
LEARNING-AIDED PROGRAM SYNTHESIS AND VERIFICATION

Xujie Si

A DISSERTATION
in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in

Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2020

Supervisor of Dissertation

Mayur Naik, Professor, Computer and Information Science

Graduate Group Chairperson

Mayur Naik, Professor, Computer and Information Science

Dissertation Committee:

Rajeev Alur, Zisman Family Professor of Computer and Information Science

Osbert Bastani, Research Assistant Professor of Computer and Information Science

Steve Zdancewic, Professor of Computer and Information Science

Le Song, Associate Professor in College of Computing, Georgia Institute of Technology



LEARNING-AIDED PROGRAM SYNTHESIS AND VERIFICATION

COPYRIGHT

2020

Xujie Si

Licensed under a Creative Commons Attribution 4.0 License.

To view a copy of this license, visit:

http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/


Dedicated to my parents and brothers.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Mayur Naik, for providing a

constant source of wisdom, guidance, and support over the six years of my Ph.D.

journey. Were it not for his mentorship, I would not be here today.

My thesis committee consisted of Rajeev Alur, Osbert Bastani, Steve Zdancewic,

and Le Song: I thank them for the careful reading of this document and suggestions

for improvement. In addition to providing valuable feedback on this dissertation,

they have also provided extremely helpful advice over the years on research, com-

munication, networking, and career planning.

I would like to thank all my collaborators, particularly Hanjun Dai, Mukund

Raghothaman, and Xin Zhang, with whom I have had numerous fruitful discus-

sions, which finally lead to this thesis. I deeply enjoyed each research project during

my Ph.D. study, which would not be possible without a group of amazing collab-

orators including Aws Albarghouthi, Paraschos Koutris from the University of Wis-

consin–Madison, Insu Yun, Taesoo Kim, Yuan Yang, Binghong Chen from Georgia

Tech, Changwoo Min from Virgina Tech, Yeongjin Jang from Oregon State Univer-

sity, Radu Grigore from the University of Kent, Vasco Manquinho, Mikoláš Janota

from the University of Lisbon, and Alexey Ignatiev from Monash University.

I am grateful to the wonderful group of PhDs and postdocs Mayur has assem-

bled. I thank Mukund Raghothaman for great advice on writing and presentation,

Kihong Heo and Woosuk Lee for sharing skills on quickly building strong research

prototypes, Xin Zhang and Sulekha Kulkarni for kind encouragement during paper

rejections, Elizabeth Dinella, Pardis Pashakhanloo, Jiani Huang, and Ziyang Li for

timely feedback before paper submissions.

I enjoyed many presentations and discussions during the weekly seminars from

Penn PLClub and DSL, which also provide invaluable opportunities for me to prac-

iv



tice conference talks. I appreciate the insightful feedback and helpful advice on pre-

sentation from Benjamin Pierce, Stephanie Weirich, Steve Zdancewic, Boon Thau

Loo, Zack Ives, Susan Davidson, and Val Tannen.

I thank all organizers of TGIFs, where I had the the most relaxing moments in

a week and enjoyed many interesting conversations with Jennifer Paykin, Leonidas

Lampropoulos, Antal Spector-Zabusky, Caleb Stanford, Richard Zhang, Omar Navarro

Leija, Li-yao Xia, Paul He, and Anton Xue.

I would like to thank my friends at Penn or near Philly: Meng Xu, Yao Li, Yishuai

Li, Qizhen Zhang, YinjunWu, Yi Zhang, Haoxian Chen, Hui Lyu, Hua Li, and Yiyuan

Zhao. Hanging out with them in the weekends for food or movie or hiking was the

perfect way to release pressure and stay optimistic when facing various challenges.

I spent an exceptional final year. I am grateful to the wonderful Deep Learning

team lead by Oriol Vinyals and Robust AI team lead by Pushmeet Kohli at DeepMind,

where I had a fantastic summer working with awesome colleagues Yujia Li, Vinod

Nair, and Felix Gimeno. I appreciate the warm support from Arie Gurfinkel in the

cold winter, his critical feedback which helped significantly through the tough job

search process, and his wonderful students Nham Le and Hari Govind.

It is my tremendous blessing to meet my girlfriend, Ningning Xie, who made

the second half of my Ph.D. journey wonderful and worthwhile. I am deeply in-

debted to Ningning for her unwavering support, heartful companionship, and wise

suggestions during the hardest moment.

Last but not least, I thank my parents and brothers for their love and support

during every stage of my life. For them, no words of gratitude will ever be enough.

I dedicate this thesis to them.

v



ABSTRACT

LEARNING-AIDED PROGRAM SYNTHESIS AND VERIFICATION

Xujie Si

Mayur Naik

The enormous rise in the scale, scope, and complexity of software projects has

created a thriving marketplace for program reasoning tools. Despite broad adop-

tion by industry, developing such tools remains challenging. For each project, spe-

cialized heuristics or analysis rules have to be carefully designed and customized,

which requires non-trivial expertise. Recently machine learning, especially deep

learning, achieved remarkable successes in many challenging areas such as image

recognition and strategy game playing. Inspired by these successes, this thesis is

concerned with the following question: can program reasoning be effectively learned

and automatically improved over time?

This thesis demonstrates that learning-based techniques can be a new driving

force for tackling fundamental program reasoning challenges, particularly, program

synthesis and program verification. First, this thesis presents a scalable inductive

logic programming (ILP) framework, Difflog, which can synthesize a rich set of

logical rules used in various important domains like program analysis, relational

query, and knowledge discovery. Unlike classic program synthesis techniques, which

heavily rely on manually designed heuristics or symbolic constraint solvers, Difflog

leverages efficient gradient-based approaches, which is possible due to a novel nu-

merical relaxation of logical rules. Second, this thesis presents an end-to-end deep

learning framework for program verification, Code2Inv, which directly maps a piece

of source code to its related proof without requiring any annotations from human

experts. Code2Inv is inspired by the recent AI breakthrough, AlphaGo; however, un-

like the two dimensional Go game board, programs have sophisticated structures

and correct proofs are extremely rare, posing unique challenges on representation

vi



learning and reinforcement learning. To address these challenges, we leverage ad-

vances of graph neural networks and develop a counterexample-based smooth re-

ward mechanism. Code2Inv outperforms state-of-the-art approaches that are based

on manually designed heuristics or decision tree learning, and the learned policy by

Code2Inv can generalize to unseen programs. Furthermore, Code2Inv can be flexi-

bly customized as a Constrained Horn Clause (CHC) solver as well as a meta-solver

for syntax-guided program synthesis tasks.

vii



TABLE OF CONTENTS

1 Introduction 1

1.1 The New Driving Force for Program Reasoning . . . . . . . . . . . . 1

1.2 A Learning-aided Reasoning Framework . . . . . . . . . . . . . . . 3

1.3 Contributions and Organizations . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Numerical Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Applications of Rule Learning 16

3.1 Promising Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 A Case Study on Detecting API Misuses . . . . . . . . . . . . . . . . 26

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Learning-aided Rule Synthesis 32

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 The Datalog Synthesis Problem . . . . . . . . . . . . . . . . . . . . 34

4.3 Systematic Candidate Rule Generation . . . . . . . . . . . . . . . . 37

4.4 Rule Selection by Bi-directional Search . . . . . . . . . . . . . . . . 41

4.5 A Smoothed Interpretation for Datalog . . . . . . . . . . . . . . . . 47

4.6 Formulating the Optimization Problem . . . . . . . . . . . . . . . . 51

4.7 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



5 Deep Reinforcement Learning for Program Verification 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 End-to-End Reasoning Framework . . . . . . . . . . . . . . . . . . . 71

5.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Intriguing Extensions of Code2Inv 87

6.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Code2Inv as a CHC solver . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Meta-Learning for Syntax-guided Synthesis . . . . . . . . . . . . . 94

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Future Work 101

8 Conclusion 104

A Proofs and Artifacts 106

A.1 Proofs of Properties in Chapter 4 . . . . . . . . . . . . . . . . . . . 106

A.2 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



LIST OF TABLES

3.1 List of new bugs discovered by APISan. We sent patches of all 76 new

bugs; 69 bugs have been already confirmed by corresponding devel-

opers (marked Xin the rightmost column); 7 bugs (marked P in the

rightmost column) have not been confirmed yet. APISan analyzed

92 million LoC and found one bug per 1.2 million LoC. . . . . . . . 30

4.1 Benchmark characteristics. . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The performance results of ALPS, Metagol and Zaatar; the timeout

limit is 3 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Characteristics of benchmarks and performance of Difflog compared

to ALPS. Rel shows the number of relations. The columns titled Rule

represent the number of expected and candidate rules. Tuple shows

the number of input and output tuples. Iter and Smpl report the

number of iterations and MCMC samplings. Time shows the running

time of Difflog and ALPS in seconds. . . . . . . . . . . . . . . . . . 60

4.4 Effectiveness of MCMC sampling in terms of the best and median

running times and the number of timeouts observed over 32 inde-

pendent runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Ablation study for different configurations of Code2Inv. . . . . . . . 82

6.1 Number of instances solved using: 1) EUSolver, 2) CVC4, 3) ESym-

bolic, and 4) MetaL (out-of-box). For each solver, the maximum

time in solving an instance and the average and median time over

all solved instances are also shown below. . . . . . . . . . . . . . . 97

A.1 Research artifact links. . . . . . . . . . . . . . . . . . . . . . . . . . 113

x



LIST OF ILLUSTRATIONS

1.1 Comparison of the counterexample guided program synthesis frame-

work and our learning-aided reasoning framework. . . . . . . . . . 4

2.1 An example of numerical relaxation . . . . . . . . . . . . . . . . . . 10

2.2 Plots of frequently used non-linear transformation functions. . . . . 11

3.1 An example of misusing OpenSSL APIs . . . . . . . . . . . . . . . . 24

3.2 Overview of APISan’s architecture and workflow. . . . . . . . . . . 27

3.3 A missing unlock bug in Linux found by APISan. . . . . . . . . . . . 29

3.4 A memory leak vulnerability found by APISan in OpenSSL 1.1.0-

pre3-dev. When a crypto key fails to initialize, the allocated context

(i.e., gctx) should be freed. Otherwise, a memory leak will occur.

APISan infers correct semantic usage of the API from (b) other uses

of the API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Example of a family tree (a), and its representation as a set of input

tuples (b). An edge from x to y indicates that x is a parent of y, and is

represented symbolically as the tuple parent(x, y). The user wishes

to realize the relation samegen(x, y), indicating the fact that x and y

occur are from the same generation of the family (c). . . . . . . . . 34

4.2 Version space in each iteration (red/yellow nodes represent most-

general/specific programs in the current iteration; purple nodes rep-

resent programs that are both most general and most specific in the

current iteration; and grey nodes represent programs that have been

evaluated). An arrow from u to v means that program u is more

general than program v. . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



4.3 Examples of derivation trees, τ1 (a) and τ2 (b) induced by various

combinations of candidate rules, applied to the EDB of familial rela-

tionships from Figure 4.1. The input tuples are shaded in grey. We

present two derivation trees for the conclusion samegen(Will, Ann) us-

ing rules r1 and r2 in Section 4.2.1. . . . . . . . . . . . . . . . . . . 49

4.4 The rule rs, “someone(x, y) :− samegen(y, x)”, induces cycles in the

clauses obtained at fixpoint. When unrolled into derivation trees

such as those in Figure 4.3, these cycles result in the production of

infinitely many derivation trees for a single output tuple. . . . . . . 50

4.5 Distribution of Difflog’s running time from 32 parallel runs. The

numbers on top represents the number of timeouts. Green circles

represent the running time of ALPS. . . . . . . . . . . . . . . . . . 61

4.6 Running time distributions (inminutes) for downcast and 2-call-site

with different number of templates. . . . . . . . . . . . . . . . . . . 63

4.7 Performance of Difflog on andersen with different sizes of data: (a)

the distribution of number of iterations, (b) the distribution of run-

ning time (in seconds). . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 A program with a correctness assertion and a loop invariant that suf-

fices to prove it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 An example from our benchmarks. “*” denotes non-deterministic

choice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Overall framework of neuralizing loop invariant inference. . . . . . 73

5.4 Diagram for source code graph as external structured memory. We

convert a given program into a graph G, where nodes correspond

to syntax elements, and edges indicate the control flow, syntax tree

structure, or variable linking. We use embedding neural network to

get structured memory f(G). . . . . . . . . . . . . . . . . . . . . . 75

xii



5.5 Comparison of Code2Inv with state-of-the-art solvers on benchmark

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 (a) and (b) are verification costs of pre-trained model and untrained

model; (c) and (d) are attention highlights for two example programs. 83

6.1 Semantic domains of Code2Inv. . . . . . . . . . . . . . . . . . . . 88

6.2 A snippet of CHC instance and its corresponding degenerate graph

representation, i.e. node representation. . . . . . . . . . . . . . . . 92

6.3 Comparison of solution naturalness. . . . . . . . . . . . . . . . . . . 94

6.4 An example of a circuit synthesis task from the 2017 SyGuS compe-

tition. Given the original program specification which is represented

as an abstract syntax tree (left), the solver is tasked to synthesize a

new circuit f (right). The synthesis process is specified by the syntac-

tic constraintG (top), and the semantic constraint (bottom) specifies

that f must have functionality equivalent to the original program. . 95

6.5 Graph representation of a cryptographic circuit synthesis task. Logi-

cal specification and grammar are jointly represented as a graph. . 96

6.6 Performance improvement withmeta-learning. (a) Accumulated num-

ber of candidates generated in order to solve 20%, 40%, and 60%

of the testing tasks; and (b) speedup distribution over individual in-

stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiii



CHAPTER 1

INTRODUCTION

1.1 The New Driving Force for Program Reasoning

The enormous rise in the scale, scope, and complexity of software projects has cre-

ated a thriving marketplace for program reasoning tools, which plays a crucial role

in modern software development for high reliability. Program testing, analysis, and

verification tools have been widely adopted in many large IT companies. Promi-

nent examples are SLAM [25], which is a software model checker for Windows de-

vice drivers from Microsoft, Infer [39], which is a multiple language static analyzer

from Facebook, Tricorder [147], which is a static analyzer deployed on 2-billion-

line codebase [138] from Google, CBMC [47], which is a bounded model checker

from Amazon for verifying boot code in AWS data centers, and many other success-

ful applications [33, 52, 108]. There is also an increasing trend of applying rigorous

reasoning tools in popular web services [45] and autonomous vehicles [37].

Despite broad adoption by industry, developing such program reasoning tools

remains challenging. Particularly, specialized heuristics or rules have to be carefully

designed and customized for each project, which requires non-trivial expertise. For

instance, static analysis tools are essentially a large body of abstract domains and

logical rules [170, 130, 184] handcrafted by experts. And, due to undecidability,

such logical rules have to be specialized from project to project in order to maintain

a reasonable accuracy. For program verification tools, the situation is even worse

since not only the designers but also the users have to be highly-skilled and spend

tremendous effort in supplying non-trivial specifications or annotations [107, 52,

108]. The lack of expertise prevents these reasoning tools from being included in

1



the development toolbox of average programmers.

To address this issue, many synthesis and automated verification techniques

have been developed. Program synthesis has made significant progresses over the

past decade [105, 172, 83, 14, 17] and has proven to be successful for helping end-

users on tasks like Excel data manipulation [78, 106, 136, 28, 82]. However, how

synthesis could help professional programmers or even experts of program analysis

and verification has been rarely studied. This is due to a number of fundamen-

tal challenges like expressiveness as well as scalability of synthesized programs,

adaption to evolving requirements or various domains, and resolving underspeci-

fied or even conflicted constraints. Automated verification, especially concerning

functional correctness, faces the exact same set of challenges. Automated verifi-

cation has largely relied on and benefited from symbolic constraint solvers, par-

ticularly SAT/SMT solvers [165, 62, 56, 142], which enable efficient validation of

a candidate proof; however, proposing a candidate proof is essentially a challeng-

ing synthesis problem. Thus, for both synthesis and verification tasks, certain kind

of intervention (or creativity) from human experts seems unavoidable. This raises

a natural and philosophical question: can human-level creativity or intelligence be

automated?

