-5, we also
include a constraint x > 1 in order to bound the recursive generation of demand.

Without specification, normal relations have an all-free on-demand pattern, which means they are

not on-demand relations.

For the rules with on-demand relations as the head atom, the well-formedness is slightly different

than the regular rules. Specifically, not only are variables in positive body atoms considered bounded,

but so are the variables bounded by the on-demand head atom.

On-demand relations can be used to optimize execution of queries. Consider the edge-path example

shown in Listing 2.21. Suppose we have a dense graph with thousands of edges, the normal transitive

closure defined for path would enumerate all possible paths in the graph. However, given that we

have a query on line 9 that desires to find all sources that can reach a particular sink S, there

is no need to enumerate all the paths. The desirable demand pattern for this query would be fb,

meaning that we want to set the second argument of the path as a bound variable (line 3). With this

adornment, Scallop will only compute the paths that reaches S, avoiding the expensive exploration

of all possible paths.

27

1 // Type defs; path is declared with on-demand pattern "fb"
2 type Node = usize
3 type edge(x: Node , y: Node), path(x: Node , bound y: Node)
4
5 // Suppose we have a dense graph with thousands of edges
6 rel edge = { /* (0, 1), lots of tuples ..., (T, S) */ }
7
8 rel path(x, y) = edge(x, y) or (edge(x, z) and path(z, y))
9 query path(x, S) // query a path with a sink at node S

Listing 2.21: The edge-path program with on-demand path relation.

2.6 Algebraic Data Types

Algebraic data types (ADTs) are powerful programming constructs that allows user to define custom

data structures and enum variants. They can be used to define recursive data structures such as

lists and trees. Domain-specific languages (DSLs) can also be represented using ADTs. For instance,

Figure 2.3 and Listing 2.22 shows one simple integer arithmetic language expressed in Scallop as a

custom ADT. We use the type keyword to start the declaration, and the bar (|) symbol to separate

each ADT variants. There are three variants here, among which the Add and Sub variants are

considered recursive because their arguments contain the Expr type itself. On the other hand, the

Int variant is a terminal. We show one Entity of the custom Expr type declared as a constant on

line 6 of Listing 2.22.

Values of custom ADTs can be used just like any other values in Scallop. Line 9 of Listing 2.22

declares one unary relation storing such expressions, whereas line 10 shows a fact of that relation

containing the constant MY_EXPR. We next showcase how entities can be read and created dynamically

within Scallop rules.

Entities can be destructed by pattern matching expressions. For instance, Listing 2.23 shows three

rules, each handling a certain variant of the Expr ADT. The first “rule” reads “evaluating the

expression Int(i) yields an integer i”. Although it looks like a fact, there is an unbounded variable

i so it will be desugared and treated as a rule. The second and third rule matches on the Add and

Sub variants. They recursively evaluate the sub-expressions e1 and e2, and then adds or subtracts

28

(Expr) e ::= i | e1 + e2 | e1 − e2

Figure 2.3: A simple language for integer arithmetic expressions. An expression can be either a
simple integer i, an addition of two expressions, or a subtraction of two expressions.

1 type Expr = Int(i32) // a simple integer
2 | Add(Expr , Expr) // adding two expressions
3 | Sub(Expr , Expr) // subtracting two expressions
4
5 // an expression representing 1 + (3 - 2)
6 const MY_EXPR: Expr = Add(Int(1), Sub(Int(3), Int(2)))
7
8 // a unary relation storing expressions
9 type target_expr(e: Expr)

10 rel target_expr = { MY_EXPR }

Listing 2.22: A custom algebraic data type defined in Scallop that represents the small language
shown in Figure 2.3 (line 1-3). Line 4 shows one expression 1 + (3− 2) expressed using Expr type.

1 // eval relation evaluates the expr and yields int result
2 type eval(bound expr: Expr , result: i32)
3
4 // three rules handling the variants of Expr
5 rel eval(Int(i), i)
6 rel eval(Add(e1,e2), i1+i2) = eval(e1, i1) and eval(e2, i2)
7 rel eval(Sub(e1,e2), i1-i2) = eval(e1, i1) and eval(e2, i2)
8
9 // query the result of MY_EXPR

10 query eval(MY_EXPR , y)

Listing 2.23: A Scallop program that evaluates Expr.

the respective results to form the final result.

The relations handling ADT entities can also be adorned by bound keywords to indicate on-demand

computation patterns. For instance, on line 2 of Listing 2.23, we let eval take in expressions and

yield integer results. If the pattern is not specified, Scallop will evaluate every single declared

expression. However, now that we have a demand specified on line 10 (MY_EXPR), Scallop will only

evaluate necessary expressions in order to compute the result for MY_EXPR, yielding the resulting fact

eval(MY_EXPR, 2).

29

2.7 Foreign Interface

Scallop supports a foreign interface which allows external definition of functions, predicates, and

attributes. These constructs allow Scallop to be effective in diverse applications, including a tight

integration of foundation models, which we describe in detail in Chapter 4. In this section we describe

such constructs and a selection of standard library containing interfaced items. We note that the

code snippets in this section may show the use of extern keyword, suggesting the declaration of

externally defined items. However, during normal use of Scallop, such declarations are not neccessary

and most foreign constructs are imported automatically.

2.7.1 Foreign Functions

In Scallop, foreign functions are pure functions that accept basic values and returns a single basic

value upon success. We have showcased simple arithmetic operations and foreign function calls in

prior examples (e.g. Listing 2.8), and we will take closer look in this section. In the most simplistic

form, foreign functions are defined to be $FUNC(ARG_TYPE, ...) -> RET_TYPE. The function starts

with a dollar sign $, and may take in multiple arguments with declared argument types (ARG_TYPE).

The function, upon success, must return one value of the return type. However, Scallop’s foreign

function interface allows advance features such as (a) generic functions with type parameters, (b)

functions with optional argument, and (c) functions with variable argument (vararg). Some examples

using these features are shown in Listing 2.24. We now elaborate on each of these features.

Generic Functions When defining the type of a function, we may use an additional angle brackets

<...> after the function name, to specify the generic type parameters. Each type parameter may be

followed by a type family to give additional constraint on the type. For instance, the $abs function

shown in Listing 2.24 is a generic function with one type parameter, T, that needs to be a Number.

Signed or unsigned integers as well as floating point numbers are types under the family Number.

The absolute value function is properly defined on any of such data types.

There are a fixed set of type families, which are Any, Number, Integer, and Float. As a syntax

sugar, if the type family is not specified on a type parameter, we default its family to Any, allowing

30

1 // A simple function that retrieves the day component given
2 // a DateTime. A "day" is a 32-bit unsigned integer (u32)
3 // representing the day within a month , starting from 1.
4 extern type $day(d: DateTime) -> u32
5
6 // Absolute value function that is generic w.r.t. a number
7 // type T. It takes in a value of T and returns a value
8 // of type T.
9 extern type $abs <T: Number >(x: T) -> T

10
11 // Taking the substring of a given string with a integer
12 // range. Note that the end index `e` is optional; if not
13 // provided , we retrieve the part of string after the begin
14 // index `b`. Otherwise , we take the substring from b to e.
15 extern type $substring(s: String , b: usize , e: usize?) -> String
16
17 // Take in an arbitrary amount of strings and concatenate
18 // them into the result string. Note that the strs argument
19 // is a vararg , denoted by the "..." symbol.
20 extern type $string_concat(strs: String ...) -> String
21
22 // Format a string using other values.
23 extern type $format(form: String , args: Any ...) -> String

Listing 2.24: Example type declarations of foreign functions included in Scallop’s standard library.

value of any type to be passed into the function.

When using a generic function, it is not neccessary to explicitly instantiate the function with a

concrete type, as the type inference module of Scallop will find the most suitable type automatically.

For instance, without special configuration, the expression $abs(-3) in Scallop will return the

number 3 of type i32, as the literal number -3 has the type i32 by default.

Optional Argument When specifying the type of an argument to the function, we may add

a question mark (?) at the end of the type annotation to denote that the argument is optional

(e.g., usize?). Optional arguments must occur after non-optional arguments. For instance, the

$substring function shown in Listing 2.24 is a function with argument e being optional. This means

that we may call the function in two different ways: $substring("hello", 3) returns "lo" while

$substring("hello", 3, 4) returns "l".

31

Variable Argument There are functions that may accept an arbitrary amount of arguments. We

may specify the property, vararg, by adding the ellipses (...) after the type of that argument. Note

that the variable argument, similar to optional argument, must appear after non-vararg arguments.

A foreign function may have at most one variable argument. The $string_concat function shown

in Listing 2.24 is an example that can take in an arbitrary amount of strings and performs the

concatenation. For example, $string_concat("a", "b") returns "ab" and $string_concat("a",

"b", "c") returns "abc".

Note that when specifying variable arguments, the argument that may have the arbitrary amount

must be of the same type or type family. If we want arbitrary arguments, we may use the type

family Any. For instance, the $format function accepts one format string and an arbitrary amount

of arbitrary values. When invoked with $format("1 + 1 = {}", 1 + 1), the second argument is

an integer (i32), and the returned value will be "1 + 1 = 2". But when invoked with $format("{}

> 0? {}", 1, 1 > 0), the second argument is integer while the third argument is a boolean, and

the returned value will be "1 > 0? true".

Error Handling Foreign functions may fail. When they fail, there is no value being returned and

the computation for this given input will be discarded. For instance, implicit foreign function such

as division might fail due to divide-by-zero, and explicit foreign function such as $substring might

fail if the given indices are out-of-bounds of the given string. By default, no error message will be

thrown and errors are silently suppressed. This is beneficial because, in a relational and declarative

language where inputs can be probabilistic, a significant amount of redundant computation might

occur, and external functions might be invoked on invalid inputs. Nevertheless, Scallop provides

compiler and runtime nobs to allow the report of errors.

2.7.2 Foreign Predicates

Foreign predicate is a generalized interface of foreign function, which can now produce multiple

outputs associated with additional informations such as probabilities. Predicates are mostly declared

just like other relations in Scallop, where inputs should be associated with bound keywords while

32

1 // Given a string , produce a set of (index , char) pairs
2 extern type string_chars(bound s:String , i:usize , c:char)
3
4 // Say that we have an RNA sequence
5 rel rna = {"GGCCCUUUUCAGGGCC"}
6
7 // We want to obtain the nucleotide at each position i,
8 // using the foreign predicate string_chars
9 rel nucleotide(i, n) = rna(s) and string_chars(s, i, n)

10 // result:
11 // neucleotide (0, 'G'),
12 // neucleotide (1, 'G'),
13 // neucleotide (2, 'C'), ...

Listing 2.25: An example foreign predicate string_chars.

outputs may be associated with free keywords. Here, we add the extern keyword to denote that

the PREDICATE should be defined externally.

1 extern type PREDICATE(bound IN: TYPE , ..., OUT: TYPE)

Conceptually, foreign predicate “relates” the inputs and the outputs. This means that given a specific

input to the predicate, multiple facts involving the input and outputs may be produced by the

predicate.

In Listing 2.25 we showcase one foreign predicate string_chars, that could help in obtaining the

nucleotides ({A, C, G, U}) in an RNA sequence string. Taking the string s as an input, string_chars

produces (s, i, n) triplets where i is the index of a character in the string, and n is the character

itself. It is clear that string_chars returns multiple facts as the output, whereas foreign functions

introduced in the previous section can only return one output.

Foreign Predicates that Produce Probabilities Foreign predicates produce facts which can

be associated with additional tags. The most common use case of this feature is the encoding of

probabilistic functions. For instance, in the standard library, Scallop provides a foreign predicate

named soft_eq, that compares equality between two numbers. However, instead of returning exactly

discrete false or true, the predicate wants to compute a probability of the two numbers being equal

33

1 // Given two floating point numbers , compute the
2 // probability of which the two numbers are equal.
3 extern type soft_eq(bound x: f32 , bound y: f32)
4
5 // Compute the output probability
6 rel output () = soft_eq (0.9, 1.0) // 0.998:: output ()

Listing 2.26: The usage of an example foreign predicate soft_eq which may return probabilities
associated with the output.

based on their distance. Formally, it is defined as follows:

Pr(x = y) = sech2

(
|y − x|
2 · β

)
(2.1)

Essentially, we have a parameter β dictating the threshold which the two numbers could be different.

When x = y, we have the Pr(x = y) = 1. When x = 0.9 and y = 1.0 and the parameter β = 1.0, we

have Pr(x = y) ≈ 0.998, meaning that the two numbers are very close to each other. In Scallop,

such program may be written as Listing 2.26.

Other use of foreign predicates producing probabilities include the similarity between vectors or

high-dimensional tensors. We are going to show more examples of foreign predicates returning facts

augmented with probabilities in Chapter 4.

2.7.3 Foreign Attributes

In Scallop, attribute is a higher-order construct that can be used to annotate any Scallop program

item, including declaration of functions, predicates, facts, and rules. Attributes are constructs that

starts with an @ sign, and may be accepting arbitrary arguments, both positional and keyworded.

Conceptually, one may think of attributes as taking in the annotated item, returning another item.

The following example in Listing 2.28 shows the use of a @file attribute to annotate a relation

named edge. Specifically, it is telling Scallop to load an external CSV (comma-separated values)

file, shown in Listing 2.27 into the edge relation. Conceptually, the @file attribute processes the

otherwise empty relation edge and returns a relation edge filled with content loaded from the file.

34

1 // [edge.csv]
2 from ,to
3 0,1
4 1,2

Listing 2.27: A CSV file
storing edges.

1 // [edge_path.scl]
2 @file("edge.csv", header=true)
3 type edge(from: u32 , to: u32)
4 query edge // {(0, 1), (1, 2)}

Listing 2.28: A Scallop program that can load the edges in
the given CSV file in Listing 2.27.

In the standard library of Scallop, there are many existing foreign attributes. For example, @storage

can be used to annotate a relation to specify the internal storage used for the relation, which can

help programmers optimize the performance of the Scallop program. Moreover, @cmd_arg retrieves

command line argument (if available) into the annotated relation. However, the power of having

foreign attributes is only showcased when the set of attributes can be extended by external plugins

and libraries. External databases, models, and applications can all become foreign attributes that

annotate Scallop relations. We delay the discussion to Chapter 4.

35

CHAPTER 3

Core Reasoning Provenance Framework

The preceding chapter presented Scallop’s surface language to express discrete reasoning. However,

the language must also support differentiable reasoning to enable end-to-end training. In this

chapter, we formally define the semantics of the language by means of a provenance framework.

We show how Scallop uniformly supports different reasoning modes—discrete, probabilistic, and

differentiable—simply by defining different provenances.

We start by presenting the basics of our provenance framework (Section 3.1). We then present a

low-level representation SclRam, its operational semantics, and its interface to the rest of a Scallop

application (Sections 3.2-3.3). We next present how our provenance framework enables scalable

probabilistic and differentiable reasoning (Sections 3.5-3.7). Lastly, we discuss practical extensions

in Section 3.8.

3.1 Provenance Framework

A provenance framework propagates additional information (e.g. probability, proofs) alongside

relational tuples in a Scallop program’s execution. The framework is based on the theory of provenance

semirings (Green et al., 2007). Figure 3.1 defines Scallop’s algebraic interface for provenance. We

call the additional information a tag t from a tag space T . There are two distinguished tags, 0 and 1,

representing unconditionally false and true tags. Tags are propagated through operations of binary

disjunction ⊕, binary conjunction ⊗, and unary negation ⊖ resembling logical or, and, and not.

Lastly, a saturation check ⃝= serves as a customizable stopping mechanism for fixed-point iteration.

The above components together form a 7-tuple (T,0,1,⊕,⊗,⊖,⃝=) which we call a provenance

T . Scallop provides a built-in library of provenances, and users can add custom provenances by

implementing this interface.

A provenance must satisfy a few properties. First, (T,0,1,⊕,⊗) should form a commutative semiring.

36

(Tag) t ∈ T
(False) 0 ∈ T
(True) 1 ∈ T

(Disjunction) ⊕ : T × T → T
(Conjunction) ⊗ : T × T → T

(Negation) ⊖ : T → T
(Saturation) ⃝= : T × T → Bool

Figure 3.1: Core algebraic interface for provenance T .

That is, 0 is the additive identity and annihilates under multiplication, 1 is the multiplicative

identity, ⊕ and ⊗ are associative and commutative, and ⊗ distributes over ⊕. To guarantee

the existence of fixed points (which are discussed in Section 3.3), it must also be absorptive, i.e.,

t1 ⊕ (t1 ⊗ t2) = t1 Dannert et al. (2021). Moreover, we need ⊖ 0 = 1, ⊖ 1 = 0, 0 ⃝̸= 1, 0 ⃝= 0,

and 1 ⃝= 1. A provenance which violates an individual property (e.g. absorptive) is still useful to

applications that do not use the affected features (e.g. recursion) or if the user simply wishes to

bypass the restrictions.

Example 1. max-min-prob (mmp) ≜ ([0, 1], 0, 1, max, min, λx.(1−x), ==), is a built-in probabilistic

provenance, where tags are numbers between 0 and 1 that are propagated with operations like max

and min. The tags do not represent true probabilities but are merely an approximation.

In particular, the mmp provenance extends the standard fuzzy semiring, also known as the Gödel

semiring (Cintula et al., 2011). While variants of the fuzzy semiring have been successfully applied in

neurosymbolic systems, such as in visual reasoning models like NS-CL (Mao et al., 2019), these basic

formulations lack key operations required for our use case. To support more expressive reasoning

patterns in our provenance framework, we extend the fuzzy semiring with two additional operations:

negation, to model logical complement or absence of belief, and saturation, to handle fixed-point

reasoning or convergence under iterative updates. We discuss richer provenances for more accurate

probability calculations later in this chapter.

37

(Predicate) p
(Aggregator) g ::= count | sum | max | exists | . . .
(Expression) e ::= p | γg(e) | πα(e) | σβ(e)

| e1 ∪ e2 | e1 ▷◁ e2 | e1 × e2
| e1 − e2 | e1 ▷ e2

(Rule) r ::= p← e
(Stratum) s ::= {r1, . . . , rn}
(Program) s ::= s1; . . . ; sn

Figure 3.2: Abstract syntax of core fragment of SclRam.

3.2 SclRam Intermediate Language

Scallop programs are compiled to a low-level representation called SclRam. Figure 3.2 shows

the abstract syntax of a core fragment of SclRam. Expressions resemble queries in an extended

relational algebra. They operate over relational predicates (p) using unary operations for aggregation

(γg with aggregator g), projection (πα with mapping α), and selection (σβ with condition β), and

binary operations union (∪), product (×), join (▷◁), difference (−), and anti-join (▷). We note that

there are other binary operations such as intersection (∩) which could be expressed by combining

the above core operations.

A rule r in SclRam is denoted p← e, where predicate p is the rule head and expression e is the

rule body. An unordered set of rules combined form a stratum s, and a sequence of strata s1; . . . ; sn

constitutes an SclRam program. Rules in the same stratum have distinct head predicates. Denoting

the set of head predicates in stratum s by Ps, we also require Psi ∩Psj = ∅ for all i ̸= j in a program.

Stratified negation and aggregation from the surface language are enforced as syntax restrictions in

SclRam: within a rule in stratum si, if a relational predicate p is used under aggregation (γ) or

right-hand-side of difference (−), that predicate p cannot appear in Psj if j ≥ i.

We next define the semantic domains in Figure 3.3 which are used subsequently to define the

semantics of SclRam. A tuple u is either a constant or a sequence of tuples. A fact p(u) ∈ F is a

tuple u named under a relational predicate p. Tuples and facts can be tagged, forming tagged tuples

(t :: u) and tagged facts (t :: p(u)). Given a set of tagged tuples UT , we say UT ⊨ u iff. there exists a

t such that t :: u ∈ UT . A set of tagged facts form a database FT . We use bracket notation FT [p] to

38

(Constant) C ∋ c ::= int | bool | str | . . .
(Tuple) U ∋ u ::= c | (u1, . . . , un)

(Tagged-Tuple) UT ∋ ut ::= t :: u
(Fact) F ∋ f ::= p(u)

(Tagged-Fact) FT ∋ ft ::= t :: p(u)

(Set of Tuples) U ∈ U ≜ P(U)
(Set of Tagged-Tuples) UT ∈ UT ≜ P(UT)

(Set of Facts) F ∈ F ≜ P(F)
(Database) FT ∈ FT ≜ P(FT)

Figure 3.3: Annotations of semantic domains for SclRam.

denote the set of tagged facts in FT under predicate p.

3.3 Operational Semantics of SclRam

We now present the operational semantics for our core fragment of SclRam in Figure 3.4. A

SclRam program s takes as input an extensional database (EDB) FT , and returns an intentional

database (IDB) F ′
T = JsK(FT). The semantics is conditioned on the underlying provenance T . We

call this tagged semantics, as opposed to the untagged semantics found in traditional Datalog.

Throughout our discussion of SclRam semantics, we use a motivating example shown in Figure 3.5 to

illustrate the reasoning procedure. The example depicts a maze in which a PacMan must reach a flag

while avoiding enemies. For illustrative purposes, we assume that the positions of PacMan, enemies,

and the flag are uncertain, each associated with a probability in the range [0, 1]. Using this example,

we walk through the components of SclRam, demonstrating how a high-level Scallop program is

compiled into SclRam and how the resulting SclRam program is subsequently evaluated.

Basic Relational Algebra Evaluating an expression in SclRam yields a set of tagged tuples

according to the rules defined at the top of Figure 3.4. A predicate p evaluates to all facts under that

predicate in the database. Selection filters tuples that satisfy condition β, and projection transforms

tuples according to mapping α. The mapping function α is partial: it may fail since it can apply

foreign functions to values. A tuple in a union e1 ∪ e2 can come from either e1 or e2. In a (Cartesian)

39

Expression α : U⇀ U, β : U→ Bool, g : U → U , JeK : FT → UT

t :: p(u) ∈ FT

t :: u ∈ JpK(FT)
(Predicate)

t :: u ∈ JeK(FT) β(u) = true
t :: u ∈ Jσβ(e)K(FT)

(Select)

t :: u ∈ JeK(FT) u′ = α(u)

t :: u′ ∈ Jπα(e)K(FT)
(Project)

t :: u ∈ Je1K(FT) ∪ Je2K(FT)

t :: u ∈ Je1 ∪ e2K(FT)
(Union)

t1 :: u1 ∈ Je1K(FT) t2 :: u2 ∈ Je2K(FT)

(t1 ⊗ t2) :: (u1, u2) ∈ Je1 × e2K(FT)
(Product)

t :: u ∈ Je1K(FT) Je2K(FT) ⊭ u
t :: u ∈ Je1 − e2K(FT)

(Diff-1)

t1 :: u ∈ Je1K(FT) t2 :: u ∈ Je2K(FT)

(t1 ⊗ (⊖ t2)) :: u ∈ Je1 − e2K(FT)
(Diff-2)

XT ⊆ JeK(FT) {ti :: ui}ni=1 = XT {tj :: uj}mj=1 = JeK(FT)−XT u ∈ g({ui}ni=1)

(
⊗n

i=1 ti)⊗ (
⊗m

j=1(⊖ tj)) :: u ∈ Jγg(e)K(FT)
(Aggregate)

Rule ⟨.⟩ : UT → UT , JrK : FT → FT

(Normalize) ⟨UT ⟩ ={(
⊕n

i=1 ti) :: u | t1 :: u, . . . , tn :: u

are all tagged-tuples in UT with the same tuple u}

told :: u ∈ JpK(FT) ⟨JeK(FT)⟩ ⊭ u
told :: p(u) ∈ Jp← eK(FT)

(Rule-Keep)

tnew :: u ∈ ⟨JeK(FT)⟩ JpK(FT) ⊭ u
tnew :: p(u) ∈ Jp← eK(FT)

(Rule-New)

told :: u ∈ JpK(FT) tnew :: u ∈ ⟨JeK(FT)⟩
(told ⊕ tnew) :: p(u) ∈ Jp← eK(FT)

(Rule-Merge)

Program lfp◦ : (FT → FT)→ (FT → FT), JsK, JsK : FT → FT

(Saturation) F old
T ⊜ F new

T iff ∀tnew :: p(u) ∈ F new
T ,∃told :: p(u) ∈ F old

T

such that told ⃝= tnew

(Fixpoint) lfp◦(h) = h ◦ · · · ◦ h = hn if there exists a minimum n > 0,

such that hn(FT) ⊜ hn+1(FT)

(Stratum) JsK = lfp◦(λFT .(FT −
⋃

p∈Ps
FT [p]) ∪ (

⋃
r∈sJrK(FT)))

(Program) JsK = JsnK ◦ · · · ◦ Js1K, where s = s1; . . . ; sn.

Figure 3.4: Operational semantics of core fragment of SclRam.

40

A

1

2

3

B C

(a) Maze illustration

0.9 0.9 0.9

0.9 0.9 0.9

0.9 0.9 0.91

2

3

A B C

(b) grid_cell

0.1 0.1 0.1

0.1 0.8 0.9

0.1 0.1 0.11

2

3

A B C

(c) enemy

1 const A = 1, B = 2, C = 3
2
3 type grid_cell(i: usize , j: usize)
4 rel grid_cell = {0.9::(3 , A), 0.9::(3 , B), 0.9::(3 , C),
5 0.9::(2 , A), 0.9::(2 , B), 0.9::(2 , C),
6 0.9::(1 , A), 0.9::(1 , B), 0.9::(1 , C) }
7
8 type enemy(i: usize , j: usize)
9 rel enemy = {0.1::(3 , A), 0.1::(3 , B), 0.1::(3 , C),

10 0.1::(2 , A), 0.8::(2 , B), 0.9::(2 , C),
11 0.1::(1 , A), 0.1::(1 , B), 0.1::(1 , C) }

(d) The Scallop program representing the maze shown in (a), where grid cells and enemies are represented by
grid_cell and enemy relations.

Figure 3.5: A grid based maze used as a motivating example in this section. Shown in (a), the grid
is 3× 3 with a PacMan located in location (1,C), two enemies located in locations (2,B) and (2,C),
and the goal flag located in location (3,C). For illustration purpose, we assume entities are located
in a given cell with a certain probability shown in (b) and (c). The Scallop program that describes
the maze configuration is shown in (d).

product e1 × e2, each pair of incoming tuples is combined, and we use the provenance multiplication

⊗ to compute their tags.

Difference and Negation To evaluate a difference expression e1 − e2, there are two cases

depending on whether a tuple u evaluated from e1 appears in the result of e2. If it does not, we

simply propagate the tuple and its tag to the result (Diff-1); otherwise, we get t1 :: u from e1 and

t2 :: u from e2. Instead of erasing the tuple u from the result as in untagged semantics, we propagate

a tag t1⊗(⊖ t2) with u (Diff-2). In this manner, information is not lost during negation. Figure 3.6c

and Figure 3.6d compare the evaluations of a difference expression under different semantics. While

41

1 rel safe_cell(x, y) = grid_cell(x, y) and not enemy(x, y)

(a) A Scallop program computing the safe cells

safe_cell← grid_cell− enemy

(b) The compiled SclRam program from (a)

Jgrid_cellK(F) JenemyK(F)

Jgrid_cell− enemyK(F)

(2,A)
(2,B) (2,B)

(2,A)

(c) Untagged semantics

Jgrid_cellK(FT) JenemyK(FT)

Jgrid_cell− enemyK(FT)

t1 :: (2,A)
t2 :: (2,B) t3 :: (2,B)

t1 :: (2,A)
t2 ⊗ (⊖ t3) :: (2,B)

(d) SclRam tagged semantics

Jgrid_cellK(Fmmp) JenemyK(Fmmp)

Jgrid_cell− enemyK(Fmmp)

0.9 :: (2,A)
0.9 :: (2,B)

0.1 :: (2,A)
0.8 :: (2,B)

min(0.9, 1− 0.1) = 0.9 :: (2,A)
min(0.9, 1− 0.8) = 0.2 :: (2,B)

(e) SclRam with max-min-prob

Figure 3.6: In (a), we demonstrate a Scallop rule computing the safe_cells, which are cells that
do not contain an enemy. The rule makes use of negation, and the compiled SclRam code, shown
in (b) involves a difference operation (−) on grid_cell and enemy relations. Figures (c), (d), and
(e) illustrate evaluation of the SclRam code under different semantics, where (e) instantiates the
tagged semantics with max-min-prob provenance.

the tuple (2,B) is removed from the outcome under untagged semantics, it is preserved under the

tagged semantics, albeit with lesser probability.

Aggregation Aggregators in SclRam are discrete functions g operating on sets of (untagged)

tuples U ∈ U . They return a set of aggregated tuples to account for aggregators like argmax which can

produce multiple outcomes. For example, we have count(U) = {|U |}. However, in the probabilistic

domain, discrete symbols do not suffice. Given n tagged tuples to aggregate over, each tagged tuple

can be turned on or off, resulting in 2n distinct worlds. Each world is a partition of the input set

42

1 rel num_enemies(n) = n := count(x, y: enemy(x, y))

(a) A Scallop program counting the number of enemies.

num_enemies← πλn.(n)(γcount(enemy))

(b) The compiled SclRam program utilizing aggregation operator γcount.

⟨Jγcount(enemy)K(FT)⟩
〈
Jγcount(enemy)K(Fmmp)

〉
222
222
222

:: 0 0.1 :: 0
■22
222
222

⊕ 2■2
222
222

⊕ · · ·⊕ 222
222
2■2

⊕ 222
222
22■

:: 1 0.1 :: 1

■■2
222
222

⊕ ■2■
222
222

⊕ · · ·⊕ 222
2■■
222

⊕ · · ·⊕ 222
222
■2■

⊕ 222
222
2■■

:: 2 0.8 :: 2

.
■■■
■■■
■■■

:: 9 0.1 :: 9

(c) Evaluation of the aggregation operator γcount. Each symbol such as ■22
222
222 represents a world corresponding to

our maze (■: enemy; 2: no enemy). A world is a conjunction of 9 tags, e.g., ■22
222
222 = tenemy(3,A)⊗ (⊖tenemy(3,B))⊗

· · · ⊗ (⊖tenemy(1,C)). We mark the correct world 222
2■■
222 which yields the answer 2.

Figure 3.7: An example counting enemies in the PacMan maze shown in Figure 3.5a. Shown in
(a) and (b) are the Scallop rule and compiled SclRam rule with aggregation. In (c), we show
two normalized (⟨.⟩ defined in Figure 3.4) evaluation results under abstract tagged semantics and
with mmp provenance. Under the mmp provenance, the outcome with two enemies has the highest
probability, which aligns with our intuition.

UT (|UT | = n). Denoting the positive part as XT and the negative part as XT = UT − XT , the

tag associated with this world is a conjunction of tags in XT and negated tags in XT . Aggregating

on this world then involves applying aggregator g on tuples in the positive part XT . This is

inherently exponential if we enumerate all worlds. However, we can optimize over each aggregator

and each provenance to achieve better performance. For instance, counting over max-min-prob tagged

tuples can be implemented by an O(n log(n)) algorithm, much faster than exponential. Figure 3.7

demonstrates a running example and an evaluation of a counting expression under max-min-prob

provenance. The resulting count can be 0-9, each derivable by multiple worlds.

Rules and Fixed-Point Iteration. Evaluating a rule p← e on database FT concerns evaluating

the expression e and merging the result with the existing facts under predicate p in FT . The result

of evaluating e may contain duplicate tuples tagged by distinct tags, owing to expressions such as

43

1 rel path(x,y,u,v) = edge(x,y,u,v) and not enemy(u,v)
2 rel path(x,y,u,v) = path(x,y,z,w) and edge(z,w,u,v) and
3 not enemy(u,v)

(a) The Scallop program computing whether there is a path from (x, y) to (u, v) without an enemy within
the path, using transitive closure.

temp← πλ((z,w),(x,y),(u,v)).((u,v),(x,y))(πλ(x,y,z,w).((z,w),(x,y))(path) ▷◁ edge)

path← πλ((u,v),(x,y)).(x,y,u,v)(πλ(x,y,u,v).((u,v),(x,y))(edge) ▷ enemy)

path← πλ((u,v),(x,y)).(x,y,u,v)(temp ▷ enemy)

(b) The two Scallop rules in (a) are compiled to 3 SclRam rules where the first rule computes an auxiliary
relation temp and the last two rules correspond to the rules in the Scallop program. Note that the anti-join
(▷) operator is used to compute the path with no enemy within it.

Iteration i 1 2 3 4 5 6 7

t
(i)
(1,C)-(3,C) in F (i)

T – = ⊕ ⊕ · · · ⊕ = ⊕ ⊕ · · · ⊕ =

t
(i)
(1,C)-(3,C) in F (i)

mmp – 0.1 0.1 0.2 0.2 0.9 0.9

t
(i)
(1,C)-(3,C) saturated? – F T F T F T

F
(i)
mmp saturated? F F F F F F T

(c) An illustration of the tags that are evolving over iterations. In the figure, = means unchanged tag, while
T and F represent true and false, respectively. We use a symbol like to represent a conjunction of negated
tags of enemy along the illustrated path, e.g. = (⊖t(2,C))⊗ (⊖t(3,C)).

Figure 3.8: A demonstration of the fixed-point iteration to check whether actor at (1, C) can reach
(3, C) without hitting an enemy (within the maze configuration shown in Figure 3.5a). The Scallop
rule to derive this is defined on the top, and we assume bidirectional edges are populated and tagged
by 1. Let t(1,C)-(3,C) be the tag associated with path(1,C,3,C). 2nd iter is the first time t(1,C)-(3,C)

is derived, but the path is blocked by an enemy. On 6th iter, the best path is derived in the tag.
After that, under the mmp provenance, both the tag t(1,C)-(3,C) and the database Fmmp are saturated,
causing the iteration to stop. Compared to untagged semantics in Datalog which will stop after 4
iterations, SclRam with mmp saturates slower but allowing to explore better reasoning chains.

44

Foption<I> FT F ′
T FOτ SclRam program, s ρ

Figure 3.9: Execution pipeline with external interface.

union, projection, or aggregation. Thus, we perform normalization by joining (⊕) the distinct tags

corresponding to the same tuple. From here, there are three cases to merge the newly derived tuples

(⟨JeK(FT)⟩) with the previously derived tuples (JpK(FT)). If a fact is present only in the old or the

new, we simply propagate the fact to the output. When a tuple u appears in both the old and the

new, we propagate the disjunction of the old and new tags (told ⊕ tnew). Combining all cases, we

obtain a set of newly tagged facts under predicate p.

Recursion in SclRam is performed similarly to least fixed point iteration in Datalog Abiteboul et al.

(1995). The iteration happens on a per-stratum basis to enforce stratified negation and aggregation.

Evaluating a single step of stratum s means evaluating all the rules in s and returning the updated

database. Note that we define a specialized least fixed point operator lfp◦, which stops the iteration

once the whole database is saturated. Figure 3.8 illustrates an evaluation involving recursion and

database saturation. The whole database saturates on the 7th iteration, and finds the tag associated

with the optimal path in the maze. Termination is not universally guaranteed in SclRam due to

the presence of features such as value creation. But its existence can be proven on a per-provenance

basis. For example, it is easy to show that if a program terminates under untagged semantics, then

it terminates under tagged semantics with max-min-prob provenance.

3.4 External Interface and Execution Pipeline

So far, we have only illustrated the max-min-prob provenance, in which the tags are approximated

probabilities. There are other probabilistic provenances with more complex tags such as proof trees

or boolean formulae. We therefore introduce for each provenance T an input tag space I, an output

tag space O, a tagging function τ : I → T , and a recover function ρ : T → O. For instance, all

probabilistic provenances share the same input and output tag spaces I = O = [0, 1] for a unified

interface, while the internal tag spaces T could be different. We call the 4-tuple (I,O, τ, ρ) the

45

(Literal) N ∋ ν ::= vi | ¬vi
(Conjunctive Clause) η ::= ν1 ∧ · · · ∧ νl

(DNF Formula) Φ ∋ ϕ ::= η1 ∨ · · · ∨ ηk

Figure 3.10: Definitions related to boolean formulas in disjunctive normal form

external interface for a provenance T . The whole execution pipeline is then illustrated in Figure 3.9.

In the context of a Scallop application, an EDB is provided in the form Foption<I>. During the

tagging phase, τ is applied to each input tag to obtain FT , following which the SclRam program

operates on FT . For convenience, not all input facts need to be tagged—untagged input facts are

assigned the tag 1 in FT . In the recovery phase, ρ is applied to obtain FO, the IDB that the whole

pipeline returns. Scallop allows the user to specify a set of output relations, and ρ is only applied to

tags under such relations to avoid redundant computations.

Example 2. The external interface of the mmp provenance from Example 1 is ([0, 1], [0, 1], id, id),

where the input and output spaces are the real numbers between 0 and 1, and the tagging and recover

functions are the identity function id := λx.x.

3.5 Exact Probabilistic Reasoning with Provenance

We say that a provenance T is probabilistic if its input space I and output space O are real values

in the range [0, 1]. As such, the max-min-prob provenance shown in Example. 1 is a probabilistic

provenance. However, while useful in practice, max-min-prob only computes an approximation of

the real probabilities. In this section, we start by introducing a more robust provenance that derives

exact probabilities. This is also the probabilistic reasoning method used in the ProbLog2 (Dries et al.,

2015) system.

We introduce the provenance proofs-prob which keeps track of boolean formulas in disjunctive

normal form (DNF). At a high level, the boolean formula encodes the full lineage of how a fact in

the IDB is derived from existing facts in the EDB. The definitions for DNF formulas are shown in

46

Figure 3.10. Suppose there are n facts in the EDB with independent and identically distributed

(i.i.d.) probabilities; we create n boolean variables each labeled v1, . . . , vn. Then, a literal in the

boolean formula is either a positive or a negated (¬) boolean variable. A set of distinct literals

connected by and (∧) form a conjunctive clause, while a set of clauses connected by or (∨) form a

disjunctive normal form formula ϕ. We note that there are two special DNF formulas, namely true

(⊤) and false (⊥). ⊤ is a singleton DNF formula with one empty conjunctive clause, where ⊥ is an

empty DNF formula. As such, the formal definition of proofs-prob is defined as follows:

Definition 1. The base proofs-prob (pp) provenance is defined as the 7-tuple (Φ,⊥,⊤,∨,∧,¬,=),

where ∨, ∧, and ¬ are operations on boolean formulae that perform the corresponding operation before

normalizing the formula back into DNF. The saturation operation = checks semantic equivalence

between two boolean formulae. The external interface for proofs-prob provenance is defined as

([0, 1], [0, 1], τpp, ρpp) for:

τpp(pi) = vi (3.1)

ρpp(ϕ) = WMC(ϕ,Γ) (3.2)

where the tagging process allocates a new boolean variable vi for each input probability pi, WMC is

the function for Weighted Model Counting, and Γ(vi) = pi is the mapping from allocated boolean

variables (vi) to their corresponding input probabilities (pi).

Following Figure 3.6, we show one concrete example of proofs-prob’s derivation process in Fig-

ure 3.11. Here, in addition to the tag propagation process shown in the middle section, we also

include the tagging phase at the top and the recovery phase at the bottom. The tagging function

τpp transforms the input probabilities into internal tags. After the derivation of boolean formulas,

we apply recovery function ρpp to compute the probabilities of the resulting facts. At the end, we

note that the result computed from the weighted model counting (WMC) process is the probability

of the corresponding tagged fact (Chavira and Darwiche, 2003; Van den Broeck et al., 2013).

WMC essentially computes the weight of the boolean formula given the weights of the boolean

47

Jgrid_cellK(Fpp) JenemyK(Fpp)

Jgrid_cell− enemyK(Fpp)

v1 :: (2,A)
v2 :: (2,B)

v3 :: (2,A)
v4 :: (2,B)

v1 ∧ ¬v3 :: (2,A)
v2 ∧ ¬v4 :: (2,B)

Jgrid_cellK(Foption<I>)

0.9 :: (2,A)
0.9 :: (2,B)

τpp

JenemyK(Foption<I>)

0.1 :: (2,A)
0.8 :: (2,B)

τpp

Jsafe_cellK(FO)

WMC(v1 ∧ ¬v3,Γ) = 0.81 :: (2,A)
WMC(v2 ∧ ¬v4,Γ) = 0.09 :: (2,B)

ρpp

Figure 3.11: The SclRam evaluation result with proofs-prob on the rule shown in Figure 3.6. As
shown in the first row, we assume that facts in grid_cell and enemy are provided as base facts
with given probabilities. Therefore, each of the 4 shown facts on the second row is assigned a unique
boolean variable v1, . . . , v4. The third row has the two IDB facts tagged by boolean formulas such as
v1 ∧ ¬v3. In the end, the output facts are tagged by probabilities derived by WMC-based recovery
procedure.

variables. Here, we directly treat the probabilities associated with each input fact as the weight of the

assigned boolean variables. Note that WMC is #P-complete, which presents a considerable tradeoff

between computing exact probabilities and maintaining a feasible runtime. Indeed, compared to

max-min-prob whose operations are all O(1), it is significantly more expensive to compute the exact

probabilities. In later sections, we describe optimizations that facilitate efficient learning while

maintaining various degrees of approximation.

48

3.6 Approximated Provenance for Scalable Reasoning

3.6.1 Top-k Proofs

The probabilistic nature of our problem setting opens up ample room for approximation, which may

drastically improve scalability. A key observation is that, when the inference system is used in a

machine learning setting, the probability of a ground truth fact should significantly outweigh the

other facts, forming a skewed distribution. We can exploit this property by only including the “most

likely” proofs (Huang et al., 2021; Gutmann et al., 2008).

First, we introduce a different way of formalizing the proofs and top-k proofs. We treat each DNF

boolean formula ϕ as a set of proofs, where each proof is a set of literals N. As such, ⊥ = ∅

while ⊤ = {∅}, a singleton set with ∅ being the only element. We showcase the process of proof

construction using an example in Figure 3.12. Formally, the disjunction (∨) operation is defined as

the set union (∪), while the conjunction (∧) operation is defined as cartesian product over proof-wise

union:

ϕ1 ∨ ϕ2 = ϕ1 ∪ ϕ2 (3.3)

ϕ1 ∧ ϕ2 = {η1 ∪ η2 | η1 ∈ ϕ1, η2 ∈ ϕ2} (3.4)

In order to perform the approximation, we define the modified disjunction and conjunction operations,

namely ∨(k) and ∧(k), where k is a tunable parameter controlling the level of approximation.

ϕ1 ∨(k)tkp ϕ2 = topk(ϕ1 ∪ ϕ2) (3.5)

ϕ1 ∧(k)tkp ϕ2 = topk({η1 ∪ η2 | η1 ∈ ϕ1, η2 ∈ ϕ2}) (3.6)

The goal is to pick out the “top-k” proofs within the result, where proofs are ranked by their respective

49

1 // The object o12 is identified as a cat with the highest likelihood
2 rel label = {0.9::(o12 , "cat"); 0.01::(o12 , "flower"); ...}
3
4 // Common sense ontology graph which indicates
5 // - a cat is a mammal
6 // - a mammal is an animal
7 rel is_a = {("cat", "mammal"), ("mammal", "animal")}
8
9 // R1: recursively compute the labels of a given object

10 rel label(obj , np) = label(obj , n) and is_a(n, np)
11
12 // R2: query for objects that is an animal or a plant
13 rel target(obj) = label(obj ,"animal") or label(obj ,"plant")

(a) A rule used in common sense reasoning for deriving the label of an object given a common sense ontology
graph represented by the relation (is_a).

label(o12, cat)
{{v1}}

is_a(cat, mammal)
{{v2}}

label(o12, mammal)
{{v1, v2}}

[AND]
is_a(mammal, animal)

{{v3}}
label(o12, animal)
{{v1, v2, v3}}

[AND]

(b) Proof construction with conjunction applying R1.

label(o12, animal)
{{v1, v2, v3}}

label(o12, plant)
{{v4, v5}}

target(o12)
{{v1, v2, v3}, {v4, v5}}

[OR]

(c) Proof construction with disjunction applying R2.