Surprisingly, recent advances in machine learning have overturned traditional

wisdom in many challenging areas where human expertise is believed to be nec-

essary. In computer vision, automatically learned features [102, 87] turn out to

be much more effective than hand-engineered ones that have been dominant for

more than two decades [190, 85]. In strategic games like Shogi, Chess and Go,

machine learning approaches [166, 167, 168] have successfully defeated human

world champions with a fairly large margin. Machine learning has also achieved

many other astonishing successes [186, 155, 27, 92, 120] in areas like machine

translation, physical simulation, protein folding, radiology, pharmacy, to name a

few. All these recent successes indicate that human-level creativity or intelligence

2



can be automated or even surpassed.

This thesis hypothesizes that learning will be the new driving force for program

reasoning tasks, which have heavily relied on either SAT/SMT solving or domain-

specific heuristics from human experts, and have only witnessed successes in few

places that can afford to enough experts. To have a broad impacts on general soft-

ware development, the new trend of program reasoning will be learning-driven

approaches, which automatically adapt to new settings and discover effective rules,

heuristics, or policies over interactions with new environments. This thesis demon-

strates promising results of learning-based techniques on tackling fundamental pro-

gram reasoning challenges, particularly, program synthesis and verification.

This thesis presents a learning-aided framework and highlights two particular

instantiations, Difflog and Code2Inv. Difflog is an inductive logic programming

(ILP) engine leveraging efficient gradient-based methods and numerical relaxation

for learning logical rules, which is fundamentally different from classic Prolog-based

ILP engines. Code2Inv leverages deep learning models for loop invariant genera-

tion. In the rest of this thesis, we illustrate how various learning techniques can

be synergistically integrated with classic synthesis and verification approaches, and

show that the learning-aided design enables a general solution to many different

problems.

1.2 A Learning-aided Reasoning Framework

Our learning-aided reasoning framework is based on the standard program syn-

thesis framework, counter-example guided inductive synthesis (CEGIS) [13, 172].

The key insight is to embed learning techniques into this classic framework, which

enables new potentials provided by learning and at the same time leverages the

accumulated wisdom in program synthesis community.

Figure 1.1a depicts the CEGIS framework, which consists of a synthesizer and

3



OracleSynthesizer

candidate program

counterexample

specification solution

fail

(a) The counterexample guided program synthesis (CEGIS) framework

OracleLearning
Agent

prediction

loss

sample tasks

well-trained
model

solution

(b) General architecture of our learning-aided reasoning framework

Figure 1.1: Comparison of the counterexample guided program synthesis
framework and our learning-aided reasoning framework.

an oracle. The synthesizer first takes as input a specification, which can be either

a formula in a certain background theory specifying desired functional properties

formally or a set of input-output example pairs informally demonstrating desired

functionality, and then interacts with the oracle— iteratively proposes a new candi-

date program satisfying accumulated counterexamples (if any) and receives a new

counterexample from the oracle. This interaction continues until a solution satisfy-

ing the specification is accepted by the oracle. The oracle is usually an SMT solver

checking whether the given specification holds on a candidate program and sup-

plying a counterexample if not. Progresses and innovations of CEGIS framework

are mainly on how a synthesizer generates new candidate programs, for which

4



there are three popular approaches: i) enumerative approach [178, 16], which sys-

tematically enumerate all possible candidates in increasing order of complexity; ii)

constraint-based approach [81, 172], which reduces candidate generation into con-

straint solving by encoding counterexamples as new constraints; and iii) stochastic

approach [151], which generates candidate programs in a stochastic way, e.g. ran-

dom sampling and mutation via Metropolis-Hastings.

The general architecture of our Learning-Aided Reasoning frameworK (LARK) is

depicted in Figure 1.1b, which is inspired by the CEGIS framework but has several

critical differences. First of all, LARK has a learning agent rather than a synthesizer,

which is of course not simply a new name. Unlike a synthesizer in CEGIS, which

has a predefined algorithm that incorporates counterexamples and proposes new

candidates, a learning agent is a learnable component, which is trained to make

good predictions and minimize the loss. The loss is designed in such a way that

a desired solution has zero loss. A prediction can be either a candidate program

or some intermediate thing that can be used to generate a candidate program,

depending on whether the learning agent is in charge of entire synthesis procedure

or a fraction of it. The learning agent is implemented as certain kind of machine

learning model. Secondly, LARK eventually produces not only a solution but also

a well-trained model, which is a representation of the learning agent. In fact, the

solution is simply a byproduct of the LARK framework. After being trained, the

agent becomes an executable algorithm, which immediately produces the solution.

Besides solving the exact task the agent has been trained on, the agent can handle

similar but unseen task very efficiently. This is really intriguing because the popular

CEGIS approaches cannot benefit from past experiences of solving similar or even

exactly the same tasks. Thirdly, instead of one particular specification, LARK can

take as input multiple tasks simultaneously. The feedback on one task from oracle

could potentially improve the progress on the other task assuming their solutions

share some latent algorithm. That is, LARK also has some meta-learning capability.

5



Challenges. To instantiate our learning-aided framework, we need to answer

three key questions. First, what is a good representation of the learning agent?

Should the agent be a program in some domain specific language, or a set of inter-

pretable rules, or a support vector machine, or a probabilistic graphical model, or a

deep neural network, or a hybrid combination of these? The representation matters

in various aspects, such as interpretability, generalization, and learning efficiency.

Ideally, we want the learned agent to be great on all of these aspects, which is,

however, beyond the capability of current machine learning or artificial intelligence

techniques, especially for the tasks involving symbolic and logical reasonings. This

thesis aims to explore trade-offs of various aspects for learning algorithms automat-

ically in the areas of program synthesis and verification.

Second, how to decide the loss of a prediction from the agent? A prediction may

or may not be directly checked by the oracle, as generating a candidate program

may need a sequence of predictions. Furthermore, the oracle usually provides a

counterexample, rather than a numerical score. Either a reasonable way to turn

counterexamples into numerical scores is necessary, or we should design a new

oracle that directly gives numerical feedback.

Third, how to train the agent? The answer might seem obvious, as gradient

descent methods (e.g. backward propagation) are standard for training machine

learning models. However, standard automatic differentiation techniques cannot

be used to compute gradients in the LARK framework. This is because the mapping

from a prediction to a loss involves non-trivial semantics like fixed-point compu-

tation and symbolic constraint solving, which is not differentiable. Propagating

gradients through a complex logical reasoning process is a unique challenge of in-

stantiating the LARK framework.

6



1.3 Contributions and Organizations

This thesis proposes various learning-aided techniques for program reasoning tasks,

specifically program synthesis and verification. The key novelty lies in bridging the

gap between discrete logic reasoning and continuous numerical optimization. We

summarize contributions of this thesis as follows.

In Chapter 2, we briefly introduce necessary background on numerical relax-

ation, deep learning and reinforcement learning.

In Chapter 3, we go over applications for which learning logical rules can be very

useful. We highlight a particular application — finding API misuse bugs in system

software, which is intriguing because it shows that combining the learned rules and

statistical information is very effective in discovering security vulnerabilities without

a specification in large system software like Linux kernel and OpenSSL library.

In Chapter 4, we present two inductive logic programming (ILP) engines, ALPS,

which is an instantiation of the CEGIS framework, and Difflog, which is an in-

stantiation of the LARK framework. ALPS leverages a novel syntax-guided tech-

nique, template augmentation, for generating candidate logical rules and incorpo-

rates counterexamples using an efficient bi-directional search technique. Difflog is

a synergistic combination of a syntax-guided search-based technique (the core of

ALPS) and gradient-based numerical optimization. Difflog uses a novel numerical

relaxation technique, which attaches numerical weights to logical rules. The se-

mantics of weights carried with logical rules in fixed point computation naturally

forms a Viterbi semi-ring. This design enables a differentiable oracle so that efficient

gradient-based approaches can be leveraged to learn logical rules.

In Chapter 5, we present a loop invariant generation system, Code2Inv, which

is another novel instantiation of LARK framework. Code2Inv is an end-to-end deep

learning system that directly maps a piece of source code to its corresponding in-

variant without requiring any annotations from human experts. Code2Inv uses a

graph representation of source code, embeds the graph into high-dimensional vec-

7



tor space, and reduces loop invariant generation into a multiple step decision pro-

cess carried out by a neural agent. Instead of making the oracle differentiable as we

did for Difflog, we propose a novel counterexample-guided reward mechanism that

turns discrete counterexamples from the oracle into continuous numerical reward,

and then train Code2Inv using the standard policy gradient algorithm.

In Chapter 6, we formalize the Code2Inv framework and demonstrate two in-

triguing extensions of Code2Inv on very different tasks — syntax-guided program

synthesis (SyGuS) task and constrained Horn clause (CHC) solving. We further

outline a number of future extensions in Chapter 7, and conclude in Chapter 8.

8



CHAPTER 2

BACKGROUND

2.1 Numerical Relaxation

Numerical relaxation is a popular strategy in mathematical optimizations. The idea

is to find a close approximation of a difficult problem by relaxing certain constraints.

The relaxed problem can usually be solved very efficiently, and the solution provides

useful hints to solve the original difficult problem.

For example, integer programming is an NP-hard problem, by relaxing the con-

straint that a variable has to be an integer, the problem becomes a linear program-

ming problem, which can be solved in polynomial time. Solution of the linear pro-

gramming problem could serve as a close estimation for the solution of the original

integer programming problem. A concrete example is illustrated in Figure 2.1. The

relaxed linear programming problem has the optimal solution Z = 7 when x = 4.5

and y = 2.5. While the actual solution for the original integer programming is Z = 6

when x = 4 and y = 2. Though the solution of the relaxed problem is different, the

actual solution of the original problem is fairly close to it. Once the approximated

solution is available, various efficient heuristics can be used to recover the actual

solution. Surprisingly, the same idea is applicable to logical rule synthesis, as we

will show in Chapter 4.

9



0 1 2 3 4 5
x

0

1

2

3

4

5

y

max Z = x + y
s.t.
  5x 3y 15
  3y x 3
  x, y

3y x 3

5x 3y 15
(1,1) (2,1) (3,1)

(3,2) (4,2)

(4.5, 2.5)

Z = 7

Z = 6

Z = 5

Z = 4

Figure 2.1: An example of numerical relaxation

2.2 Deep Learning

2.2.1 Multi-layer Perceptron

A multi-layer perceptron (MLP) is a basic neural network model, which consists of

multiple directed and fully connected layers. The first layer is called input layer and

the last layer is called output layer. The layers in between are called hidden layers.

Each layer consists of a number of nodes (a.k.a. neurons). Each neuron in the hid-

den or output layer takes as input values produced by all neurons in the previous

layer and outputs a value, which is a non-linear transformation of the weighted sum

of the input. The weights are parameters, which are usually trained (or learned) us-

ing gradient descent methods, and the number of neurons in a layer and associated

non-linear transformation are hyper-parameters, which are pre-determined before

training. Frequently used non-linear transformations (or activations) are: sigmoid,

hyperbolic tangent (TanH), and rectified linear unit (ReLU). Their definitions and

plots are depicted in figure 2.2.

10



−4 −3 −2 −1 0 1 2 3 4
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

sigmoid(x) = 1
1+e−x

tanh(x) = 2
1+e−2x − 1

(a) Sigmoid and TanH

−4 −3 −2 −1 0 1 2 3 4
−1

0

1

2

3

4

5

relu(x) = max(0, x)

(b) ReLU

Figure 2.2: Plots of frequently used non-linear transformation functions.

An MLP can be viewed as a mapping

y = f(x; θ) (2.1)

where x and y are numeric vectors, and θ denotes weights of connections. The MLP

model is particularly interesting because it can be used to approximate an arbitrary

continuous function y = f ∗(x) due to the universal approximation theorem [91].

2.2.2 Recurrent Neural Network

Recurrent neural networks (RNNs) are widely used in natural language processing

tasks, especially speech recognition and machine translation. The primary goal of

RNNs is to approximate the mapping from a sequence of inputs x(1), ...,x(t) to either

a single output y or a sequence of outputs y(1), ...,y(t). An RNN defines a mapping

h(t) = f(h(t−1),x(t); θ) (2.2)

where h(t) is the hidden state, from which the final output y(t) can be computed by

either a non-linear transformation or an MLP.

11



Popular RNN models. A simple RNN model can be

f(h(t−1),x(t); θ) = tanh(Wx(t) + Uh(t−1) + b) (2.3)

where θ = [W,U, b]. The key issue of such a simple form is that the long-term

dependencies are hard to capture, which makes training extremely difficult. To

address this issue, a commonly used RNN model is the long short-term memory

network (LSTM) [89], which introduces amemory cell with various gates to preserve

state over a long sequence.

LSTM maintains two states — the original hidden state and a newly introduced

context state (or memory cell). At a high level, LSTM defines a mapping function

as follows:

h(t), c(t) = f(h(t−1), c(t−1),x(t); θ) (2.4)

where h(t) is the hidden state and c(t) is the context state. These two states are

updated by three gates — input gate i(t), forget gate f (t) and output gate o(t) as

follows:

i(t) = σ
(
Wix

(t) + Uih
(t−1) + bi

)
f (t) = σ

(
Wfx

(t) + Ufh
(t−1) + bf

)
o(t) = σ

(
Wox

(t) + Uoh
(t−1) + bo

)
u(t) = tanh

(
Wux

(t) + Uuh
(t−1) + bu

)
c(t) = i(t) � u(t) + f (t) � c(t−1)

h(t) = o(t) � tanh(c(t))

(2.5)

where θ = [Wi, Ui, bi,Wf , Uf , bf ,Wo, Uo, bo,Wu, Uu, bu], σ is the sigmoid function,

and � is the element-wise product.

Two common variants of LSTM are gated recurrent units (GRUs) [41] and tree-

structured LSTM (Tree-LSTM) [177]. The former simplifies gates of LSTM for effi-

ciency while the latter extends the modeling ability to tree structures.

12



2.2.3 Graph Neural Network

In many domains, graphs are used to represent data with rich structure, such as pro-

grams, molecules, social networks, and knowledge bases. Graph neural networks

(GNNs) [109, 53, 70, 12, 187] are commonly used to learn over graph-structured

data. A GNN learns an embedding (i.e. real-valued vector) for each node of the

given graph using a recursive neighborhood aggregation (a.k.a. neural message

passing [70]) procedure. After training, a node embedding captures the structural

information within the node’sK-hop neighborhood, whereK is a hyper-parameter.

A simple aggregation of all node embeddings (a.k.a. pooling) [189] according to

the graph structure summarizes the entire graph into an embedding.

GNNs are usually parametrized with other neural network models such as MLPs,

which are the learnable non-linear transformations used in message passing, and

GRUs, which are used to update the embedding for each node. These MLPs and

GRUs in a GNN are shared across different nodes in the graph, thus once trained,

they can be applied to different graphs.

2.2.4 Memory and Attention Mechanism

A relatively new improvement of neural network concerns augmenting neural net-

works with external memory [73, 174, 182, 77], providing great flexibility and

generalization ability. The external memory is accessed by neural network through

a differentiable attention mechanism [23].

The external memory can have various structures, e.g. stack, queue, graphs.

The value of a memory cell is usually an embedding that can be directly taken as

input by neural networks. Attention mechanism assigns a likelihood (or weight)

to each memory cell, which is usually in proportion to the dot product between a

neural context and the embedding associated with the current cell. The retrieved

value is either an embedding of some memory cell according to the distribution

13



determined by the attention or an aggregation of memory cells according to the

attention weights. Such a design makes it easy to capture long-term dependencies,

avoids encoding all information into the internal weights of neural networks, and

improves the capability of generalization in practice.

2.3 Reinforcement Learning

In many tasks, the learning goal is beyond predicting some predefined label for a

given input. Instead, the learning goal is to reach some beneficial state after a se-

quence of actions following a set of rules from some initial state. Thus, what is really

learned is a policy, which predicts an action given a state and the action is ideally

optimal towards the ultimate beneficial state. Reinforcement learning is a system-

atic methodology of solving this exact problem and has achieved remarkable suc-

cesses in many challenging problems, particularly games. Prominent examples are

strategical games like Chess [93] and Go [166], and video games like Atari [124],

StarCraft [179], and Dota [132].

Markov Decision Process. A standard formulation of reinforcement learning is

called Markov decision process (MDP). A MDP is a a 4-tuple (S,A, P,R), where S is

a set of states, A is a set of actions, P is a function of the type S→ S→ A→ [0, 1],

which describes the probability of the transition from one state s ∈ S to another

state s′ ∈ S by taking some action a ∈ A, and similarly, R is a function of the

type S → S → A → R, which describes the corresponding reward when a transi-

tion happens. For simplicity, we let Pa(s, s′) denote P (s, s′, a) and Ra(s, s
′) denote

R(s, s′, a). The optimization objective of a MDP is to learn a policy π, a function

predicting the optimal action or a distribution of actions given an input state, such

that the expected gain of trajectories sampled according to π is maximized:

Expected Gain = Eτ∼π,P [G(τ)] = Eτ∼π,P
[∑T−1

t=0 γ
tRat(st, st+1)

]
(2.6)

14



where τ = [s0, a0, s1, a1, ...sT ], ai ∼ π(si), si+1 ∼ Pai(si, si+1), and γ ∈ [0, 1] is the

discount factor, which is necessary when T =∞.

In the case the state transition and the policy are deterministic and the trajectory

is finite, the optimization objective can be simplified as follows:

∑T−1
t=0 Rat(st, st+1) (2.7)

where s0 is the initial state, sT is the terminal state, ai = π(si), and si+1 = Pai(si)
1.

Since the reward significantly influences the optimal trajectories of reaching de-

sired terminal states, modeling reward properly plays a crucial role in applications

of reinforcement learning. Generally, the sparser the reward is, the more difficult

policy learning becomes. Taking the chess as an example, if a positive reward is

given only when the checkmate state is reached, and before that, the reward is al-

ways zero, learning a good policy would be extremely hard. A better reward might

be assigning certain scores whenever a piece of the opponent is captured, which

hints progress towards the winning state. However, such domain specific insights

are not always easy to provide.

Solving Techniques. Many techniques [175] have been developed over the

past three decades. These techniques can be generally categorized into dynamic

programming methods and policy gradient methods. The former requires explicitly

maintaining a value estimator that approximates optimal gains for possible states or

state-action pairs. A policy is indirectly derived from such the value estimator. The

latter directly maintains a policy and improves the policy by sampling trajectories.

The latter is more feasible when the state space or action space is huge or even

infinite.

1Since Pai
(si, si+1) is always equal to 1, here the notation Pai

(si) is overloaded to refer si+1.

15



CHAPTER 3

APPLICATIONS OF RULE LEARNING

This chapter presents some promising examples of logical rule learning. In terms

of the representation, we consider first order logical rules with least fixed-point

semantics but without function symbols. More concretely, we target on a declara-

tive logic programming language, Datalog. A key reason is the emergence of scal-

able Datalog solvers, including open-source [1, 153, 3, 18, 157] and commercial

ones [4, 2, 6, 72]. This makes Datalog popular in a variety of domains, including

bioinformatics [98, 149], big-data analytics [157, 164, 86], natural language pro-

cessing [125], networking [114], program analysis [74, 35], and robotics [137].

Moreover, the concise and declarative nature of Datalog has made it the target

of a growing body of meta-reasoning tools. For instance, program analyses writ-

ten in Datalog are readily extensible with features such as fixed point frameworks

[116, 22], abstraction refinement [193], and user interaction [194, 117, 140]. Like-

wise, software-defined networking (SDN) applications written in Datalog can avail

of efficient provenance tracking to help in tasks such as debugging and repairing

[185].

We next give a formal description of Datalog and then present a few simple but

interesting enough examples illustrating the importance and challenges of learning

Datalog programs.

Rules. A term t is either a variable x, y, z, . . ., or a constant a, b, c, . . .. A relation

symbol p, q, r, . . . is associated with an arity ar(r). An atom is an application of a

relation symbol to a vector of variables and constants, e.g., r(x, y, a) for a relation r

with arity 3. A ground atom is an application of a relation symbol to constants, e.g.,

16



r(a1, . . . , an), where ai are constants. A Datalog rule C is an expression of the form:

A :- B1, B2, . . . , Bn.

where A,B1, . . . , Bn are atoms. The atom A is called the head of the rule; the set of

atoms {B1, . . . , Bn} is called the body of the rule. A Datalog rule can be interpreted

as a logical implication: if B1, . . . , Bn are true, then so is A.

Datalog Programs. A Datalog program P is a finite set of rules. We divide rela-

tion symbols into two categories: the input relations whose contents are given, and

the output relations whose contents are derived from the input relations using the

program P . An input relation can never appear in the head of a rule. We use I to

denote the set of facts (ground atoms) in the input relations. The Herbrand base B
denotes all possible applications of the output relations to vectors of constants in I.

A Datalog program is recursive if a relation symbol appears in both the head and

the body of a rule.

Semantically, evaluating P on I yields aminimal Herbrand model of P ∪I, which
is the smallest set of ground atoms that satisfies the rules in P and input I. Given

a ground atom e, P ∪ I |= e denotes that P with input I derives fact e.

3.1 Promising Examples

Learning logical rules from data has been a long-standing challenge since early days

of artificial intelligence [139, 42, 126]. We present motivating examples in the early

days like knowledge discovery and motion planing, as well as recent applications in

relational queries and program analysis.

Example 3.1.1 (Knowledge discovery). The most widely used knowledge discov-

ery example in the inductive logic programming (ILP) literature is computing the

transitive closure of a directed graph. The problem involves one input relation edge

and one output relation path with the following meaning:

17



• edge(x, y): there is an edge from node x to node y.

• path(x, y): there is a path from node x to node y.

Suppose the user populates the input relation, edge, with the following example

graph:

3 4 5

6

721

where an edge from node i to node j indicates that edge(i, j) appears in the input

relation.

Any reasonable synthesizer should be able to figure out the following recursive

program, which computes the transitive closure of a directed graph.

path(x, y) :− edge(x, y).

path(x, z) :− path(x, y), edge(y, z).

Our synthesis engine, ALPS, can efficiently maintain all possible programs, so it also

discovers the other symmetric one and the following non-linear recursive program:

path(x, y) :− edge(x, y).

path(x, z) :− path(x, y), path(y, z).

Example 3.1.2 (Robot Strategy Learning). In AI, planning is to find a sequence of

actions which result in a goal state from an initial state [146], and a strategy is a

mapping from a set of initial states to a set of goal states [128].

18



✔

✗

✗
initWall

wallA

wallB

wallC

The above figure shows three examples that are used to learn how to build a

stable wall strategy, which corresponds to a simplification of a real-world robotics

application [128]. Specifically, the pair of initWall and wallA is a positive example,

which is labeled with a check mark, while the other two pairs labeled with cross

mark are negative examples. A wall is modeled as a list of lists, for example, wallA

is represented as [[2],[1,3]], where each number corresponds to the horizontal

position of a brick, which has width 2. The primitive actions can be represented as

following input relations between lists of lists:

• fetch(x,y) : fetch a brick from wall x and get wall y.

• putOnTopOf(x,y) : put a brick on top of wall x and get wall y.

• offset(x) : each layer of wall x (except for the ground layer) is supported by

an underlying layer with some offset.

• continuous(x) : there is no gap in wall x.

And similarly, the strategy to learn is represented as an output relation buildWall(x,y),

which means y can be constructed by a sequence of primitive actions on x. With a

few examples, our synthesizer engine learns the following Datalog program. Note

that relations or predicates p and q are not supplied in the input and output relations

but invented.

buildWall(x, y) :− p(x, y), offset(y).

19



buildWall(x, y) :− p(x, z), buildWall(z, y).

p(x, y) :− q(x, y), continuous(y).

q(x, y) :− fetch(x, z), putOnTopOf(z, y).

Example 3.1.3 (Relational queries). In recent years, Datalog has become popular as

a relational query language due to its expressiveness and scalable performance [21,

76, 153]. Sophisticated relational queries are relatively easy to learn in Datalog

from input-output behaviors.

For instance, the following is an interesting relational query for finding students

who take two different classes on the same day. The problem involves three input

relations and one output relation with the following meaning:

• Student(s,n): Student s is associated with the ID n.

• Class(c,d): Class c is held on day d.

• Enrolled(n,c): The student having ID n is enrolled in class c.

• Busy(s): Student s takes two different classes on the same day.

It is natural in a programming-by-example setting for the user to provide an instance

specifying the input-output behavior of the desired query. Using such an instance

comprising input relations regarding 14 students and 6 classes, and 5 examples in

the output relation Busy, ALPS synthesizes the following Datalog program within

18 seconds:

EnrollClass(n, c, l) :− Enrolled(n, c), Class(c, l).

Busy(s) :− Student(s, n), EnrollClass(n, c1, l),

EnrollClass(n, c2, l), c1!=c2.

where EnrollClass is an invented predicate. While ostensibly simple, the above

20



query is non-trivial to synthesize since it is semantically equivalent to the following

complex SQL query:2

SELECT S . s FROM Student S

WHERE S . n IN (SELECT E1 . n

FROM Enro l led E1 , Enro l led E2 , C la s s C1 , C la s s C2

WHERE E1 . n = E2 . n AND E1 . c <> E2 . c

AND E1 . c = C1 . c AND E2 . c = C2 . c AND C1 . d = C2 . d ))

In contrast, a state-of-the art tool Scythe [180] for synthesizing SQL queries fails to

generate the above SQL query within 3 hours.

Example 3.1.4 (Pointer Analysis). The following problem concerns synthesizing

a basic inclusion-based pointer analysis for C programs, namely, Andersen’s classic

analysis [19]. It involves four input relations, encoding different instruction types,

and one output relation, encoding points-to information. The input relations are:

• addr(x,y) : there is an assignment x := &y in a given input program.

• copy(x,y) : there is an assignment x := y.

• load(x,y) : there is a load statement y := *x.

• store(x,y) : there is a store statement *x := y.

The output relation is pt(x,y), specifying that x may point to y. Suppose the in-

put relations are populated with a simple C program exhibiting the four kinds of

instructions, e.g.:

1: v2 = &v1;
2: v3 = &v2;

3: v4 = &v3;
4: v7 = &v4;

5: v5 = v7;
6: v6 = *v4;
7: *v5 = v2;

2Datalog can in fact be viewed as augmenting relational algebra, which is widely used in the
form of sql, with recursion.

21



In a few minutes, our synthesis engine learns the following recursive program,

where each clause encodes an over-approximation of the semantics of one of the

instruction types.

pt(x, y) :− addr(x, y).

pt(x, z) :− copy(x, y), pt(y, z).

pt(w, z) :− store(x, y), pt(y, z), pt(x,w).

pt(x,w) :− −load(x, y), pt(y, z), pt(z, w).

This is an exciting example of the possibilities of synthesizing declarative pro-

grams. For instance, we envision a future in which developers will be able to auto-

matically synthesize custom static analyses by interacting with a synthesizer embed-

ded in their development environment. We next illustrate such an initial attempt.

Example 3.1.5 (Static analyzer). We demonstrate how Datalog synthesis engine

like ALPS can be used to learn a static analysis to detect API misuses—a common

source of bugs in today’s world of complex and evolving APIs. For a given exam-

ple program with known API misuses, we populate input relations representing the

syntax of the program and output relations representing the bugs. Then, the syn-

thesizer learns Datalog rules that can be used for detecting similar API misuses.

Consider the C program shown in Figure 3.1 using the OpenSSL API. Func-

tions ssl_socket_open1-4 establish a SSL socket and return a constant OK if they

succeed. Two functions ssl_socket_open{2,4} contain API misuses in that they

incorrectly return OK when a SSL socket is not properly established.

Our goal is to learn a Datalog program that detects functions that misuse the

OpenSSL API, whose behavior is defined as follows:

• SSL_get_peer_certificate returns a pointer to the X509 certificate the peer

presented. If the peer did not present a certificate, NULL is returned.

22



• SSL_get_verify_result returns the result of the verification of the X509 certifi-

cate presented by the peer, if any. It returns a constant named X509_V_OK if the

verification succeeded or if no peer certificate was presented.

Functions should return OK only if (i) SSL_get_peer_certificate returns a non-

null pointer, and (ii) SSL_get_verify_result returns the constant named X509_-

V_OK.

23



1 int ssl_socket_open1(SSL* ssl) {
2 X509* cert = SSL_get_peer_certificate(ssl);
3 long err = SSL_get_verify_result(ssl);
4 if (!cert) {...}
5 if (err == X509_V_OK) { ... }
6 return OK; // correct
7 }
8
9 int ssl_socket_open2(SSL* ssl) {
10 X509* cert = SSL_get_peer_certificate(ssl);
11 if (cert == NULL) {...}
12 long err = SSL_get_verify_result(ssl);
13 ...
14 return OK; // incorrect (missing check on err)
15 }
16
17 int ssl_socket_open3(SSL* ssl) {
18 long err = SSL_get_verify_result(ssl);
19 if (err != X509_V_OK) {...}
20 X509* cert = SSL_get_peer_certificate(ssl);
21 if (cert) {...}
22 return OK; // correct
23 }
24
25 int ssl_socket_open4(SSL* ssl) {
26 long err = SSL_get_verify_result(ssl);
27 switch (err) {
28 case X509_V_OK:
29 cert = SSL_get_peer_certificate(ssl);
30 }
31 return OK; // incorrect (missing check on cert)
32 }

Figure 3.1: An example of misusing OpenSSL APIs

The problem involves four input relations and one output relation with the fol-

lowing meaning:

• OpSucc(l1,l2): Program control may flow from line l1 to l2.

• Check(x,l): The value of variable x is compared to a specific value at line l.

24



• Certify(x,l): Variable x at line l is assigned the return value of

SSL_get_peer_certificate().

• Verify(x,l): Variable x at line l is assigned the return value of

SSL_get_verify_result().

• Ok(l): The function that returns OK at line l correctly uses the OpenSSL API.

Relations OpSucc and Check are pre-defined as part of the program’s intermediate

representation while relations Certify and Verify can be automatically extracted

from a given API, in this case OpenSSL. We provide an instance of these relations

encoding the analyzed C program to our synthesis engine, namely

Ce r t i f y ( cer t , 2 ) , Ve r i f y ( err , 3 ) , Check ( cer t , 4 ) , Check ( err , 5 ) , . . .

along with Ok(6) and Ok(22) as positive examples and Ok(14) and Ok(31) as nega-

tive examples in the output relation. Our synthesis engine generates the following

program in 6 minutes.

CertFlow(x, l2) :− Certify(x, l1), OpSucc(l1, l2).

VeriFlow(x, l2) :− Verify(x, l1), OpSucc(l1, l2).

CertCheck(l2) :− CertFlow(x, l1), Check(x, l1), OpSucc(l1, l2).

VeriCheck(l2) :− VeriFlow(x, l1), Check(x, l1), OpSucc(l1, l2).

Ok(l) :− CertCheck(l), VeriCheck(l).

Note that predicates CertFlow(x,l), VeriFlow(x,l), CertCheck(l), and VeriCheck(l)

are not specified among the input or output relations; they are actually invented,

highlighting the rich space of programs it explores.3 The relation CertFlow(x,l)

(VeriFlow(x,l) resp.) indicates the return value of SSL_get_peer_-certificate

(SSL_get_verify_result resp.) flows to line l. The relation CertCheck(l) (VeriCheck(l)
3For readability, we provide intuitive names for invented predicates instead of mechanically gen-

erated names.

25



resp.) means the return value of SSL_get_peer_certificate (SSL_get_verify_-

result resp.) is compared to a specific value and control flows to line l.

The Datalog program correctly captures an important portion of the proper use

of the OpenSSL API. This example illustrates that our synthesis engine represents

a promising step towards synthesizing usable program analyzers.

3.2 A Case Study on Detecting API Misuses

In this section, we present a case study on detecting API misuses in system software

like the Linux kernel and the OpenSSL library. The goal is to demonstrate that

rule templates designed by experts and statistical information are quite powerful

in finding security vulnerabilities without any specifications. This indicates a great

real-world potential of combining rule-learning and numerical reasoning. Also, it

suggests that expert knowledge should not be completely ignored when designing

learning-aided systems.

We next present the design and primary results of our prototype, APISan, for

finding API misuse bugs in large system software. The key challenge of detecting

API misuses is the lack of specifications, which is generally assumed to be avail-

able by any analyzer or verifier in the first place. Also, very often only distributed

binaries rather than source code implementation are available. To address these

challenges, our key idea is to infer correct specifications by observing how APIs

are used (rather than implemented) across large codebases. The dominant usage

patterns are assumed to be the correct specifications.

Figure 3.2 illustrates APISan’s workflow, which consists of three steps. First,

APISan infers possible execution traces by using symbolic execution. These execu-

tion traces witness how a particular API is being used during particular runs. Given

that symbolic execution is expensive and is not yet scalable to large system like the

Linux kernel, APISan performs under-constrained symbolic execution [141]. Sec-

26



❶�Collecting
symbolic traces

Source code

Reports
(ranked)

❷�Extracting 
semantic features

(relations)

as a part of 
building process

❸�Locating
API misuses

Checkers
(rule templates)

e.g., a group of programs
using OpenSSL

...