Figure 3.12: Derivation of set-of-proofs under different operations.

50

1.00::is_a(cat, animal)
0.83::label(o2, giraffe)

1.00::is_a(tiger, animal)
0.08::label(o2, tiger)

1.00::is_a(wolf, animal)
0.02::label(o2, wolf)

0.92::left(o2, o1)
0.84::attr(o2, tall)

0.85::left(o2, o3)
0.84::attr(o2, tall)

0.82::left(o2, o4)
0.84::attr(o2, tall)Top-3

Conj.

1.00::is_a(giraffe, animal)
0.83::label(o2, giraffe)

0.92::left(o2, o1)
0.84::attr(o2, tall)

rel subgoal(obj) = left(obj,other) and attr(other,"tall")

rel target(obj) = label(obj, "animal") and left(obj, p) and attr(obj, "tall")

1.00::is_a(giraffe, animal)
0.83::label(o2, giraffe)

0.85::left(o2, o3)
0.84::attr(o2, tall)

1.00::is_a(giraffe, animal)
0.83::label(o2, giraffe)

0.82::left(o2, o4)
0.84::attr(o2, tall)

1.00::is_a(tiger, animal)
0.08::label(o2, tiger)

0.92::left(o2, o1)
0.84::attr(o2, tall)

rel label(obj,"animal") = label(obj,other) and is_a(other,"animal")

1.00::is_a(wolf, animal)
0.02::label(o2, wolf)

0.82::left(o2, o4)
0.84::attr(o2, tall)

... 4 other proofs ...

subgoal(o2)label(o2, "animal")

target(o2)

0.83 0.08 0.02 0.77 0.71 0.69

0.64 0.59 0.57 0.06 0.01

φ1

(3)φ = φ1 ∧ φ2

φ2

Figure 3.13: Illustration of top-k conjunction using k = 3. Each ellipse represents a proof of the fact
shown in the box. Given the top 3 proofs for each of “label(o2, "animal")” and “subgoal(o2)”, we
wish to derive the top 3 proofs for their conjunction, “target(o2)”. The join yields 9 possible proofs.
After computing the likelihood for each of the 9 proofs, we keep the top 3 most likely ones (green
ellipses) and discard the rest (white ellipses).

probability. Specifically, the probability of each proof, Pr(η) is computed the following:

Pr(η) =

 0 if the proof η contains conflict;∏
ν∈η Pr(ν) otherwise

(3.7)

Pr(ν) =

 Pr(vi) if ν = vi (a positive literal)

1− Pr(vi) if ν = ¬vi (a negative literal)
(3.8)

Intuitively, whenever ∨ or ∧ is performed, we rank proofs by their likelihood and preserve only the

top-k proofs. This allows us to discard the vast majority of proofs and thus make inference tractable.

When merging two proofs during ∧(k), a single proof might contain the conjunction of conflicting

literals, e.g. vi and ¬vi, in which case we remove the whole proof. An example run-through of top-3

conjunction (∧(3)) is depicted in Figure 3.13, where we perform a normal ∧ operation followed by a

top-3 filtering.

To take negation ¬(k) on DNF φ, we first negate all the literals to obtain a conjunctive normal form

(CNF) equivalent to ¬φ. Then we perform cnf2dnf operation (conflict check included) to convert it

51

back to a DNF. The top-k operation is performed at the end, as the following:

¬(k) φ = topk(cnf2dnf({{¬ν | ν ∈ η} | η ∈ φ})) (3.9)

As such, all tags under the top-k proofs provenance have an upper bound of k on the number of

proofs, making the WMC procedure tractable. We still have each conjunction operation taking

O(n2) and negation taking O(2n), assuming that n is the number of facts and k ≪ n. This allows

the top-k proofs provenance to be much more scalable than the prob-proofs provenance.

Combining everything above, we now give the formal definition to the top-k-proofs provenance:

Definition 2. The top-k-proofs (tkp) provenance is the 7-tuple

(Φtkp, {}, {∅},∨(k)tkp,∧
(k)
tkp,¬

(k)
tkp,=), (3.10)

where Φtkp = P(P(N)) represents the space of disjunctive normal form (DNF) formulas encoded

as a two-level nested set structure. Here, P denotes power-set operator, and N denotes the set of

literals. The inner set P(N) captures all possible conjunctive proofs (i.e., conjunctions of literals),

and the outer power set P(·) wraps these to form sets of DNF formulas, each comprising multiple

conjunctions. The operations ∨(k)tkp, ∧
(k)
tkp, and ¬(k)tkp are lifted versions of logical disjunction (∨),

conjunction (∧), and negation (¬), respectively, augmented with a topk selection operator. Each

operation ensures that only the k most-likely conjunctive proofs are retained. The external interface

for tkp is the quadruple

([0, 1], [0, 1], τtkp, ρtkp), (3.11)

where

• τtkp(pi) = vi is the tagging function that introduces a fresh Boolean variable vi for each input

probabilistic fact with weight pi ∈ [0, 1], and

52

• ρtkp(ϕ) =WMC(ϕ,Γ) is the evaluation function that performs Weighted Model Counting on

the DNF formula ϕ under the weight mapping Γ, where Γ(vi) = pi.

We also note that our top-k inference algorithm is reminiscent of beam search. Both methods are

iterative and explore only the top-k elements at each step. However, there are two major differences

that distinguish us from beam search. First, while beam search is only a heuristic, our algorithm is

backed by Datalog semantics and the provenance semirings framework for its correctness. We also

present formal guarantees on its approximation error bound. Secondly, our algorithm operates over

the beam of proofs ϕ for each derived fact, while beam search is usually performed to search for an

output.

We now present some desirable properties of our top-k inference algorithm. Suppose we have

obtained a DNF ϕpp with the exact probabilistic reasoning module, as well as a DNF ϕtkp with the

top-k proofs reasoning module. And that their success probabilities are Pr(ϕpp) and Pr(ϕtkp). The

approximation error bound is given by |Pr(ϕpp)− Pr(ϕtkp)| ≤
∑

η ∈ ϕpp\ϕtkp Pr(η), and we can tune

k to control the trade-off between scalability and approximation precision. Note that the size of ϕtkp

is bounded by a controllable constant k (|ϕtkp| = O(k)). Therefore, the complexity of disjunction

and conjunction operations are reduced from exponential to linear with respect to the number of

boolean variables. It also drastically improves the scalability of weighted model counting during the

recovery phase.

3.6.2 Top-Bottom-k Clauses

One scalability limitation of the Top-k Proofs provenance arises in the negation operator ¬(k), which

requires a conversion from conjunctive normal form (CNF) to disjunctive normal form (DNF), also

known as cnf2dnf. This operation is known to have worst-case exponential complexity, due to the

potential combinatorial blowup in clause enumeration.

A practical optimization stems from observing that, by De Morgan’s laws, the negation of a DNF

formula naturally has the structure of an equivalent CNF, where each conjunctive clause becomes a

53

disjunctive clause of negated literals. For example:

¬(v1 ∧ v2) ∨ (v2 ∧ v3) = (¬v1 ∨ ¬v2) ∧ (¬v2 ∨ ¬v3),

where the outer disjunction (∨) and inner conjunctions (∧) are swapped due to De Morgan’s laws,

and negations are pushed down to the literals. This transformation enables us to avoid full cnf2dnf

expansion by treating the negated result as a structured CNF.

Based on this observation, we design a provenance named Top-Bottom-k Clauses, which allows dual

CNF and DNF representation of a set of clauses. In this design, clauses under a CNF are interpreted

as disjunctive clauses, while clauses under a DNF are interpreted as conjunctive clauses. Similar to

the top-k-proofs provenance, the DNF form retains the top-k conjunctive clauses (i.e., the most

likely proofs). In contrast, the CNF form retains the bottom-k disjunctive clauses, representing

those with the lowest associated probabilities.

The motivation behind the bottom-k heuristic is rooted in probabilistic reasoning: the probability

of a conjunctive formula being true is upper-bounded by the probability of its least likely literal.

Analogously, in a CNF, the falsifiability (or impact on negation) is determined by the weakest

disjunctive clause, i.e., the one that is easiest to satisfy. Thus, selecting the bottom-k disjunctive

clauses captures the weakest links in the negation space, which are most critical in influencing the

resulting probabilistic bound.

This dual representation enables efficient approximate reasoning under negation by preserving only

the most informative clauses in each polarity—top-k for affirmations, and bottom-k for denials—while

avoiding exponential blowup from full CNF-to-DNF expansion during negation. Formally, we have

the following definition for Top-Bottom-k Clauses provenance:

Definition 3. The top-bottom-k-clauses (tbkc) provenance is the 7-tuple

(Φtbkc, DNF({}), DNF({∅}),∨(k)tbkc,∧
(k)
tbkc,¬

(k)
tbkc,=), (3.12)

54

where

Φtbkc = DNF(P(P(N))) | CNF(P(P(N))) (3.13)

represents the dual space of DNF and CNF formulas encoded as a two-level nested set structure.

Here, P denotes power-set operator, and N denotes the set of literals. The inner set P(N) captures

all possible clauses, and the outer power set P(·) wraps these to form sets of DNF or CNF formulas,

each comprising multiple clauses. The operations ∨(k)tbkc, ∧
(k)
tbkc, and ¬(k)tbkc are lifted versions of logical

disjunction (∨), conjunction (∧), and negation (¬), respectively, for the provenance. Each operation

ensures that only the k most-likely conjunctive proofs are retained. Specifically, the ∨(k)tbkc operation

is defined as follows:

CNF(ϕ1) ∨(k)tbkc CNF(ϕ2) = CNF(bottomk({η1 ∪ η2 | η1 ∈ ϕ1, η2 ∈ ϕ2})), (3.14)

DNF(ϕ1) ∨(k)tbkc DNF(ϕ2) = DNF(topk(ϕ1 ∪ ϕ2)), (3.15)

CNF(ϕ1) ∨(k)tbkc DNF(ϕ2) = DNF(topk(cnf2dnf(ϕ1) ∪ ϕ2)); (3.16)

the ∧(k)tbkc operation is defined as follows:

CNF(ϕ1) ∧(k)tbkc CNF(ϕ2) = CNF(bottomk(ϕ1 ∪ ϕ2)), (3.17)

DNF(ϕ1) ∧(k)tbkc DNF(ϕ2) = DNF(topk({η1 ∪ η2 | η1 ∈ ϕ1, η2 ∈ ϕ2})), (3.18)

CNF(ϕ1) ∧(k)tbkc DNF(ϕ2) = DNF(topk({η1 ∪ η2 | η1 ∈ cnf2dnf(ϕ1), η2 ∈ ϕ2})); (3.19)

and the ¬(k)tbkc operation is defined as:

¬(k)tbkcCNF(ϕ) = DNF({{¬ν | ν ∈ η} | η ∈ ϕ}), (3.20)

¬(k)tbkcDNF(ϕ) = CNF({{¬ν | ν ∈ η} | η ∈ ϕ}). (3.21)

55

The external interface for tkp is the quadruple

([0, 1], [0, 1], τtbkc, ρtbkc), (3.22)

where

• τtbkc(pi) = vi is the tagging function that introduces a fresh Boolean variable vi for each input

probabilistic fact with weight pi ∈ [0, 1], and

• ρtbkc(ϕ) =WMC(ϕ,Γ) is the evaluation function that performs Weighted Model Counting on

the DNF or CNF formula ϕ under the weight mapping Γ, where Γ(vi) = pi.

Here, the top-k operation is identical with the one in top-k proofs, while the bottom-k operation needs

to estimate the probability of a disjunctive clause ηdisj. It is done using the following algorithm:

Pr(ηdisj) = 1−
∏

νi∈ηdisj
(1− νi) (3.23)

While the top-bottom-k clauses simplifies the negation operation, it does not eliminate the fundamen-

tal exponential complexity inherent in the problem. Specifically, the complexity originally incurred

by ¬(k)tkp is not avoided but rather shifted to the disjunction and conjunction operators (∨(k)tbkc and

∧(k)tbkc) particularly when these operators must merge clauses where one operand is in CNF and the

other in DNF. As a result, the computational advantages of the top-bottom-k clauses provenance

depend heavily on the structure of the Scallop program. It offers meaningful scalability benefits in

scenarios where a negation is applied to a fcat derived from complex logic, but is not immediately

followed by further conjunctions, which would otherwise trigger expensive mixed-form merges.

3.6.3 Optimal-k Proofs

While the top-k-proofs (tkp) provenance focuses on retaining the k most likely conjunctive proofs

for a given query, this approach may lead to over-representation of a narrow region of the probability

distribution. In particular, top-k operation may select highly similar proofs that differ only slightly

56

Algorithm 1: Brute-force Algorithm for Optimal-k Proofs
Data: A set of n conjunctive proofs {η1, . . . , ηn}, each with associated probability Pr(ηi), and

integer k
Result: A subset S ⊆ {η1, . . . , ηn} with |S| = min(k, n) maximizing Pr

(∨
η∈S η

)
1 S∗ ← ∅; p∗ ← 0 ; // Best subset and its disjunction probability
2 foreach subset S ⊆ {η1, . . . , ηn} with |S| = min(k, n) do
3 p← Pr

(∨
η∈S η

)
; // Evaluate disjunction probability

4 if p > p∗ then
5 S∗ ← S; p∗ ← p

6 return S∗

in structure or semantics, resulting in reduced diversity among the retained explanations. To address

this limitation, we introduce the optimal-k-proofs (okp) provenance, adapting algorithms first

presented in Renkens et al. (2012).

Formally speaking, assume that ϕpp is the DNF derived by prob-proofs provenance, and having n

conjunctive clauses η1, . . . , ηn within it. The optimal-k proofs ϕokp is the DNF which contains at

most k conjunctive clauses ηokp1 , . . . , ηokpmin(k,n)
where okpi ∈ {1 . . . n} are distinct and

ϕokp = argmaxokp1,...,okpmin(k,n)
Pr

 ∨
i∈1...min(k,n)

ηokpi

 . (3.24)

Intuitively speaking, ϕokp contains the k conjunctive clauses from ϕpp which maximizes the overall

disjunction probability, therefore being optimal.

The brute-force algorithm for optimal-k proofs (Algorithm 1) exhaustively searches all subsets of

up to k conjunctive clauses to find the one that maximizes disjunction probability, guaranteeing

optimality but at exponential computational cost. In contrast, the greedy algorithm (Algorithm 2)

builds the subset incrementally by selecting, at each step, the clause that yields the highest marginal

gain in disjunction probability. While greedy is far more efficient and often performs well in practice,

it does not guarantee a globally optimal solution. The key trade-off is between completeness and

scalability: brute-force ensures accuracy but is infeasible for large inputs, whereas greedy offers a

practical approximation with significantly lower computational overhead.

57

Algorithm 2: Greedy Algorithm for Optimal-k Proofs
Data: A set of conjunctive clauses {η1, . . . , ηn} and integer k
Result: A subset S ⊆ {η1, . . . , ηn} with |S| = k approximating maximal Pr

(∨
η∈S η

)
1 S ← ∅ ; // Initialize selected clause set
2 for i← 1 to k do
3 η∗ ← argmaxη∈{η1,...,ηn}\S Pr

(∨
η′∈S∪{η} η

′
)
;

4 S ← S ∪ {η∗}
5 return S

The simpliest implementations of optimal-k proofs introduces an additional optimization layer that

operates over the set of proofs generated during inference. Specifically, the system first computes

the full disjunctive normal form (DNF) of a query using standard provenance techniques such as

prob-proofs, and then applies a selection algorithm—either brute-force (Algorithm 1) or greedy (Al-

gorithm 2)—to extract the subset of k proofs that maximizes the overall disjunction probability.

These two strategies yield two provenance variants: optimal-k-proofs-bf, which guarantees op-

timality by exhaustively enumerating all k-sized subsets, and optimal-k-proofs-greedy, which

trades optimality for efficiency by incrementally selecting clauses with maximal marginal gain. This

separation of inference and recovery makes the optimization modular and interpretable.

However, computing all possible proofs before selecting the optimal k is often impractical, especially

in complex queries where the number of conjunctive proofs grows exponentially. Materializing

the entire DNF before applying greedy selection can itself become intractable. To address this,

Scallop also supports a third, more scalable strategy that integrates selection during inference.

Instead of waiting until the end, it maintains a running set of the optimal k proofs throughout

evaluation. As logical operations such as conjunction, disjunction, and negation are applied, the

system approximates new clauses while pruning to retain only the optimal k candidates at each step.

Although this compromises the optimality of the final result, it significantly improves efficiency and

often yields broader coverage than naively applying top-k or beam search on local substructures.

58

Definition 4. The optimal-k-proofs (okp) provenance is the 7-tuple

(Φokp, {}, {∅},∨(k)okp,∧
(k)
okp,¬

(k)
okp,=), (3.25)

where Φokp = P(P(N)) represents the space of disjunctive normal form (DNF) formulas encoded as

a two-level nested set structure. The operations ∨(k)okp, ∧
(k)
okp, and ¬(k)okp are lifted versions of logical

disjunction (∨), conjunction (∧), and negation (¬), respectively, augmented with a GreedyOptimalk

selection operator. Each operation ensures that only the k conjunctive proofs which can approximately

cover the most probability are retained. The external interface for okp is the quadruple

([0, 1], [0, 1], τokp, ρokp), (3.26)

where

• τokp(pi) = vi is the tagging function that introduces a fresh Boolean variable vi for each input

probabilistic fact with weight pi ∈ [0, 1], and

• ρokp(ϕ) =WMC(ϕ,Γ) is the evaluation function that performs Weighted Model Counting on

the DNF formula ϕ under the weight mapping Γ, where Γ(vi) = pi.

In summary, there is a fundamental trade-off between using optimal-k-proofs and top-k-proofs.

The top-k strategy selects the k most probable conjunctive clauses independently and is computa-

tionally efficient, but may result in redundant or overlapping proofs. In contrast, optimal-k-proofs

explicitly chooses the subset of k clauses that maximizes the overall disjunction probability, offering

better coverage at the cost of increased computational overhead due to evaluating joint probability

interactions among clauses. This improved coverage is especially beneficial in learning scenarios,

where probabilities are produced by neural components and gradients flow back through the selected

proofs. A broader disjunction allows more proof paths to contribute, enabling more non-zero gradients

and better credit assignment across the model. Notably, when k = 1, both methods are equivalent,

since the single most probable clause trivially maximizes the disjunction.

59

âi = (ai,∇ai) ∈ D
0̂ = (0, 0⃗)

1̂ = (1, 0⃗)

â1 + â2 = (a1 + a2,∇a1 +∇a2)
â1 · â2 = (a1 · a2, a2 · ∇a1 + a1 · ∇a2)
−â1 = (−a1,−∇a1)

min(â1, â2) = âi, where i = argmini(ai)
max(â1, â2) = âi, where i = argmaxi(ai)
clamp(â1) = (clamp1

0(a1),∇a1)

Figure 3.14: Operations on dual-number D ≜ [0, 1]×Rn, where n is the number of input probabilities.

3.7 Differentiable Reasoning

We now elucidate how provenance also supports differentiable reasoning. Suppose we have n input

facts that are associated with probabilities. Let all the probabilities in the EDB form a vector

r⃗ ∈ Rn, and the probabilities in the resulting IDB form a vector y⃗ ∈ Rm. Differentiation concerns

deriving output probabilities y⃗ as well as the derivative ∇y⃗ = ∂y⃗
∂r⃗ ∈ Rm×n. Viewing this from a

learning perspective, y⃗ can be used for computing loss in subsequent steps, while ∇y⃗ can be used for

back-propagating gradients during optimization.

In Scallop, one can obtain these elements using a differentiable provenance. Differentiable provenances

implement the external interface by setting the input tag space I = [0, 1] and the output tag space O

to be the space of dual-numbers D (Figure 3.14). Each input tag ri ∈ [0, 1] is a probability, and each

output tag ŷj = (yj ,∇yj) encapsulates the output probability yj and its derivative w.r.t. inputs,

∇yj . From here, we can obtain our expected output y⃗ and ∇y⃗ by stacking together yj-s and ∇yj-s

respectively.

Scallop provides 8 configurable built-in differentiable provenances with different empirical advantages

in terms of runtime efficiency, reasoning granularity, and performance. In the following subsections,

we elaborate upon 3 simple but versatile differentiable provenances, whose definitions are shown

in Figure 3.15. We use ri to denote the i-th element of r⃗, where i is called a variable (ID). Vector

60

Provenance T 0 1 t1 ⊕ t2 t1 ⊗ t2 ⊖ t t1 ⃝= t2 τ(ri) ρ(t)

diff-max-min-prob D 0̂ 1̂ max(t1, t2) min(t1, t2) 1̂− t tfst1 == tfst2 (ri, e⃗i) t

diff-add-mult-prob D 0̂ 1̂ clamp(t1 + t2) t1 · t2 1̂− t true (ri, e⃗i) t

diff-top-k-proofs Φ ⊥ ⊤ t1 ∨(k) t2 t1 ∧(k) t2 ¬(k) t t1 == t2 vi WMC(t,Γ)

Figure 3.15: Definitions of three differentiable provenances.

e⃗i ∈ Rn is the standard basis vector where all entries are 0 except the i-th entry.

3.7.1 diff-max-min-prob (dmmp)

This provenance is the differentiable version of max-min-prob (Example 1). When obtaining ri

from an input tag, we transform it into a dual-number by attaching e⃗i as its derivative. Note that

throughout the execution, the derivative will always have at most one entry being non-zero and,

specifically, 1 or −1. The saturation check is based on equality of the probability part only, so that

the derivative does not affect termination. All of its operations can be implemented by algorithms

with time complexity O(1), making it extremely runtime-efficient.

3.7.2 diff-add-mult-prob (damp)

This provenance has the same internal tag space, tagging function, and recover function as

diff-max-min-prob. As suggested by its name, its disjunction and conjunction operations are

just + and · for dual-numbers. When performing disjunction, we clamp the real part of the dual-

number obtained from performing +, while keeping the derivative the same. The saturation function

for diff-add-mult-prob is designed to always returns true to avoid non-termination. But this

decision makes it less suitable for complex recursive programs. The time complexity of operations in

diff-add-mult-prob is O(n), which is slower than diff-max-min-prob but is still very efficient in

practice.

3.7.3 diff-top-k-proofs (dtkp)

This provenance extends the top-k proofs introduced semiring proposed in Huang et al. (2021);

Gutmann et al. (2008) to additionally support negation and aggregation. As introduced in Section 3.6

61

and also shown in Figure 3.15, the tags of diff-top-k-proofs are boolean formulas φ ∈ Φ in

disjunctive normal form (DNF). The difference between diff-top-k-proofs and the original top-k

proofs provenance lies only in the external interface: differentiable provenances take dual-numbers

as input tags and need to output dual-numbers as output tags. Specifically, the tagging and recover

functions for diff-top-k-proofs are defined as:

τdtkp(Pr(vi)) = vi (3.27)

ρdtkp(φ) = WMC(φ,Γ) (3.28)

Γ(i) = (Pr(vi), e⃗i) (3.29)

where WMC is now a differentiable weighted-model counting procedure adopted from Manhaeve et al.

(2021). Other than the boolean formula φ, WMC also takes in the weights of each probabilistic

variable i. Instead of simple probabilities, the weights are now dual numbers like (Pr(vi), e⃗i).

During differentiable WMC, the dual-number addition and multiply rules (Figure 3.14) are applied.

Implementation-wise, Scallop adopts Sentential Decision Diagrams (SDD) (Darwiche, 2011) for the

WMC procedure.

3.8 Practical Extensions

In this section, we discuss the practical extensions that make Scallop’s computation scalable, tractable,

and widely-applicable.

3.8.1 Early Removal of Facts

A fact with a tag of 0 is often useless during computation, so it does not make sense to keep the

facts that are tagged by 0. In Scallop’s provenance framework, we allow each provenance to specify

whether we want to earlier remove such facts. We introduce a new function to the provenance

interface, discard : T → Bool. If discard returns true (⊤) when called on the tag of a fact, then the

fact will be removed from subsequent computation. The default implementation of this function is

discard(t) = t ⃝= 0.

62

1 rel color = {0.9::(OBJ_A , "red"); 0.1::(OBJ_A , "green")}
2 rel color = {0.2::(OBJ_B , "red"); 0.8::(OBJ_B , "green")}
3
4 rel should_not_exist(obj) = color(obj , "red") and color(obj , "green")

Listing 3.1: Two sets of mutually exclusive facts under the same relation, color. We assume that a
single object cannot have colors “red” and “green” at the same time. Evaluating the rule on line 4
should result in an empty relation, if the mutual exclusions are properly handled.

3.8.2 Mutual Exclusivity of Facts

Recall that Scallop allows the user to specify mutually exclusive set of probabilistic facts (List-

ing 2.16). Mutual exclusivity of facts are optionally handled by each provenance. This is because

the computational cost from fully handling mutual exclusivity may not be desirable. Specifically,

handling mutual exclusivity would require the logical derivation process to be encoded explicitly to

make sure that the satisfiability does not solely depend on two mutually exclusive facts. While this

could be achieved in many ways, the proofs data structure used in provenances like prob-proofs

and top-k-proofs can be naturally extended to handle mutual exclusion. On the contrary, simpler

provenances like max-min-prob and add-mult-prob are unable to handle mutual exclusivity due to

their tags being too simple.

We take prob-proofs as an example to show how it can be extended to handle mutual exclusivity.

In Scallop, prob-proofs (along with others like top-k-proofs) are already extended with this

functionality. But for presentation purpose, we consider a new provenance, named prob-proofs-me,

where me stands for mutual exclusion. In prob-proofs-me, instead of accepting a simple probability

as the input tag, it now accepts a tuple of probabilities along with an optional mutual exclusion set

ID (N). That is, Iprob-proofs-me = [0, 1]× option<N>.

Consider the example shown in Listing 3.1. The two sets of mutually exclusive facts are transformed

into two distinct mutual exclusion IDs, which we label 0 and 1. The fact color(OBJ_A, "red")

is technically tagged by (0.9, 0). The first element 0.9 is treated as a normal probability, while

the mapping from this fact ID to the mutual exclusion ID is stored for future reference. When

executing the rule (line 4), we derive a temporary proof containing facts color(OBJ_A, "red") and

63

Algorithm 3: Counting over max-min-prob tagged tuples
Data: Ummp = {t1 :: u1, t2 :: u2, . . . , tn :: un}: Ummp, set of tagged-tuples to count
Result: U ′

mmp: Ummp
/* sort all positive tuples according to their tags from small to large.

O(nlog(n)) */
1 tpos = sorted([ti | i = 1 . . . n]);
2 tneg = [1− tpos

n−i+1 | i = 1 . . . n];
/* Iterate through all possible partitions between positive and negative tags.

O(n) */
3 U ′

mmp = {tneg
n :: 0, tpos

1 :: n} ;
4 for i = 1 . . . (n− 1) do
5 Add min(tpos

i+1, t
neg
i) :: (n− i) to U ′

mmp;

6 return U ′
mmp

color(OBJ_A, "green"). However, when looking up the mutual exclusion information, we find

that the two facts cannot co-exist in the same proof. prob-proofs provenance will reject such a

proof, rendering the result tag to be 0. Therefore, combined with the early removal feature, the

should_not_exist relation is computed to be empty, as desired.

3.8.3 Specializing for Provenances

The design of Scallop’s provenance framework allows the reasoning algorithms to be specialized for

each provenance. For instance, as shown in Figure 3.4, aggregation operations in principle require

the enumeration of subsets, which is inherently an O(2n) operation, assuming that n is the number

of facts for aggregation. However, not all aggregations need this complex reasoning. For instance,

the count aggregator, when performed over a set of max-min-prob tagged-tuples, can be optimized

to an O(n log(n)) operation. We present our optimized counting algorithm in Algorithm 3. Note

that we only showed the algorithm for mmp for simplicity, but it easily extends to dmmp. Scallop

implements many other optimizations with varying degrees of approximations so that operations

that are in principle expensive become tractable when applied to real-life scenarios.

64

3.8.4 Sampling Operations

Scallop supports sampling operators such as top, categorical, and uniform. Their implementation

requires a signal that ranks the tagged facts. We therefore introduce a new function weight : T → R

to our provenance. As the name suggests, the weight function takes in a tag and returns its weight.

For probabilistic provenances, the default implementation is just the recover function, as it returns a

probability p ∈ [0, 1] that is also a suitable weight value. Weights can then be used for ranking facts

or sampling with weights.

3.8.5 Provenance Selection

Given the rich library of Scallop provenances and operations, a natural question that arises is how to

select a differentiable provenance for a given Scallop application. Based on our empirical evaluation,

dtkp is often the best performing one, and setting k = 3 is usually a good choice for both runtime

efficiency and learning performance. This suggests that a user should start with dtkp before searching

other provenances. In general, provenance selection in Scallop is analogous to hyperparameter tuning

in machine learning.

65

CHAPTER 4

Programming with Scallop and Foundation Models

Foundation models are deep neural models that are trained on a very large corpus of data and can

be adapted to a wide range of downstream tasks (Bommasani et al., 2021). Exemplars of foundation

models include language models (LMs) like GPT (Bubeck et al., 2023), vision models like Segment

Anything (Kirillov et al., 2023), and multi-modal models like CLIP (Radford et al., 2021). While

foundation models are a fundamental building block, they are inadequate for programming AI

applications end-to-end. For example, LMs hallucinate and produce nonfactual claims or incorrect

reasoning chains (McKenna et al., 2023). Furthermore, they lack the ability to reliably incorporate

structured data, which is the dominant form of data in modern databases. Finally, composing

different data modalities in custom or complex patterns remains an open problem, despite the advent

of multi-modal foundation models such as ViLT (Radford et al., 2021) for visual question answering.

Various mechanisms have been proposed to augment foundation models to overcome these limitations.

For example, PAL (Gao et al., 2023), WebGPT (Nakano et al., 2021), and Toolformer (Schick et al.,

2023) connect LMs with search engines and external tools, expanding their information retrieval

and structural reasoning capabilities. LMQL (Beurer-Kellner et al., 2022) generalizes pure text

prompting in LMs to incorporate scripting. In the domain of computer vision, neuro-symbolic visual

reasoning frameworks such as VisProg (Gupta and Kembhavi, 2022) compose diverse vision models

with LMs and image processing subroutines. Despite these advances, programmers lack a general

solution that systematically incorporates these methods under a unified framework.

Scallop supports a declarative framework for programming with foundation models. In this framework,

relations form the abstraction layer for interacting with foundation models. Our key insight is that

foundation models are stateless functions with relational inputs and outputs. Figure 4.1a shows a

Scallop program which invokes GPT to extract the height of mountains whose names are specified in

a structured table. Likewise, the program in Figure 4.1b uses the image-text alignment model CLIP

to classify images into discrete labels such as cat and dog. Figure 4.1c shows relational input-output

66

1 @gpt("The height of {{x}} is {{y}} in meters")
2 type height(bound x: String , y: i32)
3 // Retrieving height of mountains
4 rel mount_height(m, h) = mountain(m) and height(m, h)

(a) Program P1: Extracting knowledge using GPT.

1 @clip(["cat", "dog"])
2 type classify(bound img: Tensor , label: String)
3 // Classify each image as cat or dog
4 rel cat_or_dog(i, l) = image(i, m) and classify(m, l)

(b) Program P2: Classifying images using CLIP.

id img

1

2

id label

1 cat

1 dog

2 cat

2 dog

Everest

Fuji

8848

3776

mountain mount_height

P2

image cat_or_dog

name height

Everest

Fuji

name

K2 8611K2

Mt.Blanc 4808Mt.Blanc

P1

prob

0.02

0.98

0.99

0.01

(c) Example input-output relations of the programs.

Figure 4.1: Two example programs in Scallop using foundation models.

examples for the two programs. Notice that the CLIP model also outputs probabilities that allow

for probabilistic reasoning.

In this chapter, we first introduce the extensible plugin library (Section 4.1). We then dive into

the different relational constructs that we have designed for large language models (Section 4.2),

embedding models (Section 4.3), and vision language models (Section 4.4). We conclude the

chapter by two case studies, one on face tagging (Section 4.5) and one on visual question answering

(Section 4.6)

4.1 Extensible Plugin Library

Python libraries such as the OpenAI API and the Hugging Face ecosystem have positioned Python

to be the dominant language for interacting with foundation models. This motivates a plugin library

that allows users to interface Python-supported foundation models of their choosing in a Scallop

67

1 @foreign_attribute
2 def clip(pred: Predicate , labels: List[str]):
3 # Sanity checks for predicate and labels ...
4 assert pred.args [0].ty == Tensor and ...
5
6 @foreign_predicate(name=pred.name)
7 def run_clip(img: Tensor) -> Facts[str]:
8 # Invoke CLIP to classify image into labels
9 probs = clip_model(img , labels)

10 # Each result is tagged by a probability
11 for (prob , label) in zip(probs , labels):
12 yield (prob , (label ,)) # prob ::(label ,)
13
14 return run_clip

Listing 4.1: Snippet of Python implementation of the foreign attribute clip which uses the CLIP
model for image classification. Notice that the FA clip returns the FP run_clip.

program.

Each plugin defines a collection of foreign attributes (FAs) and functions via Scallop’s foreign

interface with Python. Our design principle for the interface is three-fold: simplicity, configurability,

and compositionality. Listing 4.1 illustrates one succinct implementation of the FA that enables the

use of the CLIP model shown in Figure 4.1b.

Because FAs can contain arbitrary Python code, the plugin library augments native Scallop features

with a wide range of utility functions vital to AI applications. Some examples include plugins for

image editing, face detection models, and chain-of-thought prompting. The modularity of the plugin

library allows users familiar with Python to create and install custom plugins with ease.

4.2 Large Language Models

Text completion In Scallop, large language models (LLMs) like GPT (OpenAI, 2023b) and

LLaMA (Touvron et al., 2023) can be used as basic foreign predicates for text completion (Listing 4.2).

In this case, gpt is an arity-2 FP that takes in request, a String as the prompt, and produces

response, a String as the response. As a result, we would obtain the fact ans("8468000"). We

note that the foreign predicate gpt uses the model gpt-3.5-turbo by default.

68

1 extern type gpt(bound request: String , response: String)
2 rel ans(a) = gpt("population of NY is", a)

Listing 4.2: A snippet of Scallop using gpt as a foreign predicate.

1 @gpt("the population of {{loc}} is {{num}}",
2 examples =[("NY", 8468000) , ...])
3 type population(bound loc: String , num: u32)

Listing 4.3: A snippet of Scallop using gpt as a foreign attribute.

1 @gpt(
2 "the mountain {{name}}'s height is {{ height }} meters",
3 examples =[("Kangchenjunga", 8586), ("Mont Blanc", 4805)]
4)
5 type mountain_height(bound name: String , height: i32)
6
7 rel mountains = {"Mount Everest", "K2"}
8 rel result(name , height) = mountains(name) and mountain_height(name ,

height)

Listing 4.4: A snippet of Scallop using @gpt for querying mountain heights.

To make the interface more relational and structural, we provide an FA for better specification of

prompts, as shown in Listing 4.3. Here, we declare a relation named population which produces a

population number (num) given a location (loc) as input. Notice that structured few-shot examples

are provided through the argument examples. Under the hood, the foreign attribute fills the prompt

with the given location at the bound argument {{loc}} and invokes GPT to fill in the free argument

{{num}}.

Consider the Scallop program in Listing 4.4. Following the pattern described above, the call to gpt

prompts GPT-4 (gpt-4-0613) by filling in {{mountain_name}} with the given strings and asks it

to infer the value of {{height}} for each mountain. The shots provided in examples modify the

prompt to GPT-4 as shown in Figure 4.2.

Note that we prompt GPT-4 to give its answer in the form of a JSON, so the response can be

converted into a relational Scallop fact to be handled by the program.

69

Here are a few examples:
- the mountain Kangchenjunga's height is {{height}} meters
- A: {"height": "8586"}
- the mountain Mont Blanc's height is {{height}} meters
- A: {"height": "4805"}

Please answer the following question:
- the mountain Mount Everest's height is {{height}} meters

User:

 {"height": "8611"}

Assistant:

 {"height": "8848"}

Assistant:

Here are a few examples:
- the mountain Kangchenjunga's height is {{height}} meters
- A: {"height": "8586"}
- the mountain Mont Blanc's height is {{height}} meters
- A: {"height": "4805"}

Please answer the following question:
- the mountain K2's height is {{height}} meters

User:

Figure 4.2: Conversation history between User (messages generated by gpt FA) and GPT-4
(gpt-4-0613) Assistant via OpenAI API after executing the program in Listing 4.4.

Relation extraction. Structured relational knowledge embedded in free-form textual data can

be extracted by language models. We introduce a foreign attribute gpt_extract_relation for

this purpose. For instance, the predicate declared in Listing 4.5 takes in a context and produces

(subject, object, relation) triplets.

This attribute differs from the text completion attribute gpt in that it can extract an arbitrary

number of facts for multiple relations. To motivate the need for such an attribute, we consider the

date understanding task from the BIG-bench suite (Srivastava et al., 2023). In this task, the model

70

1 @gpt_extract_relation(
2 prompts =["What are the implied kinship relations?"],
3 examples =[(
4 // bound "context" argument
5 "Alice and her son Bob went to...",
6 // free "subject , object , relation" arguments
7 // that form the relation to be extracted by GPT
8 [("alice", "bob", "son"), ...]
9)]

10)
11 type extract_kinship(
12 bound context: String ,
13 subject: String ,
14 object: String ,
15 relation: String
16)

Listing 4.5: A snippet of Scallop using gpt_extract_relation as a foreign attribute.

1 rel derived_date(label , date) =
2 mentioned_date(label , date)
3 rel derived_date(label , date - diff) =
4 relationship(label , other , diff) and
5 derived_date(other , date)
6 rel derived_date(label , date + diff) =
7 relationship(other , label , diff) and
8 derived_date(other , date)
9 rel answer(date) =

10 goal(label) and derived_date(label , date)

Listing 4.6: Scallop logic rules for the date understanding task.

is given a context and asked to compute a date in MM/DD/YYYY form.

Below is an example adapted from the date understanding task:

Q: Yesterday is February 14, 2019. What is the date 1 month ago from today?

A: 01/15/2019

Now suppose we have access to the following relations in Scallop:

1. mentioned_date(label, date): label is a string label for a date which is explicitly mentioned

71

1 @gpt_extract_relation(
2 prompts =[
3 "What are the mentioned MM/DD/YYYY dates as JSONs?",
4 "What is the goal in JSON format?",
5 "What are the relationships of the dates as JSONs?"
6],
7 examples =[
8 (
9 ["Yesterday is February 14, 2019.

10 What is the date 1 month ago from today?"],
11 [
12 [("yesterday", "02/14/2019")],
13 [("1-month -ago")],
14 [("yesterday", "today", "1 day"),
15 ("1-month -ago", "today", "1 month")]
16]
17),
18 // More shots hidden
19],
20 cot=[false ,false ,true]
21)
22 type extract_mentioned_date (
23 bound question: String , label: String , date: DateTime
24),
25 extract_goal (bound question: String , goal: String),
26 extract_relationship (
27 bound question: String , earlier_date: String ,
28 later_date: String , diff: Duration
29)

Listing 4.7: FA-annotated rules for date understanding.

in the question context, and date is the corresponding MM/DD/YYYY string. When a date

such as “Christmas Day” is mentioned, it will be transformed to the exact date of that year

based on the common sense knowledge that the LLM possesses.

2. goal(label): label is the date label whose MM/DD/YYYY form is requested as the answer.

3. relationship(date_1, date_2, diff): the first two arguments are a pair of date labels

relevant to the question, and diff is the time Duration between the dates.

Assuming that the above relations are supplied with complete and accurate facts, the Scallop rules

72

1 rel question = { "[Context] What is the date ...?" }
2
3 rel mentioned_date(label , date) =
4 question(q) and extract_mentioned_date(q, label , date)
5 rel goal(label) =
6 question(q) and extract_goal(q, label)
7 rel relationship(l1, l2, diff) =
8 question(q) and extract_relationship(q, l1, l2, diff)

Listing 4.8: Scallop rules for extracting 3 relations from a question for date understanding via the
FA-annotated rules of Listing 4.7.

in Listing 4.6 will derive the correct date in the relation answer. Motivated by this observation, we

can use the rules annotated by @gpt_extract_relation in Listing 4.7 to define the GPT-4 prompt

for extracting the three relations mentioned_date, goal, and relationship in Listing 4.8 before

executing the rules above. Note that depending on the question context, the number of facts in

relations mentioned_date and relationship could vary. Thus, text completion attributes are not

sufficient for generating these relations.

Referring to Listing 4.7, each question provided in prompts (lines 2–6) corresponds to a relation of a

given type signature that GPT-4 should extract from the bound argument question in Listing 4.8.

The shots provided in examples (lines 7–17) are formatted as messages that are prepended to the

conversation history given to GPT-4, as seen in Figure 4.3. Finally, the parameter cot (line 18) is a

Boolean array where cot[i] toggles whether the ith relation should be extracted using zero-shot

chain-of-thought (CoT) prompting Kojima et al. (2022).

Now suppose the bound argument question has value:

Jane finished her PhD in January 5th, 2008. Today is the 10th anniversary. What is the

date 10 days ago?

The GPT-4 conversation history after executing the code in Listing 4.7 and Listing 4.8 is given by

Figure 4.3. With a little thought, the reader will find that applying the rules in Listing 4.6 on the

relations generated by GPT-4 in Figure 4.3 will yield the correct answer: 12/26/2017.

73

Redacted: messages generated from subsequent shots

Generated by FA from
shots given in the

examples parameter;
prepended to the

conversation when
querying OpenAI API

Actual conversation
between FA (User) and

GPT-4 Assistant for
extracting relations
from the given input

question

User:

question:
- Yesterday is February 14, 2019. What is the date 1 month ago from today?

What are the mentioned MM/DD/YYYY dates in JSON format?

User:

What are the relationships of the dates in JSON format?
Please give your reasoning step by step before giving the JSON output.

Redacted: GPT's chain-of-thought reasoning

[{"earlier_date": "PhD-finish-date", "later_date": "anniversary", "diff": "10 years"},
 {"earlier_date": "10-days-ago", "later_date": "anniversary", "diff": "10 days"}]

Assistant:

[{"goal": "1-month-ago"}]

Assistant:

User:

What is the goal in JSON format?

[{"label": "yesterday", "date": "02/14/2019"}]

Assistant:

[{"earlier_date": "yesterday", "later_date": "today", "diff": "1 day"},
 {"earlier_date": "1-month-ago", "later_date": "today", "diff": "1 month"}]

Assistant:

User:

question:
- Jane finished her PhD in January 5th, 2008. Today is the 10th anniversary.
 What is the date 10 days ago?

What are the mentioned MM/DD/YYYY dates in JSON format?

[{"label": "PhD-finish-date", "date": "01/05/2008"},
 {"label": "anniversary", "date": "01/05/2018"}]

Assistant:

[{"goal": "10-days-ago"}]

Assistant:

User:

What is the goal in JSON format?

User:

What are the relationships of the dates in JSON format?

Figure 4.3: The GPT-4 conversation history after executing the program in Listing 4.7, with
annotations and redactions in italics.

74

1 @cross_encoder("nli -deberta -v3-xsmall")
2 type enc(bound input: String , embed: Tensor)
3 rel sim() = enc("cat", e) and enc("neko", e)

Listing 4.9: Scallop snippet using cross_encoder as a foreign attribute.

This example points towards a general pattern for programming neuro-symbolically with foundation

models. Given a problem, we decompose it into two sub-tasks. The first is to extract structured

information with an LM via an FA like gpt_extract_relation. This is followed by logical reasoning

and arithmetic over the structured data, expressed concisely as relational rules native to Scallop. By

confining the LM’s role to relation extraction, we mitigate the effects of model hallucination and

make key reasoning steps more robust and interpretable.