DB

Figure 3.2: Overview of APISan’s architecture and workflow.

ond, APISan extracts semantic features from symbolic execution traces. These se-

mantic features are essentially relations, which captures how an API interacts with

other elements (e.g. arguments, return values, guarding conditions, other function

calls) within the current execution and can be viewed as further abstractions of ex-

ecution traces. Third, APISan applies checkers from domain experts to extracted

semantic features to locate potential API misuses, which will be further ranked ac-

cording to relevant usage frequencies. Checkers are implemented in Python but are

essentially rule templates. The checking process over semantic features is equivalent

to finding a subset of relations that match rule templates. Since under-constrained

symbolic execution is standard (see [141]), we next elaborate on semantic features

and checkers.

Semantic features. Semantic features are designed to capture the surrounding

context for a given API (or function) call. APISan considers four types of features

as follows.

1. Return value. In system software, not only does a function return the result of

its computation, but it often explicates the status of the computation through

the return value; for example, non-zero value in glibc and PTR_ERR() in the

Linux kernel indicates certain types of errors. Any usage of a return value in

27



a trace is extracted as a specific relation.

2. Argument. Arguments of an API can be semantically inter-related. Typical ex-

amples are memory copy APIs, such as strncpy(d,s,n) and memcpy(d,s,n);

for correct operation without buffer overrun, the size of the destination buffer

d should be larger or equal to the copy length n. Thus, we consider pairwise

correlations among arguments as an important feature.

3. Causality. Two APIs can be causally related; for example, an acquired lock

should be released at the end of critical section. Besides such “direct” causal re-

lationships, there are many constrained causal relationships as well. One pop-

ular example is the conditional synchronization primitives; there is a causal

relationship between mutex_trylock() and mutex_unlock() only when the

former returns a non-zero value.

4. Conditions. In many cases, there are hidden assumptions before or after calling

APIs, namely, implicit pre- and post-conditions. For example, the memory al-

location APIs assume that there is no integer overflow on the argument passed

as allocation size, which implies that there should be a proper check before

the call.

Checkers. With these semantic features, we are ready to design many interest-

ing checkers for detecting API misuses. For example, a simple lock checker could

be to use causality feature if the name of an API contains the keyword “lock”, which

does help to find a missing unlock bug in Linux kernel as shown in Figure 3.3. An-

other interesting example is to use both causality and conditions features, which

helps us to find a memory leak vulnerability in OpenSSL as shown in Figure 3.4.

We have implemented many other checkers for SSL/TLS APIs, return value val-

idation, broken argument relation, format string, etc. The primary results are sum-

marized in Table 3.1. Overall, we applied APISan to 92 million lines of code, includ-

ing Linux Kernel, and OpenSSL, found 76 previously unknown bugs, and provided

28



// @drivers/clk/clk.c:2672
// in Linux v4.5-rc4
void clk_unregister(struct clk *clk) {

clk_prepare_lock();
if (clk->core->ops == &clk_nodrv_ops) {

pr_err("%s: unregistered clock: %s\n", __func__,
clk->core->name);

// APISan: Missing clk_prepare_unlock()
// @FUNC: clk_prepare_lock
// @CONS: None
// @POST: clk_prepare_unlock
return;

}
clk_prepare_unlock();

}

Figure 3.3: A missing unlock bug in Linux found by APISan.

// @apps/req.c:1332

// in OpenSSL v1.1.0-pre3-dev

EVP_PKEY_CTX *set_keygen_ctx() {

gctx = EVP_PKEY_CTX_new();

if (EVP_PKEY_keygen_init(gctx) <= 0) {

BIO_puts(err, "Error...");

ERR_print_errors(err);

return NULL;

}

}

APISan: Missing EVP_PKEY_CTX_free()

@FUNC: EVP_PKEY_keygen_init

@CONS: <= 0

@POST: EVP_PKEY_CTX_free

// @apps/genpkey.c:289

// in OpenSSL v1.1.0-pre3-dev

int init_gen_str() {

if (EVP_PKEY_keygen_init(ctx) <= 0)

goto err;

err:

EVP_PKEY_CTX_free(ctx);

return 0;

}

// @crypto/cms/cms_kari.c:302

// in OpenSSL v1.1.0-pre3-dev

int cms_kari_create_ephemeral_key() {

rv = 0;

if (EVP_PKEY_keygen_init(pctx) <= 0)

goto err;

err:

if (!rv)

EVP_PKEY_CTX_free(pctx);

return rv;

}(a) New bug in OpenSSL 1.1.0-pre3-dev (b) Collection of API uses

(%)

semantic
belief

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Figure 3.4: A memory leak vulnerability found by APISan in OpenSSL 1.1.0-
pre3-dev. When a crypto key fails to initialize, the allocated context (i.e., gctx)
should be freed. Otherwise, a memory leak will occur. APISan infers correct
semantic usage of the API from (b) other uses of the API.

patches for all the bugs.

29



Program Module API misuse Impact Checker #bugs S.

Linux cifs/cifs_dfs_ref.c heap overflow code execution args 1 X
xenbus/xenbus_dev_frontend.c missing integer overflow check code execution intovfl 1 X
ext4/resize.c incorrect integer overflow check code execution intovfl 1 X
tipc/link.c missing tipc_bcast_unlock() deadlock cpair 1 X
clk/clk.c missing clk_prepare_unlock() deadlock cpair 1 X
hotplug/acpiphp_glue.c missing pci_unlock_rescan_remove() deadlock cpair 1 X
usbvision/usbvision-video.c missing mutex_unlock() deadlock cpair 1 X
drm/drm_dp_mst_topology.c missing drm_dp_put_port() DoS cpair 1 X
affs/file.c missing kunmap() DoS cpair 1 X
acpi/sysfs.c missing kobject_create_and_add() check system crash rvchk 1 X
cx231xx/cx231xx-417.c missing kmalloc() check system crash rvchk 1 X
qxl/qxl_kms.c missing kmalloc() check system crash rvchk 1 P
chips/cfi_cmdset_0001.c missing kmalloc() check system crash rvchk 1 X
ata/sata_sx4.c missing kzalloc() check system crash rvchk 1 X
hsi/hsi.c missing kzalloc() check system crash rvchk 2 X
mwifiex/sdio.c missing kzalloc() check system crash rvchk 2 X
usbtv/usbtv-video.c missing kzalloc() check system crash rvchk 1 X
cxgb4/clip_tbl.c missing t4_alloc_mem() check system crash rvchk 1 X
devfreq/devfreq.c missing devm_kzalloc() check system crash rvchk 2 X
i915/intel_dsi_panel_vbt.c missing devm_kzalloc() check system crash rvchk 1 X
gpio/gpio-mcp23s08.c missing devm_kzalloc() check system crash rvchk 1 X
drm/drm_crtc.c missing drm_property_create_range() check system crash rvchk 13 X
gma500/framebuffer.c missing drm_property_create_range() check system crash rvchk 1 X
emu10k1/emu10k1_main.c missing kthread_create() check system crash rvchk 1 X
m5602/m5602_s5k83a.c missing kthread_create() check system crash rvchk 1 X
hisax/isdnl2.c missing skb_clone() check system crash rvchk 1 X
qlcnic/qlcnic_ctx.c missing qlcnic_alloc_mbx_args() check system crash rvchk 1 X
xen-netback/xenbus.c missing vzalloc() check system crash rvchk 1 X
i2c/ch7006_drv.c missing drm_property_create_range() check system crash rvchk 1 X
fmc/fmc-fakedev.c missing kmemdup() check system crash rvchk 1 P
rc/igorplugusb.c missing rc_allocate_device() check system crash rvchk 1 X
s5p-mfc/s5p_mfc.c missing create_singlethread_workqueue() check system crash rvchk 1 P
fusion/mptbase.c missing create_singlethread_workqueue() check system crash rvchk 1 P
nes/nes_cm.c missing create_singlethread_workqueue() check system crash rvchk 1 X
dvb-usb-v2/mxl111sf.c missing mxl111sf_enable_usb_output() check malfunction rvchk 2 X
misc/xen-kbdfront.c missing xenbus_printf() check malfunction rvchk 1 X
pvrusb2/pvrusb2-context.c incorrect kthread_run() check malfunction rvchk 1 P
agere/et131x.c incorrect drm_alloc_coherent() check malfunction rvchk 1 X
drbd/drbd_receiver.c incorrect crypto_alloc_hash() check malfunction rvchk 1 X
mlx4/mr.c incorrect mlx4_alloc_cmd_mailbox() check maintanence rvchk 1 X
usnic/usnic_ib_qp_grp.c incorrect kzalloc() check maintanence rvchk 2 X
aoe/aoecmd.c incorrect kthread_run() check maintanence rvchk 1 X
ipv4/tcp.c incorrect crypto_alloc_hash() check maintanence rvchk 1 X
mfd/bcm590xx.c incorrect i2c_new_dummy() check maintanence rvchk 1 P
usnic/usnic_ib_main.c incorrect ib_alloc_device() check maintanence rvchk 1 X
usnic/usnic_ib_qp_grp.c incorrect usnic_fwd_dev_alloc() check maintanence rvchk 1 X

OpenSSL dsa/dsa_gen.c missing BN_CTX_end() DoS cpair 1 X
apps/req.c missing EVP_PKEY_CTX_free() DoS cpair 1 X
dh/dh_pmeth.c missing OPENSSL_memdup() check system crash rvchk 1 X

PHP standard/string.c missing integer overflow check code execution intovfl 3 X
phpdbg/phpdbg_prompt.c format string bug code execution args 1 X

Python Modules/zipimport.c missing integer overflow check code execution intovfl 1 X

rabbitmq librabbitmq/amqp_openssl.c incorrect SSL_get_verify_result() use MITM cond 1 X

hexchat common/server.c incorrect SSL_get_verify_result() use MITM cond 1 X

lprng auth/ssl_auth.c incorrect SSL_get_verify_result() use MITM cond 1 P

afflib lib/aftest.cpp missing BIO_new_file() check system crash rvchk 1 X
tools/aff_bom.cpp missing BIO_new_file() check system crash rvchk 1 X

Table 3.1: List of new bugs discovered by APISan. We sent patches of all 76
new bugs; 69 bugs have been already confirmed by corresponding developers
(marked Xin the rightmost column); 7 bugs (marked P in the rightmost col-
umn) have not been confirmed yet. APISan analyzed 92 million LoC and found
one bug per 1.2 million LoC.

30



3.3 Discussion

In this chapter, we have presented many interesting applications of learning logical

rules in various domains. We also demonstrate its great potential in finding security

vulnerabilities in large system software due to API misuses. We will show how to

effectively learn a set of rich logical rules from data in the next chapter.

Illustrative examples and experiment results presented in this chapter are from

the following published papers:

. Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paris Koutris, Mayur

Naik. Syntax-Guided Synthesis of Datalog Programs. In Proceedings of the

ACM Joint Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, pages 515–527, ACM 2018.

. Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, Mayur Naik.

APISan: Sanitizing API Usages through Semantic Cross-checking. In Proceed-

ings of the 25th USENIX Conference on Security Symposium, page 363–378,

USA 2016. USENIX Association.

31



CHAPTER 4

LEARNING-AIDED RULE SYNTHESIS

4.1 Introduction

As a result of its rich expressive power and efficient implementations, the logic pro-

gramming language Datalog has witnessed applications in diverse domains such as

bioinformatics [156], big-data analytics [164], robotics [137], networking [113],

and formal verification [35]. Users on the other hand are often unfamiliar with

logic programming. The programming-by-example (PBE) paradigm aims to bridge

this gap by providing an intuitive interface for non-expert users [78].

Typically, a PBE system is given a set of input tuples and sets of desirable and

undesirable output tuples. The central computational problem is that of synthesiz-

ing a Datalog program, i.e., a set of logical inference rules which produces, from the

input tuples, a set of conclusions which is compatible with the output specification.

Previous approaches to this problem focus on optimizing the combinatorial explo-

ration of the search space. For example, Zaatar encodes the derivation of output

tuples as a SAT formula for subsequent solving by a constraint solver [10], and in-

ductive logic programming (ILP) systems employ sophisticated pruning algorithms

based on ideas such as inverse entailment [126]. Given the computational complex-

ity of the search problem, however, these systems are hindered by large or difficult

problem instances. Furthermore, these systems have difficulty coping with minor

user errors or noise in the training data.

We take a fundamentally different approach to the problem of synthesizing Dat-

alog programs. Inspired by the success of numerical methods in machine learning

and other large scale optimization problems, and of the strategy of relaxation in

32



solving combinatorial problems such as integer linear programming, we extend the

classical discrete semantics of Datalog to a continuous setting named Difflog, where

each rule is annotated with a real-valued weight, and the program computes a nu-

merical value for each output tuple. This step can be viewed as an instantiation of

the general K-relation framework for database provenance [75] with the Viterbi

semi-ring4 being chosen as the underlying space K of provenance tokens. We then

formalize the program synthesis problem as that of selecting a subset of target rules

from a large set of candidate rules, and thereby uniformly capture various meth-

ods of inducing syntactic bias, including syntax-guided synthesis (SyGuS) [14], and

template rules in meta-interpretive learning [128].

The synthesis problem thus reduces to that of finding the values of the rule

weights which result in the best agreement between the computed values of the

output tuples and their specified values (1 for desirable and 0 for undesirable tu-

ples). The fundamental NP-hardness of the underlying decision problem manifests

as a complex search surface, with local minima and saddle points. To overcome

these challenges, we devise a hybrid optimization algorithm which combines New-

ton’s root-findingmethodwith periodic invocations of a simulated annealing search.

Finally, when the optimum value is reached, connections between the semantics

of Difflog and Datalog enable the recovery of a classical discrete-valued Datalog

program from the continuous-valued optimum produced by the optimization algo-

rithm.

A particularly appealing aspect of relaxation-based synthesis is the randomness

caused by the choice of the starting position and of subsequent Monte Carlo itera-

tions. This manifests both as a variety of different solutions to the same problem,

and as a variation in running times. Running many search instances in parallel

therefore enables stochastic speedup of the synthesis process, and allows us to lever-

age compute clusters in a way that is fundamentally impossible with deterministic
4A semi-ring defined over the base set [0, 1], where ⊕ is the max function and ⊗ is the usual

multiplication of real numbers.

33



Will Ann Jim Ava

Ben Emma

Tom(a)

Input tuples (EDB)

parent (Will, Ben)
parent (Ann, Ben)
parent (Jim, Emma)
parent (Ava, Emma)
parent (Ben, Tom)
parent (Emma, Tom)

(b)

Output tuples (IDB)

samegen (Ben, Emma)
samegen (Ann, Will)
samegen (Jim, Ann)
· · ·

(c)

Figure 4.1: Example of a family tree (a), and its representation as a set of
input tuples (b). An edge from x to y indicates that x is a parent of y, and is
represented symbolically as the tuple parent(x, y). The user wishes to realize
the relation samegen(x, y), indicating the fact that x and y occur are from the
same generation of the family (c).

approaches. We have implemented Difflog and evaluate it on a suite of 34 bench-

mark programs from recent literature. We demonstrate significant improvements

over the state-of-the-art, even while synthesizing complex programs with recursion,

invented predicates, and relations of arbitrary arity.

4.2 The Datalog Synthesis Problem

In this section, we concretely describe the Datalog synthesis problem, and estab-

lish some basic complexity results. We use the family tree shown in Figure 4.1 as

a running example. In Section 4.2.1, we briefly describe how one may compute

samegen(x, y) from parent(x, y) using a Datalog program. In Section 4.2.2, we for-

malize the query synthesis problem as that of rule selection.

4.2.1 Overview of Datalog

The set of tuples inhabiting relation samegen(x, y) can be computed using the fol-

lowing pair of inference rules, r1 and r2:

r1 : samegen(x, y) :− parent(x, z), parent(y, z).

34



r2 : samegen(x, u) :− parent(x, y), parent(u, v), samegen(y, v).

Rule r1 describes the fact that for all persons x, y, and z, if both x and y are parents

of z, then x and y occur at the same level of the family tree. Informally, this rule

forms the base of the inductive definition. Rule r2 forms the inductive step of the

definition, and provides that x and u occur in the same generation whenever they

have children y and v who themselves occur in the same generation.