4.3 Embedding Models and Vector Databases

Textual embeddings are useful in performing tasks such as information retrieval. In Scallop,

embedding models are usually modeled as foreign predicates. Listing 4.9 declares an FP encapsulating

a cross-encoder Nogueira and Cho (2019).

In line 3, we compute the cosine-similarity of the encoded embeddings using a soft-join on the

variable e. As a result, we obtain a probabilistic fact like 0.9::sim() whose probability encodes the

cosine-similarity between the textual embeddings of "cat" and "neko".

One application of these techniques is in information retrieval. For example, consider the task from

HotpotQA Yang et al. (2018b). In this Wikipedia-based question answering (QA) dataset, the model

takes an input with 2 parts: 1) a question, and 2) 10 Wikipedia paragraphs as the context for

answering the question. Among the 10 Wikipedia pages, at most 2 are relevant to the answer, while

the others are distractors.

In Listing 4.10, we implement an adaptation of FE2H Li et al. (2022a). The method is a 2 stage

procedure. First, we turn the 10 documents into a vector database by embedding each document

with the gpt_encoder FP (lines 1–2, 11). We then use cosine similarity (via Scallop’s built-in

75

1 @gpt_encoder
2 type $embed_text(String) -> Tensor
3
4 type question(q: String)
5
6 type context(id: i32 , c: String)
7
8 rel relevant(id) = id := top <2>(
9 id: question(q) and

10 context(id, c) and
11 soft_eq <Tensor >($embed_text(q), $embed_text(c))
12)
13 rel relevant_context($string_concat(c1, "\n", c2)) =
14 relevant(id1) and relevant(id2) and id1 < id2 and
15 context(id1 , c1) and context(id2 , c2)
16
17 @gpt(
18 prompt="Given {{ctxt }}\n{{q}}\n
19 Please think step -by -step {{ans}}"
20)
21 type qa(bound q: String , bound ctxt: String , ans: String)
22
23 rel answer(a) =
24 question(q) and relevant_context(c) and qa(q, c, a)

Listing 4.10: Scallop program for information retrieval in the HotpotQA task.

soft_eq) to select the 2 documents most relevant to the question (lines 8–15), which are provided as

context to GPT-4 to do QA (lines 17–24). By retrieving only 2 documents, the context we generate

is inherently less distracting than the naive context of all 10 documents.

4.4 Vision and Multi-Modal Models

Image classification models Image-text alignment models, such as CLIP (Radford et al., 2021),

can be used off-the-shelf as zero-shot image classification models. Figure 4.1b shows an example

usage of the @clip attribute. We also note that dynamically-generated classification labels can be

provided to CLIP via a bounded argument in the predicate.

76

1 @owl_vit (["human face", "rocket"])
2 type find_obj(
3 bound img: Tensor ,
4 id: u32 , label: String , cropped_image: Tensor
5)

Listing 4.11: Scallop snippet using owl_vit as a foreign attribute.

1 @stable_diffusion("stable -diffusion -v1 -4")
2 type gen_image(bound txt: String , img: Tensor)

Listing 4.12: Scallop snippet using stable_diffusion as a foreign attribute.

Image segmentation models OWL-ViT (Minderer et al., 2022), Segment Anything Model

(SAM) (Kirillov et al., 2023), and Dual-Shot Face Detector (DSFD) Li et al. (2018) are included in

Scallop as image segmentation (IS) and object localization (LOC) models. IS and LOC models can

provide many outputs, such as bounding boxes, classified labels, masks, and cropped images.

For instance, the OWL-ViT model can be used and configured as shown in Listing 4.11. Here, the

find_obj predicate takes in an image, and finds image segments containing “human face” or “rocket”.

According to the names of the arguments, the model extracts 3 values per segment: an unique

identifier (ID), the string label which could be either “human face” or “rocket”, and the cropped

image represented as a Tensor. If more information is desired, programmers can additionally specify

other output arguments such as bbox_x to obtain information about the bounding-boxes. Note that

each produced fact is tagged with a probability, representing the model’s confidence on the segment.

Image generation models Image generation models such as Stable Diffusion (Rombach et al.,

2022) and DALL-E (Ramesh et al., 2021) can also be viewed through a relational lens, where each

model defines a relation between natural language inputs and generated image outputs.

Listing 4.12 shows the declaration of the gen_image predicate, which encapsulates a diffusion model.

As can be seen from the signature, it takes in a String text as input and produces a Tensor image

as output. Optional arguments such as the desired image resolution and the number of inference

steps can be supplied to dictate the granularity of the generated image.

77

Figure 4.4: The face-tagging input (left) and output (right) of the image with descriptive filename
microsoft_ceos.jpeg.

One particularly compelling programmability trait of generative models is their ability to be invoked

multiple times to produce distinct yet plausible images for a given textual description. In traditional

imperative or empirical programming paradigms, such functionality typically requires explicitly

defining the output as a list or collection of images. In contrast, Scallop-style relational programming

abstracts this complexity: it defines relations, not data structures. As a result, there is no need to

explicitly declare the output as a list—each plausible image generated corresponds to a tuple in the

same relation. This significantly simplifies the program structure.

4.5 Case Study: Face Tagging by Foundation Model Relations

To demonstrate Scallop’s usefulness in composing foundation models of various modalities, we

introduce our face-tagging task based on that of VisProg (Gupta and Kembhavi, 2022). In our

task, the model is given an image with a descriptive natural-language filename, and needs to output

an edited image where all faces relevant to the description are boxed with their names. An example

input-output pair is shown in Figure 4.4.

The code for face-tagging is provided in Listing 4.13. Our solution obtains a set of possible names

from GPT-4 (lines 5–12) and candidate faces from the DSFD face detection model (lines 14–26).

These are provided to CLIP for object classification (lines 28–31), after which probabilistic reasoning

78

1 type input_path(String)
2 type input_name(String)
3 rel image($load_image(path)) = input_path(path)
4
5 @gpt(
6 prompt="Give a semicolon -delimited list of people that
7 could appear in an image titled `{{name}}', where each
8 item is a person 's name: {{list}}"
9)

10 type list_gpt(bound name: String , list: String)
11
12 rel names(list) = input_name(name) and list_gpt(name , list)
13
14 @face_detection(
15 ["cropped -image", "bbox -x", "bbox -y",
16 "bbox -w", "bbox -h"],
17 enlarge_face_factor =1.3
18)
19 type face(bound img: Tensor , id: u32 ,
20 face_img: Tensor , x: u32 , y: u32 , w: u32 , h: u32
21)
22
23 rel face_image(id, face_img) =
24 image(img) and face(img , id, face_img , _, _, _, _)
25 rel face_bbox(id, x, y, w, h) =
26 image(img) and face(img , id, _, x, y, w, h)
27
28 @clip(prompt="the face of {{}}", score_threshold =0.8)
29 type face_name(
30 bound face: Tensor , bound list: String , name: String
31)
32
33 rel identity(id, name) =
34 name := top <1>(name:
35 face_name(img , $string_concat(list), name) and
36 face_image(id, img) and names(list)
37)
38
39 // Omitted: code for labeling identified faces w/ boxes

Listing 4.13: Scallop program for face-tagging.

filters the most relevant face-name pairs (lines 33–37). Finally, the program calls image-editing

foreign functions from the plugin library that use the face-name pairs to draw the captioned face

79

Question: Is there a yellow cube?

Programmatic Query:
Exists(FilterColor(

FilterShape(Scene (),"cube"),
"yellow "))

Answer: true

Figure 4.5: An example problem in CLEVR. Our model is supposed to answer the given question
based on the image shown on the left.

boxes (code omitted).

4.6 Case Study: Visual Question Answering on Scene Images

In this section, we describe the Scallop program for one of our applications, CLEVR (Johnson et al.,

2016). In Figure 4.5, we illustrate a concrete example of the program we described executing on an

image from the CLEVR dataset. We are given two inputs, namely the image (left) and the question

(top-right), and we are supposed to produce an answer (bottom-right). In general, the images in

CLEVR dataset may contain up to 10 primitive objects, each with a pre-defined set of shapes,

colors, materials, and sizes. There is a range of questions whose answer maybe numbers (counting

questions), true/false (existence or comparing or assertive questions), or properties (querying color).

We decompose our solution to this application into three sub-tasks: a) extracting a structured

scene graph from the input image, b) extracting an executable query program from the input

natural language (NL) question, and c) combining both to answer the question based on the scene

graph. Here, a) and b) require the processing of unstructured data such as image and natural

language question, and therefore may be neural. On the other hand, c) can be programed and fully

symbolic. We may choose to have both neural networks for a) and b) to be trained by our end-to-end

pipeline. But in light of the advancements of foundation models such as GPT-4 (OpenAI, 2023b)

and CLIP (Radford et al., 2021), in this section we present an off-the-shelf no-training solution. We

next describe how we solve each of these sub-tasks.

80

1 @owl_vit (["cube", "sphere", "cylinder"],
2 expand_crop_region =10, limit=10,
3 flatten_probability=true)
4 type segment_image(
5 bound img: Tensor , id: u32 ,
6 cropped_image: Tensor , area: u32 ,
7 bbox_center_x: u32 , bbox_bottom_y: u32)

Listing 4.14: Definition of the relation used for image segmentation, using OWL-ViT.

@owl_vit(["cube","sphere"],...)
type image_segment(
 bound img: Tensor,
 id: u32,
 cropped: Tensor,
 area: u32,
 bbox_center_x: u32,
 bbox_center_y: u32)

prob id segment area x y

0.99 0 625 515 169

0.98 1 134 262 166

...

Figure 4.6: An illustration of the segment_image relation.

4.6.1 Image to structured scene graph

To convert image to structured scene graph, we use two off-the-shelf vision models, namely OWL-

ViT (Minderer et al., 2022) and CLIP (Radford et al., 2021). We use OWL-ViT for obtaining object

segments and CLIP models for classifying object properties. The goal is to construct scene graph

which contains the following information: the shape, color, material, and size for each object, and

the spatial relationships between each pair of objects.

Our object detection predicate is defined in Listing 4.14. We use the @owl_vit foreign attribute

to decorate a predicate vit_segment_image. Here, the image has one bounded argument which

is the input image, and it produces image segments represented by 5 tuples, containing segment

id (id), segmented image (cropped_image), the area of segment (area), the center x coordinate

(bbox_center_x), and the bottom y coordinate (bbox_bottom_y). Specifically, segmented images

can be passed to downstream image classifiers, the area is used to classify whether the object is

big or small, and the coordinates are used to determine spatial relationships between objects. We

illustrate the produced table in Figure 4.6.

Note that the arguments we pass to @owl_vit contain expected labels of cube, sphere, and cylinder.

81

1 // the user provide the image with its directory
2 type img_dir(directory: String)
3
4 // load the image as a tensor
5 type image(img: Tensor)
6 rel image($load_image(d)) = img_dir(d)
7
8 // segment the image using our segment_image relation
9 rel obj_seg(id, seg , area , x, y) =

10 image(img) and segment_image(img , id, seg , area , x, y)
11 rel obj(id) = obj_seg(id, _, _, _, _)

Listing 4.15: The Scallop program that loads and segments a CLEVR image.

Because OWL-ViT does not perform well at classifying given geometric objects by shape, we do

not use it to query the labels associated with each object. Rather, these labels identify the image

segments the model extracts from the base image.

We set expand_crop_region to be 10, which expands the cropped images by the given factor. Since

the bounding boxes of the objects are tight, enlarging the crop region can help subsequent classifiers

to better see the object. With the limit set to 10, OWL-ViT only generates 10 image segments.

Lastly, we set flatten_probability to be true. This is due to that OWL-ViT is not trained on

CLEVR, so it produces very low confidence scores on all recognized objects. In order to not let the

scores affect downstream computation, we overwrite the probability to 1 for all objects.

With all the above setup, we may load the image specified by the image directory path using the

foreign function $load_image, and then segment the image using the segment_image predicate

defined previously. Our code is illustrated in Listing 4.15.

We next define the classifiers for shape, color, material, and sizes. For instance, we utilize the foreign

attribute @clip to classify each object segment with a label among three possible shapes: cube,

sphere, and cylinder (Listing 4.16). In order to interface with CLIP, we write a prompt "a {{}}

shaped object". Each label is used to replace the {{}} pattern in the prompt, producing short

phrases like “a cube shaped object”. Then, the three prompts are passed to CLIP along with the

object image, and facts with labels are returned with probabilities. The classifier for color is done

82

1 // Classify each object into a certain shape
2 @clip(["cube", "cylinder", "sphere"],
3 prompt="a {{}} shaped object")
4 type classify_shape(bound obj_img: Tensor , shape: String)
5 rel shape(o, s) = obj_seg(o, seg , _, _, _) and
6 classify_shape(seg , s)
7
8 // Classify each object into a certain color
9 @clip(["red", "blue", "yellow", "purple", "gray", ...],

10 prompt="a {{}} colored object")
11 type classify_color(bound obj_img: Tensor , color: String)
12 rel color(o, c) = obj_seg(o, seg , _, _, _) and
13 classify_color(seg , c)

Listing 4.16: Classifier relations using CLIP.

1 // obtain the object position
2 rel obj_pos(o, x, y) = obj_seg(o, _, _, x, y)
3
4 // left/right spatial relation
5 rel relate(o1, o2, if x1 < x2 then "left" else "right") =
6 obj_pos(o1, x1 , _) and obj_pos(o2, x2 , _) and o1 != o2
7
8 // front/behind spatial relation
9 rel relate(o1, o2, if y1 > y2 then "front" else "behind") =

10 obj_pos(o1, _, y1) and obj_pos(o2, _, y2) and o1 != o2

Listing 4.17: Scallop rules for deriving spatial relations between pairs of objects.

similarly, shown also in Listing 4.16.

The spatial relationship (left, right, front, and behind) is derived from object coordinates

(Listing 4.17). We note that we are not using a neural component for this because the spatial

relationships from object coordinates are fairly precise. Combining everything together, we have

produced the relationships color, shape, material, size, and relate, forming the scene graph of

the image.

4.6.2 Natural language question to programmatic query

We use the GPT-4 model (OpenAI, 2023b) for converting a natural language question into a

83

1 type Query = Scene ()
2 | FilterShape(Query , String) // and material/color/size
3 | MoreThan(Query , Query) // and less -than/equals
4 | SameSize(Query) // and color/material/size
5 | QueryColor(Query) // and size/shape/material
6 | Count(Query)
7 | Exists(Query)
8 | Relate(Query , String)
9 | // ... and other variants

Listing 4.18: The DSL for representing the NL questions in the CLEVR dataset, defined in Scallop.

programmatic query. The first step is defining the domain specific language (DSL) for querying the

CLEVR dataset, as shown in Listing 4.18. Notice that the DSL is represented by the user-defined

algebraic data type (ADT) Query, which contains constructs for getting objects, counting objects,

checking existence of objects, and even comparing counts obtained from evaluating multiple queries.

We then create the semantic parser for the DSL by configuring a relation to parse natural

language question into a programmatic Query, shown in Listing 4.19. For this, we utilize the

@gpt_semantic_parse foreign attribute provided in Scallop. Other than the model argument which

is used to specify the OpenAI model to call, we pass the 3 main arguments to gpt_semantic_parse,

namely header, prompt, and examples. prompt constitutes the system prompt, while the structures

examples are expanded with the prompt into the few-shot examples. In Figure 4.7 we show one

specific example of “conversation” with LLM to precisely parse the NL question into Query.

4.6.3 Putting it all together

The last part which brings everything together is the semantics of our Query DSL, shown in

Listing 4.18. We can start by treating each variant of our DSL as a function. Assuming we have

Oall = {o1, o2, . . . , on} representing the set of all objects in the scene. Then we have an arbitrary set

of objects represented as O ∈ P(Oall) where P is the powerset operation. Suppose O = P(Oall), we

may give the following function types and functional semantics to a few set of variant in our DSL

(Figure 4.8). For instance, Scene is a function that returns all the objects in the scene. Count takes

in a set of objects and returns the cardinality of that set. Assuming we have relational predicates

84

Please convert a question for asking a visual
question into its programmatic form according to
the following language:
 Expr = Scene()
 | FilterShape(Expr, String)
 | …
Please pick shapes among "cylinder", ...

System prompt

Question: How many red objects are there?

User prompt (Provided as Shot #1)

Count(FilterColor(Scene(), "red"))

Assistant Response (Provided as Shot #1)

Question: Is there a cube?

User prompt (Provided as Shot #2)

Exists(FilterShape(Scene(), "cube"))

Assistant Response (Provided as Shot #2)

…other few shot examples…

Question: Is there an object to the left of
the cube?

User prompt (Real question)

Exists(Relate(FilterShape(Scene(), "cube"), "left"))

Assistant Response (Real Response from GPT-4)

Figure 4.7: A “conversation” between Scallop and the LLM for semantically parsing the NL question
into programmatic query in our domain specific language (Listing 4.18). We use few-shot prompting
in order to generate accurate programmatic query. Everything except the last bubble (green)
is generated by our @gpt_semantic_parse foreign attribute–the assistance response for few-shot
examples are also mocked to give the LLM an impression of the expected output format.

85

1 @gpt_semantic_parse(
2 header="""
3 Please convert a question into its programmatic form
4 according to the following language:
5
6 Expr = Scene() | FilterShape(Expr , String) | ...
7
8 Please pick shapes among \" cylinder\", ...;
9 Colors are among \"red\", \"blue\", ...;

10 Materials are among \"shiny metal\" and ...;
11 Sizes are among \"large\" and \"small \";
12 Spatial relations are among \"left\", ...""",
13 prompt="""Question: {{s}} \n Query: {{e}}""",
14 examples =[
15 ("How many red objects are there?",
16 "Count(FilterColor(Scene(), \"red\"))"),
17 ("Is there a cube?",
18 "Exists(FilterShape(Scene(), \"cube \"))"),
19 ...],
20 model="gpt -4")
21 type parse_query(bound s: String , q: Query)
22
23 // convert the input NL question to a programmatic query
24 type question(q: String)
25 rel prog_query(q) = question(s) and parse_query(s, q)

Listing 4.19: A semantic parser relation parse_query.

such as shape and color pre-populated with facts in our scene graph, we may use them to define

the functions such as FilterShape and QueryColor. Definitions of other predicates are omitted

since they look similar to what we show.

Unsurprisingly, it turns out that the definition of these functions can all be translated into relational

rules. We may define eval which recursively evaluates each “function call” into their respective

output. Note that since the functions have different return types, we define different eval_* relations,

shown in Listing 4.20. Specifically for eval_obj, even though the original functions return sets of

objects, we may define the relation relating the function with one of object in its output set. Such

representation is natural (and unique) in relational programming paradigm–it allows us to tag each

output with probabilities, while in traditional functional semantics might be very hard to do.

86

Scene : ()→ O Scene() = Oall
Count : O → N Count(O) = |O|

Exists : O → B Exists(O) = 1|O|>0

FilterShape : O × S→ O FilterShape(O, s) = {o | o ∈ O ∧ shape(o, s)}
QueryColor : Oall → C QueryColor(o) = c where color(o, c)

MoreThan : O ×O → B MoreThan(O1, O2) = 1|O1|>|O2|

Figure 4.8: The functional semantics of our defined DSL. We show the type of each “function”
as well as their concrete definitions. Here, S = {big, small} represents the set of shapes and
C = {red, blue, . . . } represents the set of all possible colors appearing in the dataset.

1 // for functions like Count that return numbers
2 type eval_num(q: Query , n: usize)
3
4 // for functions like Exists that return booleans
5 type eval_bool(q: Query , b: bool)
6
7 // for functions like Scene that return (set of) objects
8 // note: we use `u32 ` to represent Object IDs
9 type eval_obj(q: Query , obj_id: u32)

10
11 // for functions like QueryColor that return attributes
12 // the attributes are stringified for the result , such as
13 // "red", "cube", "left", "large", and etc.
14 type eval_str(q: Query , attr: String)

Listing 4.20: The type declarations of eval_* relations in Scallop.

With everything setup, we can now start defining the semantics of our DSL in Scallop (Listing 4.21).

The semantics is inductively defined on the Query data structure. Each rule essentially encodes the

evaluation of one variant in our DSL. For instance, the rule on line 2 states that evaluating the Scene()

results in any object o where o is an object. The rule on line 3-4 handles the FilterShape(e1, s)

query: it evaluates the subquery e1 to obtain object o, and further quantify it using the shape(o, s)

atom to make sure that it has the desired shape. For the rule handling count and exists, we directly

use the corresponding aggregator in Scallop. Note that we use the explicit group-by operation with

the where keyword, so that the default behavior is to return 0 (for count) or false (for exists).

As shown by the rules, they are defined relatively concisely. Be reminded that while the rules look

like their functional counterparts, they actually have their underlying probabilistic and differentiable

87

1 // evaluating variants which return set of objects ...
2 rel eval_obj(Scene(), o) = obj(o)
3 rel eval_obj(FilterShape(e1, s), o) =
4 eval_obj(e1, o) and shape(o, s)
5
6 // evaluating variants which return numbers ...
7 rel eval_num(e, n) = n := count(
8 o: eval_obj(e1, o) where e: case e is Count(e1))
9

10 // evaluating variants which return boolean ...
11 rel eval_bool(e, b) = b := exists(
12 o: eval_obj(e1, o) where e: case e is Exists(e1))
13 rel eval_bool(MoreThan(e1, e2), n1 > n2) =
14 eval_num(e1, n1) and eval_num(e2, n2)
15
16 // evaluating variants which return attributes ...
17 rel eval_str(QueryColor(e),c) = eval_obj(e, o), color(o, c)

Listing 4.21: The semantics of CLEVR DSL defined in Scallop.

semantics. As such, the probabilities produced by image segmentation models and classifiers can

propagate to produce a probabilistic distribution of answers.

88

CHAPTER 5

Scallop Benchmarks and Evaluations

In this chapter, we present the benchmarks and evaluations to showcase the applicability and

effectiveness of Scallop. We begin with the basic benchmarks where Scallop programs are connected

to simple neural models that are trained or fine-tuned (Section 5.1). We next showcase the

benchmarks where Scallop programs are interfaced with pre-trained foundation models (Section 5.2).

To concretely showcase the programming paradigm with Scallop, we then dive into 4 case studies

from simple to complex. Specifically, they are MNIST-Sum-2 (Section 5.3), Hand-Written Formula

Evaluation (Section 5.4), PacMan-Maze (Section 5.5), and CLUTRR (Section 5.6).

5.1 Basic Scallop Benchmarks

First, we evaluate the Scallop language and framework on a basic benchmark suite comprising eight

neurosymbolic applications. Here, our evaluation aims to answer the following research questions:

RQ1: How expressive is Scallop for solving diverse neurosymbolic tasks?

RQ2: How do Scallop’s solutions compare to state-of-the-art baselines in terms of accuracy?

RQ3: Is the differentiable reasoning module of Scallop runtime-efficient?

RQ4: Is Scallop effective at improving generalizability, interpretability, and data-efficiency?

RQ5: What are the failure modes of Scallop solutions and how can we mitigate them?

In the following sections, we first introduce the benchmark tasks and the chosen baselines for each

task (Section 5.1.1). Then, we answer RQ1 to RQ5 in Section 5.1.2 to Section 5.1.6 respectively.

All Scallop related and runtime related experiments were conducted on a machine with two 20-core

Intel Xeon CPUs, four GeForce RTX 2080 Ti GPUs, and 768 GB RAM.

89

→ true

→ 1.6

sum2(,) → 5

sum4(, , ,) → 17
sum3(, ,) → 12

less-than(,) → false

count-3(, , ...,) → 1
count-3-or 4(, , ...,) → 2

8 images

60KMNIST-R

not-3-or-4() → true

Passage: Rich's daughter
Christine made dinner for
her sister Kim. Beth went to
her brother Rich's birthday
party. Anne went shopping
with her sister Kim.

Query: Rich is Anne's …?

Answer: Father

Answer: 3

o2

o4
o5

o3
o1Question: How

many objects are
there behind the
purple cube?

Image:

...Video:

Text: Mugen climbs up on a ladder, and walks to
the right and collects a few coins

Aligned?: true

time frame 0 frame 16 frame 25

(3.2s)

Programmatic Query:

KB:

Answer: o12 o2o12

o5

Output: Aligned?1KMugenOutput: Kinship Relation10KCLUTRR

Output: Answer50KCLEVR Output: Object ID10KVQAR

→ false

Output: Path?Pathfinder 600K

Output: Answer10KHWF

Image:

target(o) = name(o, "animal"),
 left(o, op), attr(o, "tall")

is_a(giraffe, mammal)
is_a(mammal, animal)
... (3,390 axioms)

(on the right)
(on the right)

Structured
Kinship Graph
(CLUTRR-G only)

si
st
er

daughter

brother

sister

C

B

R

K A

Figure 5.1: Visualization of benchmark tasks. Beside the name of each task we specify the size of
the training dataset and the output domain. PacMan-Maze is omitted since it will be presented in
detail in Section 5.5.

5.1.1 Benchmarks and Baselines

We present an overview of our benchmarks in Figure 5.1. They cover a wide spectrum of tasks

involving perception and reasoning. The input data modality ranges from images and videos to

natural language texts and knowledge bases (KB). The size of the training dataset is also presented

in the figure. We next elaborate on the benchmark tasks and their corresponding baselines.

MNIST-R A Synthetic MNIST Test Suite. This benchmark is designed to test various features of

Scallop such as negation and aggregation. Each task takes as input one or more images of hand-

written digits from the MNIST dataset (Lecun et al., 1998) and performs simple arithmetic (sum2,

sum3, sum4), comparison (less-than), negation (not-3-or-4), or counting (count-3, count-3-or-4) over

the depicted digits. For count-3 and count-3-or-4, we count digits from a set of 8 images. For this

test suite, we use a CNN-based model, DeepProbLog (DPL) (Manhaeve et al., 2021), and our prior

work (Huang et al., 2021) (Prior) as the baselines.

HWF Hand-Written Formula Parsing and Evaluation. HWF, proposed in Li et al. (2020a),

concerns parsing and evaluating hand-written formulas. The formula is provided in the form of

a sequence of images, where each image represents either a digit (0-9) or an arithmetic symbol

90

(+,−,×,÷). Formulas are well-formed according to a grammar and do not divide by zero. The size

of the formulas ranges from 1 to 7 and is indicated as part of the input. The goal is to evaluate the

formula to obtain a rational number as the result. We choose from Li et al. (2020a) the baselines

NGS-m-BS, NGS-RL, and NGS-MAPO, which are neurosymbolic methods designed specifically for

this task.

Pathfinder Image Classification with Long-Range Dependency. In this task from Tay et al. (2020),

the input is an image containing two dots that are possibly connected by curved and dashed lines.

The goal is to tell whether the dots are connected. There are two subtasks, Path and Path-X, where

Path contains 32× 32 images and Path-X contains 128× 128 ones. We pick as baselines standard

CNN and Transformer based models, as well as the state-of-the-art neural models S4 (Gu et al.,

2021), S4∗ (Gu et al., 2022), and SGConv (Li et al., 2022c).

PacMan-Maze Playing PacMan Maze Game. This task tests an agent’s ability to recognize

entities in an image and plan the path for the PacMan to reach the goal. An RL environment provides

the game state image as input and the agent must plan the optimal action {up, down, left, right}

to take at each step. There is no “training dataset” as the environment is randomized for every

session. We pick as baseline a CNN based Deep-Q-Network (DQN). Unlike other tasks, we use the

“success rate” metric for evaluation, i.e., among 1000 game sessions, we measure the number of times

the PacMan reaches the goal within a certain time-budget.

CLUTRR Kinship Reasoning from Natural Language Context. In this task from Sinha et al.

(2019), the input contains a natural language (NL) passage about a set of characters. Each sentence

in the passage hints at kinship relations. The goal is to infer the relationship between a given pair of

characters. The target relation is not stated explicitly in the passage and it must be deduced through

a reasoning chain. Our baseline models include RoBERTa (Liu et al., 2019), BiLSTM (Graves et al.,

2013), GPT-3-FT (fine-tuned), GPT-3-ZS (zero-shot), and GPT-3-FS (5-shot) (Brown et al., 2020).

In an alternative setup, CLUTRR-G, instead of the NL passage, the structured kinship graph

corresponding to the NL passage is provided, making it a Knowledge Graph Reasoning problem. For

91

CLUTRR-G, we pick GAT (Veličković et al., 2017) and CTP (Minervini et al., 2020) as baselines.

Mugen Video-Text Alignment and Retrieval. Mugen (Hayes et al., 2022) is based on a game called

CoinRun (Cobbe et al., 2019). In the video-text alignment task, the input contains a 3.2 second long

video of gameplay footage and a short NL paragraph describing events happening in the video. The

goal is to compute a similarity score representing how “aligned” they are. There are two subsequent

tasks, Video-to-Text Retrieval (VTR) and Text-to-Video Retrieval (TVR). In TVR, the input is a

piece of text and a set of 16 videos, and the goal is to retrieve the video that best aligns with the text.

In VTR, the goal is to retrieve text from video. We compare our method with SDSC (Hayes et al.,

2022).

CLEVR Compositional Language and Elementary Visual Reasoning (Johnson et al., 2017). In

this visual question answering (VQA) task, the input contains a rendered image of geometric objects

and a NL question that asks about counts, attributes, and relationships of objects. The goal is

to answer the question based on the image. We pick as baselines NS-VQA (Yi et al., 2018) and

NS-CL (Mao et al., 2019), which are neurosymbolic methods designed specifically for this task.

VQAR Visual-Question-Answering with Common-Sense Reasoning. This task, like CLEVR,

also concerns VQA but with three salient differences: it contains real-life images from the GQA

dataset (Hudson and Manning, 2019b); the queries are in a programmatic form, asking to retrieve

objects in the image; and there is an additional input in the form of a common-sense knowledge base

(KB) (Gao et al., 2019) containing triplets such as (giraffe, is-a, animal) for common-sense reasoning.

The baselines for this task are NMNs (Andreas et al., 2016) and LXMERT (Tan and Bansal, 2019).

5.1.2 RQ1: Our Solutions and Expressivity

To answer RQ1, we demonstrate our Scallop solutions to the benchmark tasks (Table 5.1). For each

task, we specify the interface relations which serve as the bridge between the neural and symbolic

components. The neural modules process the perceptual input and their outputs are mapped to

(probabilistic) facts in the interface relations. Our Scallop programs subsequently take these facts as

92

Task Input Neural Net Interface Relation(s) Scallop Program Features LoCR N A

MNIST-R Images CNN digit(id, digit) Arithmetic, comparison,
negation, and counting. ✔ ✔ 2†

HWF Images CNN symbol(id, symbol) Parses and evaluates
formula over symbols. ✔ 39

length(len)

Pathfinder Image CNN dot(id) Checks if the dots are
connected by dashes. ✔ 4

dash(from_id, to_id)

PacMan-
Maze Image CNN

actor(x, y) Plans the optimal action
by finding an enemy-free
path from actor to goal.

✔ ✔ ✔ 31enemy(x, y)
goal(x, y)

CLUTRR
(-G)

NL RoBERTa kinship(rela, sub, obj) Deduces queried
relationship by
composing kinship rules.

✔ ✔ ✔ 8Query∗ – question(sub, obj)
Rule – composition(r1, r2, r3)

Mugen
Video S3D action(frame, action, mod) Checks if events

specified in text match
actions in the video.

✔ ✔ ✔ 46NL DistilBERT expr(expr_id, action)
mod(expr_id, mod)

CLEVR
Image FastRCNN obj_attr(obj_id, attr, val) Interprets CLEVR-DSL

program (extracted from
question) on scene graph
(extracted from image).

✔ ✔ ✔ 51obj_rela(rela, o1, o2)

NL BiLSTM filter_expr(e, ce, attr, val)
count_expr(e, ce), . . .

VQAR Image FastRCNN
obj_name(obj_id, name) Evaluates query over

scene graphs with the
aid of common-sense
knowledge base (KB).

✔ 42obj_attr(obj_id, val)
obj_rela(rela, o1, o2)

KB∗ – is_a(name1, name2), . . .

Table 5.1: Characteristics of Scallop solutions for each task. Structured input which is not learnt is
denoted by ∗. Neural models used are RoBERTa (Liu et al., 2019), DistilBERT (Sanh et al., 2019),
and BiLSTM (Graves et al., 2013) for natural language (NL), CNN and FastRCNN (Girshick, 2015)
for images, and S3D (Xie et al., 2018) for video. We show the three key features of Scallop used by
each solution: (R)ecursion, (N)egation, and (A)ggregation. †: For MNIST-R, the LoC is 2 for every
subtask.

input and perform the described reasoning to produce the final output. As shown by the features

column, our solutions use all of the core features provided by Scallop.

The Scallop program for benchmark tasks are succinct, as indicated by the LoCs in the last column of

Table 5.1. We highlight three tasks, HWF, Mugen, and CLEVR, to demonstrate Scallop’s expressivity.

For HWF, the Scallop program consists of a formula parser. It is capable of parsing probabilistic

input symbols according to a context free grammar for simple arithmetic expressions. For Mugen,

the Scallop program is a temporal specification checker, where the specification is extracted from NL

text to match the sequential events excerpted from the video. For CLEVR, the Scallop program is

an interpreter for CLEVR-DSL, a domain-specific functional language introduced in the CLEVR

dataset (Johnson et al., 2017).

93

sum2 sum3 sum4 less-than
not-3-or-4

count-3
count-3-or-4

0

25

50

75

100

A
cc

ur
ac

y
(%

)
CNN DPL Prior Ours (dmmp) Ours (damp) Ours (dtkp-3) Ours (dtkp-5)

Figure 5.2: MNIST-R suite accuracy comparison.

Method Scallop DQN
dmmp damp dtkp-1

Succ Rate 8.80% 7.84% 99.40% 84.90%
#Episodes 50 50 50 50K

Table 5.2: PacMan-Maze performance compari-
son to DQN.

0 5 10 15 20 25 30
0

50

100

Epochs

A
cc

ur
ac

y
(%

)

Scallop (dmmp)
Scallop (damp)

Scallop (dtkp-3)
Scallop (dtkp-5)

Figure 5.3: HWF learning curve.

We note that our prior work (Huang et al., 2021), which only supports positive Datalog, cannot

express 5 out of the 8 tasks since they need negation and aggregation, as indicated by columns ‘N’

and ‘A’. Moreover, HWF requires floating point support which is also lacking in our prior work.

Besides diverse kinds of perceptual data and reasoning patterns, the Scallop programs are applied in

a variety of learning settings. As shown in Section 5.5, the program for PacMan-Maze is used in

a online representation learning setting. For CLUTRR, we write integrity constraints (similar to

the one shown in Section 2.2) to derive semantic loss Xu et al. (2017, 2018) used for constraining

the language model outputs. For CLUTRR-G, learnable weights are attached to composite facts

such as composite(FATHER, MOTHER, GRANDMOTHER), which enables to learn such facts from data

akin to rule learning in ILP. For Mugen, our program is trained in a contrastive learning setup,

since it requires to maximize similarity scores between aligned video-text pairs but minimize that for

un-aligned ones.

94

HWF Path Path-X
CLUTRR

CLUTRR-G
Mugen-TVR

Mugen-VTR
CLEVR

VQAR
0

25

50

75

100

p
laceh

old
er

p
laceh

old
er

p
laceh

old
er

p
laceh

old
er

p
laceh

old
er

p
laceh

old
er

p
laceh

old
er

p
laceh

old
er

p
laceh

old
er

N
G

S
-R

L
N

G
S
-M

A
P
O

N
G

S
-m

-B
S

O
u
rs

(dtkp-5)

T
ran

sform
er

T
ran

sform
er

C
N

N

C
N

NS
4

S
4

S
4*

S
4*

S
G

C
on

v

S
G

C
on

v

O
u
rs

(dtkp-3)

O
u
rs

(dtkp-3)

B
iL

S
T

M
R

oB
E
R
T
a

G
P
T

-3-Z
S

G
P
T

-3-F
S

G
P
T

-3-F
T

O
u
rs

(dtkp-3)

G
A
T

C
T

P
O

u
rs

(dtkp-3)

N
S
-V

Q
A

N
S
C

L
O

u
rs

(dmmp)

L
X

M
E
R
T

N
M

N
s

P
rior

O
u
rs

(dtkp-10)

S
D

S
C

S
D

S
C

O
u
rs

(damp)

O
u
rs

(damp)

A
cc

ur
ac

y
(%

)

Figure 5.4: Overall benchmark accuracy comparison. The best-performing provenance structure for
our solution is indicated for each task. Among the shown tasks, dtkp performs the best on 6 tasks,
damp on 2, and dmmp on 1.

5.1.3 RQ2: Performance and Accuracy

To answer RQ2, we evaluate the performance and accuracy of our methods in terms of two aspects:

1) the best performance of our solutions compared to existing baselines, and 2) the performance of

our solutions with different provenance structures (dmmp, damp, dtkp with different k).

We start with comparing our solutions against selected baselines on all the benchmark tasks, as

shown in Figure 5.2, Table 5.2, and Figure 5.4. First, we highlight two applications, PacMan-Maze

and CLUTRR, which benefit the most from our solution. For PacMan-Maze, compared to DQN, we

obtain a 1,000× speed-up in terms of training episodes, and a near perfect success rate of 99.4%.

Note that our solution encodes environment dynamics (i.e. game rules) which are unavailable and

hard to incorporate in the DQN model. For CLUTRR, we obtain a 25% improvement over baselines,

which includes GPT-3-FT, the state-of-the-art large language model fine-tuned on the CLUTRR

dataset. Next, for tasks such as HWF and CLEVR, our solutions attain comparable performance,

even compared to neurosymbolic baselines NGS-m-BS, NSCL, and NS-VQA specifically designed for

each task. On Path and Path-X, our solution obtains a 4% accuracy gain over our underlying model

CNN and even outperforms a carefully designed transformer based model S4.

The performance of the Scallop solution for each task depends on the chosen provenance structure.

As can be seen from Table 5.2 and Figs. 5.2–5.4, although dtkp is generally the best-performing

one, each presented provenance is useful, e.g., dtkp for PacMan-Maze and VQAR, damp for less-than

95

Task Scallop Baseline
dmmp damp dtkp-3 dtkp-10

sum2 34 88 72 185 21,430 (DPL)
sum3 34 119 71 1,430 30,898 (DPL)
sum4 34 154 77 4,329 timeout (DPL)

less-than 35 42 34 43 2,540 (DPL)
not-3-or-4 37 33 33 34 3,218 (DPL)

HWF 89 107 120 8,435 79 (NGS-m-BS)
CLEVR 1,964 1,618 2,325 timeout –

Table 5.3: Runtime efficiency comparison on selected benchmark tasks. Numbers shown are average
training time (sec.) per epoch. Our variants attaining the best accuracy are indicated in bold.

(MNIST-R) and Mugen, and dmmp for HWF and CLEVR. Note that under positive Datalog, Scallop’s

dtkp is identical to Huang et al. (2021), allowing us to achieve similar performance. In conclusion,

allowing configurable provenance helps tailor our methods to different applications.

5.1.4 RQ3: Runtime Efficiency

We evaluate the runtime efficiency of Scallop solutions with different provenance structures and

compare it against baseline neurosymbolic approaches. As shown in Table 5.3, Scallop achieves sub-

stantial speed-up over DeepProbLog (DPL) on MNIST-R tasks. DPL is a probabilistic programming

system based on Prolog using exact probabilistic reasoning. As an example, on sum4, DPL takes

40 days to finish only 4K training samples, showing that it is prohibitively slow to use in practice.

On the contrary, Scallop solutions can finish a training epoch (15K samples) in minutes without

sacrificing testing accuracy (according to Figure 5.2). For HWF, Scallop achieves comparable runtime

efficiency, even when compared against the hand-crafted and specialized NGS-m-BS method.

Comparing among provenance structures, we see significant runtime blowup when increasing k for

dtkp. This is expected as increasing k results in larger boolean formula tags, making the WMC

procedure exponentially slower. In practice, we find k = 3 for dtkp to be a good balance point

between runtime efficiency and reasoning granularity. In fact, dtkp generalizes DPL, as one can set

an extremely large k ≥ 2n (n is the total number of input facts) for exact probabilistic reasoning.

96

2 3 4 5 6 7 8 9 10

25

50

75

100

k, length of reasoning chain

A
cc

ur
ac

y
(%

)

Scallop + RoBERTa BiLSTM RoBERTa
GPT-3-FT GPT-3-FS

Figure 5.6: Systematic generalizability on CLUTRR dataset.

(climb,up) (collect,coin) (kill,face)

Figure 5.7: The predicted most likely (action, mod) pair for example video segments from Mugen
dataset.

5.1.5 RQ4: Generalizability, Interpretability, and Data-Efficiency

We now consider other important desirable aspects of machine learning models besides accuracy and

runtime, such as generalizability on unseen inputs, interpretability of the outputs, and data-efficiency

of the training process. For brevity, we focus on a single benchmark task in each case.

We evaluate Scallop’s generalization ability for the CLUTRR task. Each data-point in CLUTRR is

annotated with a parameter k denoting the length of the reasoning chain to infer the target kinship

relation. To test different solutions’ systematic generalizability, we train them on data-points with

k ∈ {2, 3} and test on data-points with k ∈ {2, . . . , 10}. As shown in Figure 5.6, the neural baselines

suffer a steep drop in accuracy on the more complex unseen instances, whereas the accuracy of

Scallop’s solution degrades more slowly, indicating that it is able to generalize better.

Next, we demonstrate Scallop’s interpretability on the Mugen task. Although the goal of the task is

to see whether a video-text pair is aligned, the perceptual model in our method extracts interpretable

97

%Train Scallop NGS
dtkp-5 RL MAPO m-BS

100% 97.85 3.4 71.7 98.5
50% 95.7 3.6 9.5 95.7
25% 92.95 3.5 5.1 93.3

Table 5.4: Testing accuracy of various methods on HWF when trained with only a portion of the
data. Numbers are in percentage (%).

symbols, i.e., the action of the controlled character at a certain frame. Figure 5.7 shows that the

predicted (action, mod) pairs perfectly match the events in the video. Thus, our solution not only

tells whether a video-text pair is aligned, but also why it is aligned.

Lastly, we evaluate Scallop’s data-efficiency on the HWF task, using lesser training data (Table 5.4).

While methods such as NGS-MAPO suffer significantly when trained on less data, Scallop’s testing

accuracy decreases slowly, and is comparable to the data-efficiency of the state-of-the-art neurosym-

bolic NGS-m-BS method. PacMan-Maze task also demonstrates Scallop’s data-efficiency, as it takes

much less training episodes than DQN does, while achieving much higher success rate.

5.1.6 RQ5: Analysis of Failure Modes

Compared to purely neural models, Scallop solutions provide more transparency, allowing pro-

grammers to debug effectively. By manually checking the interface relations, we observed that

the main source of error lies in inaccurate predictions from the neural components. For example,

the RoBERTa model for CLUTRR correctly extracts only 84.69% of kinship relations. There are

two potential causes—either the neural component is not powerful enough, or our solution is not

providing adequate supervision to train it. The former can be addressed by employing better neural

architectures or more data. The latter can be mitigated in different ways, such as tuning the selected

provenance or incorporating integrity constraints (discussed in Section 2.3) into training and/or

inference. For instance, in PacMan-Maze, the constraint that “there should be no more than one

goal in the arena” helps to improve robustness.

98

5.2 Scallop Benchmarks with Foundation Models

We apply Scallop to solve 9 benchmark tasks depicted in Figure 5.8 with foundation models.

The tasks span the domains of natural language and vision, and require capabilities such as

reasoning, information retrieval, and multi-modal compositionality. Table 5.5 summarizes the

datasets, evaluation metrics, and the foundation models used in our solutions. We elaborate upon

the evaluation settings and our solutions in Section 5.2.1. We aim to answer the following research

questions:

RQ1: Is Scallop with foundation model programmable enough to be applicable to a diverse range

of applications with minimal effort?