By convention, the relations which are explicitly provided as part of the input are

called the EDB, I = {parent}, and those which need to be computed as the output

of the program are called the IDB, O = {samegen}. To evaluate this program, one

starts with the set of input tuples, and repeatedly applies rules r1 and r2 to derive

new output tuples. Note that because of the appearance of the literal samegen(y, v)

on the right side of rule r2, discovering a single output tuple may recursively result

in the further discovery of additional output tuples. The derivation process ends

when no additional output tuples can be derived, i.e., when the set of conclusions

reaches a fixpoint.

More generally, we assume a collection of relations, {P,Q, . . . }. Each relation P

has an arity k ∈ N, and is a set of tuples, each of which is of the form P (c1, c2, . . . , ck),

for some constants c1, c2, . . . , ck. The Datalog program is a collection of rules, where

each rule r is of the form:

Ph(uh) :− P1(u1), P2(u2), . . . , Pk(uk),

where Ph is an output relation, and uh, u1, u2, . . . , uk are vectors of variables

of appropriate length. The variables u1, u2, . . . , uk, uh appearing in the rule are

implicitly universally quantified, and instantiating them with appropriate constants

v1, v2, . . . , vk, vh yields a grounded constraint g of the form P1(v1)∧ P2(v2)∧ · · · ∧
Pk(vk) =⇒ Ph(vh): “If all of the antecedent tuplesAg = {P1(v1), P2(v2), . . . , Pk(vk)}
are derivable, then the conclusion cg = Ph(vh) is also derivable.”

35



4.2.2 Synthesis as Rule Selection

The input-output examples, I,O+, andO−. Instead of explicitly providing rules r1

and r2, the user provides an example instance of the EDB I, and labels a few tuples

of the output relation as “desirable” or “undesirable” respectively:

O+ = {samegen(Ann, Jim)}, and

O− = {samegen(Ava, Tom), samegen(Jim, Emma)},

indicating that Ann and Jim are from the same generation, but Ava and Tom and

Jim and Emma are not. Note that the user is free to label as many potential output

tuples as they wish, and the provided labels O+ ∪ O− need not be exhaustive. The

goal of the program synthesizer is to find a set of rules Rs which produce all of

the desired output tuples, i.e., O+ ⊆ Rs(I), and none of the undesired tuples, i.e.,

O−∩Rs(I) = ∅. We assume that labels from the user are noise-free5, that is, O+ and

O− should be disjoint.

The set of candidate rules, R. The user often possesses additional information

about the problem instance and the concept being targeted. This information can be

provided to the synthesizer through various forms of bias, which direct the search

towards desired parts of the search space. A particularly common form in the recent

literature on program synthesis is syntactic: for example, SyGuS requires a descrip-

tion of the space of potential solution programs as a context-free grammar [14],

and recent ILP systems such as Metagol [128] require the user to provide a set

of higher-order rule templates (“meta-rules”) and order constraints over predicates

and variables that appear in clauses. In the next section, we elaborate how to sys-

tematically collect a rich set of candidate rules via a technique called metarule au-

gumentation. For now let’s assume that a large set of candidate rulesR are available
5An approach to relaxing this assumption is presented in section 4.5.

36



and that the target concept Rs is a subset of these rules: Rs ⊆ R.

These candidate rules can express various patterns that could conceivably dis-

charge the problem instance. For example, R can include the candidate rule rs,

“samegen(x, y) :− samegen(y, x)”, which indicates that the output relation is symmet-

ric, and the candidate rule rt, “samegen(x, z) :− samegen(x, y), samegen(y, z)”, which

indicates that the relation is transitive. Note that the assumption of the candidate

rule set R uniformly subsumes many previous forms of syntactic bias, including

those in SyGuS and Metagol.

Problem 4.2.1 (Rule Selection). Let the following be given: (a) a set of input re-

lations, I and output relations, O, (b) the set of input tuples I, (c) a set of positive

output tuples O+, (d) a set of negative output tuples O−, and (e) a set of candidate

rules R which map the input relations I to the output relations O. Find a set of

target rules Rs ⊆ R such that:

O+ ⊆ Rs(I), and O− ∩Rs(I) = ∅.

Finally, we note that the rule selection problem is NP-hard: this is because mul-

tiple rules in the target program Rs may interact in non-compositional ways. The

proof proceeds through a straightforward encoding of the satisfiability of a 3-CNF

formula, and is provided in the Appendix.

Theorem 4.2.2. Determining whether an instance of the rule selection problem, (I,
O, I, O+, O−, R), admits a solution is NP-hard.

4.3 Systematic Candidate Rule Generation

A straightforward way for rule generation is to enumerate all possible rules accord-

ing to the rule syntax usually in the increasing order of size. However, candidate

rule generation is just the first phase of synthesis, and the second phase is an ex-

37



pensive rule selection process. On one hand, the set of generated candidate rules

should be small enough so that rule selection process can finish in a reasonable

amount of time. On the other hand, candidate rules should be rich enough so that

there exists at least one valid program. To have a reasonable balance between these

two factors, Metagol [128] relies on a proper set of meta-rules provided by the user.

Even though the user may have a rough idea about the syntactic structure of rules

to be synthesized, it is challenging to determine the structure exactly in advance.

We next present a technique called meta-rule augmentation, which is a system-

atic way to generate all possible candidate rules even if the user cannot provide any

meta-rules. If an initial structure bias from the user is possible, our technique can

leverage that and significantly reduce the subsequent rule selection space.

Meta-rules. A meta-rule is a second-order rule. Multiple rules can be instantiated

from ameta-rule. We shall use V1 and V2 to denote first- and second-order variables,

respectively. A meta-rule takes the following form:

R1(x1, . . . , xm1) :- R2(y1, . . . , ym2), . . . , Rn(z1, . . . , zmn).

where xi, yi, zi ∈ V1 and Ri ∈ V2.
A meta-rule can be instantiated by substituting second-order variables with re-

lation symbols. For example, the rules from the running example are generated by

the following meta-rules:

T1 : R0(x, y) :- R1(x, z), R2(y, z).

T2 : R0(x, u) :- R1(x, y), R2(u, v), R3(y, v).

Meta-rule augmentation. The choice of meta-rules dictates the effectiveness of

any rule selection algorithm in the following stage. If the set of meta-rules is too

38



large, then scalability might be an issue, since the search space will be huge. On the

other hand, the meta-rules must be sufficiently rich to capture the desired program.

Simply reusing meta-rules that are either provided by the end-user or mined from

existing code repositories is usually insufficient. To solve this problem, we start

with a very small set of intuitive meta-rules that are supplied by default (i.e. the

chain meta-rule) or given by the user, and then extend these using augmentation,

a process that slightly modifies each meta-rule.

An augmentation T ′ of ameta-rule T is ameta-rule where each atomR(x1, . . . , xk)

in T is replaced by another atom R(y1, . . . , y`). However, we must take care to limit

how much the sequence of variables changes. Denote by dR(T, T ′) the edit distance

between the strings x1 . . . xk and y1 . . . y`. Then, the augmentation distance between

T, T ′ is defined as

AD(T, T ′) =
∑
R

dR(T, T ′)

whereR ranges over all atoms in T . Because the edit distance dR(·, ·) is symmetric, it

is straightforward to see that the augmentation distance AD(·, ·) is also symmetric.

Our key idea is to consider all the augmentations of T that are within a bounded

augmentation distance from T . The smaller this bound, the fewer meta-rules will

be generated from T .

As an example of augmentation, consider these two meta-rules:

T1 : R0(y) :− R1(z), R2(y, z).

T2 : R0(y, z) :− R1(z, x), R2(y, z).

Then, T2 is an augmentation of T1 with distance 2.

The augmentation distance required for synthesizing a program P from an ini-

tial set of meta-rules T is:

AD(P,T) = max
T1

min
T2∈T

AD(T2, T1)

39



where T1 ranges over all meta-rules that can be instantiated to at least one rule in

P . In our experiments, we could synthesize almost all of the programs using an

augmentation distance of 5 from three simple chain meta-rules as follows.

R0(v1, v2) :− R1(v1, v2).

R0(v1, v3) :− R1(v1, v2), R2(v2, v3).

R0(v1, v4) :− R1(v1, v2), R2(v2, v3), R3(v3, v4).

Note that with a sufficient large augmentation distance, chain meta-rules can be

used to generate any meta-rules.

Predicate invention. Another orthogonal way to improve the richness of candi-

date rules is predicate invention. Predicate invention helps to break a complex rule

into simpler ones, and thereby enables to reuse existing meta-rules. More impor-

tantly, it is unavoidable for Datalog programs with recursion. For instance, consider

the following program which computes strongly connected components (SCC) in a

directed graph:

path(x, y) :− edge(x, y).

path(x, z) :− path(x, y), edge(y, z).

scc(x, y) :− path(x, y), path(y, x).

Here, the input and output relations are edge and scc, respectively. Given that scc

cannot be derived by any set of clauses in terms of only the input relation edge, a

new predicate pathmust be invented. The difficulty with predicate invention lies in

determining what form the invented predicates should take. Without meta-rules,

we have no way to effectively constrain the syntax of such predicates. With meta-

rules, we can easily support predicate invention: the rules that define the potential

invented predicates are exactly the instantiations of meta-rules with concrete rela-

tions.

40



4.4 Rule Selection by Bi-directional Search

Any combination of candidate rules forms a candidate program, however, explicitly

enumerating these combinations will be prohibitive. In this section, we present

a bi-directional synthesis algorithm, which maintains succinct over- and under-

approximations of candidate programs that are consistent with currently observed

examples. These two approximations are much smaller than the size of the search

space due to the structure defined through logical entailment. We next present the

search space structure and then illustrate how bi-directional synthesis algorithm

efficiently explore the space.

4.4.1 Structure of the Search Space

The hypothesis space H consists of a finite set of Datalog programs over the same

input and output relations. For our running example (Example 3.1.1), we consider

a simple hypothesis space where all programs use a subset of the following four

rules:

r1 : path(x, y) :− edge(x, y).

r2 : path(x, z) :− path(y, z).

r3 : path(x, x) :− edge(x, x).

r4 : path(x, y) :− path(x, z), path(z, y).

We denote the Datalog program consisting of rules ri, rj, rk as Pijk.

Generality order. We structure the search by imposing a generality order on the

space of Datalog programs. To define this order, we use θ-subsumption [135], which

is a syntactic approach for deciding whether one rule subsumes (is more general

than) another rule.

Formally, a rule C subsumes another rule D iff there is a variable substitution θ

41



1,2

1,4 2,3

1 3,4 2

3 4

(a) Initialization
path(4,2)? No

1,2

1,4 2,3

1 3,4 2

3 4

(b) Iteration 1
path(1,2)? Yes

1,2

1,4 2,3

1 3,4 2

3 4

(c) Iteration 2
path(1,4)? Yes

1,2

1,4 2,3

1 3,4 2

3 4

(d) Iteration 3
converged

Figure 4.2: Version space in each iteration (red/yellow nodes represent most-
general/specific programs in the current iteration; purple nodes represent pro-
grams that are both most general and most specific in the current iteration;
and grey nodes represent programs that have been evaluated). An arrow from
u to v means that program u is more general than program v.

such that Cθ has the same head asD, and all atoms in the body of Cθ appear in the

body of D.6 For example, r2 subsumes r4 with θ = { z/y, y/z }, and r1 subsumes r3

with θ = { y/x }.
Subsumption can be naturally extended from rules to programs. For any two

Datalog programs P and Q, P subsumes Q, denoted Q v P , iff for every rule in Q

there exists a rule in P that subsumes it. For instance, in our running example, P13

subsumes P24.

Given the hypothesis space H, and a generality ordering v, every subset P of

H forms a quasi-ordered set w.r.t. v. We can now construct a partial order on the

quotient set of the equivalence relation (two programs P,Q are equivalent if P v Q

and Q v P ).

In our running example, the following equivalence classes are formed w.r.t. θ-

subsumption: {P1234, P123, P124, P12}, {P143, P14}, {P13, P1}, {P324, P32}, {P24, P2},
{P34}, {P3}, and {P4}. We restrict the hypothesis space such that it has one rep-

resentative from each class (any of the programs with the fewest rules) and define
6A substitution θ is a set { v1/t1, · · · , vn/tn } where the vi are distinct variables and ti are terms.

Notation Cθ denotes the rule obtained by applying substitution θ on rule C, i.e., for each vi/ti ∈ θ,
we replace each occurrence of vi in C by ti.

42



Algorithm 1: The ALPS synthesis algorithm
1 (E+, E−)← (∅, ∅)
2 P← MostGeneral()
3 P← MostSpecific()
4 while true do
5 P← P ∪P // construct committee
6 if ∀e ∈ B. D(e,P) = 0 then return P
7 e? ← argmaxe∈BD(e,P) // most controversial example
8 � ← O(e?) // where � ∈ {+,−}
9 E� ← E� ∪ {e?}

10 P← F ↓(P, E+, E−) // top-down refinement
11 P← F ↑(P, E+, E−) // bottom-up refinement

a partial order directly on these representatives instead of the equivalence classes.

We can achieve this without any loss of generality since we are discarding only se-

mantically equivalent programs. For our running example, the hypothesis space

can now be reformulated as {P12, P14, P1, P32, P2, P34, P3, P4}.
Since the generality order is a partial order, there may exist multiple maximal

and minimal elements. The set of maximal elements is denoted max(P) = {P ∈
P | @P ′ ∈ P. P < P ′ }, and we call these the most-general programs. Similarly, the

set of minimal elements is denoted min(P) = {P ∈ P | @P ′ ∈ P. P ′ < P }, and
we call these the most-specific programs. Figure 4.2a shows the initial version space

for our running example, where the most-specific and most-general programs are

colored yellow and red, respectively.

4.4.2 The Bi-directional Synthesis Algorithm

Our bi-directional synthesis algorithm has an extra advantage since its refinement

operation only considers one example during each iteration, which make it suitable

for an interactive setting. Thus, a set of positive or negative examples are not re-

quired upfront. In what follows, we present our bi-directional synthesis algorithm

in the interactive setting. In the case examples are available at the beginning, an

43



interactive setup can be easily simulated.

Algorithm 1 summarizes our bi-directional synthesis algorithm. It is a fixpoint

algorithm that maintains a pair E = (E+, E−) of positive and negative examples,

and a set of most-general programsP and most-specific programsP that are always

consistent with E. The examples are initially empty, and P,P are initialized to be

the most general and most specific programs respectively (we define this initializa-

tion in Section 4.4.3). At every iteration, it adds a (positive or negative) example

by querying the oracle O. Then, it invokes two refinement operators F ↑, F ↓ which

recalculate the most-general programs and the most-specific programs that agree

with the new example (we define the refinement operators in Section 4.4.3). The

algorithm stops when no new examples can be added.

The crux of the algorithm is the way we choose the example to query the oracle.

The union of two sets of programs P,P forms the committee P. The committee

then picks the most controversial example e?. If O(e?) = +, then e? is added to E+;

otherwise, e? is added to E−. If no controversial example exists, then everyone in

the committee agrees; the algorithm terminates and returns set P, which contains

all the most-general and most-specific solutions.

In order to determine the most controversial example, we use the metric of vote

entropy. It is inspired by query-by-committee [159, 66], a greedy yet effective strat-

egy commonly used in active learning [158]. Since there are only two possible la-

bels for an example, we use a simplified definition, which is essentially equivalent

to disagreement count.

Definition 4.4.1 (Vote entropy). For an example e and set of committee membersK,

the normalized vote entropy is:

D(e,K) = 1− 2

|K|

∣∣∣∣p− |K|2

∣∣∣∣
where p is the number of committee members that assign a positive label to the example

44



e.

When the vote entropy of an example is zero, all programs in the committee

agree on its label. Figure 4.2 shows the version space and the query posed in each

iteration for our running example.

4.4.3 Refinement with Meta-Rules

We now give concrete definitions of the initialization functions and refinement op-

erators, F ↑ and F ↓ in Algorithm 1. The design of the refinement operators is moti-

vated by a practical insight: the synthesis search should be biased towards patterns

that are frequently used in practice.

Similar to rules, a generality order between meta-rules can be established using

θ-subsumption by allowing substitution for second-order variables as well as first-

order variables. Using this generality order, a set of meta-rules forms a partially

ordered set.

Initialization. The initialization function MostGeneral() collects all rules instan-

tiated from the most general meta-rules and combines them as the most general

program. The initialization function MostSpecific() makes each individual rule in-

stantiated from the most specific meta-rules as a single rule program, and all of

these programs form the initial set of most specific programs.