RQ2: How do solutions using Scallop compare to other baseline methods in the no-training

setting?

5.2.1 Benchmarks

Date reasoning (DR) In this task adapted from BIG-bench (Srivastava et al., 2023), the model is

given a context and asked to compute a date. The questions test the model’s temporal and numerical

reasoning skills, as well as its grasp of common knowledge. Unlike BIG-bench where multiple-choice

answers are given, we require the model to directly produce its answer in MM/DD/YYYY form.

Our solution leverages GPT-4 (5-shot) for extracting 3 relations: mentioned dates, duration between

date labels, and the target date label. Then, the program’s relational rules yield the symbolic dates

for all date labels. The rest of the program iteratively traverses through the date differences to

compute dates for all occurring date labels. Lastly, the date of the target label is returned as the

output.

Tracking shuffled objects (TSO) In this task from BIG-bench, a textual description of pairwise

object swaps among people is given, and the model needs to track and derive which object is in a

specified person’s possession at the end. There are three difficulty levels depending on the number

of objects to track, denoted by n ∈ {3, 5, 7}.

99

Task Dataset #Test Samples Metric Foundation Models Used

DR DR 369 EM GPT-4
TSO TSO 150 EM GPT-4
KR CLUTRR 1146 EM GPT-4
MR GSM8K 1319 EM GPT-4

QA Hotpot QA 1000 EM GPT-4
ada-002

PS Amazon
ESCI 1000 nDCG GPT-4

ada-002

VQA
CLEVR 480

Recall@k

GPT-4
OWL-ViT

GQA 500 VilT
CLIP

VOT
VQAR 100

MI

OWL-ViT
VilT

GPT-4

OFCP 50 DSFD
CLIP

IGE
OFCP 50

MI

DFSD
CLIP

IGP20 20 GPT-4
Diffusion

Table 5.5: Characteristics of benchmark tasks including the dataset used, its size, and evaluation
metrics. Metrics include exact match (EM), normalized discounted cumulative gain (nDCG), and
manual inspection (MI). We also denote the foundation models used in our solution for each task.

Our solution for tracking shuffled objects relies on GPT-4 (1-shot) to extract 3 relations: initial

possessions, swaps, and the target person whose final possessed object is expected as the answer.

Our reasoning program iterates through all the swaps starting from the initial state and retrieves

the last possessed object associated with the target.

Kinship reasoning (KR) CLUTRR (Sinha et al., 2019) is a kinship reasoning dataset of stories

which indicate the kinship between characters, and requires the model to infer the relationship

between two specified characters. The questions have different difficulty levels based on the length

of the reasoning chain, denoted by k ∈ {2 . . . 10}.

Our solution for kinship reasoning invokes GPT-4 (2-shot) to extract the kinship graph from the

context. We also provide an external common-sense knowledge base for rules like “mother’s mother is

100

Image Generation and Editing

A bowl full of apples Replace the bowl with
other containers

Replace the apple with
other fruits

A plate full of apples A plate full of oranges

Input
Prompts

Output
Images

Date Reasoning

May 6, 1992 is like yesterday to Jane, but that is
actually ten years ago. What is the date one week
from today in MM/DD/YYYY?

05/13/2002

Question:

Answer:

Tracking Shuffled Objects

Alice has an orange ball, Bob has a white ball, and
Claire has a blue ball. Alice and Bob swap balls.
Then, Bob and Claire swap balls. Alice has the __.

white ball

Question:

Answer:

Kinship Reasoning

Rich's daughter Kelly made dinner for her sister
Kim. Dorothy went to her brother Rich's birthday
party. Anne went shopping with her sister Kim. How
is Dorothy related to Anne?

niece

Question:

Answer:

QA

Compositional VQA

Product Search

Math Reasoning

Image Editing

Documents: Products:

Tag "microsoft ceos.jpg"Instruction:

Answer:

Which team does the player named 2015 Diamond
Head Classic’s MVP play for?

Question:

Sacramento Kings

lawnmower tires without rimsQuery:
Product Ranking: 1st: #2, 2nd: #6, 3rd: #4, ...

Question:
Alice is required to submit a 15-page paper. She finished
writing 1/3 of the paper. How many pages are left to write?

Answer: 10

 Hide Walter Thurnherr
with smiling_face_with_halo and Alain
Berset with crying_cat.

Is the tray on top of the table
black or light brown?

How many objects are
red in this image?

Obj Tagging

Question:

light brown
Answer:

Question:

Answer:
3

GPT

LostAlone
were a

British rock
band ...

The 2015
Diamond

Head
Classic was

...

Steven
Battelle,

Alan
Williamson,

and ...

Guster is
an

American
alternative
rock band

....

Founding
members

Adam
Gardner,

Ryan
Miller,...

Chavano
Rainier Buddy

Hield is a
Bahamian ...

Brian
Rosenworcel

began..

Several
current and

former
members of

the ...

David Gene
Parker,

nicknamed
”The Cobra” ...

An American
former player

in Major
League

Baseball...

...

Input Image Edited Image
Instruction:

1

GPT

GPT

GPT GPT-Enc GPT Cross-Enc

GPT

GPT ViLT OWL-ViT CLIP

RamPro 10"
All Purpose

Utility Air
Tires/Wheel

2 3 4 5
(Set of 2)
15x6.00-6
Husqvarna

/Poulan Tire ...

MaxAuto 2-
Pack

13x5.00-6
2PLY Turf

NEIKO
20601A 14.5
inch Steel

Tire Spoon ...

2PK
13x5.00-6
13x5.00x6

13x5x6
13x5-6 ...

BIG-bench

BIG-bench

CLUTRR

HotpotQA Amazon ESCI

GSM8K

GQA CLEVR

VQAR

Input Image Tagged Image

IGP20OFCP GPT CLIP DSFDOFCP GPT CLIP DSFD GPT Stable-Diffusion

Figure 5.8: Benchmark tasks. The top of each box lists the dataset(s) and the foundation models
used in our solutions.

grandmother”. Our program then uses the rules to derive other kinship relations. Lastly, we retrieve

the kinship between the specified pair of people.

Math reasoning (MR) This task is drawn from the GSM8K dataset of arithmetic word prob-

lems (Cobbe et al., 2021). The questions involve grade school math word problems created by human

problem writers, and the model is asked to produce a number as the result. Since the output can be

fractional, we allow a small delta when comparing the derived result with the ground truth.

Our solution to this task prompts GPT-4 (2-shot) to produce step-by-step expressions, which can

contain constants, variables, and simple arithmetic operations. We evaluate all the expressions

through a DSL, and the result associated with the goal variable is returned. By focusing the LM’s

responsibility solely on semantic parsing, our relational program can then achieve faithful numerical

computation via DSL evaluation.

101

Question answering with information retrieval (QA) We choose HotpotQA (Yang et al.,

2018b), a Wikipedia-based question answering (QA) dataset under the “distractor” setting. Here,

the model takes in 2 parts of inputs: 1) a question, and 2) 10 Wikipedia paragraphs as the context

for answering the question. Among the 10 Wikipedia pages, at most 2 are relevant to the answer,

while the others are distractors.

Our solution is an adaptation of FE2H (Li et al., 2022a), which is a 2-stage procedure. First, we turn

the 10 documents into a vector database by embedding each document. We then use the embedding

of the question to retrieve the 2 most related documents, which are then fed to a language model

to do QA. In this case, the QA model does not have to process all 10 documents, leading to less

distraction.

Product search (PS) We use Amazon’s ESCI Product Search dataset (Reddy et al., 2022). The

model is provided with a natural language (NL) query and a list of products (23 products on average).

The goal is to rank the products that best match the query. In the dataset, for each pair of query

and product, a label among E (exact match), S (substitute), C (complementary), and I (irrelevant)

is provided. The metric we use to evaluate the performance is nDCG. The gains are set to be 1.0 for

E, 0.1 for S, 0.01 for C, and 0.0 for I.

One challenge of this dataset is that many queries contain negative statements. For example, in the

query “#1 treadmill without remote”, the “remote” is undesirable. Therefore, instead of computing

the embedding of the full query, we decompose the query into positive and negative parts. We then

perform semantic search by maximizing the similarity of the positive part while minimizing that of

the negative part.

Compositional visual question answering (VQA) We choose two compositional VQA datasets,

GQA (Hudson and Manning, 2019a) and CLEVR (Johnson et al., 2016). In this task, the model

is given an image and a question, and needs to answer the question. For GQA, the majority of

questions expect yes/no answers, while CLEVR’s questions demand features like counting and spatial

reasoning. We uniformly sample 500 and 480 examples from GQA and CLEVR datasets respectively.

102

Following VQA conventions (Kim et al., 2021), we use Recall@k where k ∈ {1, 3} as the evaluation

metrics.

Our solution for GQA is an adaptation of VisProg (Gupta and Kembhavi, 2022). We create a DSL

for invoking vision modules such as ViLT and OWL-ViT, and use GPT-4 for converting questions

into programs in this DSL. Our solution for CLEVR is similar, directly replicating the DSL provided

by the original work. OWL-ViT and CLIP are used to detect objects and infer attributes, while the

spatial relations are directly computed using the bounding box data.

Visual object tagging (VOT) We evaluate on two datasets, VQAR (Huang et al., 2021) and

OFCP. For VQAR, the model is given an image and a programmatic query, and is asked to produce

bounding boxes of the queried objects in the image. Our solution composes a relational knowledge

base, defining entity names and relationships, with object retrieval (OWL-ViT) and visual QA

(ViLT) models.

Online Faces of Celebrities and Politicians (OFCP) is a self-curated dataset of images from Wikimedia

Commons among other sources. For this dataset, the model is given an image with a descriptive

NL filename, and needs to detect faces relevant to the description and tag them with their names.

Our solution obtains a set of possible names from GPT-4 and candidate faces from DSFD. These

are provided to CLIP for object classification, after which probabilistic reasoning filters the most

relevant face-name pairs.

Language-guided image generation and editing (IGE) We adopt the task of image editing

from Gupta and Kembhavi (2022). In this task, the instruction for image editing is provided through

NL, and can invoke operations such as blurring background, popping color, and overlaying emojis.

Due to the absence of an existing dataset, we repurpose the OFCP dataset by introducing 50 NL

image editing prompts. Our solution for this task is centered around a DSL for image editing. We

incorporate GPT-4 for semantic parsing, DSFD for face detection, and CLIP for entity classification.

Modules for image editing operations are implemented as individual foreign functions.

103

Dataset LoC Prompt LoC Dataset LoC Prompt LoC

DR 69 48 CLEVR 178 45
TSO 34 16 GQA 82 36

CLUTRR 61 45 VQAR 53 11
GSM8K 47 28 OFCP (VOT) 33 2

HotpotQA 47 24 OFCP (IGE) 117 44
ESCI 32 7 IGP20 50 12

Table 5.6: The lines-of-code (LoC) numbers of our solutions for each dataset. The LoC includes
empty lines, comments, natural language prompts, and DSL definitions. We note specifically the
LoC of prompts in the table.

Method DR TSO CLUTRR GSM8K

GPT-4 71.00 (0-shot) 30.00 (0-shot) 43.10 (3-shot) 87.10 (0-shot)
GPT-4 (CoT) 87.26 (0-shot) 84.00 (0-shot) 24.17 (3-shot) 92.00 (5-shot)

Ours 92.41 100.00 72.50 90.60

Table 5.7: The performance on the natural language reasoning datasets. Numbers are in percentage
(%).

HotpotQA Amazon ESCI

Method Fine-tuned EM Method Fine-tuned nDCG

C2FM ✓ 72.07% BERT ✓ 0.830
FE2H ✓ 71.89% CE-MPNet ✓ 0.857

— — — MIPS ✗ 0.797

Ours ✗ 67.3% Ours ✗ 0.798

Table 5.8: The performance on the HotpotQA and Amazon ESCI. We also include performance
numbers from methods which are fine-tuned on the corresponding dataset.

For free-form generation and editing of images, we curate IGP20, a set of 20 prompts for image

generation and editing. Instead of using the full prompt, we employ an LM to decompose complex NL

instructions into simpler steps. We define a DSL with high-level operators such as generate, reweight,

refine, replace, and negate. We use a combination of GPT-4, Prompt-to-Prompt (Hertz et al., 2022),

and diffusion model (Rombach et al., 2022) to implement the semantics of our DSL. We highlight

our capability of grounding positive terms from negative phrases, which enables handling prompts

like “replace apple with other fruits” (Figure 5.8).

104

5.2.2 RQ1: Programmability

While a user study for Scallop’s programmability is out of scope in this paper, we qualitatively

evaluate its programmability on three aspects. First, we summarize the lines-of-code (LoC) for

each of our solutions in Table 5.6. The programs are concise, as most are under 100 lines. Notably,

natural language prompts (including few-shot examples) take up a significant portion of each solution.

Secondly, 8 out of 10 solutions are coded by undergraduate students with no background in logic

and relational programming, providing further evidence of Scallop’s user-friendliness. Last but not

least, our solutions are interpretable and thus offer debuggability. Specifically, all the intermediate

relations are available for inspection, allowing systematic error analysis.

5.2.3 RQ2: Baselines and Comparisons

We compare the performance of our solutions to existing baselines under the no-training setting. In

particular, our solutions achieve better performance than comparable baselines on 6 out of 8 studied

datasets with baselines. Below, we classify the tasks into 4 categories and discuss the respective

performance and comparisons.

Natural Language Reasoning For the tasks of DR, TSO, CLUTRR, and GSM8K, we pick

a generic baseline of GPT-4 under zero-shot, few-shot, and chain-of-thought (CoT) settings. All

our solutions also rely on GPT-4 (few-shot), but we note that our shots only include extracted

facts, and not the final answer or any reasoning chains. The data in Table 5.7 indicates that our

method can significantly enhance reasoning performance and reduce hallucination, exemplified by

achieving a flawless 100% accuracy on the TSO dataset. Note that on GSM8K, our method scores

slightly lower than the baseline; we conjecture that our solution demands more from GPT-4 itself

to extract structured computation steps. On CLUTRR, our solution even outperforms Faithful

Chain-of-thought (fCoT) (Lyu et al., 2023), a special prompting technique with external tool use, by

0.6%. In Figure 5.10 we illustrate the systematic generalizability of our methods. The performance

of our solutions remains relatively consistent even when the problems become harder. We provide

illustrative examples in Figure 5.9 showing comparisons between our method and GPT-4 (zero-shot

105

DR (Date Reasoning)

Today's meeting is rescheduled to 11 am tomorrow, 10/16/1924.
What is the date one year ago from today in MM/DD/YYYY?

Question

VIEIRA
Extracted
Relations

VIEIRA
Answer 10/15/1923

GPT-4
Response

GPT-4
Answer

Let's think step by step. First, we need to subtract one year from
the given date, 10/16/1924. When we do this, we get 10/16/1923.

10/16/1923

CLUTRR (Kinship Reasoning)
Myrna and her husband Christopher went on a cruise. They had
a wonderful time. Christopher and his daughter Lucille took a
day off school to go to the zoo. Who is Lucille to Myrna?

Context &
Question

VIEIRA
Extracted
Relations

VIEIRA
Answer daughter

GPT-4
Response

GPT-4
Answer

Lucille is Myrna's stepdaughter. In the given scenario,
Christopher is Myrna's husband, and Christopher is also the
father of Lucille. This makes Lucille the daughter of Myrna's
husband, which means she is Myrna's stepdaughter.

stepdaughter

GSM8K (Math Reasoning)
It takes 3 kangaroos traveling at the same speed a total of 18
hours to travel across a highway. How many hours will it take 4
turtles, each traveling at half the speed of a kangaroo, to do so?

Question

VIEIRA
Extracted
Relations

VIEIRA
Answer 48

GPT-4
Response

GPT-4
Answer

Let's think step by step. First, we know that the total time it takes for 3 kangaroos
to travel across the highway is 18 hours. This means that one kangaroo takes 18
hours to travel across the highway. Then, we know that a turtle travels at half the
speed of a kangaroo, which means it takes twice as long for a turtle to travel the
same distance. So, one turtle would take 18 hours * 2 = 36 hours to travel across
the highway. However, we have four turtles traveling together at the same speed,
so they would still take 36 hours to travel across the highway, because they are
traveling simultaneously.

36

Figure 5.9: Illustrative comparisons between our solution and GPT-4 (zero-shot CoT) on selected
questions from DR, CLUTRR, and GSM8K datasets. We also include the extracted relations used
for subsequent reasoning.

CoT).

106

2 4 6 8 10

25

50

75

k, length of reasoning chain

A
cc

ur
ac

y
(%

) Ours GPT-4 GPT-4 (CoT)

(a) CLUTRR

3 5 7
25

50

75

100

n, number of objects

A
cc

ur
ac

y
(%

)

(b) TSO

Figure 5.10: Systematic generalizability comparisons on the CLUTRR and TSO datasets.

Method GQA CLEVR

Recall@1 Recall@3 Recall@1 Recall@3

ViLT-VQA 0.049 0.462 0.241 0.523
PNP-VQA 0.419 — — —

Ours 0.579 0.665 0.463 0.638

Table 5.9: Quantitative results on the VQA datasets.

Retrieval Augmentation and Semantic Search For the HotpotQA dataset, our solution

is an adaptation of FE2H (Li et al., 2022a), a retrieval-augmented question answering approach.

As seen in Table 5.8, with no fine-tuning, our method scores only a few percentages lower than

fine-tuned methods C2FM Yin et al. (2022) and FE2H. For the Amazon ESCI dataset, our solution

performs semantic search for product ranking. While performing slightly lower than the fine-tuned

methods (Reddy et al., 2022; Song et al., 2020), our solution outperforms maximum inner product

search (MIPS) based on GPT text encoder (text-embedding-ada-002).

Compositional Multi-modal Reasoning For VQA, we pick ViLT-VQA (Kim et al., 2021)

(a pre-trained foundation model) and PNP-VQA (Tiong et al., 2022) (a zero-shot VQA method)

as baselines. As shown in Table 5.9, our method significantly outperforms the baseline model

on both datasets. Compared to the neural-only baseline, our approach that combines DSL and

logical reasoning more effectively handles intricate logical operations such as counting and numerical

comparisons. On GQA, out method outperforms previous zero-shot state-of-the-art, PNP-VQA,

by 0.16 (0.42 to 0.58). For object and face tagging, without training or fine-tuning, our method

achieves 67.61% and 60.82% semantic correctness rates (Table 5.10).

107

Ours InstructPix2PixOriginal

Instruction: Replace the bowl with something
else , and change the apples to other fruits.

Figure 5.11: Qualitative comparison of image editing. Compared to InstructPix2Pix, our image
editing method follows the instructed edits better, as it successfully changed the bowl into plate and
apples to oranges.

Method Visual Object Tagging Image
Editing

VQAR OFCP OFCP

Ours 67.61% 60.82% 74.00%

Table 5.10: Quantitative results on object tagging and image editing tasks. We manually evaluate
the tagged entities and the edited images for semantic correctness rates.

Image Generation and Editing For image generation and editing, we apply our technique to

the OFCP and IGP20 datasets. We rely on manual inspection for evaluating our performance on

the OFCP dataset, and we observe 37 correctly edited images out of the 50 evaluated ones, resulting

in a 74% semantic correctness rate (Table 5.10). For IGP20, we choose as the baseline a diffusion

model, InstructPix2Pix Brooks et al. (2023), which also combines GPT-3 with image editing. We

show one example baseline comparison illustrated in Figure 5.11.

5.3 Case Study: Summing Two MNIST Digits

The MNIST-Sum2 task from Manhaeve et al. (2021) concerns classifying sums from pairs of hand-

written digits, e.g., + = 10. A model receives only the two MNIST digits as the input, and need

to learn to recognize the two digits with only the supervision of the sum.

As depicted in Figure 5.12, we specify this task using a neural and a symbolic component, following

the style of DeepProbLog (Manhaeve et al., 2021). The neural component is a perception model

108

Figure 5.12: Illustration of applying Scallop’s top-k-proofs provenance on the task + = 10
using different values of parameter k.

that takes in an image of hand-written digit (Lecun et al., 1998) and classifies it into discrete values

{0, . . . , 9}. The symbolic component, on the other hand, is a logic program in Datalog for computing

the resulting sum. The interface between the neural and symbolic components is a probabilistic

database which associates each candidate output of the perception model with a probability. For

instance, the fact 0.85 :: d(, 3) denotes that image is recognized to be the digit 3 with probability

0.85. The database thus consists of 20 facts—one for each of the 10 possible digits corresponding to

each of the two images.

Evaluating the logic program on the probabilistic database yields a weighted boolean formula for

each possible result of the sum of two digits, i.e., values in the range {0, . . . , 18}. Each clause of

such a formula represents a different proof of the corresponding result. For instance, the bottom left

of Figure 5.12 shows the formula representing all 9 proofs of the ground truth result 10. Each such

formula is input to an off-the-shelf weighted model counting (WMC) solver to yield the probability

of the corresponding result, e.g., 0.7261 :: sum(10).

109

1 class MNISTSum2Net(nn.Module):
2 def __init__(self):
3 super(MNISTSum2Net , self).__init__ ()
4 self.mnist_net = MNISTNet () # MNIST Digit Recognition
5 self.sum_2 = scallopy.Module(# Scallop Module
6 program="""
7 type digit_1(i32), digit_2(i32)
8 rel sum(a + b) = digit_1(a) and digit_2(b)
9 """,

10 input_mappings ={"digit_1": range (10),
11 "digit_2": range (10)},
12 output_mappings ={"sum_2": range (19)},
13 provenance="diff -top -k-proofs", k=1)
14
15 def forward(self , x: Tuple[torch.Tensor , torch.Tensor]):
16 (a_imgs , b_imgs) = x # batch_size x 27 x 27 x 1
17 # recognize the two digits
18 a_distrs = self.mnist_net(a_imgs) # batch_size x 10
19 b_distrs = self.mnist_net(b_imgs) # batch_size x 10
20 # perform reasoning; result shape is batched size x 19
21 return self.sum_2(digit_1=a_distrs , digit_2=b_distrs)

Listing 5.1: The Scallop code for the MNIST-Sum2 learning task.

The scalability of exact differentiable probabilistic reasoning is limited in practice by WMC solving

whose complexity is at least #P-hard. As suggested by the discussion of top-k proofs provenance,

computing only the top-k most likely proofs bounds the size of each formula to k clauses, thereby

allowing to trade diminishing amounts of accuracy for large gains in scalability. Moreover, stochastic

training of the deep perception models itself can tolerate noise in data. In this case, just using k = 1

yields a performance of 97.46%, which turns out to be empirically the best across k ∈ {1, 3, 5, 10}.

The actual implementation is depicted in Listing 5.1. The mnist_net (line 4) is the neural network

that classifies individual MNIST image into a distribution of 10 classes, while sum_2 (line 5-13) is

the Scallop reasoning module for probabilistic reasoning of summing two digits. Instead of writing

a separate Scallop file that contains the reasoning program, we passed the program as a string to

construct the scallopy.Module. We note that for cleaner presentation, the program presented here

is slightly different than the one in Figure 5.12. Line 10-12 tells how to turn input distributions into

110

Figure 5.13: One hand-written formula 1 + 3÷ 5 which should evaluate to 1.6.

relational symbols (and vice versa for the output). Line 13 configures the provenance to use for the

reasoning, which is the dtkp provenance with k = 1.

During inference, as shown in the forward function (line 15-21), we pass the two (batches of) images

to mnist_net individually to produce distributions of the two (batches of) images. Lastly, we pass

the two batches of distributions to the sum_2 reasoning module in order to obtain a batched output

tensor of shape 19, where each element correspond to one of the 19 outcomes ([0, 18]). As such, our

training pipeline is finished. All the algorithmic and differentiation detail of Scallop is hidden from

the user, providing a clean programming interface.

5.4 Case Study: Evaluating Handwritten Formulas

In this case study we take the MNIST-Sum2 one step further by allowing multiple symbols including

hand-written digits and also simple arithmetic operators like +, −, ×, and ÷. This is the task of

hand-written formula evaluation (HWF) (Li et al., 2020a). The input to the task is a sequence of

images of hand-written symbols, forming a hand-written formula. The output is the rational number

result of evaluating the formula. The dataset provided for this task contains variable-sized formulas

with 1 to 7 symbols, where the operands are all single-digit numbers. For brevity of exposition, we

presume that the input formulas always parse and are free of divide-by-zero errors.

A natural solution to this task is to decompose the problem into separate perception and reasoning

components. The perception component is a standard convolutional neural network (CNN) that

classifies each symbol into discrete classes (digits 0-9 and +, −, ×, ÷). The reasoning component

then takes in the classified probabilistic symbols, parses and evaluates the formula, and returns a

probability distribution of the result. Notably, the neural model does not receive supervision on

the label of each individual symbol in the formula. Instead, we only have supervision on the final

111

1 // [hwf.scl]
2 // Input: probabilistic symbols
3 type symbol(index: usize , symbol: String)
4 // Input: length of the formula
5 type length(n: usize)
6
7 // Helper relation
8 rel digit = {"0","1","2","3","4","5","6","7","8","9"}
9

10 // Parsing and evaluating the sequence of symbols
11 // A single number
12 type factor(value: f32 , begin: usize , end: usize)
13 rel factor(x as f32 , b, b + 1) = symbol(b, x) and digit(x)
14
15 // A mult/div expression
16 type term(value: f32 , begin: usize , end: usize)
17 rel term(x, b, r) = factor(x, b, r)
18 rel term(x * y, b, e) = term(x, b, m) and symbol(m, "*") and
19 factor(y, m + 1, e)
20 rel term(x / y, b, e) = term(x, b, m) and symbol(m, "/") and
21 factor(y, m + 1, e)
22
23 // An add/minus expression which has higher precedence
24 type expr(value: f32 , begin: usize , end: usize)
25 rel expr(x, b, r) = term(x, b, r)
26 rel expr(x + y, b, e) = expr(x, b, m) and symbol(m, "+") and
27 term(y, m + 1, e)
28 rel expr(x - y, b, e) = expr(x, b, m) and symbol(m, "-") and
29 term(y, m + 1, e)
30
31 // Obtain the result
32 rel result(y) = expr(y, 0, l) and length(l)

Listing 5.2: Formula evaluator for the HWF task in Scallop.

evaluation result. Scallop’s differentiable reasoning engine enables to train the resulting program in

an end-to-end fashion, that is, to learn the parameters of the neural model using only supervision on

observable input-output data.

The reasoning component is written in Scallop as shown in Listing 5.2. The program uses Datalog-like

syntax. It specifies two input relations, symbol and length (line 2-3). The former relates each

symbol image’s index with its recognized symbol (digits and operators represented as strings), and

112

1 class HWFNet(nn.Module):
2 def __init__(self):
3 MAX_LEN = 7
4 ALPHABET = ["0", ..., "9", "+", "-", "*", "/"]
5 # other setup code ...
6 self.symbol_cnn = SymbolNet () # Symbol recognition
7 # Scallop module for formula evaluation
8 self.eval_formula = scallopy.Module(
9 file="hwf.scl", provenance="diff -top -k-proofs", k=3,

10 input_mappings ={"symbol": scallopy.InputMapping(
11 {0: range(MAX_LEN), 1: ALPHABET},
12 retain_k=3, sample_dim =1)},
13 output="result", non_probabilistic =["length"])
14
15 def forward(self , img_seq , img_seq_len):
16 length = [[(l.item() ,)] for l in img_seq_len]
17 # First recognize the symbols
18 symbol = self.symbol_cnn(img_seq.flatten(0, 1)).view(len(length),

-1)
19 # Then evaluate the formula with Scallop
20 (out_symbols , out_distr) = self.eval_formula(symbol=symbol ,

length=length)
21 return (out_symbols , out_distr)

Listing 5.3: PyTorch module for the HWF task with Scallop.

the latter encodes the length of the formula. The rest of the program defines relations factor

(lines 9-10), term (lines 12-15), and expr (lines 17-20), going up the standard context-free grammar

of simple arithmetic expressions. The first argument of each of these relations is a floating point

number, with type f32, denoting the evaluated results of the corresponding expressions. Lastly, we

fetch the expression which covers the whole formula (line 23), and store the evaluated result in the

result unary relation.

Next, we may integrate this program into an end-to-end learning pipeline. Listing 5.3 shows the

PyTorch module for the HWF task. During initialization, we setup the CNN to process each symbol

image (line 6). Then we create a Scallop module to load the program from file hwf.scl (line 8-13).

We also configure the provenance semiring to be used as diff-top-k-proofs with k set to 3. During

the training or inference phase, we simply pass the symbol images to the CNN (line 17) and the

result distributions to our Scallop module (line 19). Since both the CNN and the Scallop module

113

are differentiable, we obtain an end-to-end learning pipeline. While being conceptually similar, there

are a few core complexities of HWF when compared to MNIST-Sum2. We now explain each of them

and how the Python interface helps to ease the handling of such complexities.

Varying number of inputs First, instead of taking in a constant number of 2 digits, HWF

reasoning module needs to accept formulas of varying lengths. In PyTorch, such information is

encoded in 2 dimensional tensors, where the first dimension encodes the index of each symbol, and the

second dimension encodes the distribution over our alphabet. For the formulas not of the maximum

lengths, the tensor contains padded 0-s. To process this tensor, we setup the input_mapping (line

10-12) for the symbol relation to be a 2-dimensional mapping. The first dimension (dim 0) is mapped

to range(MAX_LEN), which is 0, . . . , 6 given that the maximum length of formula in the dataset is

7. The second dimension maps each element to one symbol inside our ALPHABET. For length, we

specify that it is non-probabilistic (line 13).

The need for symbol sampling The input space for HWF input is huge, since there could

be 7 symbols with each being one of 14 classes, giving us roughly 147 possible derivation trees. If

nothing else is done, Scallop would explore all of the derivation trees, which will be prohibitively

slow. Therefore, instead of passing every single fact to Scallop, we perform sampling based on the

predicted probabilities. During the configuration of symbol’s input mapping, the two arguments

retain_k=3 and sample_dim=1 specify that on the symbol tensor, we only pick the top 3 classes for

each symbol (on dimension 1). With these arguments, we are able to make the inference process

more scalable. We note that for HWF, sampling only 3 reaches a good balance between training

time and learning accuracy. But in general, the lower the sample rate, the longer it will take to train

the model end-to-end.

Unbounded set of outputs Instead of a fixed set of possible outputs ({0, . . . , 18}) in MNIST-Sum2,

HWF has a much larger set of potential outputs, due to the fact that formulas contain division

operator (÷). It is not realistic to enumerate all of them, which is why we do not explicitly specify

an output mapping. The outcome of this is that the eval_formula cannot return a straightforward

114

1 # calling hwf_net yields the set of outputs as well as the
2 # predicted distributions over the set of outputs
3 (outputs , y_pred) = hwf_net(formula_imgs)
4
5 # construct a ground truth tensor y based on the labels and
6 # the set of produced outputs
7 y = torch.tensor ([
8 [1.0 if abs(l - m) < 0.001 else 0.0 for m in outputs]
9 for l in labels])

10
11 # compute the binary cross entropy loss
12 loss = binary_cross_entropy(y_pred , y)

Listing 5.4: The loss function used for HWF. Before applying the binary cross-entropy loss, we
also use the derived outputs to construct one-hot vectors as the ground-truth. Notice that since
HWF deals with fraction numbers, we cannot use exact comparison of derived number with the
ground truth label. Instead, we apply abs(l - m) < 0.001 to allow for floating point errors during
derivation.

vectorized tensor as the output. As shown on line 19, we obtain two results, out_symbols and

out_distr. Specifically, out_symbols will be a list of fraction numbers that are actually derived

with the sampled inputs. Meanwhile, out_distr will contain computed distribution over the results

in out_symbols. We present in Listing 5.4 the loss function that is used to process such output.

5.5 Case Study: Playing the PacMan-Maze Game

We further illustrate Scallop using an reinforcement learning (RL) based planning application which

we call PacMan-Maze. The application, depicted in Figure 5.14a, concerns an intelligent agent

realizing a sequence of actions in a simplified version of the PacMan maze game. The maze is an

implicit 5× 5 grid of cells. Each cell is either empty or has an entity, which can be either the actor

(PacMan), the goal (flag), or an enemy (ghost). At each step, the agent moves the actor in one of

four directions: up, down, right, or left. The game ends when the actor reaches the goal or hits an

enemy. The maze is provided to the agent as a raw image that is updated at each step, requiring

the agent to process sensory inputs, extract relevant features, and logically plan the path to take.

Additionally, each session of the game has randomized initial positions of the actor, the goal, and

the enemies.

115

Step 0 Step 4 Step 7

(a) Three states of one gameplay session.

CNN
(Mθ)

Action a

State si+1 Reward ri+1

State si Reward ri

Environment

qup

qright

qdown

qleft

Scallop
Program

(P)

EntityExtractor PathPlanner

(b) Architecture of application with Scallop.

Figure 5.14: Illustration of a planning application PacMan-Maze in Scallop.

Concretely, the game is modeled as a sequence of interactions between the agent and an environment,

as depicted in Figure 5.14b. The game state si ∈ S at step i is a 200 × 200 colored image

(S = R200×200×3). The agent proposes an action ai ∈ A = {up, down, right, left} to the environment,

which generates a new image si+1 as the next state. The environment also returns a reward ri to

the agent: 1 upon reaching the goal, and 0 otherwise. This procedure repeats until the game ends or

reaches a predefined limit on the number of steps.

A popular RL method to realize our application is Q-Learning (Watkins, 1989). Its goal is to learn

a function Q : S ×A→ R that returns the expected reward of taking action ai in state si.1 Since

the game states are images, we employ Deep Q-Learning (Mnih et al., 2015), which approximates
1We elide the Q-Learning algorithm as it is not needed to illustrate the neurosymbolic programming aspects of our

example.

116

1 class PacManAgent(torch.nn.Module):
2 def __init__(self , grid_dim , cell_size):
3 # initializations ...
4 cells = [(i,j) for i in range(grid_dim) for j in range(grid_dim)]
5 actions = [UP, RIGHT , DOWN , LEFT]
6 self.extract_entities = EntityExtractor(grid_dim , cell_size)
7 self.path_planner = ScallopModule(
8 file="path_planner.scl",
9 provenance="diff -top -k-proofs", k=1,

10 input_mappings ={"actor":cells , "goal":cells , "enemy":cells},
11 output_mappings ={"next_action": actions })
12
13 def forward(self , game_state_image):
14 actor , goal , enemy = self.extract_entities(game_state_image)
15 next_action = self.path_planner(actor=actor ,
16 goal=goal , enemy=enemy)
17 return next_action

Listing 5.5: Snippet of implementation in Python.

the Q function using a convolutional neural network (CNN) model with learned parameter θ. An

end-to-end deep learning based approach for our application involves training the model to predict

the Q-value of each action for a given game state. This approach takes 50K training episodes to

achieve a 84.9% test success rate, where a single episode is one gameplay session from start to end.

In contrast, a neurosymbolic solution using Scallop only needs 50 training episodes to attain a

99.4% test success rate. Scallop enables to realize these benefits of the neurosymbolic paradigm by

decomposing the agent’s task into separate neural and symbolic components, as shown in Figure

5.14b. These components perform sub-tasks that are ideally suited for their respective paradigms:

the neural component perceives pixels of individual cells of the image at each step to identify the

entities in them, while the symbolic component reasons about enemy-free paths from the actor to

the goal to determine the optimal next action. Figure 5.5 shows an outline of this architecture’s

implementation using the popular PyTorch framework.

Concretely, the neural component is still a CNN, but it now takes the pixels of a single cell in the

input image at a time, and classifies the entity in it. A snippet of the overall Scallop application in

117

1 // [path_planner.scl]
2 // The set of possible actions to take at each state
3 type Action = UP | DOWN | RIGHT | LEFT
4
5 // The input relations from neural networks
6 type grid_cell(x: i32 , y: i32), actor(x: i32 , y: i32),
7 goal(x: i32 , y: i32), enemy(x: i32 , y: i32)
8
9 // Reasoning rules ...

10 rel safe_cell(x, y) = grid_cell(x, y) and not enemy(x, y)
11 rel edge(x, y, x, yp, UP) = safe_cell(x, y) and safe_cell(x, yp), yp

== y + 1
12 // Rules for DOWN , RIGHT , and LEFT edges are omitted ...
13
14 // Compute whether taking action a is leading to success
15 rel next_pos(p, q, a) = actor(x, y), edge(x, y, p, q, a)
16 rel path(x, y, x, y) = next_pos(x, y, _)
17 rel path(x1, y1 , x3, y3) = path(x1, y1, x2 , y2) and edge(x2, y2, x3,

y3, _)
18 rel next_action(a) = next_pos(p, q, a), path(p, q, r, s), goal(r, s)

Listing 5.6: The logic program of the PacMan-Maze application in Scallop.

Python is shown in Figure 5.5. The implementation of the neural component (EntityExtractor) is

standard and elided for brevity. It is invoked on lines 14-15 with input game_state_image, a tensor

in R200×200×3, and returns three R5×5 tensors of entities. For example, actor is an R5×5 tensor and

actorij is the probability of the actor being in cell (i, j). A representation of the entities is then

passed to the symbolic component on lines 16-17, which derives the Q-value of each action. The

symbolic component, which is configured on lines 6-11, comprises the Scallop program shown in

Figure 5.6. We next illustrate three key design decisions of Scallop with respect to this program.

Relational model In Scallop, the primary data structure for representing symbols is a relation.

In our example, the game state can be symbolically described by the kinds of entities that occur in

the discrete cells of a 5× 5 grid. We can therefore represent the input to the symbolic component

using binary relations for the three kinds of entities: actor, goal, and enemy. For instance, the fact

actor(2,3) indicates that the actor is in cell (2,3). Likewise, since there are four possible actions,

the output of the symbolic component is represented by a unary relation next_action.

118

Symbols extracted from unstructured inputs by neural networks have associated probabilities, such

as the R5×5 tensor actor produced by the neural component in our example (line 14 of Listing 5.5).

Scallop therefore allows to associate tuples with probabilities, e.g. 0.96 :: actor(2,3), to indicate

that the actor is in cell (2,3) with probability 0.96. More generally, Scallop enables the conversion of

tensors in the neural component to and from relations in the symbolic component via input-output

mappings (lines 9-11 in Listing 5.5), allowing the two components to exchange information seamlessly.

Declarative language Another key consideration in a neurosymbolic language concerns what

constructs to provide for symbolic reasoning. Scallop uses a declarative language based on Datalog,

which we illustrate here using the program in Listing 5.6. The program realizes the symbolic

component of our example using a set of logic rules. Instead of having to explicitly encode a

searching algorithm for path-finding, the logic can be declaratively specified in Scallop, simplifying

the programming experience from an end-user point-of-view.

Recall that we wish to determine an action a (up, down, right, or left) to a cell (p, q) that is adjacent

to the actor’s cell (x, y) such that there is an enemy-free path from (p, q) to the goal’s cell (r, s). The

nine depicted rules succinctly compute this sophisticated reasoning pattern by building successively

complex relations, with the final rule (on line 14) computing all such actions.2

The arguably most complex concept is the path relation which is recursively defined (on lines 10-11).

Recursion allows to define the pattern succinctly, enables the trained application to generalize to grids

arbitrarily larger than 5× 5 unlike the purely neural version, and makes the pattern more amenable

to synthesis from input-output examples. Besides recursion, Scallop also supports negation and

aggregation; together, these features render the language adequate for specifying common high-level

reasoning patterns in practice.

Differentiable reasoning With the neural and symbolic components defined, the last major

consideration concerns how to train the neural component using only end-to-end supervision. In our
2We elide showing an auxiliary relation of all grid cells tagged with probability 0.99 which serves as the penalty for

taking a step. Thus, longer paths are penalized more, driving the symbolic program to prioritize moving closer to the
goal.

119

Loss

Predicted Query Output

0.01::kin(sister, A, D)
0.02::kin(father, A, D)
...
0.84::kin(niece, A, D)

kin(r3, x, z) :- co(r1, r2, r3),
 kin(r1, x, y), kin(r2, y, z).
kin(r, y, x) :- sym(r), kin(r, x, y).
...

0.99::co(son, son, grandson)
0.01::co(father, sister, son)
...
0.98::co(brother, son, nephew)

Input Text

0.92::kin(daughter, K, R)
0.05::kin(sister, K, R)
...
0.03::kin(father, K, A)
0.89::kin(sister, K, A)
...
0.95::kin(uncle, J, B)

Language
Model

Differentiable Symbolic Reasoner

Rich's daughter Kelly made
dinner for her sister Kim.
Dorothy went to her brother
Rich's birthday party. Anne
went shopping with her
sister Kim. Julia decided to
call her uncle Benjamin on
his birthday. Frank took his
son Charles and daughter
Rachel out for pizza.

Ground Truth Query Output

kin(niece, A, D)

Query

kin(r, A, D)?

forall(a, b: kin(father, a, b) =>
 kin(son, b, a) ∨ kin(daughter, b, a))

Semantic Loss (weighted sum)

Question

How is Dorothy
related to Anne?

Probabilistic Input Facts

Figure 5.15: Overview of kinship reasoning with an example where “Anne is the niece of Dorothy”
can be inferred from the context. We abbreviate the names with their first initials in the relational
symbols, and the composite relationship with “co”.

example, supervision is provided in the form of a reward of 1 or 0 per gameplay session, depending

upon whether or not the sequence of actions by the agent successfully led the actor to the goal without

hitting any enemy. This form of supervision, called algorithmic or weak supervision, alleviates the

need to label intermediate relations at the interface of the neural and symbolic components, such as

the actor, goal, and enemy relations. However, this also makes it challenging to learn the gradients

for the tensors of these relations, which in turn are needed to train the neural component using

gradient-descent techniques.

The key insight in Scallop is to exploit the structure of the logic program to guide the gradient

calculations, as achieved by the differentiable provenances implemented within our provenance

framework. In our example, line 8 in Figure 5.5 specifies diff-top-k-proofs with k=1 as the

heuristic to use, which is the default in Scallop that works best for many applications.

5.6 Case Study: Learning Composition Rules for Kinship Reasoning

CLUTRR (Sinha et al., 2019) consists of kinship reasoning questions. Given a context that describes

a family’s routine activity, the goal is to deduce the relationship between two family members that

is not explicitly mentioned in the story.

We showcase one CLUTRR example in Figure 5.15. The input text is “Rich’s daughter Kelly made

dinner for her sister Kim. Dorothy went to her brother Rich’s birthday party. Anne went shopping

120

Figure 5.16: The family graph corresponding to the story shown in Figure 5.15. Edges representing
family relations directly extracted from the story are colored in black, while those requiring derivation
using common sense knowledge are colored in blue. Additionally, names are abbreviated using their
initials.

with her sister Kim.” From this narrative, we infer several relationships: Rich is Dorothy’s brother,

Kelly is Rich’s daughter, Kim is Kelly’s sister, and Anne is Kim’s sister. Leveraging our common

sense knowledge, we understand that one’s sister’s sister is also her sister, a sister’s father is her

father, and a brother’s daughter is his niece. Consequently, we deduce that Anne is Kelly’s sister,

making Rich Anne’s father, and Dorothy, Anne’s aunt.

The family kinship graph of the CLUTRR dataset is synthetic and the names of the family members

are randomized. However, the sentences included in the story are crowd-sourced and hence there is a

considerable amount of naturalness inside the dataset. The CLUTRR dataset is further divided into

different difficulties measured by k, the number of facts used in the reasoning chain. For training, we

only use 10K data points with 5K k = 2 and another 5K k = 3, meaning that we can only receive

supervision on data with short reasoning chains. The test set, on the other hand, contains 1.1K

examples with k ∈ {2, . . . , 10}.

5.6.1 Structured Representation: Family Graph

One natural representation of the family relationship is the family graph, as shown in Figure 5.16. The

nodes in the family graph represents the family members, and the edges represents the relationship

between the connected two family members. We can thus express the family graph in the form of

facts.