Meta-rule-guided refinement. Algorithm 2 describes our refinement operations,

F ↓ and F ↑, which are parameterized by a set of meta-rules T. We explain only

top-down refinement F ↓ in detail, since bottom-up refinement F ↑ works in a sym-

metrical manner.

The algorithm begins with the given set of programs P. Then, it iteratively spe-

cializes the programs by applying the specialization operator ρ↓, which is guided by

T (line 3–6). In each iteration, the condition P 6⊆ VE checks whether the current

45



Algorithm 2: Meta-rule-guided refinement
1 Function F ↓(P, E+, E−)
2 E ← (E+, E−)
3 while P 6⊆ VE do
4 ∆P← (P ∩ VE−)\VE+

5 ∆P←ρ↑(∆P,T) ∩ VE−
6 P← (P ∩ VE) ∪∆P

7 return P

8 Function F ↑(P, E+, E−)
9 E ← (E+, E−)

10 while P 6⊆ VE do
11 ∆P← (P ∩ VE−)\VE+

12 ∆P←ρ↑(∆P,T) ∩ VE−
13 P← (P ∩ VE) ∪∆P

14 return P

programs are consistent with the examples. If there is no violation, the algorithm

terminates. Otherwise, line 4 first eliminates programs violating positive examples,

and then selects programs violating negative examples to specialize. In the former

case, programs fail to derive a positive example, and more specific programs will

also fail to derive it. This process removes not only inconsistent programs but also

any programs more specific than them. The elimination happens in the third iter-

ation of our running example shown in Figure 4.2c: when P23 is eliminated due to

the positive example path(1,2), all the more specific programs P34, P2, P3, P4 are

eliminated from consideration as well.

Next, line 5 specializes programs violating negative examples by calling ρ↓, and

eliminates any generated programs that fail to derive a positive example. Finally,

line 6 updates P by including the new specialized programs.

The final piece of the puzzle is the specialization operator ρ↓. Here, ρ↓ can special-

ize a program in two ways: (1) replace a rule with a more specific one; for instance,

in our running example shown in Figure 4.2b, program P12 is specialized to P14 and

P23; (2) remove a rule that cannot be further specialized; for instance, P23 could

46



potentially be specialized to P2. Finding all more specific rules for a given rule r

can be efficiently done by consulting the generality order of the meta-rules T: first,

find the meta-rule Tr used to instantiate r; then, find all more specific meta-rules

Ts with respect to Tr; finally examine all rules instantiated from a meta-rule in Ts

and keep the ones more specific than r.

4.4.4 Properties of ALPS

The ALPS synthesis algorithm (Algorithm 1) always makes progress: each iteration,

we resolve a controversial example. Since the set of possible examples is finite, the

algorithm always terminates. It also guarantees that a solution is found if there

are no controversial examples left in the committee. To ensure this property, it is

critical that the algorithm tracks both the most-general and most-specific programs

at every iteration. The following theorem succinctly captures these properties. We

provide its proof in the Appendix.

Theorem 4.4.2. Let S = (I,O, I, O+, O−, R) be a synthesis problem such that there

exists a solution to S. Let P be the output of ALPS. Then:

1. (Soundness) Every P ∈ P is a solution to S.

2. (Completeness) For every solution P ∈ H to S, there exist programs Pl, Pu ∈ P

such that Pl v P v Pu. An immediate corollary is that if there exists a program

P that is a solution to S, then P is nonempty.

3. (Termination) ALPS terminates.

4.5 A Smoothed Interpretation for Datalog

We next present a dramatically different way of searching through the candidate

program space. Instead of carefully maintaining combinations of rules, our new

47



approach considers all candidate rules simultaneously. The key insight is to turn

combinatorial search into numerical optimization. Specifically, we attach numerical

weights to candidate rules and design a proper loss function so that rules with high

weights are the desired ones in the final solution and the weights can be adjusted

by gradient-based methods. This requires us to design a new semantics for Datalog

programs whose rules are associated with numerical weights, which we call Difflog.

In this section, we describe the semantics of Difflog, and present an algorithm

to evaluate and automatically differentiate this continuous-valued extension.

4.5.1 Relaxing Rule Selection

The idea motivating Difflog is to generalize the concept of rule selection: instead

of a set of binary decisions, we associate each rule r with a numerical weight wr ∈
[0, 1]. One possible way to visualize these weights is as the extent to which they are

present in the current candidate program. The central challenge, which we will now

address, is in specifying how the vector of rule weightsw determines the numerical

values vR,It (w) for the output tuples t of the program. We will simply write vt(w)

when the set of rules R and the set of input tuples I are evident from context.

Every output tuple of a Datalog program is associated with a set of derivation

trees, such as those shown in Figure 4.3. Let rg be the rule associated with each

instantiated clause g that appears in the derivation tree τ . We define the value of

τ , vτ (w), as the product of the weights of all clauses appearing in τ , and the value

of an output tuple t as being the supremum of the values of all derivation trees of

which it is the conclusion:

vτ (w) =
∏

clause g∈τ

wrg , and (4.1)

vt(w) = sup
τ with conclusion t

vτ (w), (4.2)

48



parent(Will, Ben) parent(Ann, Ben)

r1(Will, Ann, Ben)

samegen(Will, Ann)

(a)

parent(Ben, Tom) parent(Ben, Tom)

r1(Ben, Ben, Tom)

samegen(Ben, Ben)

parent(Will, Ben) parent(Ann, Ben)

r2(Will, Ben, Ann, Ben)

samegen(Will, Ann)

(b)

Figure 4.3: Examples of derivation trees, τ1 (a) and τ2 (b) induced by vari-
ous combinations of candidate rules, applied to the EDB of familial relation-
ships from Figure 4.1. The input tuples are shaded in grey. We present two
derivation trees for the conclusion samegen(Will, Ann) using rules r1 and r2 in
Section 4.2.1.

with the convention that sup(∅) = 0. For example, if wr1 = 0.8 and wr2 = 0.6, then

the weight of the trees τ1 and τ2 from Figure 4.3 are respectively vτ1(w) = wr1 = 0.8

and vτ2(w) = wr1wr2 = 0.48.

Since 0 ≤ wr ≤ 1, it follows that vτ (w) ≤ 1. Also note that a single output tuple

may be the conclusion of infinitely many proof trees (see the derivation structure

in Figure 4.4), leading to the deliberate choice of the supremum in Equation 4.2.

One way to consider Equations 4.1 and 4.2 is as replacing the traditional opera-

tions (∧,∨) and values {true, false} of the Boolean semiring with the corresponding

operations (×,max) and values [0, 1] of the Viterbi semiring. The study of various

semiring interpretations of database query formalisms has a rich history motivated

by the idea of data provenance. The following result follows from Prop. 5.7 in [75],

and concretizes the idea that Difflog is a refinement of Datalog:

Theorem 4.5.1. Let R be a set of candidate rules, and w be an assignment of weights

wr ∈ [0, 1] to each of them, r ∈ R. Define Rs = {r | wr 
 0}, and consider a potential

49



samegen(Will, Ann) samegen(Ann, Will)

rs(Ann, Will)

rs(Will, Ann)

· · · · · ·

Figure 4.4: The rule rs, “someone(x, y) :− samegen(y, x)”, induces cycles in the
clauses obtained at fixpoint. When unrolled into derivation trees such as those
in Figure 4.3, these cycles result in the production of infinitely many derivation
trees for a single output tuple.
output tuple t. Then, vR,It (w) 
 0 iff t ∈ Rs(I).

Furthermore, in the Appendix, we show that the output values vt(w) is well-

behaved in its domain of definition:

Theorem 4.5.2. The value of the output tuples, vt(w), varies monotonically with the

rule weights w, and is continuous in the region 0 < wr < 1.

Note that Difflog is discontinuous at boundary points when wr = 0 or wr = 1,

and undefined outside the unit interval. To prevent this from causing problems

during learning with gradient descent, we clamp the rule weights to the interval

[0.01, 0.99] in our implementation.

We could conceivably have chosen a different semiring in our definitions in Equa-

tions 4.1 and 4.2. One alternative would be to choose a space of events, correspond-

ing to the inclusion of individual rules, and choosing the union and intersection of

events as the semiring operations. This choice would make the system coincide

with ProbLog [57]. However, the #P-completeness of inference in probabilistic log-

ics would make the learning process computationally expensive. Other possibilities,

such as the arithmetic semiring (R,+,×, 0, 1), would lead to unbounded values for

output tuples in the presence of infinitely many derivation trees.

50



4.5.2 Evaluation and Automatic Differentiation

Because the set of derivation trees for an individual tuple tmay be infinite, note that

Equation 4.2 is merely definitional, and does not prescribe an algorithm to compute

vt(w). Furthermore, numerical optimization requires the ability to automatically

differentiate these values, i.e., to compute ∇wvt.

The key to automatic differentiation is tracking the provenance of each output

tuple [75]. Pick an output tuple t, and let τ be its derivation tree with the greatest

value. Note that τ may not be unique and would be chosen randomly when that is

the case. We model the provenance of t as a map, lt = {r 7→ #r in τ | r ∈ R}, which
maps each rule r to the number of times it appears in τ . Given the provenance lt

of a tuple, observe that vt(w) =
∏

r∈R w
lt(r)
r , so that the derivative of vt(w) can be

readily computed as follows:

∂vt(w)

∂wr
=
lt(r)vt(w)

wr
. (4.3)

In Algorithm 3, we present an algorithm to compute the output values vt(w)

and provenance lt, given R, w, and the input tuples I. The algorithm is essentially

an instrumented version of the “naive” Datalog evaluator [7]. We outline the proof

of the following correctness and complexity claims in the Appendix.

Theorem 4.5.3. Fix a set of input relations I, output relations O, and candidate

rules R. Let Evaluate(R,w, I) = (F,u, l). Then: (a) F = R(I), and (b) u(t) = vt(w).

Furthermore, Evaluate(R,w, I) returns in time poly(|I|).

4.6 Formulating the Optimization Problem

We formulate the Difflog synthesis problem as finding the value of the rule weights

w which minimizes the difference between the output values of tuples, vt(w), and

their expected values, 1 if t ∈ O+, and 0 if t ∈ O−. Specifically, we seek to minimize

51



Algorithm 3: Evaluate(R,w, I), where R is a set of rules, w is an assign-
ment of weight to each rule in R, and I is a set of input tuples.

1. Initialize the set of tuples in each relation, FP := ∅, their valuations, u(t) := 0, and
their provenance l(t) = {r 7→ ∞ | r ∈ R}.

2. For each input relation P , update FP := IP , and for each t ∈ IP , update u(t) := 1 and
l(t) = {r 7→ 0 | r ∈ R}.

3. Until (F,u) reach fixpoint,

(a) Compute the immediate consequence of each rule, r,
“Ph(uh) :− P1(u1), P2(u2), . . . , Pk(uk)”:

F ′Ph
= πuh

(FP1(u1) ./ FP2(u2) ./ · · · ./ FPk
(uk)).

Furthermore, for each tuple t ∈ F ′Ph
, determine all sets of antecedent tuples,

Ag(t) = {P1(v1), P2(v2), . . . , Pk(vk)}, which result in its production.
(b) Update FPh

:= FPh
∪ F ′Ph

.

(c) For each tuple t ∈ F ′Ph
and each Ag(t): (i) compute u′t = wr

∏k
i=1 u(Pi(vi)), and

(ii) if u(t) < u′t, update:

u(t) := u′t, and l(t) := {r 7→ 1}+
k∑
i=1

l(Pi(vi)),

where addition of provenance values corresponds to the element-wise sum.

4. Return (F,u, l).

the L2 loss,

L(w) =
∑
t∈O+

(1− vt(w))2 +
∑
t∈O−

vt(w)2. (4.4)

At the optimum point, Theorem 4.5.1 enables the recovery of a classical Datalog

program from the optimum value w∗.

Hybrid optimization procedure. In program synthesis, the goal is often to ensure

exact compatibility with the provided positive and negative examples. We therefore

seek zeros of the loss function L(w), and solve for this using Newton’s root-finding

52



algorithm: w(i+1) := w(i) − L(w)∇wL(w)/‖∇wL(w)‖2. To escape from local min-

ima and points of slow convergence, we periodically intersperse iterations of the

MCMC sampling, specifically simulated annealing.

Forbidden rules. If a single rule r ∈ R is seen to independently derive an unde-

sirable tuple t ∈ O−, i.e., if lt(r) ≥ 1 and lt(r′) = 0 for all r 6= r, then it is marked as

a forbidden rule, and its weight is immediately clamped to 0: w(i+1)
r := 0.

Learning details. We initializew by uniformly sampling weightswr ∈ [0.25, 0.75].

We applyMCMC sampling after every 30 iterations of Newton’s root-findingmethod,

and sample new weights as follows:

X ∼ U(0, 1)

wnew =

{
wold
√

2X if X < 0.5

1− (1− wold)
√

2(1−X) otherwise.

The temperature T used in simulated annealing is as follows:

T =
1.0

C ∗ log(5 + #iter)

where C is initially 0.0001 and #iter is the number of iterations. We accept the

newly proposed sample with probability

pacc = min(1, πnew/πcurr),

where πcurr = exp(−L2(wcurr)/T ) and πnew = exp(−L2(wnew)/T ).

Separation-guided search termination. After computing each subsequent w(i),

we examine the provenance values for each output tuple to determine whether the

current position can directly lead to a solution to the rule selection problem. In

53



particular, we compute the sets of desirable—R+ = {r ∈ l(t) | t ∈ O+}—and

undesirable rules—R− = {r ∈ l(t) | t ∈ O−}, and check whether R+ ∩ R− = ∅. If
these sets are separate, then we examine the candidate solution R+, and return if

it satisfies the output specification.

4.7 Empirical Evaluation

We evaluate ALPS and Difflog on a variety of synthesis tasks from different domains.

Implementation and setup. ALPS7 comprises about 8,000 lines of C++ code and

uses the fixpoint engine of the Z3 smt solver [90] for Datalog evaluation. Difflog8

comprises 4K lines of Scala code. We use Newton’s root-finding method for continu-

ous optimization and apply MCMC-based random sampling every 30 iterations. All

experiments were conducted on Linux machines with Intel Xeon 3GHz processors

and 64GB memory.

Our experiments address the following aspects:

1. effectiveness of our baseline ALPS compared with existing state-of-the-art syn-

thesis tools [10, 128];

2. effectiveness of Difflog in constrast to ALPS;

3. the benefit of employing MCMC search compared to a purely gradient-based

method; and

4. scaling with number of training labels and rule templates.

4.7.1 Benchmark Suite

We collected 34 synthesis tasks from three different application domains: (i) knowl-

edge discovery, (ii) program analysis and (iii) relational queries. Table 4.1 presents
7The artifacts of ALPS are available at: https://github.com/XujieSi/fse18-artifact-183.
8The artifacts of Difflog are available at: https://github.com/petablox/difflog.

54

https://github.com/XujieSi/fse18-artifact-183
https://github.com/petablox/difflog


Benchmark Brief description #Rel. #Rule Rec.?

Knowledge Discovery
inflammation diagnosis of bladder inflammation 7 2
abduce grandparent of given father/mother [126] 4 3
animals distinguishing classes of animals [126] 13 4
ancestor ancestor in a family tree [128] 4 4 3

buildWall learn a stable wall strategy [128] 5 4 3

samegen same generation in a family tree [7] 3 3 3

path all-pairs reachability in directed graph 2 2 3

scc compute SCCs in directed graph 3 3 3

Program Analysis
polysite polymorphic call-site inference for Java 6 3
downcast downcast safety checker for Java 9 4
rv-check return-value-checker in APISan [191] 5 5
andersen inclusion-based pointer analysis for C [19] 5 4 3

1-call-site 1-call-site pointer analysis for Java [183] 9 4 3

2-call-site 2-call-site pointer analysis for java [183] 9 4 3

1-object 1-object-sensitive pointer analysis [122] 11 4 3

1-type 1-type-sensitive pointer analysis [171] 12 4 3

1-obj-type 1-type-1-object sensitive analysis [171] 13 5 3

escape escape analysis for Java 10 6 3

modref mod-ref analysis for Java 13 10 3

Relational Queries
sql-1 ∼ 15 15 SQL queries [180] ≤ 7 ≤ 4

Table 4.1: Benchmark characteristics.

useful characteristics of these benchmarks. The last three columns show the num-

ber of input–output relations, the number of rules of the smallest desired program,

and whether the desired program is recursive or not, respectively.