121

1 // Relation declarations
2 type kinship(rela: String , sub: String , obj: String)
3 type composite(r1: String , r2: String , r3: String)
4 type question(sub: String , obj: String)
5
6 // Rules to derive the final answer
7 rel kinship(r3,a,c) = kinship(r1,a,b) and kinship(r2,b,c)
8 and composite(r1,r2,r3) and a != c
9 rel answer(r) = question(s, o), kinship(r, s, o)

10
11 // Integrity constraints:
12 // (6 for kinship and 2 for rule learning)
13 rel violate (!r) = r := forall(a, b: kinship("mother", a, b)
14 => kinship("son", b, a) or kinship("daughter", b, a))
15 // Other constraints are omitted ...

Listing 5.7: The Scallop program for reasoning over kinship graphs in CLUTRR.

Logic rules can be applied to known facts to deduce new ones. For example, below is a horn clause,

which reads “if b is a’s brother and c is b’s daughter, then c is a’s niece”:

niece(a, c) ← brother(a, b) ∧ daughter(b, c).

Note that the structure of the above rule can be captured by a higher-order logical predicate

called “composite”. This allows us to express many other similarly structured rules with ease. For

instance, we can have composite(brother, daughter, niece) and composite(father, mother,

grandmother). With this set of rules, we may derive more facts based on known kinship relations.

In fact, composition is the only kind of rule we need for kinship reasoning. In general, there are

many other useful higher-order predicates to reason over knowledge bases, which we list out in Table

5.11.

Predicate Example
composite composite(mother, father, grandfather)
transitive transitive(relative)
symmetric symmetric(spouse)

inverse inverse(husband, wife)
implies implies(mother, parent)

Table 5.11: Higher-order predicate examples.

122

The logic for reasoning over kinship relations is realized in Scallop in Listing 5.7. Line 2 declares

the ternary relation kinship among subject, object, and their relationships. Line 3 then declares

composite that is a higher-order predicate relating 3 kinship relations. We have line 7 declaring the

rule that composites two existing kinship facts to derive a new kinship fact.

We note that integrity constraints are also included as logical rules. Specifically, we include a unary

relation named violate storing boolean to encode the likelihood of integrity violations based on

pre-defined rules. In this application, we choose to have violation (negative) rules rather than

integrity (positive) rules for two reasons. First, it is more modular because multiple violation criteria

can be “or”-ed together to form a larger violation criteria, allowing violation rules to be expressed

as multiple Scallop rules. Secondly, the likelihood of integrity violation can be directly used for

semantic constraint loss, which we will introduce later in Section 5.6.2.

5.6.2 Learning Pipeline

The learning pipeline concerns tightly integrating a perceptive model for relation extraction with the

symbolic engine, Scallop, for logical reasoning. There are two add-ons we introduce for this specific

application. First, we initialize the common sense knowledge rules used for logical deduction using

language models, then further tune them through our end-to-end pipeline, alleviating human efforts.

Secondly, we employ integrity constraints on the extracted relation graphs and the logical rules, to

improve the logical consistency of LMs and the learned rules.

Based on this design, we formalize our method as follows. We adopt pretrained LMs to build relation

extractors, denotedMθ, which take in the natural language input x and return a set of probabilistic

relational symbols r. Next, we employ a differentiable deductive reasoning program, Pϕ, where ϕ

represents the weights of the learned logic rules. It takes as input the probabilistic relational symbols

and the query q and returns a distribution over R as the output ŷ. Overall, the deductive model is

written as

ŷ = Pϕ(Mθ(x), q). (5.1)

123

Additionally, we have the semantic loss (sl) derived by another symbolic program Psl computing

the probability of violating the integrity constraints:

lsl = Psl(Mθ(x), ϕ) (5.2)

Combined, we aim to minimize the objective J over training set D with loss function L:

J(θ, ϕ) =
1

|D|
∑

(x,q,y)∈D

w1L(Pϕ(Mθ(x), q), y) + w2Psl(Mθ(x), ϕ), (5.3)

where w1 and w2 are tunable hyper-parameters to balance the deduction loss and semantic loss.

Though shown as two separate programs Pϕ and Psl, they share the same Scallop program in

practice, as shown in Listing 5.7. We only need to additionally configure the Scallop module to

output two relations, answer (for kinship prediction) and violation (for semantic loss).

5.6.3 Relation Extraction

Since pre-trained LMs have strong pattern recognition capabilities for tasks like Named-Entity-

Recognition (NER) and Relation Extraction (RE) Tenney et al. (2019); Soares et al. (2019), we

adopt them as our neural components in Scallop. To ensure that LMs take in strings of similar

length, we divide the whole context into multiple windows. The goal is to extract the relations

between every pair of entities in each windowed context. Concretely, our relation extractor Mθ

comprises three components: 1) a Named-Entity Recognizer (NER) to obtain the entities in the

input text, 2) a pre-trained language model, to be fine-tuned, that converts windowed text into

embeddings, and 3) a classifier that takes in the embedding of entities and predicts the relationship

between them. The set of parameters θ contains the parameters of both the LM and the classifier.

We assume the relations to be classified come from a finite set of relations R. For example in

CLUTRR Sinha et al. (2019), we have 20 kinship relations including mother, son, uncle, father-

in-law, etc. In practice, we perform (|R| + 1)-way classification over each pair of entities, where

the extra class stands for “n/a”. The windowed contexts are split based on simple heuristics of

124

“contiguous one to three sentences that contain at least two entities”, to account for coreference

resolution. The windowed contexts can be overlapping and we allow the reasoning module to deal

with noisy and redundant data. Overall, assuming that there are m windows in the context x,

we extract mn(n − 1)(|R| + 1) probabilistic relational symbols. Each symbol is denoted as an

atom of the form p(s, o), where p ∈ R ∪ {n/a} is the relational predicate, and s, o are the two

entities connected by the predicate. We denote the probability of such symbol extracted by the LM

and relational classifier as Pr(p(s, o) | θ). All these probabilities combined form the output vector

r =Mθ(x) ∈ Rmn(n−1)(|R|+1).

Rule learning Hand-crafted rules could be expensive or even impossible to obtain. To alleviate this

issue, Scallop applies LMs to help automatically extract rules, and further utilizes the differentiable

pipeline to fine-tune the rules. Each rule such as is attached a weight, initialized by prompting an

underlying LM. Let a composition rule be prob :: composite(r, p, q), it means one’s r’s p is their q,

with a certain probability prob. For example, the facts listed in Listing 5.8 means, one’s father’s

father is always one’s grandfather (probability 1.0). At the same time, one’s brother’s daughter is

one’s niece with 0.9 probability.

1 rel composite = {
2 1.0::("father", "father", "grandfather"),
3 0.9::("brother", "daughter", "niece"),
4 // ... other weighted composite rules
5 }

Listing 5.8: A few probabilistic composite rules that are learnt.

Given that the relations r, p, q ∈ R, Scallop automatically enumerates r and p from R while querying

for LM to unmask the value of q. LM then returns a distribution of words, which we take an

intersection with R. The probabilities combined form the initial rule weights ϕ. This type of rule

extraction strategy is different from existing approaches in inductive logic programming since we are

exploiting LMs for existing knowledge about relationships.

Note that LMs often make simple mistakes answering such prompt. In fact, with the above prompt,

even GPT-3 can only produce 62% of composition rules correctly. While we can edit prompt to

125

include few-shot examples, in this work we consider fine-tuning such rule weights ϕ within our

differentiable reasoning pipeline. Note that there are exponentially many rule weights to be fine-tuned.

For example, the composition rule used for kinship reasoning has 3 arguments, resulting in |R|3 = 203

candidate rules.

In practice, we use two optimizers with different hyper-parameters to update the rule weights ϕ and

the underlying model parameter θ, in order to account for optimizing different types of weights.

Semantic loss and integrity constraints In general, learning with weak supervision label is

hard, not to mention that the deductive rules are learnt as well. We thereby introduce an additional

semantic loss during training (Xu et al., 2017, 2018). Here, semantic loss is derived by a set of

integrity constraints used to regularize the predicted entity-relation graph as well as the learnt logic

rules. In particular, we consider rules that detect violations of integrity constraints. For example,

“if A is B’s father, then B should be A’s son or daughter” is an integrity constraint for relation

extractor—if the model predicts a father relationship between A and B, then it should also predict a

son or daughter relationship between B and A. Encoded in first order logic, it is

∀a, b, father(a, b)⇒ (son(b, a) ∨ daughter(b, a)).

The violation of this first order logic formula is encoded in Scallop as the line 13-14 in Listing 5.7.

Through differentiable reasoning, we evaluate the probability of such constraint being violated,

yielding our expected semantic loss. In practice, arbitrary number of constraints can be included,

though too many interleaving ones could hinder learning.

5.6.4 Experimental Results

The baseline and Scallop performance results are shown in in Figure 5.4, which shows that our

neurosymbolic solution outperforms all compared neural baselines by a large margin. With a more

advanced language model (GPT-4), Scallop is capable of reaching an even higher accuracy (Table 5.7)

on CLUTRR. We also show the top 20 learnt composition rules from the CLUTRR and CLUTRR-G

126

Confidence Rule
1.154 mother(A,B) ← sister(A,C) ∧ mother(C,B)
1.152 daughter(A,B) ← daughter(A,C) ∧ sister(C,B)
1.125 sister(A,B) ← daughter(A,C) ∧ aunt(C,B)
1.125 father(A,B) ← brother(A,C) ∧ father(C,B)
1.123 granddaughter(A,B) ← grandson(A,C) ∧ sister(C,B)
1.120 brother(A,B) ← sister(A,C) ∧ brother(C,B)
1.117 brother(A,B) ← son(A,C) ∧ uncle(C,B)
1.105 brother(A,B) ← daughter(A,C) ∧ uncle(C,B)
1.104 daughter(A,B) ← wife(A,C) ∧ daughter(C,B)
1.102 mother(A,B) ← brother(A,C) ∧ mother(C,B)
1.102 brother(A,B) ← father(A,C) ∧ son(C,B)
1.096 sister(A,B) ← mother(A,C) ∧ daughter(C,B)
1.071 sister(A,B) ← father(A,C) ∧ daughter(C,B)
1.071 son(A,B) ← son(A,C) ∧ brother(C,B)
1.070 uncle(A,B) ← father(A,C) ∧ brother(C,B)
1.066 daughter(A,B) ← son(A,C) ∧ sister(C,B)
1.061 brother(A,B) ← brother(A,C) ∧ brother(C,B)
1.056 grandson(A,B) ← husband(A,C) ∧ grandson(C,B)
1.055 sister(A,B) ← son(A,C) ∧ aunt(C,B)
1.053 grandmother(A,B) ← sister(A,C) ∧ grandmother(C,B)

Table 5.12: Showcase of the learnt logic rules (expressed as first order Horn rules) with top@20
confidence of CLUTRR rule learning.

experiments in Table 5.12. All top-20 learned rules match our expected real-life kinship relations.

127

Figure 6.1: An example from 20BN demonstrating the end-to-end learning pipeline. The model Mθ

processes a video to generate a probabilistic STSG. With 3-shot GPT-4, an STSL specification is
derived from the video caption, which describes a temporal sequence of two events: “the box is on
the desk touched by a hand” and “the box is not above the desk.” The alignment checker then aligns
the STSL program with the probabilistic STSG.

CHAPTER 6

Application: Video Scene Graph Generation

Understanding video semantics has become increasingly important due to its wide range of applica-

tions, including video search, text-video retrieval, question answering, segmentation, and captioning.

Video semantics can be decomposed into two essential dimensions: spatial semantics, which con-

cern the entities present in a video, their attributes, and their spatial relationships; and temporal

semantics, which capture how these elements and their interactions evolve over time. For example,

the phrase “pushing a box off the desk by hand” (Figure 6.1) involves spatial relationships such as

“touching” between “box” and “hand”, and a temporal progression where the “box” transitions from

being “on” the “desk” to being “not above” it.

To model such rich spatial and temporal semantics, prior work has proposed Spatio-Temporal

Scene Graphs (STSGs) (Shang et al., 2017; Zhu et al., 2022) as structured representations that track

entity relations over time. However, existing approaches for learning STSGs typically rely on fully

supervised training (Nag et al., 2023; Cong et al., 2021), which requires costly low-level annotations

that are impractical at scale (Yang et al., 2023b). In this work, we explore weakly supervised

128

alternatives by combining STSGs with formal logic specifications, forming a novel framework that

enables fine-grained video understanding without the need for expensive annotation.

Central to our approach is the Spatio-Temporal Specification Language (STSL), a domain-specific

language grounded in finite linear temporal logic (LTLf) (De Giacomo and Vardi, 2013), which

allows users to write expressive logical descriptions of video content. These specifications can capture

temporal operators such as “until” (U) and “finally” (♢), as well as spatial predicates like “is pushing

off” or “lies above”. We implement a differentiable specification checker in the Scallop neurosymbolic

framework that computes an alignment score between predicted STSGs and STSL programs, enabling

end-to-end learning of the STSG model from weak supervision.

To address the scarcity of logical specifications in existing datasets, we design a prompting strategy

that uses large language models (e.g., GPT-4 (OpenAI et al., 2024)) to convert natural-language

captions into STSL programs. This allows us to use widely available video-caption pairs as a source

of supervision. We further incorporate multiple learning signals—including contrastive alignment,

time-span supervision, and semantic loss (Xu et al., 2017, 2018)—to enhance training effectiveness.

Building on these ideas, we introduce LASER, a neurosymbolic learning pipeline, and SGClip, a

CLIP-based STSG generator trained using 87,000 video-specification pairs curated in the ESCA-

Video-87K dataset. LASER is effective in fine-tuning a range of vision-language models, while SGClip

demonstrates both strong zero-shot generalization and fine-tuning performance on downstream tasks

such as action recognition. Together, LASER and SGClip show that large-scale STSG learning is

feasible using only high-level video captions and logical reasoning as supervision.

This chapter introduces LASER, a neurosymbolic learning pipeline for spatio-temporal scene graph

(STSG) generation. We begin with an illustrative overview (Section 6.1) of the STSG task and its

challenges, followed by a formal problem definition (Section 6.2). We then present our neurosymbolic

solution using Scallop (Section 6.3), including the LASER learning pipeline (Section 6.3.1) and the

training of SGClip, a large-scale video scene graph model (Section 6.3.2). We conclude with an

empirical evaluation (Section 6.4) and a discussion of related work (Section 6.5).

129

 Video Caption
lift and drop a sponge on a table by hand

Spatio-Temporal Specification

ψvar(v1, v2, v3) = is_a(v1, "sponge") ∧ is_a(v2, "table") ∧ is_a(v3, "hand")
ψt1 = ∃ v1, v2, v3: ψvar(v1, v2, v3) ∧ on(v1, v2) ∧ touching(v1, v3)
ψt2 = ∃ v1, v2, v3: ψvar(v1, v2, v3) ∧ ~above(v1, v2) ∧ ~touching(v1, v3)

Spatio-Temporal Alignment Score: 0.93
on(v1, v2) ∧ touching(v1, v3) ~above(v1, v2) ∧ ~touching(v1, v3)

(a) 20BN

 Video Caption
 MUGEN jumps down and collects two coins

Spatio-Temporal Specification

ψvar(v1, v2) = is_a(v1, "coin") ∧ is_a(v2, "coin")
ψ = ∃ v1, v2: ψvar(v1, v2) ∧ jump(M, "down") U collect(M, v1) U collect(M, v2)

Spatio-Temporal Alignment Score: 0.87
jump(M, "down") collect(M, A) collect(M, B)

(b) MUGEN

Figure 6.2: Two illustrative examples of videos and captions and their spatio-temporal alignment,
from the 20BN and the MUGEN dataset.

6.1 Illustrative Overview

We illustrate our approach using two examples adapted from the 20BN dataset (Goyal et al., 2017)

and the MUGEN dataset (Hayes et al., 2022) (Figure 6.2). The 20BN dataset contains real-life

short videos involving a human performing simple actions, such as “push”, “move-towards”, and “lift”,

on other objects. The MUGEN dataset contains short gameplay footage of a 2D platform game

CoinRun. In the video game, the player character MUGEN can walk, jump, collect coins, and kill

enemies.

Figure 6.2a shows one spatio-temporal specification describing the pre- and post-condition of a single

high-level action “push”. Before a box is pushed off the desk, it must be on the desk (on(v1, v2)),

and a hand is touching it (touching(v1, v3)). After it is pushed off the desk, it must be under the

desk (¬above(v1, v2)). These predicates that encoding static spacial relation between entities are

connected by temporal logic modality (e.g., ♢ (finally)) to express the dynamic change of spacial

relation, that is, a temporal ordering over the moments before (ϕpre) and after (ϕpost) the action

“push” happens.

Figure 6.2b shows another specification connecting three events “jump”, “collect”, and “collect”

together using the U (until) operator. This suggests that the three events are likely consecutive.

130

Different from the traditional sequence of actions (Chang et al., 2019; Huang et al., 2016), the events

here are relational predicates connecting entities and possibly properties. For example, jump(M,

“down”) specifies that the actor of jump is (M)UGEN, and that the direction of jump is “down”.

Despite expressing diverse semantics, both specifications can be uniformly represented under our

LTLf based formalism. The next question is how to learn the underlying STSG from the video and

specifications. In this work, we frame it as a weakly-supervised specification alignment problem,

illustrated in Figure 6.1. That is, the STSG generated from video should align with (i.e., satisfy)

the corresponding logic specification. We design a neuro-symbolic alignment checker to compute an

alignment score, i.e., the probability of alignment. During training, our approach learns to extract

an STSG such that it maximizes the alignment score between a corresponding pair of video and

specification. With additional semantic and contrastive loss, we show that our method can effectively

generate an STSG that conforms to the specification. In the upcoming section, we elaborate on the

neurosymbolic learning framework as well as a foundation model, SGClip, that we have trained

6.2 Problem Definition

In this chapter, we introduce LASER, our neurosymbolic learning pipeline for training STSG

generators. The high-level problem definition is as follows. We are given a dataset D of video-caption

pairs (X,C), where X = [x1, . . . , xn] is a video containing n frames, and C is a natural language

caption describing the video. We wish to learn a neural model Mθ which extracts a spatio-temporal

scene graph (STSG), r̂ =Mθ(X) that conforms to the corresponding caption C. During training

time, given a loss function L, we aim to minimize the following main objective:

J(θ) =
1

|D|
∑

(X,C)∈D

L(Pr(Mθ(X) |= LLM(C)), 1), (6.1)

where LLM(C) is an STSL formula ψ generated by LLM from the caption C, and Pr(r̂ |= ψ) is the

alignment score (probability of alignment) computed by our spatio-temporal alignment checker. We

illustrate the full learning pipeline in Figure 6.1 and detail the process in this chapter.

131

Figure 6.3: Pipeline illustration with SigLIP (Zhai et al., 2023) as the backbone model for probabilistic
STSG generation.

6.3 Neurosymbolic Solution with Scallop

6.3.1 LASER: Neurosymbolic Learning for Scene Graph

Video to Probabilistic Relational Database

A probabilistic spatio-temporal scene graph is a probabilistic relational database that contains two

types of facts denoted by relations unary_atom and binary_atom, for unary and binary predicates

respectively, each associated with a probability denoting the likelihood that the fact is true. For

example, 0.05::unary_atom("deformed", 3, e) means that “entity e is unlikely to be deformed

at time stamp 3,” while 0.92::binary_atom("push", 10, h, b) indicates that “object h is highly

likely to be pushing object b at time stamp 10.” This flexible representation supports the seamless

incorporation of unary and binary keywords into the database. The unified probabilistic database

enables LASER to be model-agnostic, supporting both closed-domain STSG classification models

and open-world vision-language models for converting input video data into relational database

representations. With a unified formalization, an STSG generator, Mθ, parameterized by θ, takes

in pixel-based raw video data X, and generate a distribution of STSGs. This distribution is then

encoded as a predicted probabilistic relational database, r̂ =Mθ(X).

132

(Term) t ::= c | v
(Formula) φ ::= a(t) | ¬a(t) | φ1 ∧ φ2 | ⃝ φ | φ1 U φ2 | □φ | ♢φ

(Specification) ψ ::= ∃v1, . . . , vk, s.t. φ

Figure 6.4: The formal syntax of STSL, where a represents relational predicates, c represents
constants, and v represents variables. Here, ∧, and ¬ represents logical “and”, “or”, and “not”.
Formula may also contain temporal operators ⃝ (next), U (until), □ (global), and ♢ (finally).

Spatio-Temporal Specification Language

Linear Temporal Logic (LTL) (Pnueli, 1977) is a formal logic system extending propositional logic

with concepts about time. It is commonly used for formally describing temporal events, with

applications in software verification (Chaki et al., 2005; Kesten et al., 1998) and control (Ding et al.,

2014; Sadigh et al., 2014). As we operate on prerecorded, finite-length videos, our language is

developed using LTLf (De Giacomo and Vardi, 2013), which supports LTL reasoning over finite

traces. Thus, we use LTLf as a framework for specifying events and their temporal relationships.

Our STSL (Figure 6.4) further extends LTLf by introducing relational predicates and variables. It

starts from the specification ψ which existentially quantifies variables in an STSL formula. The

formula φ is inductively defined, with basic elements as relational atoms α of the form a(t1, . . . , tn).

Note that the terms t̄ = {t1, . . . , tn} can contain quantified variables to be later grounded into

concrete entities based on context Γ, noted by substΓ(t̄). From here, φ can be constructed using

basic propositional logic components ∧ (and), ∨ (or), and ¬ (not). The system additionally

includes temporal unary operators □ (always), ♢ (finally), ⃝ (next), and a binary operator U

(until) (Albers et al., 2009). For example, the description “A hand continues to touch the box until

it drops.” can be represented as an STSL formula

ψ = touch(h, b) U drop(b, _). (6.2)

Note that an argument to the predicate drop is a wildcard (_), since we do not specify where

does the box drops from. This formula might seem too strict since it requires the two events

to be consecutive. To make the specification more natural, one can change the above formula

133

1 // Term: either constant string or variable or wildcard
2 type Term = Const(String) | Var(Var) | Wildcard ()
3
4 // TForm: temporal formula , containing `Global `, `Finally `,
5 // `Until `, and `Next `
6 type TForm = Global(TForm)
7 | Finally(TForm)
8 | Until(TForm , TForm)
9 | Next(TForm)

10 | Logic(LForm)
11
12 // LForm: logical formula , containing logical conjunction
13 // and atomic queries
14 type LForm = And(LForm , LForm)
15 | Unary(String , Term)
16 | Binary(String , Term , Term)
17 | NegUnary(String , Term)
18 | NegBinary(String , Term , Term)
19
20 // an example specification: touch(h,b) U drop(b,_)
21 const MY_SPEC = Until(
22 Binary("touch", Var("h"), Var("b")),
23 Binary("drop", Var("b"), Wildcard ()))

Listing 6.1: STSL defined in Scallop.

to “♢(touch(h, b) ∧ ♢drop(b, _))”. Here, the two events, touch and drop, need to happen in

chronological order but are not required to be consecutive.

In Listing 6.1 we define the STSL using algebraic data type (ADT). We stratify STSL formula into

temporal formula and logical formula so that the semantics can be implemented more succinctly

later. In temporal section (line 6-10), we cover all the core temporal operations supported in STSL.

In the logical section (line 14-18), we can have conjunction as the only logical connective; negation

can only be applied to unary or binary atoms, allowing us to define NegUnary and NegBinary atomic

formulas. Note that if we allow arbitrary negation, then our semantics might suffer from unstratified

negation, prohibiting our program to be compiled by Scallop compiler. On line 21-23, we show one

example specification representing Eqn. 6.2.

134

Figure 6.5: An illustration of our pipeline for natural language caption to programmatic spatio-
temporal specification.

Natural Language to Spatio-Temporal Specification

To leverage the abundance of video captions as weak supervision signals, we employ a large language

model (LLM) to automatically extract a programmatic specification ψ from each video caption c.

Directly converting captions into a formal program is particularly challenging for an LLM, especially

in a low-data language like STSL. We hence use a few-shot learning approach with an LLM to

generate an intermediate structured representation of the caption in JSON format. For each caption

c, our goal is to convert it into a series of events ē = {e1, e2, . . . , en}. Each event includes (a) a

detailed natural language description of the event, which guides the generation of subsequent details,

(b) a series of unary, binary, positive, and negative predicates describing the semantics of the scenario,

(c) the location of the event, loc(ei), in the video where the event occurs, represented as a fraction of

the video length, and (d) the duration of the event, dur(ei), also expressed as a fraction.

To extract such structured representations from the caption, we designed a generic prompt template,

which consists of the following components: (a) examples for temporal specification in fraction

numbers: “0”, “1/2”, “2/3”, “1”. (b) scene graph keywords, such as object names and relations. (c)

few-shot examples of caption and JSON structured representations pairs. We illustrate a caption

and its structured representation in Figure 6.5.

The programmatic spatio-temporal specification is then generated by postprocessing the events in

sequential order. Consequently, we can generate the programmatic spatio-temporal specification ψ

135

⟨w, s⟩ |= ψ iff ∃Γ, ⟨Γ, w, s⟩ |= φ
⟨Γ, w, s⟩ |= a(t̄) iff a(c̄) ∈ w[s] ∧ c̄ = substituteΓ(t̄)
⟨Γ, w, s⟩ |= φ1 ∧ φ2 iff ⟨Γ, w, s⟩ |= φ1 ∧ ⟨Γ, w, s⟩ |= φ2

⟨Γ, w, s⟩ |= ¬φ iff ⟨Γ, w, s⟩ ̸|= φ
⟨Γ, w, s⟩ |=⃝φ iff ⟨Γ, w, s+ 1⟩ |= φ
⟨Γ, w, s⟩ |= φ1Uφ2 iff ∃i.s ≤ i ∧ ⟨Γ, w, i⟩ |= φ2,∀k.s ≤ k < i, ⟨Γ, w, k⟩ |= φ1

Figure 6.6: Formal semantics of STSL. ⟨w, s⟩ |= ψ means the STSL specification ψ is aligned with
the ST-SG w starting from time s. We use w |= ψ as an abbreviation for ⟨w, 1⟩ |= ψ.

Figure 6.7: The evaluation process aligning a spatio-temporal scene graph (DB) with a specification
climb U walk. This figure elides showing the arguments of the relational predicates and focuses
only on matching sequential events.

for the caption as a sequence of events in chronological order:

ψ = ♢ei∈ēψi, ψi =
∧
ϕj∈ψi

ϕj . (6.3)

Spatio-Temporal Alignment Checking

Given a probabilistic database r that encodes a distribution of STSGs (§6.3.1), and a specification

ψ in STSL, we aim to measure the alignment score Pr(r |= ψ) in an end-to-end and differentiable

136

manner. Conceptually, each probabilistic fact f in the database can be toggled on or off, resulting in

2|r| distinct worlds. Denoting each world (i.e. a concrete STSG) as w ∈ P(r) 3, we can check whether

the world w satisfies the specification ψ or not. From here, the alignment score can be computed as

the sum of the probabilities of worlds satisfying ψ: Pr(r |= ψ) =
∑

w∈P(r),w|=ψ Pr(w). Enumerating

all possible worlds is intractable due to its exponential complexity. Since Scallop employ scalable

algorithms, we can approximate this probability and greatly reduce the probabilistic reasoning time.

We also note that some of the STSG w sampled from P(r) might be infeasible due to involving

conflicting facts (e.g., a box is above and below a desk at the same time). To further enhance

the logic deduction efficiency, we extend Scallop’s “top-k proofs” provenance to support general

disjunctive constraints and early removal of infeasible STSGs that do not satisfy the specification.

We implement the alignment checker with Scallop, as partially shown in Listing 6.3. This helps us to

succinctly and precisely encode the formal semantics of STSL. It inductively computes the alignment

between a temporal slice of r and an STSL formula. The whole specification ψ is aligned if the full r

(from 1 to m) satisfies ψ with a concrete variable grounding Γ, which maps variables to concrete

entities. We illustrate one simplified evaluation process in Figure 6.7. The checker iteratively aligns

the predicted probabilistic events (simplified to just climb and walk) with the specification. At the

4th iteration, 3 different satisfying alignments are derived, yielding a final alignment score of 0.58.

As for our Scallop implementation of the alignment checker, we start by defining the relations storing

our STSG (line 7-9 of Listing 6.2). Since in STSG we only deal with unary and binary relations,

we hardcode the two relations unary_atom and binary_atom. One important difference between

our alignment checker and the semantics of other DSLs shown before is that, alignment checker

needs the constraint solving capability due to specifications having variables. Specifically, we need

to solve each variable v to a concrete object o in the scene. This means that each variable can only

be assigned to one object, forming a mutual exclusion. For this, we use an aggregator in Scallop,

disjunct, that constructs the mutual exclusion in the tag space, as shown on line 5 of Listing 6.2.

We now present the Scallop code for the alignment checker for STSL (Listing 6.3). Starting from
3P represents power-set.

137

1 // Type definitions
2 type Var = String
3 type Obj = u32
4 type Time = u32
5
6 // Spatial -temporal scene graph
7 type time(time: Time)
8 type unary_atom(pred: String , fid: Time , o1: Obj)
9 type binary_atom(pred: String , fid: Time , o1: Obj , o2: Obj)

10
11 // Variable assignments
12 type name(o: Obj , name: Var)
13 type variable(var: Var), object(o: Obj)
14 rel var_obj = disjunct[v](o: variable(v) and object(o))

Listing 6.2: Setting up the Spatio-Temporal Scene Graph (STSG) as well as the variable assignment
solving context.

line 1-5, we define the relation used to ground each term into concrete objects. Specifically, when

the term is a variable (Var), we use the var_obj relation defined in Listing 6.2 to ground it into

an object o. Note that var_obj has mutual exclusion within it, meaning that if two facts where a

single variable is assigned to two objects present in a single proof, then the proof will be rejected

by Scallop’s provenance system. We continue to define the rules for aligning logical formula, which

require the grounding of all terms appearing in the atoms. As for aligning temporal formula, we

deal with temporal relations. For instance, on line 21, aligning Global formula at time step s means

that the subformula p1 needs to be aligned for all time steps between s and n. This is exactly what

we define in the formal semantics of STSL (Figure 6.6).

Loss Functions

Contrastive learning Unavoidable dataset biases exist in the specification. Contrastive learning

can effectively reduce the bias and generate explanations of better quality. Let (Xi, ψi) and (Xj , ψj)

be two datapoints in a mini-batch B, where ψi and ψj are the specifications for video Xi and Xj

correspondingly. If Xi |= ψj , then it is an extra positive sample to the video Xi; otherwise, it is a

138

1 // grounding a term into an object
2 type ground_term(t: Term , o: Obj)
3 rel ground_term(Var(v), o) = var_obj(v, o)
4 rel ground_term(Const(c), o) = name(o, c)
5 rel ground_term(Wildcard (), o) = object(o)
6
7 // aligning logical formula
8 type align_lform(phi: LForm , s: Time)
9 rel align_lform(Binary(pred , t1, t2), s) =

10 ground_term(t1 , o1) and ground_term(t2, o2)
11 and binary_atom(pred , s, o1, o2) and time(s)
12 rel align_lform(NegBinary(pred , t1, t2), s) =
13 ground_term(t1 , o1) and ground_term(t2, o2)
14 and not binary_atom(pred , s, o1, o2) and time(s)
15 // handling other logical formulas ...
16
17 // aligning temporal formula: the formula `psi ` is aligned
18 // with the scene graph starting from time `s`, given the
19 // variable assignment context
20 type align_tform(psi: TForm , s: Time)
21 rel align_tform(Global(p1), s) =
22 max_time(n) and align_all_tform(p1, s, n)
23 rel align_tform(Finally(p1), s) = align_once_tform(p1, s)
24 rel align_tform(Until(p1, p2), s) =
25 time(t + 1) and s < (t + 1)
26 and align_all_tform(p1, s, t) and align_tform(p2, t + 1)
27 // handling other temporal formulas ...

Listing 6.3: The (partial) alignment checker for STSL, implemented in Scallop.

negative sample to Xi. We can thus define our per-batch contrastive loss Lc(B):

Lc(B) =
1

|B|2
∑

(Xi,ψi)∈B

∑
(Xj ,ψj)∈B

L(Pr(Mθ(Xi) |= ψj),1[ψi = ψj]) (6.4)

Time-span supervision A video caption is expanded into a sequence of events using LLM, with

each event assigned a specific temporal target, detailing its location and duration within the video,

as illustrated in Section 6.3.1. By aligning the spatio-temporal specification ψ with the video, we

can identify when its sub-specifications, ψ1, ψ2, . . . , ψn, are met. This alignment facilitates weak

supervision across the entire time span. We define σ(s, l, d) ∈ [0, 1], the time span alignment score,

139

as a function on actual time stamp s, expected time stamp l, and expected event duration d. In

particular, σ(s, l, d) should peak at 1 when the event happens exactly at the expected locations

(s = l). In practice, we embed σ into the computation of probabilistic alignment between STSG

w and an atomic specification a(t̄), where we utilize the expected location loc(a) and the duration

dur(a):

σ(s, l, d) = max(0, 1− 2|s− l|
d

), (6.5)

Pr(⟨Γ, w, s⟩ |= a(t̄)) = Pr(a(c̄) | a(c̄) ∈ w[s] ∧ c̄ = substΓ(t̄)) · σ(s, loc(a), dur(a)). (6.6)

Semantic loss To provide further supervision, we resort to human knowledge encoded in the form

of integrity constraints. We introduce semantic loss (Xu et al., 2017, 2018) reflecting the probability

of violating the integrity constraints. For example, an entity in a video cannot be open and closed

at the same time; an entity that is not bendable cannot be deformed. These integrity constraints

may interweave so heavily that it is hard to use a simple disjoint multi-class classifier to enforce.

We encode all integrity constraints in the form of first-order logic rules, and our reasoning engine

generates the probability that these constraints are violated. We thus have the per-sample semantic

loss Ls(Xi) as an extra-weighted term after calculating the other loss components. Let n be the

number of integrity constraints and let ICi be the i-th integrity constraint, we have

Ls(Xi) =
n∑
i=1

L(Pr(Mθ(Xi) ̸|= ψICi), 0). (6.7)

6.3.2 A Foundation Model for Scene Graph Generation

LASER enables the generation of spatio-temporal scene graphs in a generalized and open-domain

setting. To fulfill this goal, we develop SGClip, a CLIP-based foundation model (Radford et al.,

2021) for structured scene understanding. SGClip is designed to operate in an open-domain fashion,

recognizing a wide and extensible set of concepts. Secondly, it must adapt to different types of

concepts, while be capable of generalizing to unseen visual and textual domains. Finally, it must

140

Concept
Extraction

Prompt

 SGClip

below

on

abo
ve

counterbread

cabi

🔥 InternVL
I want to use a machin…

Instruction

Visual Feedback

…

Visual Description

Candidate toaster loc:
- 2 frames before: none
- prev frame: [0, 75, …]
- curr frame: [320, 32…]
Description: I am gettin
closer to the toaster…

MLLM

Concept
Extraction

Prompt

Obj. Ident. STSG Pred.
Concept

Extraction
Prompt

🔥 InternVL

MLLM

Scene Graph
Augmented

Summarization
Prompt

SGClipSGClip SGClipSGClip SGClipSGClip

bread

cabinet

toaster
...

so
ftm

ax

…

brown

big

brown

big
not brown

not big

so
ftm

ax
so
ftm

ax

…
…

above

cutting
behind

<norel>

so
ftm

ax

so
ftm

ax

so
ftm

ax

…

(a) Entity classes

Concept
Extraction

Prompt

 SGClip

below

on

abo
ve

counterbread

cabi

🔥 InternVL
I want to use a machin…

Instruction

Visual Feedback

…

Visual Description

Candidate toaster loc:
- 2 frames before: none
- prev frame: [0, 75, …]
- curr frame: [320, 32…]
Description: I am gettin
closer to the toaster…

MLLM

Concept
Extraction

Prompt

Obj. Ident. STSG Pred.
Concept

Extraction
Prompt

🔥 InternVL

MLLM

Scene Graph
Augmented

Summarization
Prompt

SGClipSGClip

brown

big

brown

big
not brown

not big

so
ftm

ax
so
ftm

ax

…
…

(b) Attributes

Concept
Extraction

Prompt

 SGClip

below

on

abo
ve

counterbread

cabi

🔥 InternVL
I want to use a machin…

Instruction

Visual Feedback

…

Visual Description

Candidate toaster loc:
- 2 frames before: none
- prev frame: [0, 75, …]
- curr frame: [320, 32…]
Description: I am gettin
closer to the toaster…

MLLM

Concept
Extraction

Prompt

Obj. Ident. STSG Pred.
Concept

Extraction
Prompt

🔥 InternVL

MLLM

Scene Graph
Augmented

Summarization
Prompt

SGClipSGClip

above

cutting
behind

so
ftm

ax

so
ftm

ax

so
ftm

ax

…

cab,above,bread

cab,behind,bread

cab,cutting,bread

<norel>

(c) Binary relations

Figure 6.8: Illustration of the inference modes of SGClip for three types of concepts: entity classes,
attributes, and binary relations. While the model stays the same, the three inference modes perform
different pre- and post-processing for a more accurate semantic estimation of probabilities.

produce probabilistic predictions to capture uncertainty.

To meet these goals, SGClip builds on CLIP’s vision-language architecture, which naturally supports

joint reasoning over images and textual phrases. However, deploying CLIP directly is insufficient, as

it lacks specialization for structured scene graph prediction. To bridge this gap, we fine-tune SGClip

to balance adaptability and generalizability, with the power of LASER. In this section, we describe

1) how to handle different types of concepts through inference time adaptation, 2) how to overcome

the lack of data by collecting a model-driven self-supervision dataset, and 3) how to learn without

relying on human annotations via a self-supervised neurosymbolic learning pipeline.

Model Architecture and Inference Time Adaptation

At its core, SGClip (Scene Graph CLIP) is a single CLIP-based model designed to score concept

relevance within an image. Formally, it operates as SGClip(σ, c̄) ∈ R|c̄|, where σ is the input image

and c̄ is the a set of candidate concepts, producing a logit score for each concept that reflects the

model’s confidence in its presence. SGClip supports three distinct inference modes to handle different

141

types of concepts: entity classes c̄class, attributes c̄attr, and binary relations c̄rela. Illustrated in

Figure 6.8, each mode requires a specialized formulation of the input concepts and scoring process,

effectively allowing SGClip to operate flexibly across these concept types:

Entity classes In this setting, SGClip is used to identify the most likely entity class presented in

an image segment. Let c̄class denote the list of candidate entity classes. Since an entity is typically

assumed to belong to a single class, we apply softmax normalization over the logit scores produced

by SGClip for these candidates: softmax(SGClip(σ, c̄class)).

Attributes To estimate the likelihood that a specific segment σ possesses a particular at-

tribute c, we construct a binary contrast between the attribute and its negation by evaluating

softmax(SGClip(σ, {c,¬c})), where ¬c denotes the negated textual phrase (e.g., “not red” for the

attribute “red”). The first element of the resulting probability distribution corresponds to the model’s

estimated likelihood. To improve computational efficiency, we perform batched evaluation by merging

all attribute-contradiction pairs into a single concept set c̄∗attr = c̄attr ∪ {¬c | c ∈ c̄attr}.

Binary relations For binary relation prediction, the goal is to determine whether a relation c holds

between two segments σi and σj . To do this, we first compute a bounding region σ∗ij that tightly

encloses both segments. Within this region, we apply distinct color tinting to σi and σj to indicate

their directional roles (subject and object). To provide additional relational context, especially for

interactions like “cutting,” we augment the relation phrase by including the predicted entity classes

of the subject and object, generating “(robot, cutting, cabbage)”. Relation predictions are thus

conditioned on the classes of both the subject and the object. Specifically, for each segment σi, we

compute its most likely class νi by selecting the top prediction from the entity class:

νi = cclassu, where u = argmaxu∈1...|c̄class|SGClip(σi, c̄class)u.

We then form the augmented relation phrase as (νi, c, νj). Similar to attribute prediction, we

contrast the candidate relation with a special token <norel> denoting “no relation,” and compute

softmax(SGClip(σ∗ij , {(νi, c, νj), <norel>})), to obtain the probability of whether the relation c holds

142

Textual
Input

Visual
Input

SGClip

LLaVA-Video-178K

The ego car is driving forward,
but stopped before an
intersection since the traffic
light was red; there is a bus
passing during the red light.

Synthetic Captions

∃e,i,l,b. ego(e) ⋀ intersect(i)
 ⋀ bus(b) ⋀ light(l)
 ⋀ (far(i,e) ⋀ ¬on(b, i))
 ⋀ (red(l) ⋀ close(i,e) ⋀
 on(b, i))

Prog. Specifications

Object Traces

entities: [bus, car, …];
attr: [red]; state: [forwa…

Extracted Concepts

SGClip

LASER

Scene Graph
Generation

Spatial-Temporal
Alignment Check

w/ Semantic &
Contrastive Loss

Weak-
supervision

Label

Semantic Parsing

Concept
Extraction

Object Tracking &
Segmentation

Weakly-
supervised
Learning

Video
Captioning

…

♢

ESCA-Video-87K

Figure 6.9: Illustration of the construction of ESCA-Video-87K dataset and the model-driven self-
supervised fine-tuning pipeline of our SGClip model. In addition to videos and their natural language
captions, ESCA-Video-87K includes object traces, open-domain concepts, and programmatic specifica-
tions for 87K video-caption pairs. The dataset is then used to train SGClip via LASER (Huang et al.,
2025), a neurosymbolic learning procedure based on spatial-temporal alignment.

between object i and j. In practice, this process is batched over all segment pairs and relation

concepts to maximize efficiency: c̄∗rela = {(νi, c, νj) | i, j ∈ 1 . . . |σ̄|, c ∈ c̄rela} ∪ {<norel>}.

ESCA-Video-87K Dataset

We adopt the neurosymbolic weak-supervision pipeline introduced in Section 6.3.1 (Huang et al.,

2025), which enables learning fine-grained STSGs from weak supervision signals derived from spatial-

temporal programmatic specifications, eliminating the need for costly manual annotations. While

the details of the adapted learning pipeline for SGClip are provided in Section 6.3.2, we begin by

introducing the ESCA-Video-87K dataset, the dataset we curate and use to train SGClip.

The ESCA-Video-87K dataset is constructed on top of the publicly available LLaVA-Video-178K

dataset (Zhang et al., 2024), and consists of 87K short video clips, each paired with natural language

captions generated by GPT-4 (Hurst et al., 2024). As illustrated in Figure 6.9, these captions

are first processed to extract relevant concepts which are then fed into GD (Liu et al., 2024) and

SAM2 (Ravi et al., 2024) to obtain object traces, which are sequences of object segmentations that

143

evolve across multiple video frames. In addition, these concepts are also used to assist in generating

STSL specifications, which are constructed via the semantic parsing pipeline detailed in Section 6.3.1.

These specifications formally describe how the semantics of object traces evolve, capturing temporal

relations using operators such as “until”, “finally”, or “always”.

In summary, each data point in ESCA-Video-87K is represented as a 5-tuple (Ī , Lcap,Σ, c̄, ϕ), where

Ī = {I1, I2, . . . } is the video with Ii as the image of the i-th frame, Lcap is the associated natural

language caption, Σ = {σ̄1, σ̄2, . . . } is the set of object traces, c̄ = {c1, c2, . . . } is the set of extracted

concepts, and ϕ is the spatial-temporal programmatic specification. This rich, multi-level annotation

enables training models like SGClip without requiring manual scene graph labeling.

Neurosymbolic Learning Pipeline

Given the ESCA-Video-87K dataset, our goal is to fine-tune the SGClip model using the provided

object traces, concepts, and spatial-temporal programmatic specifications. This is achieved by

aligning the scene graphs generated by SGClip with the expected specifications (Huang et al., 2025),

where the degree of alignment serves as the learning signal (Figure 6.9). At a high-level, we use the

Scallop-based neurosymbolic learning pipeline, LASER, described in Section 6.3.1 to fine-tune the

model. Specifically, the alignment loss computation mirrors the inference-time adaptation procedure

described in Section 6.3.2, where different types of concepts are processed differently but unified

under the same model. The pipeline is further enhanced with semantic losses, derived from evaluating

common-sense and temporal constraint satisfaction, as well as a contrastive loss that encourages the

model to distinguish between matched and unmatched scene graph-specification pairs.

6.4 Empirical Evaluation

Our evaluation attempts to answer several key questions about our method.

RQ1: How effective is LASER in learning STSG generators?

RQ2: How does its performance compare to fully supervised baselines and existing methods?

144

RQ3: Is STSL versatile and expressive enough when applied to diverse specification patterns?

RQ4: How generalizable and adaptable is SGClip when evaluated independently on open-domain,

zero-shot, and downstream transfer tasks?

To address these issues, we evaluate LASER on three datasets: OpenPVSG (Yang et al., 2023b), a

realistic dataset with diverse and fine-grained STSG annotations, and 20BN (Goyal et al., 2017),

a video dataset focusing on daily actions. These datasets vary significantly in their temporal

patterns, showcasing the versatility of STSL. Specifically, OpenPVSG captions focus on natural and

complex events, while 20BN captions are in the form of action pre-conditions and post-conditions.

Further, we evaluate our trained SGClip model on its zero-shot generalizability on open-domain

video scene graph datasets (OpenPVSG (Yang et al., 2023b), Action Genome (Ji et al., 2020), and

VidVRD (Shang et al., 2017)), as well as its down-stream fine-tunability on ActivityNet (Yu et al.,

2019).

Our main result shows significant improvements of LASER over fully supervised baselines. On

OpenPVSG, LASER achieves a unary predicate prediction accuracy of 27.78% and a binary recall@5

of 0.42, surpassing the best fully supervised baseline by 12.65% and 0.22, respectively. Furthermore,

LASER outperforms baselines by 7% on 20BN. We now delve into the experiments conducted on

each of these datasets.

6.4.1 OpenPVSG Dataset

The OpenPVSG (Yang et al., 2023b) dataset comprises 400 videos sourced from Ego4D (Grauman et al.,

2021), VidOr (Shang et al., 2019; Thomee et al., 2016), and EpicKitchen (Damen et al., 2022, 2018).

This dataset offers fine-grained ground truth annotations of STSGs for 150K frames, encompassing

126 object classes and 57 relation classes. We train on 1, 832 video-caption pairs, and evaluate on

438 video-STSG pairs.

As illustrated in Figure 6.3, our objective is to train an STSG generator capable of taking a video

clip with object bounding boxes as input and predicting the properties, attributes, and relationships

145

Method (with LASER) Unary Binary
R@1 R@5 R@10 R@1 R@5 R@10

VIOLET
Base 0.0660 0.1855 0.2983 0.0460 0.1307 0.2636
Fine-tuned 0.0878 0.2574 0.3463 0.0501 0.2028 0.3451
Incr. ↑ 0.0218 ↑ 0.0719 ↑ 0.0480 ↑ 0.0041 ↑ 0.0721 ↑ 0.0815

SigLIP
Base 0.0000 0.0179 0.0483 0.0000 0.0362 0.1667
Fine-tuned 0.1467 0.2627 0.3152 0.0347 0.1624 0.3012
Incr. ↑ 0.1467 ↑ 0.2448 ↑ 0.2669 ↑ 0.0347 ↑ 0.1262 ↑ 0.1345

CLIP
Base 0.1633 0.3381 0.4404 0.0197 0.0673 0.0988
Fine-tuned 0.2778 0.5231 0.6402 0.1482 0.4214 0.5398
Incr. ↑ 0.1145 ↑ 0.1850 ↑ 0.1998 ↑ 0.1284 ↑ 0.3540 ↑ 0.4410

Table 6.1: We show the performance improvements of base backbone models and their fine-tuned
version, on the R@k metrics of unary and binary predicate prediction. As shown by the increments,
Scallop’s weak supervisory learning framework significantly enhances all three models’ performance
on the STSG extraction tasks.

between objects. We leverage Scallop to fine-tune three vision-language models—VIOLET (Fu et al.,

2021), SigLIP (Zhai et al., 2023), and CLIP (Radford et al., 2021)—using weak supervision from

captions. These models predict both similarity scores between cropped objects and unary predicate

keywords, as well as between object pairs and binary predicate keywords, resulting in a probabilistic

STSG. All backbone models support open-world vocabularies and are thus robust to the fuzziness

present in GPT-4-generated structured representations.

We evaluate model performance using Recall@k (R@k) which estimates whether the ground truth

label is within the top-k prediction of a given model. During evaluation, the model processes (a) the

full vocabulary of object and relation classes and (b) preprocessed cropped objects and object pairs,

predicting the probabilistic STSG. In particular, unary R@k assesses object category prediction

capability, while binary R@k evaluates pair-wise prediction of binary relations.

We validate Scallop’ effectiveness in learning STSGs with weak supervision by comparing the

performance improvements of the backbone models after fine-tuning. As shown in Table 6.1,

Scallop significantly enhances backbone performance using only captions for weak supervision on the

OpenPVSG dataset.

To further assess the data efficiency of LASER, we train the model on 10% and 50% of the training

dataset. As illustrated in Figure 6.10, even with just 10% of the training data (183 video-caption

146

Figure 6.10: Data-efficient fine-tuning on OpenPVSG dataset with Scallop: Providing only 10%,
50%, and 100% of the training dataset significantly enhances the performance of CLIP model.

pairs), Scallop significantly enhances the unary R@1 from 0.1633 to 0.2305 and the binary R@1

from 0.0197 to 0.1261. On average, using just 10% of the data achieves 70.75% of the performance

obtained with the full dataset, highlighting LASER’s data efficiency.

6.4.2 20BN Dataset

The 20BN dataset consists of (a) video and action pairs of humans performing everyday actions

with ordinary objects (Goyal et al., 2017), (b) expert designed pre-conditions and post-conditions

for the actions in the PDDL language (Migimatsu and Bohg, 2022), and (c) frame-based object

bounding boxes (Materzynska et al., 2020). There are 172 actions with 37 underlying predicates

in this dataset, capturing object attributes, object states, and relationships between two objects.

Specifically, there are 6 static predicates, 21 unary predicates, and 10 binary predicates. We train on

10, 000 training datapoints and test on 14, 816 data points.

In the 20BN dataset, each video is assigned an action label from a set of 172 possible actions. Each

action is annotated with a natural language description and a logical specification, represented as

a pair of pre-condition and post-condition in PDDL format. These PDDL specifications naturally

map to the ♢(ψpre ∧ ♢ψpost) structure in STSL. This setup enables us to assess the performance

147

is-
be

nd
ab

le

is-
flu

id

is-
ho

lda
ble

is-
rig

id

is-
tea

rab
le
ab

ov
e

att
ac
he

d

be
hin

d

bro
ke
n
clo

se
clo

sed

de
for

med
em

pt
y far fit

s

fol
de

d

ha
s-h

olehig
h in

in-
fro

nt lef
t
low

ne
xt-

to on

on
-su

rfa
ce
op

en
rig

ht

sta
ck
ed

str
etc

he
d
tor

n

tw
ist

ed
un

de
r

up
rig

ht

vis
ibl

e
0

0.2

0.4

0.6

0.8

1
F
1

Sc
or

e
GPA LASER-P LASER

Figure 6.11: Per-predicate F1 score performance comparison of LASER, LASER-P, and GPA, all
trained on the full 20BN dataset. LASER-P outperforms GPA on 71% of predicates, and LASER
outperforms GPA on 59% of the predicates.

difference between caption-generated specifications and ground truth programmatic specifications.

Scallop received the generated specifications from natural language captions using GPT-4 as weak

supervision label. For ablation study, we refer to a variant of LASER that uses ground truth

specifications as weak supervision labels as LASER-P.

We consider exact accuracy and F1-score as the metrics to evaluate STSG generators for 20BN

dataset. Specifically, we compute F1-score and accuracy for each predicate in the vocabulary, and

evaluate the weighted average of F1-score and accuracy for overall evaluation. Our backbone STSG

generator model comprises an S3D (Xie et al., 2018) video encoding model pretrained on Kinetics

400 (Kay et al., 2017), followed by ROIpooler for extract object embeddings, then passed to MLP

layers for relation classification.

We compare our approach against GPA (Migimatsu and Bohg, 2022), a weakly supervised baseline

which uses the ground truth specification as learning signals. Our evaluation shows that LASER-P,

with the same programmatic supervision, achieves a higher average F1-score of 0.77 and accuracy of

91%, compared to the baseline’s 0.74 F1-score and 76% accuracy. Scallop, using only natural language

descriptions, achieves a comparable F1-score of 0.73 and better accuracy of 83%. Furthermore,

LASER-P outperforms the baseline in 71% of the fine-grained predicate recognition tasks, and

LASER outperforms 59%, as shown in Figure 6.11. For the qualitative study, we present the STSG

generator’s frame-wise predictions on several test data points in Figure 6.12.

148

Figure 6.12: Qualitative study of the model trained with Scallop on the full 20BN dataset. Each
row displays a sequence of frames from a video, with bounding boxes labeled by object IDs. The
left side of each row shows the action label, while the bottom of each row lists the attributes and
relationships associated with the objects, along with the corresponding likelihoods of these facts
holding true.

6.4.3 SGClip Evaluation

Evaluation setup For evaluating SGClip independently, we consider out-of-domain scene graph

benchmarks, including OpenPVSG (Yang et al., 2023b), Action Genome (Ji et al., 2020), and Vid-

VRD (Shang et al., 2017), comparing SGClip against strong baselines such as CLIP (Radford et al.,

2021), InternVL-6B (Chen et al., 2024), BIKE (Wu et al., 2023b), and Text4Vis (Wu et al., 2023a).

To assess SGClip’s downstream adaptability beyond structured scene graph prediction, we further

test the fine-tunability on the ActivityNet action recognition dataset (Yu et al., 2019) by applying a

transfer protocol.

Results Evaluating SGClip’s zero-shot generalization, Figure 6.13 shows that SGClip trained on

ESCA-Video-87K consistently outperforms CLIP on OpenPVSG, Action Genome, and VidVRD,

demonstrating strong out-of-domain robustness. Further, SGClip shows strong adaptability, achieving

notable improvements when fine-tuned on VidVRD. Beyond scene graph tasks, Figure 6.14 highlights

SGClip’s downstream transferability to action recognition on ActivityNet. Fine-tuned with only

1% of the training data, SGClip outperforms state-of-the-art zero-shot video recognition baselines.

With 5% of the data (approximately 800 videos), SGClip achieves 92.10% accuracy, approaching the

performance of InternVideo2-6B with end-to-end finetuning on the ActivityNet dataset.

149

1K 10K 87K
0

25

50

75

OpenPVSG

Action Genome

VidVRD
R

ec
al

l(
%

)

OpenPVSG Action Genome VidVRD

(a) Entity class prediction R@1

1K 10K 87K
0

25

50

75

OpenPVSG

Action Genome

VidVRD

(b) Binary relation prediction R@10

Figure 6.13: The zero-shot performance of SGClip compared to CLIP (shown in dashed lines)
on OpenPVSG, Action Genome, and VidVRD datasets. We showcase the Recall@1 metrics on
entity class prediction, as well as the Recall@10 metrics on binary relation prediction. To illustrate
data-efficiency, we include the performance of checkpoints of SGClip when trained on 1K, 10K, or
87K (full) portion of ESCA-Video-87K.

0% 1% 5%

70

80

90

100

BIKE

Text4vis

InternVL-6B

76.34

80.1

92.1

% Data used for fine-tuning

A
cc

ur
ac

y
(%

)

SGClip CLIP

Figure 6.14: Down-stream fine-tunability on action recognition, evaluated on ActivityNet dataset.
We also illustrate zero-shot baselines (BIKE and Text4vis) as well as a fully-supervised baseline
(InternVL-6B).

6.5 Related Work

Structured representation of image/video semantics Significant advances have been made

in representing structured information within vision data. A widely adopted representation for

capturing spatial semantics in images is Scene Graph (Kuznetsova et al., 2018; Lu et al., 2016), with

various generation techniques emerging over the years (Zhu et al., 2022; Liu et al., 2021; Huang et al.,

2020, 2021; Yang et al., 2018a; Li et al., 2024c). More recently, research has increasingly focused

on extending these representations to integrate both spatial and temporal semantics in videos

(Yang et al., 2023b; Li et al., 2022b). However, learning spatio-temporal structures remains a

150

challenging open problem, which LASER addresses by introducing a neuro-symbolic approach.

Video scene graph learning Learning video scene graphs has attracted significant attention

from the vision community. Various tasks, including entity tracking, object identification, dynamic

relation analysis, and pathfinding, are being explored (Sun et al., 2023; Xu et al., 2022a; Shang et al.,

2017). New techniques involving spatio-temporal aware networks have been developed (Nag et al.,

2023; Cong et al., 2021; Ji et al., 2021; Sun et al., 2019). A few recent works have developed

point-solutions for extracting fine-grained video semantics (Lee et al., 2023; Apriceno et al., 2022;

Chang et al., 2019). Such approaches includes both dynamic time warping (Dvornik et al., 2021;

Chang et al., 2019; Richard et al., 2018; Ding and Xu, 2018), soft nearest neighbor (Han et al., 2022;

Dwibedi et al., 2019), and semantic loss (Xu et al., 2022b, 2017, 2018). To our knowledge, LASER

is the first framework to train STSG generation models using video captions as weak-supervisory

labels.

Vision language pre-training Vision language pre-training is crucial in video understanding

and has a wide range of downstream applications. Current works have succeeded in learning visual

representations using large-scale paired visual-textual data through contrastive learning in both

image-text (Zhai et al., 2023; Radford et al., 2021; Jia et al., 2021) and video-text (Li et al., 2021a;

Xu et al., 2021; Miech et al., 2019) representation learning. Recent works also explore the viability

of utilizing pretrained foundation models for generating image and video scene graphs (Shindo et al.,

2024; Liang et al., 2024; Zhang et al., 2023; Yao et al., 2021).

151

CHAPTER 7

Application: Security Vulnerability Detection

Security vulnerabilities pose a major threat to the safety of software applications and its users. In

2023 alone, more than 29,000 CVEs were reported—almost 4000 higher than in 2022. Detecting

vulnerabilities is extremely challenging despite advances in techniques to uncover them. A promising

such technique called static taint analysis is widely used in popular tools such as GitHub Cod-

eQL (Avgustinov et al., 2016), Facebook Infer (FB Infer), Checker Framework (Checker Framework),

and Snyk Code (Snyk.io). These tools, however, face several challenges that greatly limit their

effectiveness and accessibility in practice.

False negatives due to missing taint specifications First, static taint analysis predominantly

relies on specifications of third-party library APIs as sources, sinks, or sanitizers. In practice,

developers and analysis engineers have to manually craft such specifications based on their domain

knowledge and API documentation. This is a laborious and error-prone process that often leads to

missing specifications and incomplete analysis of vulnerabilities. Further, even if such specifications

may exist for many libraries, they need to be periodically updated to capture changes in newer

versions of such libraries and also cover new libraries that are developed.

False positives due to lack of context-sensitive reasoning Second, it is well-known that

static analysis often suffers from low precision, i.e., it may generate many false alarms (Kang et al.,

2022; Johnson et al., 2013). Such imprecision stems from multiple sources. For instance, the source

or sink specifications may be spurious, or the analysis may over-approximate over branches in code

or possible inputs. Further, even if the specifications are correct, the context in which the detected

source or sink is used may not be exploitable. Hence, a developer may need to triage through several

potentially false security alerts, wasting significant time and effort.

Limitations of prior data-driven approaches Many techniques have been proposed to ad-

dress the challenges of static taint analysis. For instance, Livshits et al. (2009) proposed a prob-

152

CWE-22: Path-Traversal
Improper Limitation of a Pathname to a
Restricted Directory: The product uses
external input to construct pathname…

src/main/

README.md

Spark.java

Service.java
AbstractResourceHandler.java
pathInfo = request
 .getPathInfo();

ClassPathResource.java
String pathToUse = replace(
 path,
 WINDOWS_FOLDER_SEPARATOR,
 FOLDER_SEPARATOR);

ClassPathResource.java
is = this.clazz
 .getResourceAsStream(
 this.path);

pathInfo = request.getPathInfo();

AbstractResourceHandler.java

ClassPathResource.java

is = clazz.getResourceAsStream(path);

Interim Steps without Sanitization…

…

Vulnerable Paths Vulnerability
Explanation

 Is Vulnerable:
CWE-22: The source is
a user-controlled input
from a
HttpServletRequest,
which is a common
source of taint. The
sink is a method that
uses this potentially
tainted path to
retrieve a resource,
which could lead to
Path Traversal…

…
AVG. >300K lines of code

request.getAttribute(...);

…

+IRIS

CWE Information

Repository

otherRes = (ClassPathResource) obj;

Handler.javaAccess.java

Figure 7.1: Overview of the IRIS neurosymbolic system. It checks a given whole repository for a
given type of vulnerability (CWE) and outputs a set of potential vulnerable paths with explanations.

abilistic approach, MERLIN, to automatically mine taint specifications. A more recent work,

Seldon (Chibotaru et al., 2019), improves the scalability of this approach by formulating the taint

specification inference problem as a linear optimization task. However, such approaches rely on

analyzing the code of third-party libraries to extract specifications, which is expensive and hard

to scale. Researchers have also developed statistical and learning-based techniques to mitigate

false positive alerts (Jung et al., 2005; Heckman and Williams, 2009; Hanam et al., 2014; Li et al.,

2021d). However, such approaches still have limited effectiveness in practice (Kang et al., 2022).

Large Language Models have made impressive strides in code generation and summarization.

LLMs have also been applied to code related tasks such as program repair (Xia et al., 2023), code

translation (Pan et al., 2024), test generation (Lemieux et al., 2023), and static analysis (Li et al.,

2024a). Recent studies (Steenhoek et al., 2024; Khare et al., 2023) evaluated LLMs’ effectiveness at

detecting vulnerabilities at the method level and showed that LLMs fail to do complex reasoning

with code, especially because it depends on the context in which the method is used in the project.

On the other hand, recent benchmarks like SWE-Bench (Jimenez et al., 2023) show that LLMs are

also poor at doing project-level reasoning. Hence, an intriguing question is whether LLMs can be

combined with static analysis to improve their reasoning capabilities.

Approach We propose IRIS-Scallop, a neurosymbolic approach for vulnerability detection that

combines the strengths of static analysis and LLMs. Figure 7.1 presents an overview of IRIS-Scallop.

153

Given a project to analyze for a given vulnerability class (or CWE), IRIS-Scallop applies LLMs for

mining CWE-specific taint specifications. IRIS-Scallop augments such specifications with CodeQL,

a tool for statically analyzing softwares. Our intuition here is because LLMs have seen numerous

usages of such library APIs, they have an understanding of the relevant APIs for different CWEs.

Further, to address the imprecision problem of static analysis, we propose a contextual analysis

technique with LLMs that reduces the false positive alarms and minimizes the triaging effort for

developers. Our key insight is that encoding the code-context and path-sensitive information in

the prompt elicits more reliable reasoning from LLMs. Finally, our neurosymbolic approach allows

LLMs to do more precise whole-repository reasoning and minimizes the human effort involved in

using static analysis tools.

In this chapter, we present IRIS-Scallop, a neurosymbolic framework that combines large language

models with static analysis for software vulnerability detection. At its core is a Scallop program

that unifies symbolic reasoning (reachability analysis) with learned components (taint specification

inference). We begin with a motivating example (Section 7.1), followed by a problem definition

(Section 7.2) and a detailed description of the framework (Section 7.3). Section 7.4 presents

experimental results, including CWE-Bench-Java, a new dataset for evaluating whole-repository

vulnerability detection (Section 7.4.1). We conclude with related work (Section 7.5).

7.1 Illustrative Overview

We illustrate the effectiveness of IRIS-Scallop in detecting a previously known code-injection

(CWE-094) vulnerability in cron-utils (ver. 9.1.5), a Java library for Cron data manipulation.

Figure 7.2 shows the relevant code snippets. A user-controlled string value passed into isValid

function is transferred without sanitization to the parse function. If an exception is thrown, the

function constructs an error message with the input. However, the error message is used to in-

voke method buildConstraintViolationWithTemplate of class ConstraintValidatorContext in

javax.validator, which interprets the message string as a Java Expression Language (Java EL)

expression. A malicious user may exploit this vulnerability by crafting a string containing a shell

154

@override
public boolean isValid(
 String value, ConstraintValidatorContext context) {
 try {
 cronParser.parse(value).validate(); // ...
 } catch (IllegalArgumentException e) {
 context
 .buildConstraintViolationWithTemplate(e.getMessage())
 .addConstraintViolation(); // ...

cronutils/validation/CronValidator.java

/** Parse string with cron expression. ... */
public Cron parse(final String expression) {
 try { /* ... */ } catch {
 throw new IllegalArgumentException(
 String.format("Failed to parse '%s'. %s",
 expression, e.getMessage()), e);
 }
}

cronutils/parser/CronParser.java

public void extractFile(
 String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream =
 new FileOutputStream(outputFile)) {

Detected Sink B: writing to a file potentially
outside of intended directory

if (!destinationPath.mkdirs()) {
 // ...

Detected Sink A: creating a
directory in the file system

Not Vulnerable❌ Is Vulnerable✅

1
3

4
2

5

6

Figure 7.2: An example of Code Injection (CWE-94) vulnerability found in cron-utils (CVE-2021-
41269) that CodeQL fails to detect. We number the program points of the vulnerable path.

command such as Runtime.exec(‘rm -rf /’) to delete critical files on the server.

Detecting this vulnerability poses several challenges. First, the cron-utils library consists of 13K SLOC

(lines of code excluding blanks and comments), which needs to be analyzed to find this vulnerability.

This process requires analyzing data and control flow across several internal methods and third-party

APIs. Second, the analysis needs to identify relevant sources and sinks. In this case, the value param-

eter of the public isValid method may contain arbitrary strings when invoked, and hence may be a

source of malicious data. Additionally, external APIs like buildConstraintViolationWithTemplate

can execute arbitrary Java EL expressions, hence they should be treated as sinks that are vulnerable

to Code Injection attacks. Finally, the analysis also requires identifying any sanitizers that block the

flow of untrusted data.

Modern static analysis tools, like CodeQL, are effective at tracing taint data flows across complex

codebases. However, CodeQL fails to detect this vulnerability due to missing specifications. CodeQL

includes many manually curated specifications for sources and sinks across more than 360 popular

Java library modules. However, manually obtaining such specifications requires significant human

effort to analyze, specify, and validate. Further, even with perfect specifications, CodeQL may often

generate numerous false positives due to a lack of contextual reasoning, increasing the developer’s

burden of triaging the results.

In contrast, IRIS-Scallop takes a different approach by inferring project- and vulnerability-specific

specifications on-the-fly by using LLMs. The LLM-based components in IRIS-Scallop correctly

155

identify the untrusted source and the vulnerable sink. IRIS-Scallop augments CodeQL with these

specifications and successfully detects the unsanitized dataflow path between the detected source

and sink in the repository.

However, augmented CodeQL produces many false positives, which are hard to eliminate using logical

rules. To solve this challenge, IRIS-Scallop encodes the detected code paths and the surrounding

context into a simple prompt and uses an LLM to classify it as true or false positive. Specifically,

out of 8 paths reported by static analysis, 5 false positives are filtered out, leaving the path in

Figure 7.2 as one of the final alarms. Overall, we observe that IRIS-Scallop can detect many such

vulnerabilities that are beyond the reach of CodeQL-like static analysis tools, while keeping false

alarms to a minimum.

7.2 Problem Definition

We formally define the static taint analysis problem for vulnerability detection. Given a project P ,

taint analysis extracts an inter-procedural data flow graph G = (V,E), where V is the set of nodes

representing program expressions and statements, and E ⊆ V× V is the set of edges representing

data or control flow edges between the nodes. A vulnerability detection task comes with two sets

V C
source ⊆ V, V C

sink ⊆ V that denote source nodes where tainted data may originate and sink nodes

where a security vulnerability can occur if tainted data reaches it, respectively. Naturally, different

classes C of vulnerabilities (or CWEs) have different source and sink specifications. Additionally,

there can be sanitizer specifications, V C
sanitizer ∈ V, that block the flow of tainted data (such as

escaping special characters in strings).

The goal of taint analysis is to find pairs of sources and sinks, (Vs ∈ V C
source, Vt ∈ V C

sink), such that

there is an unsanitized path from the source to the sink. More formally, Unsanitized_Paths(Vs, Vt) =

∃ Path(Vs, Vt) s.t. ∀Vn ∈ Path(Vs, Vt), Vn /∈ V C
sanitizer. Here, Path(V1, Vk) denotes a sequence of nodes

(V1, V2, . . . , Vk), such that Vi ∈ V and ∀i ∈ 1 to k − 1 : (vi, vi+1) ∈ E.

Two key challenges in taint analysis include: 1) identifying relevant taint specifications for each class

156

Section 3.3
Label Source/Sinks

Java Project

API Calls
Src/Snk Candidates

Function Params
Source Candidates

Source & Sink
Specifications

Candidate
Extractor

API Spec
Inference

Function
Param Spec
Infrerence

Static Taint
Analysis

CWE
Information

Vulnerable Path
Candidates

Contextual
Filtering

Vulnerabilities
w/ explanations

4.1

4.2

4.3 4.4

4.2

Program
Dataflow

Graph

- addsTo: { pack: codeql/java-all, extensible: sourceModel }
 data:
 - ["javax.validation", "ConstraintValidator", True, "isValid", ..., "Parameter[0]", ...]
- addsTo: { pack: codeql/java-all, extensible: sinkModel }
 data:
 - ["javax.validation", "ConstraintValidatorContext", True,
 "buildConstraintViolationWithTemplate", ..., "Argument[0]", ...]

codeql/java-all/…/ext/javax.validation.model.yml

Section 3.2
Candidate Extractor

Invoked External API Internal Function Formal Parameters

Section 4.2: Label Sources

Build CodeQL Database
Candidate
Extraction

javax.va…

java.io ObjectInputStream readObject

package class method

ConstraintValida… buildConstra…

class method documentation

FieldExpression accept “Accept a visitor…”

CronParser parse “Parse string…”

External API Candidates

Internal Function Param Candidates

source return-value

sink argument[0]

source parameter[0]

sink parameter[0]

type target

type target

Function Param Labels

API Labels

…

…

…

…

Section 3.4
Static Taint Analysis

Data-Flow Path

boolean isValid(
 String value, …) {

throw new IllegalA…

context.buildConstra
 intViolationWith
 Template(e.get…())

…

…

Section 3.5
Contextual Analysis

Cron parse(
 String expr) {

Vulnerability Analysis

 Is Vulnerable: The
source is user input being
parsed and validated,
which can lead to an
exception with a controlled
message. The sink is using
the exception message in a
context that could
potentially be used for
execution, satisfying the
criteria for a Code Injection
vulnerability (CWE-094).

Figure 7.3: An illustration of the IRIS-Scallop pipeline.

C that can be mapped to V C
source, V C

sink for any project P , and 2) effectively eliminating false positive

paths in Unsanitized_Paths(Vs, Vt) identified by taint analysis. In the following sections, we discuss

how we address each challenge by leveraging LLMs.

7.3 Neurosymbolic Solution with Scallop

At a high level, IRIS-Scallop takes a Java project P , the vulnerability class C to detect, and a

large language model LLM, as inputs. IRIS-Scallop statically analyzes the project P , checks for

vulnerabilities specific to C, and returns a set of potential security alerts A. Each alert is accompanied

by a unique code path from a taint source to a taint sink that is vulnerable to C (i.e., the path is

unsanitized).

As illustrated in Figure 7.3, IRIS-Scallop has four main stages: First, IRIS-Scallop extracts all taint

specification candidates, including invoked external APIs and internal function parameters. Second,

IRIS-Scallop queries an LLM to label these APIs as sources or sinks that are specific to the given

vulnerability class C. Third, IRIS-Scallop transforms the labeled sources and sinks into specifications

that can be fed into a static analysis engine, such as CodeQL, and runs a vulnerability class-specific

taint analysis query to detect vulnerabilities of that class in the project. This step generates a set of

vulnerable code paths (or alerts) in the project. Finally, IRIS-Scallop triages the generated alerts by

automatically filtering false positives, and presents them to the developer.

157

1 import "codeql.scl"
2
3 // The declaration of relation storing function parameter candidates
4 type func_param_candidate(
5 package: String ,
6 clazz: String ,
7 method: String ,
8 javadoc: String ,
9 param_index: i32 ,

10 param_name: String ,
11 param_type: String ,
12)
13
14 // The query getting the candidates
15 rel func_param_candidate(p, c, m, doc , i, param_name , param_type) =
16 callable(callable) and
17 (is_public(callable) or is_override(callable)) and
18 get_declaring_type(callable , decl_ty) and
19
20 // Get basic callable information
21 get_package(decl_ty , package) and
22 get_name(decl_ty , clazz) and
23 get_name(callable , m) and
24 get_javadoc_string(callable , doc) and
25
26 // Iterate through parameters and get parameter information
27 get_number_of_parameters(callable , num_params) and
28 i in 0.. num_params and
29 get_parameter(callable , i, param) and
30 get_name(param , param_name) and
31 get_type(param , ty_id) and get_name(ty_id , param_type)

Listing 7.1: Getting candidates in Scallop via CodeQL database foreign predicates.

7.3.1 Candidate Source/Sink Extraction

A project may use various third-party APIs whose specifications may be unknown—reducing the

effectiveness of taint analysis. In addition, internal APIs might accept untrusted input from

downstream libraries. Hence, our goal is to automatically infer specifications for such APIs. We

define a specification SC as a 3-tuple ⟨T, F,R⟩, where T ∈ {ReturnValue,Argument,Parameter, . . . }

is the type of node to match in G, F is an N-tuple of strings describing the package, class,

158

method name, signature, and argument/parameter position (if applicable) of an API, and R ∈

{Source,Sink,Taint-Propagator,Sanitizer} is the role of the API. For example, the specification

⟨Argument, (java.lang, Runtime, exec, (String[]), 0),Sink⟩ denotes that the first argument of exec

method of Runtime class is a sink for a vulnerability class (OS command injection). A static analysis

tool maps these specifications to sets of nodes V C
source or V C

sink in G.

To identify taint specifications SCsource and SCsink, we first extract Sext: external library APIs that

are invoked in the given Java project and are potential candidates to be taint sources or sinks. We

also extract Sint, internal library APIs that are public and may be invoked by a downstream library.

To extract candidates and their associated metadata, we use the Scallop-CodeQL plugin, which

provides a set of foreign predicates that allow Scallop programs to directly query CodeQL databases.

In Listing 7.1, we show a Scallop rule that extracts function parameters as potential taint source

candidates. Each candidate is represented by its Java package, class (noted as clazz to avoid conflict

with the keyword class), method name, and parameter index. We also extract auxiliary metadata

such as the parameter’s name, type, and JavaDoc string to support further processing and potential

LLM-assisted inference. The rule (lines 15-31) utilizes several foreign predicates—such as callable,

which retrieves all Callable entities (i.e., functions or methods) in the project, and is_public, which

checks whether a given callable is publicly accessible. These foreign predicates internally index into

the CodeQL database to retrieve the relevant information, enabling seamless integration of static

code facts into the neurosymbolic Scallop reasoning pipeline.

7.3.2 Inferring Taint Specifications using LLMs

We develop an automated specification inference technique: LabelSpecs(S#, LLM, C,R) = SCR , where

S# = Sext ∪Sint are candidate specifications for sources and sinks. In this work, we do not consider

sanitizer specifications, because they typically do not vary for the vulnerability classes that we

consider. We use LLMs to infer taint specifications. Specifically, external APIs in Sext can be

classified as either source or sink, while internal APIs in Sint can have their formal parameters

identified as sources. Notably for internal APIs, we also include information from repository readme

159

1 @gpt(
2 system="""
3 You are a security expert. You are given a list of APIs
4 implemented in established Java libraries , and you need to
5 identify whether some of these APIs could be potentially
6 invoked by downstream libraries with malicious end -user
7 (not programmer) inputs. For instance , functions that
8 deserialize or parse inputs might be used by downstream
9 libraries and would need to add sanitization for malicious

10 user inputs ... (prompt trimmed for brievity)
11 """,
12 prompt="""
13 You are analyzing the Java package {{ source_project_org }}/
14 {{ source_project_name }}.
15
16 Please look at the following public method in the library
17 and its documentation. Does it look like can be invoked by
18 a downstream Java package , and that the function can be called
19 with potentially malicious end -user inputs?
20
21 package: {{ package}}, class: {{clazz}}, method: {{ method }}
22 parameter: {{ param_ty }} {{ param_name }}
23 """,
24 model="gpt -4o"
25)
26 type func_param_is_source(
27 bound source_project_org: String ,
28 bound source_project_name: String ,
29 bound package: String ,
30 bound clazz: String ,
31 bound method: String ,
32 bound param_name: i32 ,
33 bound param_ty: i32 ,
34 is_source: bool ,
35)
36
37 // Inferring function parameter 's taint specifications
38 rel source_func_param(p, c, m, i) =
39 source_project_info(proj_org , proj_name) and
40 func_param_candidate(p, c, m, doc , i, p_name , p_ty) and
41 func_param_is_source(proj_org , proj_name ,
42 p, c, m, p_name , p_ty , true)

Listing 7.2: Querying large language models for function parameter taint specification.

160

1 import "codeql.scl"
2
3 // A CodeQL reachability query which takes in sources and sinks
4 // and producing a Path. The Path details can be queried later.
5 @codeql_path_query
6 type reachable(bound source: Node , bound sink: Node , path: Path)
7
8 // Getting the dataflow node associated with the source
9 rel source_node(node) =

10 callable(callable) and get_declaring_type(callable , decl) and
11 get_package(decl , p) and get_name(decl , c) and
12 get_name(callable , m) and
13 source_func_param(p, c, m, i) and
14 get_parameter(callable , i, param) and
15 get_dataflow_node(param , node)
16 // ...the definition of sink_node and barrier is omitted
17
18 // Performing reachability analysis for vulnerability candidate
19 rel vulnerability(source , sink , path) =
20 source_node(source) and sink_node(sink) and
21 reachable(source , sink , path) and
22 forall(step: dataflow_path_step(path , from , to) implies
23 not barrier(from , to))

Listing 7.3: Querying CodeQL for reachability analysis.

and JavaDoc documentations, if applicable. In practice, we find that this extra information helps

LLM understand the high-level purpose and usage of the codebase, resulting in better labeling

accuracy.

In Listing 7.2, we show an @gpt annotated foreign predicate func_param_is_source, which is

designed to classify whether a given function parameter may act as a potential source of tainted

data. The corresponding system and user prompts, which guide the model’s reasoning, are shown (in

slightly abbreviated form) in lines 3-10 and 13-22, respectively. The model produces a boolean label

is_source (line 34) to indicate its prediction. According to the rule defined in lines 38-42, we first

retrieve candidate parameters—extracted via the logic in Listing 7.1—and then apply GPT to label

each of them accordingly. This integration allows Scallop to seamlessly incorporate LLM-generated

inferences into its symbolic reasoning pipeline.

161

7.3.3 Taint Reachability Analysis

Once we obtain all the source and sink specifications from the LLM, the next step is to combine it

with a static analysis engine to detect vulnerable paths, i.e., Unsanitized_Paths(Vs, Vt), in a given

project. In this work, we use CodeQL (Avgustinov et al., 2016) for this step. Given a data flow

graph GP of a project P , CWE-specific source and sink specifications, and a query for a given

vulnerability class C, CodeQL returns a set of unsanitized paths in the program. Formally,

CodeQL(GP ,SCsource,S
C
sink,QueryC) = {Path1, . . . ,Pathk}.

CodeQL itself contains numerous specifications of third-party APIs for each vulnerability class.

However, as we show later in our evaluation, despite having such specialized queries and extensive

specifications, CodeQL fails to detect a majority of vulnerabilities in real-world projects. For our

analysis, we write a specialized CodeQL query for each vulnerability that uses our mined specifications

instead of those provided by CodeQL.

In Listing 7.3, we sketch out the Scallop program that performs the core reachability analysis for

vulnerability detection. The program begins by loading a foreign predicate reachable using the

@codeql_path_query attribute provided by the Scallop-CodeQL plugin (lines 5-6), which connects

to a CodeQL path query to determine dataflow reachability between nodes in the program. The

program then derives the labeled sources, sinks, and sanitizers—where sanitizers are encoded as

barriers to taint propagation—using rules defined in lines 9-16. Finally, this reachability information

is combined with LLM-inferred specifications of sources, sinks, and sanitizers to identify actual

vulnerable paths in the program (lines 19-23), enabling precise vulnerability detection.

7.3.4 Triaging of Alerts via Contextual Analysis

Inferring taint specifications only solves part of the challenge. We observe that while LLMs

help uncover many new API specifications, sometimes they detect specifications that are not

relevant to the vulnerability class being considered, resulting in too many predicted sources or

sinks and consequently many spurious alerts as a result. For context, even a few hundred taint

162

Analyze the following dataflow path in a Java project and
predict whether it contains a Code-Injection vulnerability
(CWE-094), or a relevant vulnerability. Please note that
injection of malicious expression might lead to arbitrary
code execution as well.

Source (expression : String):
 public class CronParser {
 public Cron parse(String expression) { // ← SOURCE
 Preconditions.checkNotNull(expression, ...);
 ... } }
Steps:
- Step 1 [CronParser.java]: String rep = expr.replace(...);
 ...
Sink (getMessage(...)):
 public class CronValidator implements ConstraintValidator {
 public boolean isValid(String value, ...) {
 ...
 } catch (IllegalArgumentException e) {
 ctx.disableDefaultConstraintViolation();
 ctx.build…(e.getMessage()).addCo…(); // ← SINK
 return false;
 } ... } }

User Prompt

public void extractFile(
 String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream =
 new FileOutputStream(outputFile)) {

Detected Sink B: writing to a file potentially
outside of intended directory

if (!destinationPath.mkdirs()) {
 // ...

Detected Sink A: creating a
directory in the file system

Not Vulnerable❌ Is Vulnerable✅

LLM JSON Response (GPT-4)

{
 "explanation": "The source is user
 input being parsed and validated,
 which is a common entry point for
 tainted data. The sink is an error
 message being used in a way that
 could potentially be executed by
 downstream code, fitting the
 criteria for a CWE-094 vulnerability
 if the error message is mishandled.
 However, without evidence of the
 error message being executed, it's
 speculative to confirm vulnerability
 solely based on this dataflow.",
 "source_is_false_positive": false,
 "sink_is_false_positive": false,
 "is_vulnerable": true
}

La
rg

e
La

ng
ua

ge
 M

od
el

 (
ze

ro
-s

ho
t)

CWE Information

Context surrounding
the source

Marking the exact source
location in comment

Context surrounding
the sink

Intermediate Steps

Marking the exact sink
location in comment

Figure 7.4: LLM user prompt and response for contextual analysis of dataflow paths. In the user
prompt, we mark with color the CWE and path information that is filling the prompt template. For
cleaner presentation, we modify the snippets and left out the system prompt.

specifications may sometimes produce thousands of Unsanitized_Paths(Vs, Vt) that a developer

needs to triage. To reduce the developer burden, we also develop an LLM-based filtering method,

FilterPath(Path,G, LLM, C) = True | False that classifies a detected vulnerable path (Path) in G as

a true or false positive by leveraging context-based and natural language information.

Figure 7.4 presents an example prompt for contextual analysis. The prompt includes CWE informa-

tion and code snippets for nodes along the path, with an emphasis on the source and sink. For the

intermediate steps, we include the file names and the line of code. When the path is too long, we

keep only a subset of nodes to limit the size of the prompt. In addition, if the verdict is false, we ask

the LLM to indicate whether the source or sink is a false positive, which helps to prune other paths

and thereby save on the number of calls to the LLM.

163

Java Project

API Calls
Src/Snk Candidates

Function Params
Source Candidates

Source & Sink
Specifications

Candidate
Extractor

API Spec
Inference

Function
Param Spec
Infrerence

Static Taint
Analysis

CWE
Information

Vulnerable Path
Candidates

Contextual
Filtering

Vulnerabilities
w/ explanations

4.1

4.2

4.3 4.4

4.2

Program
Dataflow

Graph

- addsTo: { pack: codeql/java-all, extensible: sourceModel }
 data:
 - ["javax.validation", "ConstraintValidator", True, "isValid", ..., "Parameter[0]", ...]
- addsTo: { pack: codeql/java-all, extensible: sinkModel }
 data:
 - ["javax.validation", "ConstraintValidatorContext", True,
 "buildConstraintViolationWithTemplate", ..., "Argument[0]", ...]

codeql/java-all/…/ext/javax.validation.model.yml

Invoked External API Internal Function Formal Parameters

Section 4.2: Label Sources

Build CodeQL Database
Candidate
Extraction

Select Vul Classes
CWE-22: Path-Traversal
CWE-78: OS Command Injection
CWE-79: Cross-Site Scripting
CWE-94: Code Injection

1 Fetch Vulnerabilities2

Obtain CVE, CWE, MAVEN Pkg,
GitHub URL, etc.

i
GitHub Advisory Database

#CVE: 1065

430
430

Obtain Git Info3

GitHub URL, vulnerable ver.
and fix Ver.

libraries.io

#CVE: 430

4 Cross-Validate Fixes
snyk.io

Adding fix information and
fixing commits #CVE: 265

5 Build and Compile
MAVEN build

Manually specify Java and
MAVEN versions

i

#CVE: 149

#CVE: 430

6 Manual Checks
CWE is classified correctly

#CVE: 120

✓
Vulnerability not in dependency✓
Manually label vulnerable code✓
…

Check if some java code is fixed✓

Num Vuls: 120
- CWE-22: 55
- CWE-78: 13
- CWE-79: 31
- CWE-94: 21

Project Size:
- Avg. SLOC: 300K
- Max. SLOC: 7M

Statistics

Figure 7.5: Steps for curating CWE-Bench-Java, and dataset statistics.

7.4 Empirical Evaluation

We perform extensive experimental evaluations of IRIS-Scallop and demonstrate its practical effec-

tiveness in detecting vulnerabilities in real-world Java repositories in CWE-Bench-Java. We address

the following key research questions:

• RQ 1: How many previously known vulnerabilities can IRIS-Scallop detect?

• RQ 2: Does IRIS-Scallop detect new, previously unknown vulnerabilities?

• RQ 3: How good are the inferred source/sink specifications by IRIS-Scallop?

7.4.1 CWE-Bench-Java Dataset

To evaluate our approach, we require a dataset of vulnerable versions of Java projects with several

important characteristics: 1) Each benchmark should have relevant vulnerability metadata, such

as the CWE ID, CVE ID, fix commit, and vulnerable project version, 2) each project in the dataset

must be compilable, which is a key requirement for static analysis and data flow graph extraction,

3) the projects must be real-world, which are typically more complex and hence challenging to

analyze compared to synthetic benchmarks, and 4) finally, each vulnerability and its location (e.g.,

method) in the project must be validated so that this information can be used for robust evaluation

of vulnerability detection tools. Unfortunately, no existing dataset satisfies all these requirements.

To address these requirements, we curate our own dataset of vulnerabilities. For this paper, we focus

only on vulnerabilities in Java libraries that are available via the widely used Maven package manager.