Knowledge discovery. The knowledge discovery benchmarks comprise 8 tasks

of synthesizing Datalog programs frequently used in the artificial intelligence and

database literature. The goal of the first benchmark inflammation is to discover in-

teresting correlations between patient risk factors and a disease called acute inflam-

mations of urinary bladder. We used a dataset created by a medical expert to enable

55



expert systems that perform presumptive diagnosis of the disease [51].9 The next

four benchmarks (abduce, ancestor, animals, and buildWall) are widely used in

the field of inductive logic programming [126, 128]. The samegen benchmark is a

standard Datalog program in the database literature [7]. The path benchmark is

the problem described in Example 3.1.1 and the scc benchmark is the problem of

computing strongly connected components in a directed graph.

Program analysis. The program analysis benchmarks comprise 11 tasks of syn-

thesizing static analyzers written in Datalog:

• polysite is a polymorphic call-site inference analysis for Java;

• downcast is a downcast safety checker for Java;

• rv-check is the static API misuse detector described in Example 3.1.5, which is

motivated from a return value checker used in a tool called apisan [191]. apisan

identifies api misuses by detecting inconsistent uses of the return values of api

functions. However, the tool is neither sound nor complete due to the limitation

of its statistical method. This observation motivated our rule-based approach for

static API misuse detection.

• andersen is a classic pointer analysis for C [19];

• The next five benchmarks are pointer analyses for Java with various context ab-

stractions [183, 122, 171].

• modref is a mod-ref analysis for Java and escape is an escape analysis for Java.

Both benchmarks originated from a programming assignment in an online course

on program analysis [5].
9Available at http://archive.ics.uci.edu/ml/datasets/Acute+Inflammations.

56

http://archive.ics.uci.edu/ml/datasets/Acute+Inflammations


Relational queries. These benchmarks comprise 15 synthesis tasks from Stack

Overflow posts and textbook examples [180]. We chose the 15 tasks of synthesizing

sql queries that can be expressed in Datalog. Each task involves up to 6 input tables

and one output table. The desired Datalog programs comprise up to four rules.

4.7.2 Effectiveness of ALPS

We first compare ALPS with two state-of-the-art ILP tools: Metagol [49] and Za-

atar [10]. We supply both of these tools with all ground facts upfront since they

are non-interactive.

Table 4.2 presents the overall evaluation results of ALPS. One unique advantage

of ALPS is its capability of synthesizing all programs in the search space that are

consistent with given positive and negative examples. The second column (#syn.

programs) shows the number of correct programs synthesized by ALPS. The third

and fourth columns show the number of candidate programs that are evaluated by

ALPS and the number of all candidate programs in the search space, respectively.

As we can see, only an extremely small fraction of candidate programs are visited

during the bi-directional synthesis process. The last four columns show the running

times taken by ALPS, Metagol and Zaatar. In general, ALPS can synthesize most

benchmarks in a few minutes.

57



Metagol time#syn.
programs

#eval.
programs

search
space

ALPS
time (sec.) same ideal

Zaatar
time (sec.)

inflammation 4 2327 106 4.3 0.51 0.47 timeout
abduce 1 4613 106 3.36 timeout 0.43 timeout
animals 2 45152 106 75.8 0.46 0.42 timeout
ancestor 3 24280 1010 24.6 timeout 0.43 timeout
buildWall 13 61654 1010 128.7 timeout 35.1 timeout
samegen 2 110338 109 22.3 timeout timeout 4.77
path 3 384 104 0.26 timeout 0.43 26.43
scc 4 57013 106 88.7 timeout timeout timeout

polysite 5 27432 1022 130.0 timeout 0.43 timeout
downcast 1 56489 1028 299.8 timeout 0.43 timeout
rv-check 1 393740 1029 361.5 timeout timeout timeout
andersen 1 100345 1020 148.0 timeout timeout 295.31
1-call-site 3 99697 1032 178.3 timeout timeout timeout
2-call-site 1 184824 1053 601.8 timeout timeout timeout
1-object 1 93362 1048 705.1 timeout timeout timeout
1-type 2 10038 1030 21.6 timeout timeout timeout
1-obj-type - - 1051 timeout timeout timeout timeout
escape 12 5706 1034 9.9 timeout timeout timeout
modref 1 1346754 1045 5307 timeout timeout timeout

sql-1 1 30 106 0.07 0.01 0.01 43.65
sql-2 1 7 106 0.02 0.01 0.01 timeout
sql-3 1 1 101 0.03 0.01 0.01 timeout
sql-4 1 19 102 0.02 0.01 0.01 timeout
sql-5 1 1 102 0.01 0.01 0.01 timeout
sql-6 1 44 102 0.03 0.01 0.01 timeout
sql-7 1 1 101 0.01 0.01 0.01 timeout
sql-8 2 230 1016 1.60 0.02 0.01 timeout
sql-9 1 9 1016 0.30 timeout 0.01 6260
sql-10 1 778 1023 63.2 timeout 0.01 timeout
sql-11 6 1192 1018 1.86 timeout 0.04 8320
sql-12 1 117 1015 0.20 timeout timeout 2417
sql-13 1 4 103 0.01 timeout timeout timeout
sql-14 1 13 1025 90.9 timeout timeout timeout
sql-15 1 344 1015 17.7 timeout timeout timeout

Table 4.2: The performance results of ALPS, Metagol and Zaatar; the timeout
limit is 3 hours.

Metagol is an ilp tool that is an instance of themeta-interpretive learning frame-

work [128], which is also parameterized by meta-rules. We run Metagol with two

settings: the ALPS setting, which uses the same set of meta-rules that ALPS uses

after it performs augmentation, and the ideal setting, which consists of the mini-

mal set of meta-rules that are sufficient for synthesizing a correct program. Using

58



ALPS’s setting, Metagol cannot finish most knowledge discovery benchmarks and

all program analysis benchmarks. Using the ideal setting, Metagol still fails on

two knowledge discovery benchmarks and most of program analysis benchmarks.

Metagol also fails on four of the sql benchmarks despite their lack of recursion. It

is important to note that Metagol employs meta-interpretive learning, which is not

a complete technique, so it is not guaranteed to terminate, despite finiteness of the

search space.

Zaatar [10] is a constraint-based Datalog program synthesis tool. It fails onmost

of our benchmarks because it is very sensitive to the size of the input data, since the

size of the encoding is polynomial in the input data. In contrast, ALPS has much

better scalability in terms of input size, as ALPS only evaluates candidate programs

on input data instead of encoding the input as symbolic constraints.

4.7.3 Effectiveness of Difflog

We just show that ALPS significantly outperforms two state-of-the-art ILP tools. We

next compare Difflog with ALPS and show that numerical relaxation could further

improve the performance dramatically.

The running time and solution of Difflog depends on the random choice of initial

weights. Difflog exploits this characteristic by running multiple synthesis processes

for each problem in parallel. The solution is returned once any one of the parallel

processes successfully synthesizes a Datalog program which is consistent with the

specifications. We populated 32 processes in parallel and measured the running

time until the first solution was found. The timeout is set to 1 hour for each problem.

Table 4.3 shows the running of Difflog and ALPS. Of the 34 benchmarks, we

excluded 14 benchmarks where either both Difflog and ALPS find solutions within

a second (13 benchmarks) or both solvers time-out (1 benchmark). Difflog out-

performs ALPS on 19 of the remaining 20 benchmarks in Table 4.3. In particular,

Difflog is orders of magnitude faster than ALPS on most of the program analysis

59



Benchmark Rel Rule Tuple Difflog ALPS

Exp Cnd In Out Iter Smpl Time Time

inflamation 7 2 134 640 49 1 0 1 2
abduce 4 3 80 12 20 1 0 < 1 2
animals 13 4 336 50 64 1 0 1 40
ancestor 4 4 80 8 27 1 0 < 1 14
buildWall 5 4 472 30 4 5 1 7 67
samegen 3 3 188 7 22 1 0 2 12
scc 3 3 384 9 68 6 1 28 56

polysite 6 3 552 97 27 17 1 27 84
downcast 9 4 1,267 89 175 5 1 30 1,646
rv-check 5 5 335 74 2 1,205 41 22 195
andersen 5 4 175 7 7 1 0 4 27
1-call-site 9 4 173 28 16 4 1 4 106
2-call-site 9 4 122 30 15 25 1 53 676
1-object 11 4 46 40 13 3 1 3 345
1-type 12 4 70 48 22 3 1 4 13
escape 10 6 140 13 19 2 1 1 5
modref 13 10 129 18 34 1 0 1 2,836

sql-10 3 2 734 10 2 7 1 11 41
sql-14 4 3 23 11 6 1 0 < 1 54
sql-15 4 2 186 50 7 902 31 875 11

Table 4.3: Characteristics of benchmarks and performance of Difflog compared
to ALPS. Rel shows the number of relations. The columns titled Rule represent
the number of expected and candidate rules. Tuple shows the number of input
and output tuples. Iter and Smpl report the number of iterations and MCMC
samplings. Time shows the running time of Difflog and ALPS in seconds.

benchmarks. Meanwhile, the continuous optimization may not be efficient when

the problem has many local minimas and the space is not convex. For example,

sql-15 has a lot of sub-optimal solutions that generate not only all positive output

tuples but also some negative ones.

60



Figure 4.5: Distribution of Difflog’s running time from 32 parallel runs. The
numbers on top represents the number of timeouts. Green circles represent
the running time of ALPS.

Figure 4.5 depicts the distribution of running time on the benchmarks. The

results show that Difflog is always able to find solutions for all the benchmarks

except for occasional timeouts on downcast, rv-check, scc, and sql-15. Also note

that even the median running time of Difflog is smaller than the running time of

ALPS for 13 out of 20 benchmarks.

4.7.4 Impact of MCMC-based Sampling

Next, we evaluate the impact of our MCMC-based sampling by comparing the per-

formance of three variants of Difflog: (a) a version that uses both Newton’s method

and the MCMC-based technique (Hybrid), which is the same as in Section 4.7.3,

(b) a version that uses only Newton’s method (Newton), and (c) a version that

uses only the MCMC-based technique (MCMC). Table 4.4 shows the running time

of the best run and the number of timeouts among 32 parallel runs for these three

variants. The table shows that our hybrid approach strikes a good balance between

61



Benchmark Hybrid Newton MCMC

Best Median Timeout B M T B M T

polysite 27s 142s 0 10s 72s 0 12s 76s 0
downcast 30s 310s 2 16s 252s 9 70s 268s 7
rv-check 22s 948s 2 N/A N/A 32 N/A N/A 32
andersen 4s 29s 0 3s 15s 10 4s 17s 9
1-call-site 4s 18s 0 8s 18s 1 N/A N/A 32
2-call-site 53s 225s 0 27s N/A 17 42s 94s 9
1-object 3s 17s 0 3s N/A 17 N/A N/A 32
1-type 4s 12s 0 3s N/A 18 N/A N/A 32
escape 1s 2s 0 1s N/A 17 N/A N/A 32
modref 1s 2s 0 1s 1s 4 N/A N/A 32

Total 4 125 217

Table 4.4: Effectiveness of MCMC sampling in terms of the best and median
running times and the number of timeouts observed over 32 independent runs.

exploitation and exploration. In many cases, Newton gets stuck in local minima; for

example, it cannot find any solution for rv-check within one hour. MCMC cannot

find any solution for 6 out of 10 benchmarks. Overall, Hybrid outperforms both

Newton and MCMC by reporting 31× and 54× fewer timeouts, respectively.

4.7.5 Scalability

Finally, we evaluate the scalability of Difflog-based synthesis, which is affected by

two factors: the number of templates and the size of training data. Our general

observation is that increasing either of these does not significantly increase the ef-

fective running time (i.e., the best of 32 parallel runs).

Figure 4.6 shows how running time increases with the number of templates.10

As shown in Figure 4.6a, the running time distribution for 2-call-site tends to

have larger variance when the number of templates increases, but the best running

time (out of 32 i.i.d samples) only increases modestly. The running time distribution

for downcast, shown in Figure 4.6b, has a similar trend except that smaller num-
10We ensure that all candidate rules in a set are also present in subsequent larger sets.

62



(a) 2-call-site (b) downcast

Figure 4.6: Running time distributions (in minutes) for downcast and
2-call-site with different number of templates.

(a)
(b)

Figure 4.7: Performance of Difflog on andersenwith different sizes of data: (a)
the distribution of number of iterations, (b) the distribution of running time
(in seconds).

ber of templates does not always lead to smaller variance or faster running time.

For instance, the distribution in the setting with 180 templates has larger variance

andmedian than distributions in the subsequent settings with larger number of tem-

plates. This indicates that the actual combination of templates also matters. In gen-

eral, approximately half the benchmarks follow a trend similar to Figure 4.6a, with

monotonically increasing variance in running times, while the remaining bench-

marks are similar to Figure 4.6b.

The size of training data is another important factor affecting the performance of

Difflog. Figure 4.7a shows the distribution of the number of iterations for andersen

with different sizes of training data. According to the results, the size of training

data does not necessarily affect the number of iterations of Difflog. Meanwhile,

63



Figure 4.7b shows that the end-to-end running time increases with more training

data. This is mainly because more training data imposes more cost on the Difflog

evaluator. However, the statistics show that the running time increases linearly with

the size of data.

4.8 Related Work

Template-guided synthesis. Templates are commonly used to guide the search

in program synthesis [173, 49, 169, 172]. At a high-level, meta-rules can also be

seen as program sketches [172], where the holes are the relation symbols. One

advantage of meta-rules over sketches is that Datalog programs in various domains

share the exact same meta-rules. For instance, meta-rules used for graph manipu-

lation are also used in program analyses. Another advantage is that with predicate

invention simple meta-rules can be composed together to express complex rules.

Weighted logical inference. The idea of extending logical inference with weights

has been studied by the community in statistical relational learning. [160] proposes

quantitative logic programming to measure the uncertainty of expert systems by as-

sociating logical rules with uncertainty scores. Markov Logic Networks [144, 99]

view a first order formula as a template for generating a Markov random field,

where the weight attached to the formula specifies the likelihood of its grounded

clauses. ProbLog [57] extends logic programing languages with probabilistic rules

and reduces the inference problem toweightedmodel counting. DeepProbLog [118]

further extends ProbLog with neural predicates (e.g., input data which can be im-

ages). In another direction, aProbLog [96, 97] generalizes ProbLog by associat-

ing logical rules with elements from a semiring, instead of just probability values.

These frameworks could conceivably serve as the underlying inference engine of our

framework but we use the Viterbi semiring because: (a) inference in these frame-

64



works is #P-complete and only requires polynomial time in the Viterbi semiring;

and (b) automatic differentiation is either inefficient or simply not available.

Structure learning for probabilistic logics. Weight learning has also been used

as a means to structure learning [127, 181, 63]; however, our work has two signifi-

cant differences: First, the values we assign to tuples do not have natural interpreta-

tions as probabilities, so that exact inference can be performed just as efficiently as

solving Datalog programs. Furthermore, while the search trajectory itself proceeds

through smoothed programs with non-zero loss, our termination criterion ensures

that the final result is still a classical Datalog program which is consistent with the

provided examples.

Inductive logic programming (ILP). The Datalog synthesis problem can also be

seen as an instance of the classic ILP problem. [43] show that learning a single

rule that is consistent with labelled examples is NP-hard: this is similar to our mo-

tivating result in Theorem 4.2.2, where we demonstrate NP-hardness even if can-

didate rules are explicitly specified. Metagol [128] supports higher-order dyadic

Datalog synthesis but the synthesized program can only consist of binary relations.

Metagol is built on top of Prolog which makes the system very expressive but also

introduces difficult issues with non-terminating programs. Recent works such as

NeuralLP [188] and ∂ILP [64] cast logic program synthesis as a differentiable end-

to-end learning problem and model relation joins as a form of matrix multiplication,

which also limits them to binary relations. NTP [145] constructs a neural network

as a learnable proof (or derivation) for each output tuple up to a predefined depth

(e.g. ≤ 2) with a few (e.g. ≤ 4) templates, where the neural network could be

exponentially large when either the depth or the number of templates grows. The

predefined depth and a small number of templates could significantly limit the class

of learned programs. Our work seeks to synthesize Datalog programs consisting of

relations of arbitrary arity and support rich features like recursion and predicate

65



invention.

MCMC methods for program synthesis. Markov chain Monte-Carlo (MCMC)

methods have also been used for program synthesis. For example, in STOKE, [152]

apply the Metropolis-Hastings algorithm to synthesize efficient loop free programs.

Similarly, [112] show that program transformations can be efficiently learned from

demonstrations by MCMC inference.