We choose Java because it is commonly used to develop server-side, Android, and web applications,

164

which are prone to security risks. Further, due to Java’s long history, there are many existing CVEs

in numerous Java projects that are available for analysis. We initially use the GitHub Advisory

database GitHub (2024a,b) to obtain such vulnerabilities, and further filter it with cross-validated

information from multiple sources, including manual verification. Figure 7.5 illustrates the complete

set of steps for curating CWE-Bench-Java.

As shown in the statistics (Figure 7.5), the sheer size of these projects make them challenging to

analyze for any static analysis tool or ML-based tool. Each project in CWE-Bench-Java comes with

GitHub information, vulnerable and fix version, CVE metadata, a script that automatically fetches

and builds, and the set of program locations that involve the vulnerability.

7.4.2 Experimental Setup

We select two closed-source LLMs from OpenAI: GPT-4 (gpt-4-0125-preview) (OpenAI et al.,

2024) and GPT-3.5 (gpt-3.5-turbo-0125) (Brown et al., 2020) for our evaluation. We also select

instruction-tuned versions of four open-source LLMs via huggingface API: Llama 3 (L3) 8B and

70B (Grattafiori et al., 2024), Qwen-2.5-Coder (Q2.5C) 32B (Hui et al., 2024), Gemma-2 (G2)

27B (Team et al., 2024), and DeepSeekCoder (DSC) 7B (Guo et al., 2024). For the CodeQL

baseline, we use version 2.15.3 and its built-in Security queries specifically designed for each

CWE. Other baselines included are Facebook Infer (FB Infer), SpotBugs (Lavazza et al., 2020), and

Snyk (Snyk.io).

7.4.3 Evaluation Metrics

We evaluate the performance of IRIS-Scallop and its baselines using three key metrics: number of

vulnerability detected (#Detected), average false discovery rate (AvgFDR), and average F1 (AvgF1).

For evaluation, we assume that we have a dataset D = {P1, . . . , Pn} where each Pi is a Java project,

and known to contain at least one vulnerability. The label for a project P is provided as a set

of crucial program points VP
vul = {V1, . . . , Vn} where the vulnerable paths should pass through,

indicated by Path ∩VP
vul ≠ ∅. In practice, these are typically the patched methods that can be

collected from each vulnerability report. If at least one detected vulnerable path passes through a

165

fixed location for the given vulnerability, then we consider the vulnerability detected. Let PathsP be

the set of detected paths for each project P from prior stages. The evaluation metrics are formally

defined as follows:

#VulPath(P) =|{Path ∈ PathsP | Path ∩ VP
vul ̸= ∅}|, (7.1)

#Detected(D) =
∑
P∈D

Rec(P), (7.2)

AvgFDR(D) =avgP∈D,|PathsP |>01− Prec(P), (7.3)

Rec(P) =1#VulPath(P)>0, (7.4)

Prec(P) =
#VulPath(P)
|PathsP |

, (7.5)

AvgF1(D) = 1

|D|
∑
P∈D

2 · Prec(P) · Rec(P)
Prec(P) + Rec(P)

. (7.6)

Specifically, a lower AvgFDR is preferable, as it indicates a lower ratio of false positives. We note

that Prec(P) might sometimes be undefined due to division-by-zero if the detection tool retrieves no

path (|PathsP | = 0). Therefore, for AvgFDR to be meaningful, we only consider the projects where

at least one positive result is produced (|PathsP | > 0). AvgF1 avoids this issue since Rec(P) = 0

when no positive labels exist, forcing the F1 term to be zero regardless of Prec(P).

7.4.4 RQ1: Effectiveness of IRIS-Scallop on Detecting Existing Vulnerabilities

The results in Table 7.1 highlight IRIS-Scallop’s superior performance compared to CodeQL. Specifi-

cally, IRIS-Scallop, when paired with GPT-4, identifies 55 vulnerabilities—28 more than CodeQL.

While GPT-4 shows the highest efficacy, smaller, specialized LLMs like DeepSeekCoder 7B still

detect 52 vulnerabilities, suggesting that our approach can effectively leverage smaller-scale models,

enhancing accessibility. Notably, this increase in detected vulnerabilities does not compromise

precision, as evidenced by IRIS-Scallop’s lower average false discovery rate (FDR) with GPT-4

compared to CodeQL.

Moreover, IRIS-Scallop improves average F1 by 0.1, reflecting a better balance between precision and

recall. We note that the reported average FDR is a coarse measure as our metrics may consider a

166

Method #Det (/120) Det Rate (%) Avg FDR (%) Avg F1

CodeQL 27 22.50 90.03 0.076

IRIS +

GPT-4 55 (↑ 28) 45.83 (↑ 23.33) 84.82 (↓ 5.21) 0.177 (↑ 0.101)
GPT-3.5 47 (↑ 20) 39.17 (↑ 16.67) 90.42 (↑ 0.39) 0.096 (↑ 0.020)
L3 8B 41 (↑ 14) 34.17 (↑ 11.67) 95.55 (↑ 5.52) 0.058 (↓ 0.018)
L3 70B 54 (↑ 27) 45.00 (↑ 22.50) 90.96 (↑ 0.93) 0.113 (↑ 0.037)
Q2.5C 32B 47 (↑ 20) 39.17 (↑ 16.67) 92.38 (↑ 2.35) 0.097 (↑ 0.021)
G2 27B 45 (↑ 18) 37.50 (↑ 15.00) 91.23 (↑ 1.20) 0.100 (↑ 0.024)
DSC 7B 52 (↑ 25) 43.33 (↑ 20.83) 95.40 (↑ 5.37) 0.062 (↓ 0.014)

Table 7.1: Overall performance comparison of CodeQL vs IRIS-Scallop on Detection Rate (↑),
Average FDR (↓), and Average F1 (↑). We present results of IRIS-Scallop with LLMs including
GPT-4 and GPT-3.5, L3 8B and 70B, Q2.5C 32B, G2 27B, and DSC 7B.

true (but unknown) vulnerability found by IRIS-Scallop as a false positive. Hence, the reported FDR

is an upper bound. To get a better sense of detection accuracy, we manually analyzed 50 random

alarms reported by IRIS-Scallop (using GPT-4) and found that 27/50 alarms exhibit potential attack

surfaces, yielding a more refined estimated false discovery rate of 46%. Hence, IRIS-Scallop will

likely be more effective in practice.

Table 7.2 presents a detailed breakdown of detected vulnerabilities, comparing IRIS-Scallop against

various baselines. With the exception of IRIS-Scallop using Llama-3 8B, which underperforms in

detecting CWE-22 vulnerabilities, IRIS-Scallop consistently outperforms all other baselines. Notably,

CWE-78 (OS Command Injection) remains particularly challenging for all LLMs. Our manual

investigation revealed that the vulnerability patterns in CWE-78 are highly intricate, often involving

OS command injections via gadget-chains (Cao et al., 2023) or external side effects, such as file

writes, which are difficult to track using static analysis. This highlights the inherent limitations of

static analysis, as opposed to dynamic approaches—an area that we leave for future work.

7.4.5 RQ2: Previously Unknown Vulnerabilities by IRIS-Scallop

We applied IRIS-Scallop with GPT-4 to the latest versions of 30 Java projects. Among the 16

inspected projects where IRIS-Scallop raised at least one alert, we identified 4 vulnerabilities,

including 3 instances of path injection (CWE-22) and one case of code-injection (CWE-94). To

167

CWE #Vuls Baselines IRIS-Scallop with

QL Infer SB Snyk GPT-4 GPT-3.5 L3 8B L3 70B DSC 7B

CWE-22 55 22 0 2 21 31 (↑ 9) 25 (↑ 3) 19 (↓ 3) 29 (↑ 7) 25 (↑ 3)
CWE-78 13 1 0 1 1 3 (↑ 2) 1 (= 0) 2 (↑ 1) 2 (↑ 1) 3 (↑ 2)
CWE-79 31 4 0 1 1 13 (↑ 9) 13 (↑ 9) 9 (↑ 9) 14 (↑ 10) 14 (↑ 10)
CWE-94 21 0 0 0 0 8 (↑ 8) 8 (↑ 8) 11 (↑ 11) 9 (↑ 9) 10 (↑ 10)

All 120 27 0 4 23 55 (↑ 28) 47 (↑ 20) 41 (↑ 14) 54 (↑ 27) 52 (↑ 25)

Table 7.2: Per-CWE statistics of number of vulnerabilities detected (#Detected) by baselines and
IRIS. The compared baselines are CodeQL (QL), Facebook Infer (Infer), Spotbugs (SB), and Snyk.
The values in parentheses show the differences of detection by IRIS-Scallop against CodeQL.

void restoreFromCheckpoint(CheckpointInputStream input) ... {
 // ...
 try (FileOutputStream fos = new FileOutputStream(tmpPath)) {
 IOUtils.copy(input, fos);
 }
 ZipUtils.decompress(Paths.get(mDbPath), tmpZipFilePath, ...);
 // ...

alluxio/dora/core/…/rocks/RocksStore.java

public void extractFile(
 String fileName, String destinationPath, String newFileName) throws ZipException {

Detected Source: two formal params of extractFile

// In function `assertCanonicalPathsAreSame`
- if (!completePath.startsWith(outPath)) { /* ... */ }
+ String comp = new File(completePath).getCanonicalPath();
+ String out = new File(outPath).getCanonicalPath());
+ if (!comp.startsWith(out)) { /* ... */ }

The Fix for the CVE-2018-1002202: the sanitizer to check the path

try (OutputStream outputStream =
 new FileOutputStream(outputFile)) {

Detected Sink B: writing to a file potentially
outside of intended directory

if (!destinationPath.mkdirs()) {
 // ...

Detected Sink A: creating a
directory in the file system

Not Vulnerable❌ Is Vulnerable✅

void unzipEntry(ZipFile zipFile, ZipArchiveEntry entry, ...) ... {
 File outputFile = new File(dirPath.toFile(), entry.getName());
 // ...
 if (!entry.isDirectory()) {
 try (FileOutputStream out = new FileOutputStream(outputFile)) {
 // ...
 } // ...

alluxio/dora/core/…/util/compression/ParallelZipUtils.java
1

2

3

4
56

7 Sink

Source

Figure 7.6: A previously unknown vulnerability found in alluxio 2.9.4. The snippets are slightly
modified for presentation purpose. A user with database restoration permission may supply a
database checkpoint Zip file with malicious entry name. When unzipped, the entry may be written
to an arbitrary directory, causing a Zip-Slip vulnerability (CWE-022) that could corrupt the hosting
server.

ensure that these vulnerabilities were indeed uncovered due to IRIS-Scallop’s integration with

LLMs, we verified that CodeQL alone did not detect them. We highlight one such vulnerability

in Figure 7.6. CodeQL was unable to detect this issue due to a missing source specification, while

GPT-4 successfully flagged the API endpoint restoreFromCheckpoint as a potential entry point

for attack.

7.4.6 RQ3: Quality of LLM-Inferred Taint Specifications

The LLM-inferred taint specifications are fundamental to IRIS-Scallop’s effectiveness. To assess

the quality of these specifications, we conducted two experiments. First, we used CodeQL’s taint

specifications as a benchmark to estimate the recall of both source and sink specifications inferred by

LLMs (Figure 7.7). However, since CodeQL offers a limited set of specifications, we also needed to

assess the quality of inferred specifications outside of its known coverage. To this end, we manually

168

Figure 7.7: Recall of LLM-inferred taint specifi-
cations against CodeQL’s taint specifications.

Figure 7.8: Estimated precision of LLM-inferred
specifications on randomly sampled labels.

analyzed 960 randomly selected samples of LLM-inferred source and sink labels (30 per combination

of CWE and LLM) and estimated the overall precision of the specifications (Figure 7.8).

LLM-inferred sinks can replace CodeQL sinks Overall, LLMs demonstrated high recall

when tested against CodeQL’s sink specifications (Figure 7.7), with GPT-4 scoring the highest

(87.11%). While the recall for source specifications was generally lower, we found that CodeQL tends

to over-approximate its source specifications to compensate for a low detection rate. On the other

hand, GPT-4 achieved high precision (over 70%) in manual evaluations (Figure 7.8), aligning with

the lower false discovery rate previously reported in Table 7.1. For other LLMs, the combination of

high recall but lower precision suggests a tendency to over-approximate sink specifications.

Over-approximating specifications can benefit Although the precision for LLMs other than

GPT-4 is lower, over-approximation can actually help address a core limitation of CodeQL—its

restricted set of taint specifications. By over-approximating, LLMs expand the coverage of taint

analysis, offering a partial solution to CodeQL’s limited scope. The impact of this imprecision can

be mitigated through contextual analysis as we show next in the ablation studies.

169

7.5 Related Work

Learning-based approaches for vulnerability detection Numerous prior techniques incor-

porate deep learning for detecting vulnerabilities. This includes Graph Neural Network based

models such as Zhou et al. (2019); Chakraborty et al. (2020); Dinella et al. (2020); Hin et al. (2022);

Li et al. (2021b); LSTM-based models such as Li et al. (2020b, 2021c); and fine-tuning of Transformer-

based models such as Fu and Tantithamthavorn (2022); Steenhoek et al. (2023); Cheng et al. (2022).

These approaches focus on method-level detection of vulnerabilities and provide only a binary label

classifying a method as vulnerable or not. In contrast, IRIS-Scallop performs whole-project analysis

and provides a distinct code path from a source to a sink and can be tailored for detecting different

CWEs. More recently, multiple studies demonstrated that LLMs are not effective at detecting vul-

nerabilities in real-world code (Steenhoek et al., 2024; Ding et al., 2024; Khare et al., 2023). While

these studies only focused on method-level vulnerability detection, it reinforces our motivation that

detecting vulnerabilities requires whole-project reasoning, which LLMs currently cannot do alone.

Static analysis tools Apart from CodeQL (Avgustinov et al., 2016), other static analysis tools

(CPPCheck; Semgrep, 2023; FlawFinder; FB Infer; Code Checker) also include analyses for vul-

nerability detection. More general query engines (Scholz et al., 2016; Li et al., 2023b) have also

been applied to find program bugs. But these tools are not as feature-rich and effective as Cod-

eQL (Li et al., 2023a; Lipp et al., 2022). Recently, proprietary tools such as Snyk (Snyk.io) and

SonarQube (SonarQube) are also gaining in popularity, although sharing the same fundamental

limitations of missing specifications and false positives, which IRIS-Scallop improves upon. We

envision our technique to benefit all such tools. Works such as MERLIN (Livshits et al., 2009),

Seldon (Chibotaru et al., 2019) and InspectJS (Dutta et al., 2022) tackle the problem of specification

inference through probabilistic modeling. Specifically, like IRIS-Scallop, InspectJS also augments

CodeQL with specifications inferred using machine learning. However, InspectJS relies on the quality

of seed specifications and requires expensive analysis of each third-party library, which IRIS-Scallop

does not—making it more scalable. Future work could explore incorporating probability estimates

for specifications.

170

LLM-based approaches for software engineering Researchers are increasingly combining

LLMs with program reasoning tools for challenging tasks such as fuzzing (Lemieux et al., 2023;

Xia et al., 2024), program repair (Xia et al., 2023; Joshi et al., 2023; Xia and Zhang, 2022), and

fault localization (Yang et al., 2023a). While we are on a similar direction as (Li et al., 2024a;

Wang et al., 2024a), to our knowledge, our work is among the first to combine LLMs with static

analysis to detect application-level security vulnerabilities via whole-project analysis.

171

CHAPTER 8

Application: RNA Secondary Structure Prediction

Ribonucleic acids (RNAs) play vital roles in biological systems, going far beyond their well-known

part in the central dogma. They take on diverse functions—ribozymes act as catalysts, riboswitches

sense metabolites and regulate gene expression, while microRNAs (miRNAs), long non-coding

RNAs (lncRNAs), and circular RNAs contribute to regulation in development and disease. These

functions are made possible by the RNA’s structure, which enables it to fold into specific shapes,

bind to different molecules, and carry out complex cellular tasks (Spitale and Incarnato, 2023;

Assmann et al., 2023; Ganser et al., 2019; Edwards et al., 2007; Fu, 2014). Understanding RNA

structure is thus not only key to basic biology but also opens up paths for medical applications,

including RNA-based therapeutics and vaccines.

RNA structure is organized in a hierarchy: the sequence of nucleotides (primary structure) folds

into secondary structures like stems and loops (Figure 8.1), which then assemble into complex

three-dimensional forms. Among these, the secondary structure is especially important because

it forms the foundation for further folding and largely determines RNA function (Mathews et al.,

2010). Secondary structure arises through both standard base pairing (like A-U and G-C) and less

common interactions (like G-U pairs), creating recognizable patterns of paired and unpaired bases.

Interestingly, these secondary structures tend to be more conserved than the actual RNA sequence

across species, underscoring their functional importance. However, experimentally determining RNA

structure is challenging due to technical and practical limitations, making computational methods

essential.

There are three main strategies for predicting RNA secondary structure: thermodynamic, comparative,

and neural approaches. Thermodynamic models use physical principles to predict the most stable

structure by minimizing free energy but can struggle with unusual structures like pseudoknots.

Comparative methods use evolutionary information, finding conserved structures through multiple

sequence alignments and probabilistic models such as stochastic context-free grammars. These

172

[...]AAUCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAACUCUUGA[...]

Input: RNA Sequence

[...]..((((((.........))))))......).((((((.......)))))).[...]

Output: RNA Secondary Structure (Dot-Bracket Format)

Output: RNA Secondary Structure (Visualization)

Hairpin loop

Helix Stack
(A kind of loop)

Not shown for brevity…

Figure 8.1: Illustration of the RNA folding problem. We visualize the output RNA secondary
structure in the bottom. The grey arrow indicates the direction in which the indexes of nucleotides
are increasing.

models detect base-pair covariation, choosing structures that best explain observed mutations. Neural

methods take a different path, using machine learning to identify structural patterns directly from

data without relying on explicit physical rules or sequence alignments.

A neurosymbolic solution is well-motivated for RNA secondary structure prediction because the

task itself sits at the intersection of learned heuristics and strict structural rules. Purely neural

approaches often fall short when it comes to modeling long-range dependencies and enforcing

structural consistency—such as ensuring valid base-pairing and avoiding overlapping pairs—especially

in the presence of noisy or ambiguous data. Conversely, purely symbolic methods lack adaptability;

while they can enforce pairing rules and parse sequences using grammars, they struggle to generalize

to varied datasets or capture subtle statistical signals from biological data. By integrating both

paradigms, a neurosymbolic system can leverage the neural model to propose high-quality local

structure predictions while relying on a symbolic parser to ensure global consistency and adherence

to biochemical constraints. This combination enables more accurate, interpretable, and generalizable

RNA structure prediction.

In this chapter, we introduce ScallopFold, a neurosymbolic system that combines a fine-tuned

173

RNA foundation model with a Scallop-based symbolic parser grounded in a context-free grammar

(CFG). Section 8.1 defines the problem and outlines our approach. Section 8.2 details ScallopFold

(Section 8.2.1) and its GPU-accelerated runtime, Lobster, which significantly boosts symbolic

parsing performance (Section 8.2.2). In Section 8.3, we present empirical results showing ScallopFold

achieves both higher accuracy and faster inference. We conclude with related work in Section 8.4.

8.1 Problem Definition

Given an RNA sequence of nucleotides x = x1x2 . . . xn, where each xi ∈ {A, C, G, U}, the goal is to

determine its secondary structure, a pairing map that specifies, for each position i, whether it remains

unpaired or forms a base pair with some position j. A common way to represent this structure

is through dot-bracket notation, where unpaired nucleotides are denoted by dots (’.’) and each

base-pair (i, j) is represented by matched brackets (e.g., ’(’ at position i and ’)’ at position j),

as shown in Figure 8.1. For the structure to be valid, all brackets must be properly matched and

nested, forming a well-balanced string—properties naturally captured by a formal grammar, which

we name LRSS.

For data-driven learning, we are given a dataset D = {(x,y)}, where x = x1x2 . . . xn is an RNA

sequence, and y ∈ LRSS is the corresponding RNA secondary structure represented in dot-bracket

notation. The goal is to learn a model fθ, parameterized by neural weights θ, that maps an input

sequence x to a predicted structure ŷ = fθ(x) ∈ LRSS.

During training, we minimize a loss function L that compares the predicted structure ŷ with the

ground truth y. The training objective is defined as:

J(θ) =
1

|D|
∑

(x,y)∈D

L(fθ(x),y). (8.1)

This setup defines the RNA secondary structure prediction task as a supervised sequence-to-structure

learning problem.

174

8.2 Neurosymbolic Solution with Scallop

8.2.1 Neurosymbolic RNA Secondary Structure Prediction

A neurosymbolic approach A neurosymbolic approach is particularly well-suited for this problem

due to its hybrid nature: while the pairing constraints are symbolic and rule-based, the folding

process is inherently non-deterministic, as RNA molecules may adopt multiple valid structures

depending on environmental conditions. Despite this ambiguity, certain biochemical principles are

consistent—such as pairing constraints that restrict allowable base pairs to (A, U), (C, G), and wobble

pair (A, G), and structural constraints that enforce proper bracket nesting and spacing.

In our solution, the neural component predicts a latent annotation t = t1t2 . . . tn, where each ti

indicates the likely structural role of nucleotide xi (e.g., part of a helix, a loop, or unpaired). These

predictions capture local statistical cues from data. The symbolic component then parses the

sequence x, guided by t, into a globally consistent secondary structure y ∈ LRSS, where LRSS denotes

the language of well-formed RNA secondary structures defined by a context-free grammar (CFG).

Without this integration, a purely neural model may struggle to enforce global pairing constraints

or model long-range dependencies, while a purely symbolic model may fail to generalize to the

underlying distribution of real-world RNA folds.

Probabilistic parsing Our solution employs a CFG defined over a set of terminal symbols, or

structure tokens, as illustrated in Figure 8.2a. Let the input RNA sequence be x = x1x2 . . . xn,

where each nucleotide xi ∈ {A, C, G, U}. For each position i, a neural network outputs a probability

distribution pi over the token vocabulary Σ (the set of terminal symbols), representing a data-driven

estimate of the structural role ti ∈ Σ at that position.

The symbolic component, a probabilistic parser, then processes the sequence of distributions

p̄ = p1, . . . ,pn to find the most probable parse tree R = parse(p̄). This parsing step enforces global

structural constraints, such as balanced pairing and valid motif composition, while being guided by

local probabilistic predictions from the neural model (Figure 8.2b). Finally, to produce the RNA

dot-bracket notation, we extract the set of paired positions {(i, j)} from the parse tree R, which

175

(Structure Token) Σ ∋ τ ::= Hl | Hr | Ll | Lr | Lu | Eu

(a) The set of structure tokens (terminal symbols) for our CFG, including helix (H), loop (L), and external
loop (E). The subscripts l (left), r (right), and u (unpaired) denote the structural role of the corresponding
nucleotide within each substructure.

(Paired Substr.) P ::= L | H
(Helix Stack) H ::= Hl · P ·Hr

(Ext. Unpaired) E ::= Eu | E · Eu
(Int. Unpaired) U ::= Lu | U · Lu

(Loop Body) B ::= U | P · U | B · P | B · U
(Loop) L ::= Ll · B · Lr

(RNA SS) R ::= P | E | R · R

(b) The complete CFG LRSS used to parse RNA secondary structures (R).

Figure 8.2: The set of terminal symbols used to represent RNA secondary structure tokens, along
with a context-free grammar (CFG) that parses a sequence of these tokens into a valid secondary
structure.

correspond to matched structural tokens (e.g., opening and closing brackets) in the CFG. The result

is a well-formed, interpretable secondary structure consistent with both learned statistical patterns

and formal grammatical rules.

Scallop implementation We implement the symbolic component of our system as a Scallop

program. A partial program is shown in Listing 8.1. Scallop offers a high-level declarative interface

for specifying both data types (lines 2-3) and input relations (lines 6 and 9). For example, the

RNA sequence is encoded as a binary relation rna(idx, nuc), mapping each position index i to a

nucleotide xi ∈ {A, C, G, U}.

The program leverages recursive rules to capture the hierarchical structure specified by the context-

free grammar. In line 15, the predicate paired_ss(i, j) defines paired substructures (P), which

may correspond to either an internal loop (L) or a helix-stack (H). Lines 20-22 specify the rule for

helix-stacks H: given that the nucleotides at positions i and j are bondable (line 21), the interval

[i, j] forms a valid helix if the token at position i is a left-helix marker (Hl), the token at j is a

right-helix marker (Hr), and the inner span [i+1, j − 1] recursively forms a valid paired substructure

(line 22). These declarative rules directly reflect the grammar productions shown in Figure 8.2b,

176

1 // enum type for nucleotides and structure tokens
2 type Nucleotide = A | C | G | U
3 type StructureToken = Hl | Hr | Ll | Lr | Lu | Eu
4
5 // input RNA seq (index mapped to nucleotide)
6 type rna(idx: usize , nuc: Nucleotide)
7
8 // probabilistic tokens extracted by RNA -FM
9 type token(idx: usize , tok: StructureToken)

10
11 // facts for nucleotide pairs that can be bonded
12 rel can_bond = {(A, U), (U, A), ...}
13
14 // Rule for paired -substructures
15 rel paired_ss(i, j) = loop(i, j) or helix(i, j)
16
17 // Rule for helix stack:
18 // - i, j must be bondable
19 // - Hl * paired_ss * Hr: production rule for helix
20 rel helix(i, j) =
21 rna(i, x_i) and rna(j, x_j) and can_bond(x_i , x_j) and
22 token(i, Hl) and paired_ss(i + 1, j - 1) and token(j, Hr)
23
24 // ... other rules for parsing RNA are omitted for brevity

Listing 8.1: A partial Scallop program for parsing RNA structure token sequences.

highlighting the tight alignment between symbolic parsing and Scallop’s logical representation.

A key advantage of Scallop is its ability to perform probabilistic reasoning over symbolic structures. In

our setting, the neural network outputs, for each position i, a probability distribution over structure

tokens pi ∈ ∆|Σ|, where Σ is the set of structure tokens (e.g., Hl, Hr, etc.). These distributions are

encoded as probabilistic facts in Scallop via the token(idx, tok) relation, associating each token

ti ∈ Σ with its corresponding probability at position i.

Rather than relying on a single hard prediction per position, Scallop parses over the entire distribution

space, allowing it to explore and score multiple possible parses consistent with the grammar. This

enables the system to compute the most probable parse, i.e., the derivation tree R that maximizes

the joint probability under the token distributions and the grammatical constraints. As a result, the

177

Index … 17 18 19 20 … 26 27 28 29 …
RNA Sequence … A A U G … G A U U …

Expected Structure … ((. . … . .)) …
Expected Token … Hl Ll Lu Lu … Lu Lu Lr Hr …
Pr(ti = Hl) … 0.85 0.03 …
Pr(ti = Hr) … 0.06 0.84 …
Pr(ti = Ll) … 0.92 0.08 …
Pr(ti = Lr) … 0.02 0.89 …
Pr(ti = Lu) … 0.84 0.78 … 0.92 0.90 …

helix(18,28)

loop(18,28)

Figure 8.3: We illustrate two plausible ways of parsing the RNA subsequence AAUG...GAUU: one
more probable (solid arrow) and one less probable (dashed arrow). The difference is whether the
subsequence is parsed into a helix stack or a loop.

output of the parser is not just a binary decision about structure validity, but a ranked set of possible

secondary structures, each corresponding to a parse derivation along with its associated likelihood.

This probabilistic parsing capability allows Scallop to reconcile uncertainty in neural predictions

with strict symbolic consistency, leading to robust and interpretable RNA structure predictions.

Neural component Given that Scallop can perform probabilistic parsing over a sequence of

structure token distributions, our goal is to design a neural network that predicts these latent

annotations, where each structure token corresponds to a likely structural role (e.g., helix start, loop

unpaired, etc.). The desired neural model should be contextual and capable of capturing long-range

dependencies; it should also be fine-tunable to adapt to training data while maintaining strong

generalization. While classical sequence models such as LSTM (Hochreiter and Schmidhuber, 1997)

or BiLSTM (Graves et al., 2013) could be used, we instead primarily adopt RNA-FM (Chen et al.,

2022a), a pre-trained foundation model for RNA sequence representation.

RNA-FM has been trained on large-scale RNA data using masked language modeling, and as a result,

it captures rich contextual embeddings that reflect both local and global structural patterns in RNA

sequences. On top of RNA-FM, we add a randomly initialized classification layer that outputs, for

each position i, a softmax distribution over the structure token vocabulary Σ. During training, we

jointly fine-tune the RNA-FM encoder and this classification layer using Scallop as the downstream

parser. This end-to-end learning loop enables the neural network to adapt its predictions to better

support symbolic parsing, resulting in more accurate and structurally consistent RNA secondary

178

RNA
Sequence

RNA-FM*
(Transformer)

Probabilistic
Structure
Tokens

RNA SS
Parser

(Lobster)

RNA
Secondary
Structure

rna

token

helix

paired_ss

loop

int_unpaired
can_bond rna_ss

paired

unpaired

inputs outputs GPU Runtime

ext_unpaired ...

Figure 8.4: The ScallopFold pipeline. Relations in red illustrates the computation that are off-loaded
to GPU accelerated Scallop runtime, Lobster.

structure predictions.

8.2.2 Accelerating ScallopFold with Specialized Hardware

Scalability and programmability challenges Our neurosymbolic solution poses a significant

scalability challenge. While the neural component can utilize modern hardware accelerators like

GPUs and TPUs, the symbolic component currently runs on CPUs alone. The symbolic engine must

derive a set of all possible predicted structures and their associated probabilities. As the length of the

input sequence increases, the number of possible parses and the size of their associated weights also

grows exponentially, leading to a combinatorial explosion in the number of required computations.

While custom GPU implementations have been developed for these algorithms (Yi et al., 2014), it

demands specialized knowledge (e.g., parallel programming in CUDA) and hinders domain experts

from focusing on functionality. Even for the problem of RNA folding, such experts have designed

diverse CFGs tailored to specific biological contexts, making it impractical to implement custom

GPU solutions for each CFG variant. A general purpose framework is therefore desirable for making

accelerated GPU computation widely accessible.

A GPU accelerated runtime With the declarative high-level language, Scallop offers a convenient

abstraction to hide the underlying GPU runtime from users. We propose Lobster, a GPU-accelerated

framework designed to enhance the scalability of neurosymbolic programming (Biberstein et al.,

2025). The core innovation of Lobster lies in efficiently mapping an expressive subset of Scallop

179

1 @gpu
2 rel paired_ss(i, j) = loop(i, j) or helix(i, j)

Listing 8.2: Using @gpu attribute to tell Scallop to accelerate relevant relations within the same
stratum.

onto GPU architectures, for different modes of reasoning. This subset includes computationally-

intensive operations like join and recursion, enabling levels of scalability unattainable with single- or

multi-threaded CPUs.

Figure 8.4 illustrates the high-level pipeline of ScallopFold, along with the dependency graph of

relations involved in computing RNA secondary structures. The most computationally intensive

component, such as the recursive parsing based on a context-free grammar, is offloaded to a GPU-

accelerated runtime to maximize performance. To enable GPU execution, programmers can annotate

specific relations with the @gpu attribute, indicating that those computations should be offloaded. As

shown in Listing 8.2, this annotation is applied to the paired_ss relation. All mutually dependent

relations within the recursive parsing logic, such as helix and loop, are automatically identified

and offloaded together, enabling efficient end-to-end symbolic computation on the GPU.

Low-level language of the GPU accelerated runtime Recall that the Scallop language

compiles into an intermediate representation called RAM (Section 3.2). While RAM offers a clean

and expressive abstraction for CPU execution, efficient GPU acceleration requires exposing lower-level

details to better match the GPU hardware execution model. To address this, we introduce APM,

a low-level, assembly-style language designed specifically for GPU execution and automatically

compiled from RAM.

APM explicitly represents memory allocations and operates solely through instructions that are

amenable to massively parallel execution. Unlike general-purpose GPU programming models, APM

constrains expressiveness to enforce hardware-friendly patterns. It makes GPU execution constraints

explicit through its design, ensuring that any RAM program compiled into APM is guaranteed to

execute efficiently on the GPU. Core APM instructions include alloc, store, scan, and merge,

180

1 rel _temp_(i,j) = token(i,Hl) and paired_ss(i+1,j-1) and token(j,Hr)

πλ(j,i,s).(i,j)

▷◁1

πλ(i,t,l).(l+1,i)

▷◁1

σλ(i,t).t=Hl

token(i, t)

πλ(k,l).(k−1,l)

paired_ss(k, l)

σλ(j,s).s=Hr

token(j, s)r4

r3r2

r1

alloc([m, o], size(token1))
m ← eval⟨λ(j, s).(s = Hr)⟩([token1:2])
o ← scan(m)
alloc([r11:2;r1t], last(o))
[r11:2;r1t] ← gather(o,[token1:2;tokent])

alloc(h,size(r21) ∗ O)
static h ← build([r31])
alloc([c, o],size(r21))
c ← count([r21],h,[r31])
o ← scan(c)
alloc([il,ir,r41, r42, r43, r4t],last(o))
[il, ir] ← join⟨1⟩([r21, r22],[r31, r32],h,c,o)
[r41, r42] ← gather(il,[r31, r32])
[r43] ← gather(ir,[r22])
r4t ← gather⟨⊗⟩([il,ir],[r3t, r2t])

Figure 8.5: In this example, we compile a part of the rule shown in Listing 8.1 (line 22). The code
block on the top shows the Scallop rule, while bottom-left illustrates the abstract syntax tree of the
APM program compiled from it. We expand the node r1 and r4 on the right to show their low-level
APM code.

all of which are tailored for parallel execution. We refer the readers to Biberstein et al. (2025) for

details surrounding APM.

A key design consideration in APM is the representation of relational tables in GPU memory. Since

relations in Scallop have fixed schemas with a uniform number of entries per column, each relation

of arity n can be represented as n parallel registers of equal size, with an additional register reserved

for provenance tags. This design allows APM to treat sets of registers as tables, mirroring how RAM

treats sets of facts as relations.

The compilation from RAM to APM involves flattening the RAM program, which is structured

as a directed acyclic graph (DAG), into a sequential list of APM instructions. This is done via a

recursive ram-to-apm compiler that traverses the DAG, emitting a sequence of low-level instructions

and tracking the registers where each intermediate table is stored. High-level relational operations

in RAM, such as join, projection, and filtering, are decomposed into multiple APM instructions that

execute efficiently in parallel.

181

rel paired_ss(i, j) = loop(i, j) or helix(i, j)

{{v18;Hl, v19;Ll, . . . , v28;Hr}} :: helix(18, 28) {{v18;Ll, v19;Lu, . . . , v28;Lr}} :: loop(18, 28)

{{v18;Hl, v19;Ll, . . . , v28;Hr}} :: paired_ss(18, 28) {{v18;Ll, v19;Lu, . . . , v28;Lr}} :: paired_ss(18, 28)

∪

{{v18;Ll, v19;Lu, . . . , v28;Lr}} :: paired_ss(18, 28)

(a) According to the rule shown on top, there are two ways to derive the fact paired_ss(18, 28). Notice
how the facts carry the tag of top-1-proof, where a proof represent a concrete trace of structure tokens for the
parse. Since we only keep the top-1 proof, only the proof on the right is propagated through the union (∪)
operation because it has a higher probability. Note that boolean variable such as v18;Ll denotes the variable
corresponding to the probability Pr(t18 = Ll).

... ...

18 28
17 29

... ...

...

0
0

...

i j empty
...

11
13

...

...

18;Hl
17;Hl

...

...

19;Lu
18;Hl

...

...

...

...

...

...

28;Lr
27;Lu

...

len top-1-proof
...

X
28;Lr

...

...

X
29;Hr

...

...

X
X

...

(b) The memory layout for paired_ss relation on GPU, where i and j are the two columns for the relation
and the rest is the table for tags. The empty bit is to represent whether there exists a proof, while the len
represents the number of literals within the proof. We use 18;Ll to denote the variable ID (an integer) for
the corresponding probability.

Figure 8.6: An illustration of the top-1-proof provenance in action. Consider the RNA sequence
adapted from our motivating example in Figure 8.1 and Figure 8.3. While (a) shows the derivation
process of the top-1-proof for the fact paired_ss(18,28), (b) illustrates the corresponding memory
layout after derivation.

Figure 8.5 demonstrates this full compilation pipeline with an example Scallop rule for parsing

RNA secondary structure, its corresponding RAM representation, and selected snippets of the

compiled APM code. In summary, the introduction of APM and its compiler from RAM provides

a general-purpose mechanism for GPU acceleration across all Scallop programs. Computationally

intensive tasks—such as the recursive parsing required in RNA secondary structure prediction—stand

to benefit significantly from this architecture.

GPU support for provenance Lobster employs a GPU-accelerated provenance semiring frame-

work with 7 implemented provenances covering discrete, probabilistic, and differentiable modes

of reasoning. Tags in GPU are stored in a separate, row-major, register. Since the tags may

store boolean, floating point, and even complex data structures like dual-numbers and boolean

182

Method PPV SEN F1

CONTRAfold 0.607 0.679 0.638
RNAFold 0.565 0.627 0.592
E2EFold 0.738 0.665 0.690
MxFold2 0.856 0.896 0.874

ContextFold 0.873 0.821 0.842

ScallopFold w/
XTransformer 0.806 0.604 0.703

RNAErnie 0.812 0.720 0.751
RNA-FM 0.923 0.928 0.924

Table 8.1: Performance of ScallopFold on ArchiveII dataset compared to baselines.

formulae, we need each provenance to specify a fixed size for each tag. Specifically, Lobster supports

unit, max-min-prob, add-mult-prob, top-1-proof, and the differentiable versions of the probabilistic

semirings.

Without loss of generality, we illustrate the top-1-proof provenance in Figure 8.6a, using the RNA

secondary structure parsing application. It is a special case of top-k-proofs proposed in Huang et al.

(2021) and is sufficiently effective in practice. In general, the proof tracks one conjunction of the

corresponding boolean variables for facts used to derive the current fact. During disjunction, the

provenance picks the more likely one from the two proofs by computing the probabilities of the two

proofs. For conjunction, the provenance merges the two proofs while ensuring that no conflict is

seen. Figure 8.6b further details the memory layout for the top-1-proof semiring, where we use extra

empty and len fields to track the structure of the proof.

8.3 Empirical Evaluation

Experimental setup We evaluate ScallopFold on a subset of the ArchiveII (Sloma and Mathews,

2016) dataset, which consists of RNA sequences with lengths up to 200 nucleotides. For base-

line comparison, we include several state-of-the-art models: MxFold2 (Sato et al., 2021), RNA-

Ernie (Chen et al., 2022b), and RNA-FM (Chen et al., 2022a)—all of which are fine-tuned on the

same training set (TrainSetA) following the protocol in Sato et al. (2021). Notably, RNA-Ernie and

RNA-FM are large-scale RNA foundation models that have been pre-trained on extensive RNA

183

50 100 150

100
200
300
400
500

RNA Sequence Length

Sp
ee

du
p

(×
)

Overall (475 Seqs) Scallop Lobster
Time 13 hours 6 minutes
Speedup 1× 146×

Figure 8.7: The speedup of Lobster across different RNA sequence lengths relative to Scallop.

sequence corpora, offering strong contextual representations. For ScallopFold, we experiment with

three different neural backbones: RNA-Ernie, RNA-FM, and XTransformer. These models are used

to predict token distributions, which are then parsed by Scallop’s symbolic component.

Evaluation metrics The evaluation metrics used in our experiments are Positive Predictive Value

(PPV), Sensitivity (SEN) and F1 Score. Specifically,

PPV =
True Positives

True Positives + False Positives
, (8.2)

SEN =
True Positives

True Positives + False Negatives
, (8.3)

F1 = 2 · PPV · SEN
PPV + SEN

. (8.4)

Here, a predicted nucleotide pair (i, ĵ) is counted as a true positive if the ground truth also contains

a pair (i, j) and ĵ = j. A true negative occurs when the nucleotide i is correctly predicted to be

unpaired, matching the ground truth. A false positive arises when i is predicted to pair with ĵ, but

either the ground truth has i unpaired or paired with a different nucleotide j ̸= ĵ. A false negative

happens when i is predicted to be unpaired, but it is actually paired in the ground truth.

Secondary structure prediction performance As shown in Table 8.1, ScallopFold equipped

with RNA-FM achieves the best overall accuracy, outperforming all evaluated baselines. This result

highlights the effectiveness of our neurosymbolic approach: by combining the strengths of powerful

pre-trained RNA foundation models with a structured, grammar-based parser, ScallopFold is able to

produce more accurate and biologically consistent RNA secondary structure predictions.

184

Scalability improvements with Lobster We advance the state-of-the-art by solving neurosym-

bolic programming’s scalability challenges via GPU acceleration. Figure 8.7 shows the speedup of

Lobster over the CPU baseline, Scallop, on a subset of the ArchiveII dataset (Sloma and Mathews,

2016). Scallop suffers noticeable performance drops as sequence length increases, while Lobster

scales much more gracefully, parsing all 475 sequences in 6 minutes. Speedups of 100× are easily

achieved on the median RNA sequence length of 120. This efficiency gain is enabled by mapping

a significant fragment of Scallop to the GPU programming paradigm, which entails careful design

decisions involving how to represent relations, how to parallelize relational operators, and how to

schedule computation.

8.4 Related Work

Traditional methods for RNA secondary structure prediction Early computational ef-

forts for RNA secondary structure prediction were dominated by thermodynamic, energy-based

models. These methods rely on the principle of free energy minimization, assuming that the

most stable structure of an RNA molecule is the one with the minimum free energy (MFE) under

thermodynamic equilibrium (Zuker and Stiegler, 1981; Mathews et al., 1999). Algorithms such as

those implemented in RNAfold (Lorenz et al., 2011), RNAstructure (Reuter and Mathews, 2010),

and LinearFold (Huang et al., 2019) use dynamic programming and the nearest-neighbor model

(Turner and Mathews, 2010), which decomposes structures into energetically parameterized motifs

like hairpins, bulges, and multiloops. While these approaches are fast, well-established, and effective

for relatively simple and short RNAs, they face limitations when handling long-range interactions,

pseudoknots, and novel RNAs (Rivas and Eddy, 1999). Their accuracy is fundamentally bound by

the quality and completeness of experimentally derived thermodynamic parameters, which have

remained relatively static over the past decade (Kierzek et al., 2022; Szabat et al., 2022).

Deep learning methods for RNA secondary structure prediction To overcome the lim-

itations of energy-based models, machine learning (ML) and deep learning (DL) methods have

emerged as powerful alternatives. These models learn directly from data, bypassing the need for

185

handcrafted energy parameters or explicit evolutionary conservation. Early examples like CON-

TRAfold (Do et al., 2006) used probabilistic discriminative models, while more recent methods

such as SPOT-RNA (Singh et al., 2019), SPOT-RNA2 (Singh et al., 2021), E2Efold (Chen et al.,

2020a), UFold (Fu et al., 2022), KnotFold (Gong et al., 2024), and REDFold (Chen and Chan, 2023)

leverage convolutional, recurrent, and transformer-based neural networks to predict base pairing

probabilities or contact maps. These neural methods show strong performance across diverse bench-

marks, especially in capturing noncanonical base pairs, pseudoknots, and long-range dependencies.

However, their performance often drops on out-of-distribution sequences, especially in low-data

regimes, due to overfitting and limited generalization—a known challenge in bioinformatics when

working with scarce, biased RNA structural data (Justyna et al., 2023; Zablocki et al., 2025).

Hybrid approaches for RNA secondary structure prediction In response to the comple-

mentary strengths and weaknesses of symbolic and neural methods, hybrid approaches have gained

traction. These methods combine data-driven learning with biophysically grounded models to

improve both accuracy and robustness. For example, MXFold (Akiyama et al., 2017) integrates

thermodynamic scoring with structured SVMs, while MXFold2 (Sato et al., 2021) replaces the SVM

with a deep neural network, achieving superior performance through thermodynamic regularization.

Foundation models like RNA-FM (Chen et al., 2022a), RNAErnie (Wang et al., 2024b), and MOE-

Fold2D (Qiu, 2025) go a step further by incorporating pretraining on massive RNA sequence corpora

with fine-tuning for structure prediction, often using symbolic parsing or thermodynamic modules to

guide decoding, similar to ScallopFold. These systems embody a form of neurosymbolic reasoning,

balancing flexibility with interpretability, and represent a promising direction for generalizing across

RNA families and sequence lengths. Their success illustrates the growing importance of combining

biological priors with data-intensive learning, especially in domains constrained by experimental

data availability (Zablocki et al., 2025).

186

CHAPTER 9

Conclusions

This dissertation presented Scallop, a programming language and system designed to support

the development of neurosymbolic applications—where logical reasoning meets statistical learning.

Through the design, implementation, and evaluation of Scallop, we explored how symbolic logic

programming can be harmonized with neural components to build interpretable, expressive, and

trainable systems across diverse domains.

We began by introducing the language constructs of Scallop and its reasoning backend, grounded in

a unified provenance framework based on provenance semiring. These constructs not only generalize

traditional logic programming but also enable differentiable and probabilistic reasoning, opening

the door to learning from examples, labels, and gradients. We extended the system with a foreign

interface for neural and foundation models, allowing Scallop programs to interoperate with large

pre-trained foundation models in a modular and controllable fashion.

To evaluate the practicality and expressiveness of Scallop, we benchmarked it on a suite of classical

and modern neurosymbolic tasks. These experiments demonstrated Scallop’s flexibility in combining

symbolic rules with model-based perception, while preserving performance and interpretability.

We then explored three advanced applications that highlight Scallop’s potential to handle complex,

real-world problems. In computer vision, Scallop provided a clean abstraction for scene graph

generation over videos by incorporating symbolic structure into spatial-temporal reasoning. In

cybersecurity, we introduced IRIS-Scallop, a neurosymbolic static analysis framework that combines

LLM-assisted taint specification inference with symbolic reachability analysis. In bioinformatics, we

demonstrated how Scallop supports efficient and extensible parsing for RNA secondary structure

prediction by expressing grammar-based logic rules.

Across all these efforts, a recurring theme is the power of composability: Scallop allows symbolic rules,

data abstractions, and neural components to be composed in a unified programming model. This

187

composability enables rapid experimentation and customization across domains with fundamentally

different reasoning demands.

Ultimately, this work takes a step toward a broader vision: making neurosymbolic programming

programmable. That is, programmable, scalable, and applicable. Scallop provides a foundation

for building systems that reason, learn, and generalize in ways that neither symbolic nor neural

approaches can achieve alone.

9.1 Limitations

While Scallop offers a powerful framework for neurosymbolic programming, several limitations

remain. Its support for numerical values is limited, restricting applicability to tasks like low-level

robotics control that require continuous reasoning. The current design of tag-symbol interaction

is application-specific and lacks a generalized, systematic mechanism for bridging the neural and

symbolic world. Scallop also does not yet support direct fine-tuning of modern neural models, such

as LLMs and Diffusion Models, which limits its learning capabilities in more complex scenarios.

On the systems side, scalability remains a challenge, particularly as the provenance engine must

be extended to support broader learning paradigms. Finally, Scallop requires more infrastructure,

including libraries, training pipelines, and tooling, to support the growing ecosystem of neurosymbolic

building-blocks such as neurosymbolic program synthesis.

9.2 Future Works

Looking ahead, we envision Scallop as a foundation for the next generation of programmable

intelligence systems—systems that can not only learn from data but also reason with structure,

generalize with abstraction, and adapt through interaction. To realize this vision, several exciting

directions lie ahead.

First, we aim to extend Scallop’s reasoning capabilities to continuous and real-time domains, enabling

applications in robotics, control, and scientific modeling. This will require new abstractions that

188

seamlessly integrate symbolic logic with differentiable dynamics and real-valued computation. Another

key frontier is the development of a unified interface between neural representations and symbolic

programs. Generalizing the communication between tags and symbolic values will allow models to

fluidly combine perception, language, and reasoning in a way that mirrors human cognition. As

foundation models continue to evolve, Scallop can serve as a scaffold for training and fine-tuning large

neural components with structured supervision, enabling program-guided learning that is grounded,

controllable, and interpretable. At the systems level, we envision a scalable, modular infrastructure

that supports the full lifecycle of neurosymbolic development—from declarative modeling to data

ingestion, learning, and deployment. This includes building a growing library of symbolic primitives,

neural interfaces, and task templates that lower the barrier to entry for hybrid AI development.

Ultimately, Scallop is a step toward a broader goal: to empower developers, scientists, and researchers

with tools that unify logic and learning—not as separate paradigms, but as complementary dimensions

of intelligent behavior. We believe such systems will be essential in tackling the most ambitious

challenges in AI, from scientific discovery to trustworthy autonomy.

189

BIBLIOGRAPHY

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical Level.
Pearson, 1st edition, 1994.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., 1995.

Manato Akiyama, Kengo Sato, and Yasubumi Sakakibara. A max-margin training of rna secondary
structure prediction integrated with the thermodynamic model. Bioinformatics, 33(22):3373–3379,
2017.

Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris Nikoletseas, and Wolfgang
Thomas. Automata, Languages and Programming: 36th International Colloquium, ICALP 2009,
Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555. Springer Science & Business
Media, 2009.

Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A.
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. 2013 Formal Methods in Computer-Aided Design, pages 1–8, 2013. URL
https://api.semanticscholar.org/CorpusID:6705760.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. doi: 10.1109/
CVPR.2016.12.

Gianluca Apriceno, Andrea Passerini, and Luciano Serafini. A neuro-symbolic approach for real-
world event recognition from weak supervision. In 29th International Symposium on Temporal
Representation and Reasoning. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

Sarah M Assmann, Hong-Li Chou, and Philip C Bevilacqua. Rock, scissors, paper: How rna structure
informs function. The Plant Cell, 35(6):1671–1707, 2023.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: Object-oriented
queries on relational data. In European Conference on Object-Oriented Programming, 2016.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting is programming: A query
language for large language models. In PLDI, 2022.

Paul Biberstein, Ziyang Li, Joseph Devietti, and Mayur Naik. Lobster: A gpu-accelerated framework
for neurosymbolic programming, 2025. URL https://arxiv.org/abs/2503.21937.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, and et al. On the

190

opportunities and risks of foundation models, 2021.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
editing instructions, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4, 2023.

Sicong Cao, Xiaobing Sun, Xiaoxue Wu, Lili Bo, Bin Li, Rongxin Wu, Wei Liu, Biao He, Yu Ouyang,
and Jiajia Li. Improving Java deserialization gadget chain mining via overriding-guided object
generation. In International Conference on Software Engineering, 2023.

Sagar Chaki, Edmund Clarke, Joël Ouaknine, Natasha Sharygina, and Nishant Sinha. Concurrent
software verification with states, events, and deadlocks. Formal Aspects of Computing, 17(4):
461–483, 2005.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning based
vulnerability detection: Are we there yet? IEEE Transactions on Software Engineering, 48:
3280–3296, 2020.

Chien-Yi Chang, De-An Huang, Yanan Sui, Li Fei-Fei, and Juan Carlos Niebles. D3tw: Discriminative
differentiable dynamic time warping for weakly supervised action alignment and segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3546–3555, 2019.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong
Yue, et al. Neurosymbolic programming. Foundations and Trends in Programming Languages, 7
(3), 2021. doi: 10.1561/2500000049.

Mark Chavira and Adnan Darwiche. Compiling bayesian networks with local structure. In Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI), pages 1306–1312.
Morgan Kaufmann, 2003.

Checker Framework, 2024. https://checkerframework.org/.

Chun-Chi Chen and Yi-Ming Chan. Redfold: accurate rna secondary structure prediction using
residual encoder-decoder network. BMC bioinformatics, 24(1):122, 2023.

Jiayang Chen, Zhihang Hu, Siqi Sun, Qingxiong Tan, Yixuan Wang, Qinze Yu, Licheng Zong,
Liang Hong, Jin Xiao, Tao Shen, Irwin King, and Yu Li. Interpretable rna foundation model

191

from unannotated data for highly accurate rna structure and function predictions, 2022a. URL
https://arxiv.org/abs/2204.00300.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. 2021.

Siyu Chen, Jian Liu, Yifan Gong, Jiarui Wang, Qiang Zhang, Dong Zhan, Min Jiang, and Shuaicheng
Wang. Rna-ernie: A pre-trained language model for rna understanding. Bioinformatics, 38(22):
5094–5100, 2022b.

Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao, and Le Song. Rna secondary structure prediction
by learning unrolled algorithms. In International Conference on Learning Representations, 2020a.
URL https://openreview.net/forum?id=S1eALyrYDH.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou, Dawn Song, and Quoc V. Le. Neural
symbolic reader: Scalable integration of distributed and symbolic representations for reading
comprehension. In International Conference on Learning Representations (ICLR), 2020b.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 24185–24198, 2024.

Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. Path-sensitive code embedding via
contrastive learning for software vulnerability detection. In International Symposium on Software
Testing and Analysis, 2022.

Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin Vechev. Scalable taint specification
inference with big code. In Conference on Programming Language Design and Implementation,
2019.

Petr Cintula, Petr Hájek, and Carles Noguera. Handbook of Mathematical Fuzzy Logic, volume 1.
College Publications, 2011.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In International Conference on Machine Learning (ICML), pages 1282–
1289. PMLR, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Code Checker, 2023. https://github.com/Ericsson/codechecker.

192

Yuren Cong, Wentong Liao, Hanno Ackermann, Michael Ying Yang, and Bodo Rosenhahn. Spatial-
temporal transformer for dynamic scene graph generation. CoRR, abs/2107.12309, 2021. URL
https://arxiv.org/abs/2107.12309.

CPPCheck, 2023. https://cppcheck.sourceforge.io/.

Noel Csomay-Shanklin, William D. Compton, Ivan Dario Jimenez Rodriguez, Eric R. Ambrose,
Yisong Yue, and Aaron D. Ames. Robust agility via learned zero dynamics policies, 2024. URL
https://arxiv.org/abs/2409.06125.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray. Scaling
egocentric vision: The epic-kitchens dataset. In European Conference on Computer Vision (ECCV),
2018.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Jian Ma, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray.
Rescaling egocentric vision: Collection, pipeline and challenges for epic-kitchens-100. International
Journal of Computer Vision (IJCV), 130:33–55, 2022. URL https://doi.org/10.1007/s11263-021-
01531-2.

Katrin M. Dannert, Erich Grädel, Matthias Naaf, and Val Tannen. Semiring provenance for fixed-point
logic. In Conference on Computer Science Logic (CSL), 2021. doi: 10.4230/LIPIcs.CSL.2021.17.

Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2011. doi: 10.5591/978-1-57735-516-8/
IJCAI11-143.

Giuseppe De Giacomo and Moshe Y Vardi. Linear temporal logic and linear dynamic logic on finite
traces. In IJCAI’13 Proceedings of the Twenty-Third international joint conference on Artificial
Intelligence, pages 854–860. Association for Computing Machinery, 2013.

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity: Learning
graph transformations to detect and fix bugs in programs. 2020.

Li Ding and Chenliang Xu. Weakly-supervised action segmentation with iterative soft boundary
assignment. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 6508–6516, 2018.

Xuchu Ding, Stephen L Smith, Calin Belta, and Daniela Rus. Optimal control of markov decision
processes with linear temporal logic constraints. IEEE Transactions on Automatic Control, 59(5):
1244–1257, 2014.

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun Chen, Basel Alomair,
David Wagner, Baishakhi Ray, and Yizheng Chen. Vulnerability detection with code language

193

models: How far are we? arXiv preprint arXiv:2403.18624, 2024.

Chuong B. Do, Daniel A. Woods, and Serafim Batzoglou. Contrafold: Rna secondary structure
prediction without physics-based models. Bioinformatics, 22(14):e90–e98, 07 2006. ISSN 1367-4803.
doi: 10.1093/bioinformatics/btl246. URL https://doi.org/10.1093/bioinformatics/btl246.

Anton Dries, Angelika Kimmig, Wannes Meert, Joris Renkens, Guy Van den Broeck, Jonas Vlasselaer,
and Luc De Raedt. Problog2: Probabilistic logic programming. In European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 2015. doi: 10.1007/
978-3-319-23461-8_37.

Saikat Dutta, Diego Garbervetsky, Shuvendu K Lahiri, and Max Schäfer. Inspectjs: Leveraging
code similarity and user-feedback for effective taint specification inference for Javascript. In
International Conference on Software Engineering: Software Engineering in Practice (SEIP) Track,
2022.

Nikita Dvornik, Isma Hadji, Konstantinos G. Derpanis, Animesh Garg, and Allan D. Jepson. Drop-
dtw: Aligning common signal between sequences while dropping outliers. CoRR, abs/2108.11996,
2021.

Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman.
Temporal cycle-consistency learning. CoRR, abs/1904.07846, 2019.

Thomas E Edwards, Daniel J Klein, and Adrian R Ferré-D’Amaré. Riboswitches: small-molecule
recognition by gene regulatory rnas. Current opinion in structural biology, 17(3):273–279, 2007.

Kevin Ellis, Catherine Wong, Maxwell I. Nye, Mathias Sablé-Meyer, Luc Cary, Lucas Morales, Luke B.
Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: Growing generalizable,
interpretable knowledge with wake-sleep bayesian program learning. CoRR, abs/2006.08381, 2020.
URL https://arxiv.org/abs/2006.08381.

Kevin Ellis, Adam Albright, Armando Solar-Lezama, Joshua B. Tenenbaum, and Timothy J.
O’Donnell. Synthesizing theories of human language with bayesian program induction. Nature
Communications, 13, 2022. URL https://api.semanticscholar.org/CorpusID:251951680.

FB Infer, 2023. https://fbinfer.com/.

FlawFinder, 2023. https://dwheeler.com/flawfinder.

Laiyi Fu, Yingxin Cao, Jie Wu, Qinke Peng, Qing Nie, and Xiaohui Xie. Ufold: fast and accurate
rna secondary structure prediction with deep learning. Nucleic acids research, 50(3):e14–e14, 2022.

Michael Fu and Chakkrit Tantithamthavorn. LineVul: A transformer-based line-level vulnerability
prediction. In International Conference on Mining Software Repositories, 2022.

194

Tsu-Jui Fu, Linjie Li, Zhe Gan, Kevin Lin, William Yang Wang, Lijuan Wang, and Zicheng Liu.
Violet: End-to-end video-language transformers with masked visual-token modeling. arXiv preprint
arXiv:2111.12681, 2021.

Xiang-Dong Fu. Non-coding rna: a new frontier in regulatory biology. National science review, 1(2):
190–204, 2014.

Laura R Ganser, Megan L Kelly, Daniel Herschlag, and Hashim M Al-Hashimi. The roles of structural
dynamics in the cellular functions of rnas. Nature reviews Molecular cell biology, 20(8):474–489,
2019.

Difei Gao, Ruiping Wang, Shiguang Shan, and Xilin Chen. From two graphs to N questions: A VQA
dataset for compositional reasoning on vision and commonsense. 2019.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models, 2023.

Ross B. Girshick. Fast R-CNN. 2015.

GitHub. Github advisory database, 2024a. https://github.com/advisories.

GitHub. Github security advisories, 2024b. https://github.com/github/advisory-database.

Tiansu Gong, Fusong Ju, and Dongbo Bu. Accurate prediction of rna secondary structure including
pseudoknots through solving minimum-cost flow with learned potentials. Communications Biology,
7(1):297, 2024.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal,
Heuna Kim, Valentin Haenel, Ingo Fründ, Peter Yianilos, Moritz Mueller-Freitag, Florian Hoppe,
Christian Thurau, Ingo Bax, and Roland Memisevic. The "something something" video database
for learning and evaluating visual common sense. CoRR, abs/1706.04261, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel
Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv
Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank
Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail,
Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack

195

Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika
Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens
van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo
Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti,
Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu
Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan,
Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning
Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain
Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,
Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide
Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei,
Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey,
Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma,
Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew
Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon
Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel
Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman,
Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos
Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina
Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou,
Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren,

196

Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet
Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein,
Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard,
Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan
Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas
Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya
Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert
Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha
Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta,
Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar
Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner,
Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish
Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey,
Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak
Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan,
Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng
Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng,
Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez,
Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez,
Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable,
Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun
Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu,
Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan,
Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray,
Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Car-
tillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano
Fragomeni, Qichen Fu, Christian Fuegen, Abrham Gebreselasie, Cristina González, James Hillis,
Xuhua Huang, Yifei Huang, Wenqi Jia, Weslie Khoo, Jáchym Kolár, Satwik Kottur, Anurag
Kumar, Federico Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava
Modhugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes,

197

Merey Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano,
Ruijie Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Yunyi Zhu, Pablo Arbeláez, David
Crandall, Dima Damen, Giovanni Maria Farinella, Bernard Ghanem, Vamsi Krishna Ithapu, C. V.
Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard A. Newcombe, Aude Oliva, Hyun Soo
Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo
Torresani, Mingfei Yan, and Jitendra Malik. Ego4d: Around the world in 3, 000 hours of egocentric
video. CoRR, abs/2110.07058, 2021. URL https://arxiv.org/abs/2110.07058.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2013. doi: 10.1109/ICASSP.2013.6638947.

Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings. In ACM Symposium
on Principles of Database Systems (PODS), 2007. doi: 10.1145/1265530.1265535.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. 2021.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your
hippo: State space models with generalized orthogonal basis projections. 2022.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder:
When the large language model meets programming – the rise of code intelligence, 2024. URL
https://arxiv.org/abs/2401.14196.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training, 2022.

Bernd Gutmann, Angelika Kimmig, Kristian Kersting, and Luc De Raedt. Parameter learning in
probabilistic databases: A least squares approach. volume 5211, pages 473–488, 09 2008. ISBN
978-3-540-87478-2. doi: 10.1007/978-3-540-87479-9_49.

Tengda Han, Weidi Xie, and Andrew Zisserman. Temporal alignment networks for long-term video.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2906–2916, 2022.

Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. Finding patterns in static analysis alerts:
improving actionable alert ranking. In International Conference on Mining Software Repositories,
2014.

Thomas Hayes, Songyang Zhang, Xi Yin, Guan Pang, Sasha Sheng, Harry Yang, Songwei Ge, Qiyuan
Hu, and Devi Parikh. Mugen: A playground for video-audio-text multimodal understanding and
generation, 2022.

198

Sarah Heckman and Laurie Williams. A model building process for identifying actionable static
analysis alerts. In International Conference on Software Testing, Verification and Validation, 2009.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control, 2022.

David Hin, Andrey Kan, Huaming Chen, and Muhammad Ali Babar. Linevd: Statement-level
vulnerability detection using graph neural networks. In International Conference on Mining
Software Repositories, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Connectionist temporal modeling for weakly
supervised action labeling. In Computer Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 137–153. Springer,
2016.

Jiani Huang, Calvin Smith, Osbert Bastani, Rishabh Singh, Aws Albarghouthi, and Mayur Naik.
Generating programmatic referring expressions via program synthesis. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 4495–4506. PMLR, 13–18 Jul 2020.

Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie Si. Scallop:
From probabilistic deductive databases to scalable differentiable reasoning. In Conference on
Neural Information Processing Systems (NeurIPS), 2021.

Jiani Huang, Ziyang Li, Mayur Naik, and Ser-Nam Lim. LASER: A neuro-symbolic framework for
learning spatio-temporal scene graphs with weak supervision. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=HEXtydywnE.

Liang Huang, He Zhang, Dezhong Deng, Kai Zhao, Kaibo Liu, David A Hendrix, and David H
Mathews. Linearfold: linear-time approximate rna folding by 5’-to-3’dynamic programming and
beam search. Bioinformatics, 35(14):i295–i304, 2019.

Drew A. Hudson and Christopher D. Manning. GQA: a new dataset for compositional question
answering over real-world images, 2019a. URL http://arxiv.org/abs/1902.09506.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019b. doi: 10.1109/CVPR.2019.00686.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang, and
Bo Zheng. Qwen2.5-coder technical report. arXiv preprint arXiv:2409.12186, September 2024.

199

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. Action genome: Actions as
compositions of spatio-temporal scene graphs. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10236–10247, 2020.

Jingwei Ji, Rishi Desai, and Juan Carlos Niebles. Detecting human-object relationships in videos.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 8106–8116,
2021.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. CoRR, abs/2102.05918, 2021.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-Bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why don’t software
developers use static analysis tools to find bugs? In International Conference on Software
Engineering, 2013.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross B. Girshick. CLEVR: A diagnostic dataset for compositional language and elementary visual
reasoning, 2016. URL http://arxiv.org/abs/1612.06890.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2901–2910, 2017. doi: 10.1109/cvpr.2017.215.

Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen, and Ivan Radiček.
Repair is nearly generation: Multilingual program repair with LLMs. In AAAI Conference on
Artificial Intelligence, 2023.

Yungbum Jung, Jaehwang Kim, Jaeho Shin, and Kwangkeun Yi. Taming false alarms from a domain-
unaware C analyzer by a Bayesian statistical post analysis. In International Static Analysis
Symposium, 2005.

Marek Justyna, Maciej Antczak, and Marta Szachniuk. Machine learning for rna 2d structure
prediction benchmarked on experimental data. Briefings in Bioinformatics, 24(3):bbad153, 2023.

Hong Jin Kang, Khai Loong Aw, and David Lo. Detecting false alarms from automatic static analysis

200

tools: How far are we? In International Conference on Software Engineering, 2022.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Yonit Kesten, Amir Pnueli, and Li-on Raviv. Algorithmic verification of linear temporal logic specifi-
cations. In Automata, Languages and Programming: 25th International Colloquium, ICALP’98
Aalborg, Denmark, July 13–17, 1998 Proceedings 25, pages 1–16. Springer, 1998.

Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and Mayur Naik.
Understanding the effectiveness of large language models in detecting security vulnerabilities.
arXiv preprint arXiv:2311.16169, 2023.

Elzbieta Kierzek, Xiaoju Zhang, Richard M Watson, Scott D Kennedy, Marta Szabat, Ryszard
Kierzek, and David H Mathews. Secondary structure prediction for rna sequences including
n6-methyladenosine. Nature communications, 13(1):1271, 2022.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolu-
tion or region supervision, 2021.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In NeurIPS, 2022.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper R. R. Uijlings, Ivan Krasin, Jordi Pont-Tuset,
Shahab Kamali, Stefan Popov, Matteo Malloci, Tom Duerig, and Vittorio Ferrari. The open
images dataset V4: unified image classification, object detection, and visual relationship detection
at scale. CoRR, abs/1811.00982, 2018.

Luigi Lavazza, Davide Tosi, and Sandro Morasca. An empirical study on the persistence of spotbugs
issues in open-source software evolution. In Quality of Information and Communications Technology,
2020.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 1998. doi: 10.1109/5.726791.

Jae Hee Lee, Michael Sioutis, Kyra Ahrens, Marjan Alirezaie, Matthias Kerzel, and Stefan Wermter.
Neuro-symbolic spatio-temporal reasoning. In Compendium of Neurosymbolic Artificial Intelligence,
pages 410–429. IOS Press, 2023.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. CODAMOSA: Es-
caping coverage plateaus in test generation with pre-trained large language models. In International

201

Conference on Software Engineering, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. 2022.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. Enhancing static analysis for practical
bug detection: An llm-integrated approach. In International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2024a.

Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun Qian, Jian Yang, Chengjie Wang, Ji-Lin
Li, and Feiyue Huang. DSFD: dual shot face detector, 2018. URL http://arxiv.org/abs/1810.10220.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq R. Joty, Caiming Xiong,
and Steven C. H. Hoi. Align before fuse: Vision and language representation learning with
momentum distillation. CoRR, abs/2107.07651, 2021a.

Kaixuan Li, Sen Chen, Lingling Fan, Ruitao Feng, Han Liu, Chengwei Liu, Yang Liu, and Yixiang
Chen. Comparison and evaluation on static application security testing (SAST) tools for Java. In
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2023a.

Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu. Closed
loop neural-symbolic learning via integrating neural perception, grammar parsing, and symbolic
reasoning. In ICML, 2020a. doi: 10.48550/arXiv.2006.06649.

Xin-Yi Li, Wei-Jun Lei, and Yu-Bin Yang. From easy to hard: Two-stage selector and reader for
multi-hop question answering, 2022a.

Xinghang Li, Di Guo, Huaping Liu, and Fuchun Sun. Embodied semantic scene graph generation. In
Aleksandra Faust, David Hsu, and Gerhard Neumann, editors, Proceedings of the 5th Conference
on Robot Learning, volume 164 of Proceedings of Machine Learning Research, pages 1585–1594.
PMLR, 08–11 Nov 2022b.

Yi Li, Shaohua Wang, and Tien Nhut Nguyen. Vulnerability detection with fine-grained interpre-
tations. In Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021b.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling? 2022c.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, Sujuan Wang, and Jialai
Wang. Sysevr: A framework for using deep learning to detect software vulnerabilities. IEEE
Transactions on Dependable and Secure Computing, 19:2244–2258, 2021c.

202

Zhuguo Li, Deqing Zou, Shouhuai Xu, Zhaoxuan Chen, Yawei Zhu, and Hai Jin. VulDeeLocator: A
deep learning-based fine-grained vulnerability detector. IEEE Transactions on Dependable and
Secure Computing, 19:2821–2837, 2020b.

Ziang Li, Saikat Dutta, and Mayur Naik. Iris: Llm-assisted static analysis for detecting security
vulnerabilities, 2025. URL https://arxiv.org/abs/2405.17238.

Ziyang Li, Aravind Machiry, Binghong Chen, Mayur Naik, Ke Wang, and Le Song. Arbitrar:
User-guided api misuse detection. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1400–1415, 2021d. doi: 10.1109/SP40001.2021.00090.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming. In
PLDI, jun 2023b. doi: 10.1145/3591280. URL https://doi.org/10.1145/3591280.

Ziyang Li, Jiani Huang, Jason Liu, and Mayur Naik. Neurosymbolic Programming in Scallop:
Principles and Practice, volume 8 of Foundations and Trends in Programming Languages. now
Publishers, 2024b. doi: 10.1561/2500000059.

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker, Rajeev
Alur, and Mayur Naik. Relational programming with foundational models. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(9):10635–10644, Mar. 2024c. doi: 10.1609/aaai.v38i9.28934.
URL https://ojs.aaai.org/index.php/AAAI/article/view/28934.

Nanhao Liang, Yong Liu, Wenfang Sun, Yingwei Xia, and Fan Wang. Ckt-rcm: Clip-based knowledge
transfer and relational context mining for unbiased panoptic scene graph generation. In ICASSP
2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing, pages
3570–3574. IEEE, 2024.

Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. An empirical study on the effectiveness
of static C code analyzers for vulnerability detection. In International Symposium on Software
Testing and Analysis, 2022.

Hengyue Liu, Ning Yan, Masood Mortazavi, and Bir Bhanu. Fully convolutional scene graph
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11546–11556, June 2021.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan Li,
Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection, 2024. URL https://arxiv.org/abs/2303.05499.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. 2019.

Benjamin Livshits, Aditya V. Nori, Sriram K Rajamani, and Anindya Banerjee. Merlin: Specification

203

inference for explicit information flow problems. In Conference on Programming Language Design
and Implementation, 2009.

Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph
Flamm, Peter F Stadler, and Ivo L Hofacker. Viennarna package 2.0. Algorithms for molecular
biology, 6:1–14, 2011.

Cewu Lu, Ranjay Krishna, Michael S. Bernstein, and Li Fei-Fei. Visual relationship detection with
language priors. CoRR, abs/1608.00187, 2016.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models, 2024. URL https://arxiv.org/abs/2310.12931.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Neural probabilistic logic programming in deepproblog. Artificial Intelligence, 298, 2021. doi:
10.1016/j.artint.2021.103504.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision.
2019.

Joanna Materzynska, Tete Xiao, Roei Herzig, Huijuan Xu, Xiaolong Wang, and Trevor Darrell.
Something-else: Compositional action recognition with spatial-temporal interaction networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1049–1059, 2020.

David H Mathews, Jeffrey Sabina, Michael Zuker, and Douglas H Turner. Expanded sequence
dependence of thermodynamic parameters improves prediction of rna secondary structure. Journal
of molecular biology, 288(5):911–940, 1999.

David H Mathews, Walter N Moss, and Douglas H Turner. Folding and finding rna secondary
structure. Cold Spring Harbor perspectives in biology, 2(12):a003665, 2010.

Nick McKenna, Tianyi Li, Liang Cheng, Mohammad Javad Hosseini, Mark Johnson, and Mark
Steedman. Sources of hallucination by large language models on inference tasks, 2023.

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisser-
man. End-to-end learning of visual representations from uncurated instructional videos. CoRR,
abs/1912.06430, 2019.

Toki Migimatsu and Jeannette Bohg. Grounding predicates through actions. In 2022 International

204

Conference on Robotics and Automation, pages 3498–3504. IEEE, 2022.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang,
Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. Simple open-vocabulary object detection with
vision transformers, 2022.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel.
Learning reasoning strategies in end-to-end differentiable proving. In ICML, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540), 2015. doi: 10.1038/nature14236.

Sayak Nag, Kyle Min, Subarna Tripathi, and Amit K. Roy Chowdhury. Unbiased scene graph
generation in videos, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna
Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John
Schulman. Webgpt: Browser-assisted question-answering with human feedback, 2021. URL
https://arxiv.org/abs/2112.09332.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert, 2019.

Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Azizzadenesheli, Anima Anandkumar, Yisong
Yue, and Soon-Jo Chung. Neural-fly enables rapid learning for agile flight in strong winds.
Science Robotics, 7(66), May 2022. ISSN 2470-9476. doi: 10.1126/scirobotics.abm6597. URL
http://dx.doi.org/10.1126/scirobotics.abm6597.

OpenAI. Chatgpt plugins, 2023a. URL https://openai.com/index/chatgpt-plugins/. Accessed: 2024-
10-27.

OpenAI. Gpt-4 technical report, 2023b.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty

205

Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin,
Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam
Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob
McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina,
Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco,
Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair,
Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang,
Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista
Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam
Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli,
Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman,
Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam,
Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth
Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone,
Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost
in translation: A study of bugs introduced by large language models while translating code. In
International Conference on Software Engineering, 2024.

Amir Pnueli. The temporal logic of programs. 18th Annual Symposium on Foundations of Computer
Science (sfcs 1977), pages 46–57, 1977.

206

Xiangyun Qiu. Robust rna secondary structure prediction with a mixture of deep learning and
physics-based experts. Biology Methods and Protocols, 10(1):bpae097, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2016. doi: 10.18653/v1/D16-1264.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
Sam 2: Segment anything in images and videos, 2024. URL https://arxiv.org/abs/2408.00714.

Chandan K. Reddy, Lluís Màrquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopad-
hyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. Shopping queries dataset: A large-scale
esci benchmark for improving product search, 2022.

Joris Renkens, Guy Van den Broeck, and Siegfried Nijssen. k-optimal: A novel approximate
inference algorithm for ProbLog. Machine Learning, 89(3):215–231, July 2012. doi: 10.1007/
s10994-012-5304-9. URL http://starai.cs.ucla.edu/papers/RenkensMLJ12.pdf.

Jessica S Reuter and David H Mathews. Rnastructure: software for rna secondary structure prediction
and analysis. BMC bioinformatics, 11:1–9, 2010.

Alexander Richard, Hilde Kuehne, Ahsan Iqbal, and Juergen Gall. Neuralnetwork-viterbi: A
framework for weakly supervised video learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 7386–7395, 2018.

Elena Rivas and Sean R Eddy. A dynamic programming algorithm for rna structure prediction
including pseudoknots. Journal of molecular biology, 285(5):2053–2068, 1999.

J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, January 1965. ISSN 0004-5411. doi: 10.1145/321250.321253. URL
https://doi.org/10.1145/321250.321253.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

207

Dorsa Sadigh, Eric S Kim, Samuel Coogan, S Shankar Sastry, and Sanjit A Seshia. A learning based
approach to control synthesis of markov decision processes for linear temporal logic specifications.
In 53rd IEEE Conference on Decision and Control, pages 1091–1096. IEEE, 2014.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: Smaller, faster, cheaper and lighter. 2019.

Kengo Sato, Manato Akiyama, and Yasubumi Sakakibara. Rna secondary structure prediction using
deep learning with thermodynamic integration. Nature Communications, 12(1):941, 2021. ISSN
2041-1723. doi: 10.1038/s41467-021-21194-4. URL https://doi.org/10.1038/s41467-021-21194-4.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023.

Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. On fast large-scale program
analysis in datalog. In International Conference on Compiler Construction (CC), 2016. doi:
10.1145/2892208.2892226.

Semgrep. The Semgrep platform. https://semgrep.dev/, 2023.

Xindi Shang, Tongwei Ren, Jingfan Guo, Hanwang Zhang, and Tat-Seng Chua. Video visual
relation detection. In Proceedings of the 25th ACM international conference on Multimedia, pages
1300–1308, 2017.

Xindi Shang, Donglin Di, Junbin Xiao, Yu Cao, Xun Yang, and Tat-Seng Chua. Annotating objects
and relations in user-generated videos. In Proceedings of the 2019 on International Conference on
Multimedia Retrieval, pages 279–287. ACM, 2019.

Hikaru Shindo, Manuel Brack, Gopika Sudhakaran, Devendra Singh Dhami, Patrick Schramowski,
and Kristian Kersting. Deisam: Segment anything with deictic prompting. arXiv preprint
arXiv:2402.14123, 2024.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–503, 2016. URL
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

Jaswinder Singh, Jack Hanson, Kuldip Paliwal, and Yaoqi Zhou. Rna secondary structure predic-
tion using an ensemble of two-dimensional deep neural networks and transfer learning. Nature
communications, 10(1):5407, 2019.

Jaswinder Singh, Kuldip Paliwal, Tongchuan Zhang, Jaspreet Singh, Thomas Litfin, and Yaoqi Zhou.

208

Improved rna secondary structure and tertiary base-pairing prediction using evolutionary profile,
mutational coupling and two-dimensional transfer learning. Bioinformatics, 37(17):2589–2600,
2021.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A
diagnostic benchmark for inductive reasoning from text. 2019.

Michael F. Sloma and David H. Mathews. Exact calculation of loop formation probability
identifies folding motifs in rna secondary structures. RNA, 22:1808 – 1818, 2016. URL
https://api.semanticscholar.org/CorpusID:365048.

Snyk.io, 2024. https://snyk.io.

Livio Baldini Soares, Nicholas Fitzgerald, Jeffrey Ling, and Tom Kwiatkowski. Matching the blanks:
Distributional similarity for relation learning. In ACL, 2019.

SonarQube, 2024. https://www.sonarsource.com/products/sonarqube.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
pre-training for language understanding, 2020.

Robert C Spitale and Danny Incarnato. Probing the dynamic rna structurome and its functions.
Nature Reviews Genetics, 24(3):178–196, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, and et al. Beyond
the imitation game: Quantifying and extrapolating the capabilities of language models, 2023.

Benjamin Steenhoek, Hongyang Gao, and Wei Le. Dataflow analysis-inspired deep learning for
efficient vulnerability detection. arXiv preprint arXiv:2212.08108, 2023.

Benjamin Steenhoek, Md Mahbubur Rahman, Monoshi Kumar Roy, Mirza Sanjida Alam, Earl T Barr,
and Wei Le. A comprehensive study of the capabilities of large language models for vulnerability
detection. arXiv preprint arXiv:2403.17218, 2024.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videobert: A
joint model for video and language representation learning. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 7464–7473, 2019.

Jennifer J. Sun, Megan Tjandrasuwita, Atharva Sehgal, Armando Solar-Lezama, Swarat Chaudhuri,
Yisong Yue, and Omar Costilla-Reyes. Neurosymbolic programming for science, 2022. URL
https://arxiv.org/abs/2210.05050.

Yu Sun, Qian Bao, Wu Liu, Tao Mei, and Michael J. Black. Trace: 5d temporal regression of avatars
with dynamic cameras in 3d environments. arXiv preprint arXiv:2306.02850, 2023.

209

Marta Szabat, Martina Prochota, Ryszard Kierzek, Elzbieta Kierzek, and David H Mathews. A
test and refinement of folding free energy nearest neighbor parameters for rna including n6-
methyladenosine. Journal of Molecular Biology, 434(18):167632, 2022.

Hao Tan and Mohit Bansal. LXMERT: learning cross-modality encoder representations from
transformers. 2019.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. 2020.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris
Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary
Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra,
Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,
Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien
M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom,
Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee
Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan,
Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet,
Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert
Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024.

210

URL https://arxiv.org/abs/2408.00118.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. In ACL,
2019.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio Savarese, and Steven C.H. Hoi. Plug-and-
play VQA: Zero-shot VQA by conjoining large pretrained models with zero training. In Yoav
Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Findings of the ACL: EMNLP, December
2022. doi: 10.18653/v1/2022.findings-emnlp.67. URL https://aclanthology.org/2022.findings-
emnlp.67.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models, 2023.

Douglas H Turner and David H Mathews. Nndb: the nearest neighbor parameter database for
predicting stability of nucleic acid secondary structure. Nucleic acids research, 38(suppl_1):
D280–D282, 2010.

Guy Van den Broeck, Wannes Meert, and Adnan Darwiche. Skolemization for weighted first-order
model counting. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI), pages 1319–1325. AAAI Press, 2013.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. 2017.

Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu, Xiaoheng Xie, and Xiangyu Zhang. LLMDFA:
Analyzing dataflow in code with large language models. In Neural Information Processing Systems,
2024a.

Ning Wang, Jiang Bian, Yuchen Li, Xuhong Li, Shahid Mumtaz, Linghe Kong, and Haoyi Xiong.
Multi-purpose rna language modelling with motif-aware pretraining and type-guided fine-tuning.
Nature Machine Intelligence, pages 1–10, 2024b.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning (ICML), 2019.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

Wenhao Wu, Zhun Sun, and Wanli Ouyang. Revisiting classifier: Transferring vision-language

211

models for video recognition, 2023a. URL https://arxiv.org/abs/2207.01297.

Wenhao Wu, Xiaohan Wang, Haipeng Luo, Jingdong Wang, Yi Yang, and Wanli Ouyang. Bidirec-
tional cross-modal knowledge exploration for video recognition with pre-trained vision-language
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 6620–6630, 2023b.

Yinjun Wu, Mayank Keoliya, Kan Chen, Neelay Velingker, Ziyang Li, Emily J Getzen, Qi Long,
Mayur Naik, Ravi B Parikh, and Eric Wong. Discret: Synthesizing faithful explanations for
treatment effect estimation, 2024. URL https://arxiv.org/abs/2406.00611.

Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated
program repair via zero-shot learning. In Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2022.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era of
large pre-trained language models. In International Conference on Software Engineering, 2023.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Fuzz4all:
Universal fuzzing with large language models. In International Conference on Software Engineering,
2024.

Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotemporal
feature learning: Speed-accuracy trade-offs in video classification. In European Conference on
Computer Vision (ECCV), 2018. doi: 10.1007/978-3-030-01267-0_19.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Florian Metze, Luke
Zettlemoyer, and Christoph Feichtenhofer. Videoclip: Contrastive pre-training for zero-shot
video-text understanding. arXiv preprint arXiv:2109.14084, 2021.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
function for deep learning under weak supervision. In Neural Information Processing Systems,
2017. URL https://api.semanticscholar.org/CorpusID:9967833.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
function for deep learning with symbolic knowledge. In International Conference on Machine
Learning (ICML), 2018.

Li Xu, Haoxuan Qu, Jason Kuen, Jiuxiang Gu, and Jun Liu. Meta spatio-temporal debiasing for
video scene graph generation. arXiv preprint arXiv:2207.11441, 2022a.

Ziwei Xu, Yogesh S Rawat, Yongkang Wong, Mohan Kankanhalli, and Mubarak Shah. Don’t pour
cereal into coffee: Differentiable temporal logic for temporal action segmentation. In Conference
on Neural Information Processing Systems (NeurIPS), 2022b.

212

Aidan ZH Yang, Ruben Martins, Claire Le Goues, and Vincent J Hellendoorn. Large language
models for test-free fault localization. arXiv preprint arXiv:2310.01726, 2023a.

Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for scene graph
generation. In Proceedings of the European conference on computer vision, pages 670–685, 2018a.

Jingkang Yang, Wenxuan Peng, Xiangtai Li, Zujin Guo, Liangyu Chen, Bo Li, Zheng Ma, Kaiyang
Zhou, Wayne Zhang, Chen Change Loy, and Ziwei Liu. Panoptic video scene graph generation,
2023b.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018b.

Yuan Yao, Ao Zhang, Xu Han, Mengdi Li, Cornelius Weber, Zhiyuan Liu, Stefan Wermter, and
Maosong Sun. Visual distant supervision for scene graph generation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 15816–15826, October 2021.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
symbolic vqa: Disentangling reasoning from vision and language understanding. In Conference on
Neural Information Processing Systems (NeurIPS), 2018.

Youngmin Yi, Chao-Yue Lai, and Slav Petrov. Efficient parallel cky parsing using gpus. Journal of
Logic and Computation, 24(2):375–393, 2014. doi: 10.1093/logcom/exs078.

Zhangyue Yin, Yuxin Wang, Yiguang Wu, Hang Yan, Xiannian Hu, Xinyu Zhang, Zhao Cao,
Xuanjing Huang, and Xipeng Qiu. Rethinking label smoothing on multi-hop question answering,
2022.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao. Activitynet-qa:
A dataset for understanding complex web videos via question answering. CoRR, abs/1906.02467,
2019. URL http://arxiv.org/abs/1906.02467.

Luciano I Zablocki, Leandro A Bugnon, Matias Gerard, Leandro Di Persia, Georgina Stegmayer,
and Diego H Milone. Comprehensive benchmarking of large language models for rna secondary
structure prediction. Briefings in Bioinformatics, 26(2):bbaf137, 2025.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training, 2023.

Yong Zhang, Yingwei Pan, Ting Yao, Rui Huang, Tao Mei, and Chang-Wen Chen. Learning to
generate language-supervised and open-vocabulary scene graph using pre-trained visual-semantic
space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2915–2924, 2023.

213

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
instruction tuning with synthetic data, 2024. URL https://arxiv.org/abs/2410.02713.

Yaqin Zhou, Shangqing Liu, J. Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph neural networks. In Neural
Information Processing Systems, 2019.

Chang Zhu, Ziyang Li, Anton Xue, Ati Priya Bajaj, Wil Gibbs, Yibo Liu, Rajeev Alur,
Tiffany Bao, Hanjun Dai, Adam Doupé, Mayur Naik, Yan Shoshitaishvili, Ruoyu Wang,
and Aravind Machiry. TYGR: Type inference on stripped binaries using graph neural
networks. In 33rd USENIX Security Symposium (USENIX Security 24), pages 4283–4300,
Philadelphia, PA, August 2024. USENIX Association. ISBN 978-1-939133-44-1. URL
https://www.usenix.org/conference/usenixsecurity24/presentation/zhu-chang.

Guangming Zhu, Liang Zhang, Youliang Jiang, Yixuan Dang, Haoran Hou, Peiyi Shen, Mingtao Feng,
Xia Zhao, Qiguang Miao, Syed Afaq Ali Shah, et al. Scene graph generation: A comprehensive
survey. arXiv preprint arXiv:2201.00443, 2022.

Michael Zuker and Patrick Stiegler. Optimal computer folding of large rna sequences using thermo-
dynamics and auxiliary information. Nucleic acids research, 9(1):133–148, 1981.

214

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Basics of Programming in Scallop
	Core Reasoning Provenance Framework
	Programming with Scallop and Foundation Models
	Scallop Benchmarks and Evaluations
	Application: Video Scene Graph Generation
	Application: Security Vulnerability Detection
	Application: RNA Secondary Structure Prediction
	Conclusions
	BIBLIOGRAPHY