4.9 Conclusion

We have presented a technique to synthesize Datalog programs using numerical

optimization. The central idea is to formulate the problem as an instance of rule

selection, and then relax classical Datalog to a refinement named Difflog. In a

comprehensive set of experiments, we show that by learning a Difflog program and

then recovering a classical Datalog program, we can achieve significant speedups

over the state-of-the-art Datalog synthesis systems. In future, we plan to extend

the approach to other synthesis problems such as SyGuS and to applications in

differentiable programming.

Technical and experimental results presented in this chapter are from the fol-

lowing published papers:

. Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing

Datalog Programs using Numerical Relaxation. In Proceedings of the Twenty-

Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,

China, pages 6117–6124.

. Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paris Koutris, Mayur

Naik. Syntax-Guided Synthesis of Datalog Programs. In Proceedings of the

ACM Joint Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, pages 515–527, ACM 2018.

66



CHAPTER 5

DEEP REINFORCEMENT LEARNING FOR

PROGRAM VERIFICATION

5.1 Introduction

The growing ubiquity and complexity of software has led to a dramatic increase

in software bugs and security vulnerabilities that pose enormous costs and risks.

Program verification technology enables programmers to prove the absence of such

problems at compile-time before deploying their program. One of the main activi-

ties underlying this technology involves inferring a loop invariant—a logical formula

that constitutes an abstract specification of a loop—for each loop in the program.

Obtaining loop invariants enables a broad and deep range of correctness and secu-

rity properties to be proven automatically by a variety of program verification tools

spanning type checkers, static analyzers, and theorem provers. Notable examples

include Microsoft Code Contracts for .NET programs [65] and the Verified Software

Toolchain spanning C source code to machine language [20].

Many different approaches have been proposed in the literature to infer loop

invariants. The problem is undecidable, however, and even practical instances are

challenging, which greatly limits the benefits of program verification technology.

Existing approaches suffer from key drawbacks: they are purely search-based, or

they use hand-crafted features, or they are based on supervised learning. The per-

formance of search-based approaches is greatly hindered by their inability to learn

from past mistakes. Hand-crafted features limit the space of possible invariants,

e.g., Garg et al. [68] is limited to features of the form x ± y ≤ c where c is a con-

stant, and thus cannot handle invariants that involve x+y ≤ z for program variables

67



x, y, z. Finally, obtaining ground truth solutions needed by supervised learning is

hindered by the undecidability of the loop invariant generation problem.

We propose Code2Inv, an end-to-end learning-based approach to inferring loop

invariants. Code2Inv has the ability to automatically learn rich latent representa-

tions of desirable invariants, and can avoid repeating similar mistakes. Further-

more, it leverages reinforcement learning to discover invariants by partial feedback

from trial-and-error, without needing ground truth solutions for training.

The design of Code2Inv is inspired by the reasoning exercised by human experts.

Given a program, a human expert first maps the program to a well-organized struc-

tural representation, and then composes the loop invariant step by step. Based on

such reasoning, different parts of the representation get highlighted at each step. To

mimic this procedure, we utilize a graph neural network model (GNN) to construct

the structural external memory representation of the program. The multi-step deci-

sion making is implemented by an autoregressive model, which queries the external

memory using an attention mechanism. The decision at each step is a syntax- and

semantics-guided decoder which generates subparts of the loop invariant.

Code2Inv employs a reinforcement learning approach since it is computationally

intensive to obtain ground truth solutions. Although reinforcement learning algo-

rithms have shown remarkable success in domains like combinatorial optimization

[29, 54] (see Section 5.6 for more discussion on related work), our setting differs in

two crucial ways: first, it has a non-continuous objective function (i.e., a proposed

loop invariant is correct or not); and second, the positive reward is extremely sparse

and given only after the correct loop invariant is proposed, by an automated the-

orem prover [56]. We therefore model the policy learning as a multi-step decision

making process: it provides a fine-grained reward at each step of building the loop

invariant, followed by continuous feedback in the last step based on counterexam-

ples collected by the agent itself during trial-and-error learning.

We evaluate Code2Inv on a suite of 133 benchmark problems from recent works [60,

68



133, 68] and the 2017 SyGuS program synthesis competition [13]. We also com-

pare it to three state-of-the-art systems: a stochastic search-based system C2I [161],

a heuristic search-based system LoopInvGen [133], and and a decision tree learning-

based system ICE-DT [68]. Code2Inv solves 106 problems, versus 73 by C2I, 77 by

LoopInvGen, and 100 by ICE-DT. Moreover, Code2Inv exhibits better learning, mak-

ing orders-of-magnitude fewer calls to the theorem prover than these systems.

5.2 Problem Formulation

We formally define the loop invariant inference and learning problems by briefly

introducing Hoare logic [88], which comprises a set of axioms and inference rules

for proving program correctness assertions. Let P and Q denote predicates over

program variables and let S denote a program. We say that Hoare triple {P} S {Q}
is valid if whenever S begins executing in a state that satisfies P and finishes exe-

cuting, then the resulting state satisfies Q. We call P and Q the pre-condition and

post-condition respectively of S. Hoare rules allow to derive such triples inductively

over the structure of S. The rule most relevant for our purpose is that for loops:

P ⇒ I (pre) {I ∧B} S {I} (inv) (I ∧ ¬B)⇒ Q (post)
{P} while B do S {Q}

Predicate I is called a loop invariant, an assertion that holds before and after each

iteration, as shown in the premise of the rule. We can now formally state the loop

invariant inference problem:

Problem 5.2.1 (Loop Invariant Inference). Given a pre-conditionP , a post-condition

Q and a program S containing a single loop, can we find a predicate I such that

{P} S {Q} is valid?

Given a candidate loop invariant, it is straightforward for an automated theorem

prover such as Z3 [56] to check whether the three conditions denoted pre, inv, and

69



post in the premise of the above rule hold, and thereby prove the property asserted

in the conclusion of the rule. If any of the three conditions fails to hold, the theorem

prover returns a concrete counterexample witnessing the failure.

The loop invariant inference problem is undecidable. Moreover, even seemingly

simple instances are challenging, as we illustrate next using the program in Figure

5.1(a). The goal is to prove that assertion (y > 0) holds at the end of the program,

for every input value of integer variable y. In this case, the pre-condition P is true

since the input value of y is unconstrained, and the post-condition Q is (y > 0), the

assertion to be proven. Using predicate (x < 0 ∨ y > 0) as the loop invariant I

suffices to prove the assertion, as shown in Figure 5.1(b). Notation φ[e/x] denotes

the predicate φ with each occurrence of variable x replaced by expression e. This

loop invariant is non-trivial to infer. The reasoning is simple in the case when the

input value of y is non-negative, but far more subtle in the case when it is negative:

regardless of how negative it is at the beginning, the loopwill iterate at least as many

times as to make it positive, thereby ensuring the desired assertion upon finishing.

Indeed, a state-of-the-art loop invariant generator LoopInvGen [133] crashes on this

problem instance after making 1,119 calls to Z3, whereas Code2Inv successfully

generates it after only 26 such calls.

The central role played by loop invariants in program verification has led to

a large body of work to automatically infer them. Many previous approaches are

based on exhaustive bounded search using domain-specific heuristics and are thereby

limited in applicability and scalability [44, 148, 80, 163, 162, 8, 60, 67]. A different

strategy is followed by data-driven approaches proposed in recent years [161, 68,

133]. These methods speculatively guess likely invariants from program executions

and check their validity. In [68], decision trees are used to learn loop invariants with

simple linear features, e.g. a ∗x+ b ∗ y < c, where a, b ∈ {−1, 0, 1}, c ∈ Z. In [133],

these features are generalized by systematic enumeration. In [161], stochastic

search is performed over a set of constraint templates. While such features or tem-

70



x := −50;
while (x < 0) {

x := x+ y;
y := y + 1

}
assert(y > 0)

(a) An example program.

(b) A desirable loop invariant I is a predicate over x, y such that:

∀x, y :


true ⇒ I[−50/x] (pre)

I ∧ x < 0 ⇒ I[(y + 1)/y, (x+ y)/x] (inv)
I ∧ x ≥ 0 ⇒ y > 0 (post)

(c) The desired loop invariant is (x < 0 ∨ y > 0).

Figure 5.1: A program with a correctness assertion and a loop invariant that
suffices to prove it.

plates perform well in specific domains, however, they may fail to adapt to new

domains. Moreover, even in the same domain, they do not benefit from past expe-

riences: successfully inferring the loop invariant for one program does not speed

up the process for other similar ones. We hereby formulate the second problem we

aim to address:

Problem 5.2.2 (Loop Invariant Learning). Given a set of programs {Si} ∼ P that

are sampled from some unknown distribution P, can we learn from them and gen-

eralize the strategy we learned to other programs {S̃i} that are from the same dis-

tribution?

5.3 End-to-End Reasoning Framework

5.3.1 Reasoning Process of a Human Expert

We start out by illustrating how a human expert might typically accomplish the task

of inferring a loop invariant. Consider the example in Figure 5.2 chosen from our

benchmarks.

An expert usually starts by reading the assertion (line 15), which contains vari-

ables x and y, then determines the locations where these two variables are initial-

ized, and then focuses on the locations where they are updated in the loop. Instead

of reasoning about the entire assertion at once, an expert is likely to focus on updates

71



to one variable at a time. This reasoning yields the observation that x is initialized

1 int main() {

2 int x = 0, y = 0;

3 while (*) {

4 if (*) {

5 x++;

6 y = 100;

7 } else if (*) {

8 if (x >= 4) {

9 x++;

10 y++;

11 }

12 if (x < 0) y--;

13 }

14 }

15 assert( x < 4 || y > 2);

16}

Figure 5.2: An example from our
benchmarks. “*” denotes non-
deterministic choice.

to zero (line 2) and may get incremented in

each iteration (line 5,9). Thus, the sub goal

“x < 4” may not always hold, given that the

loop iterates non-deterministically. This in

turn forces the other part “y > 2” to be true

when “x >= 4”. The only way x can equal

or exceed 4 is to execute the first if branch 4

times (line 4-6), during which y is set to 100.

Now, a natural guess for the loop invariant is

“x < 4 || y >= 100”. The reason for guess-

ing “y >= 100” instead of “y <= 100” is be-

cause part of the proof goal is “y > 2”. How-

ever, this guess will be rejected by the theo-

rem prover. This is because y might be de-

creased by an arbitrary number of times in the

third if-branch (line 12), which happens when

x is less than zero; to avoid that situation, “x

>= 0” should also be part of the loop invariant.

Finally, we have the correct loop invariant:

“(x >= 0) && (x < 4 || y >= 100)”, which

suffices to prove the assertion.

We observe that the entire reasoning process consists of three key components:

1) organize the program in a hierarchical-structured way rather than a sequence of

tokens; 2) compose the loop invariant step by step; and 3) focus on a different part

of the program at each step, depending on the inference logic, e.g., abduction and

induction.

72



!(#)

Co
ns

t
Va

rs

%&

ot
he

rs

y

x

……

0

4

100

Structured
Memory

…

'&

&&

||

>=

x 0

attention

……

Tree
LSTM

%(

'(

&&

||

<

x 4

Tree
LSTM

……

&&

||

<

x 4

>=

y 100

||

>=

x 0

')

%) STOP
……

Output Solution

copy copy copy

……

Figure 5.3: Overall framework of neuralizing loop invariant inference.

5.3.2 Reasoning with Neural Networks

We propose to use a neural network to mimic the reasoning used by human experts

as described above. The key idea is to replace the above three components with

corresponding differentiable modules:

• a structured external memory representation which encodes the program;

• a multi-step autoregressive model for incremental loop invariant construction;

• an attention component that mimics the varying focus in each step.

As shown in Figure 5.3, these modules together build up the network that con-

structs loop invariants from programs, while being jointly trained with reinforce-

ment learning described in Section 5.4. At each step, the neural network generates

a predicate. Then, given the current generated partial tree, a Tree-LSTM module

summarizes what have been generated so far, and the summarization is used to

read the memory using attention. Lastly, the summarization together with the read

memory is fed into next time step. We next elaborate upon each of these three

components.

73



Structured external memory

The loop invariant is built within the given context of a program. Thus it is natural

to encode the program as an external memory module. However, in contrast to

traditional memory networks [174, 123], where the memory slots are organized

as a linear array, the information contained in a program has rich structure. A

chain LSTM over program tokens can in principle capture such information but

it is challenging for neural networks to understand with limited data. Inspired

by Allamanis et al. [11], we instead use a graph-structured memory representation.

Such a representation allows to capture rich semantic knowledge about the program

such as its control-flow and data-flow.

More concretely, we first convert a given program into static single assignment

(SSA) form [50], and construct a control flow graph, each of whose nodes repre-

sents a single program statement. We then transform each node into an abstract

syntax tree (AST) representing the corresponding statement. Thus a program can

be represented by a graph G = (V,E), where V contains terminals and nontermi-

nals of the ASTs, and E = {(e(i)x , e(i)y , e(i)t )}|E|i=1 is the set of edges. The directed edge

(e
(i)
x , e

(i)
y , e

(i)
t ) starts from node e(i)x to e(i)y , with e(i)t ∈ {1, 2, . . . , K} representing edge

type. In our construction, the program graph contains 3 different edge types (and

6 after adding reversed edges).

To convert the graph into a vector representation, we follow the general message

passing operator introduced in graph neural network (GNN) [150] and its vari-

ants [61, 53, 11]. Specifically, the graph network will associate each node v ∈ V
with an embedding vector µv ∈ Rd. The embedding is updated iteratively using the

general neighborhood embedding as follows:

µ(l+1)
v = h({µ(l)

u }u∈N k(v),k∈{1,2,...,K}) (5.1)

Here h(·) is a nonlinear function that aggregates the neighborhood information to

74



SSA nodeNon-terminalsTerminals

<loop>

y1

<

1000

<assign>

x2

=

+

x1 y1

<assign>

y2

=

+

y1 1

x y

Source Code

Graph Representation

<loop>

y1

<

1000

<assign>

=

+

y1

<assign>

y2

=

+

y1 1

y

Neural Graph Embedding

x2

x1

x
!"($)

!"&
($'&)

!"(
($'&)

Variable linkAST edgeControl flow

Vector 
representation

)(*)

*

message passing operator

$ = &,… , .

……

Structured
External Memory

Figure 5.4: Diagram for source code graph as external structured memory. We
convert a given program into a graph G, where nodes correspond to syntax
elements, and edges indicate the control flow, syntax tree structure, or variable
linking. We use embedding neural network to get structured memory f(G).

update the embedding. N k(v) is the set of neighbor nodes connected to v with edge

type k, i.e., N k(v) = {u|(u, v, k) ∈ E}. This process is repeated for L steps and the

node embedding µv is set to µ(L)
v ,∀v ∈ V . Our parameterization takes the edge

types into account. The specific parameterization used is shown below:

µ(l+1),k
v = σ(

∑
u∈N k(v) W2µ

(l)
u ),∀k ∈ {1, 2, . . . , K} (5.2)

µ(l+1)
v = σ(W3[µ

(l+1),1
v , µ

(l+1),2
v , . . . , µ

(l+1),K
v ]) (5.3)

with the boundary case µ(0)
v = W1xv. Here xv represents the syntax information

of node v, such as token or constant value in the program. Matrices W1,2,3 are

learnable model parameters, and σ is some nonlinear activation function. Figure 5.4

shows the construction of graph structured memory using the iterative message

passing operator in Eq (5.1). f(G) = {µv}v∈V denotes the structured memory.

Multi-step decision making process

A loop invariant itself is a mini-program that contains expressions and logical op-

erations. Without loss of generality, we define the loop invariant to be a tree T , in

75



a form with conjunctions of disjunctions:

T = (T1 || T2 . . .) && (Tt+1 || Tt+2 . . .) && . . . (. . . TT−1|| TT ) (5.4)

Each subtree Tt is a simple logic expression (i.e., x < y * 2 + 10 - z). Given this

representation form, it is natural to use Markov decision process (MDP) to model

this problem, where the corresponding T -step finite horizon MDP is defined as

MG = (s1, a1, r1, s2, a2, . . . , sT ). Here st, at, rt represent the state, action and reward

at time step t = 1, . . . , T − 1, respectively. Here we describe the state and action

used in the inference model, and describe the design of reward and termination in

Section 5.4.

action: As defined in Eq (5.4), a loop invariant tree T consists of multiple subtrees

{Tt}. Thus we model the action at time step t as at = (opt, Tt), where opt can either

be || or&&. That is to say, at each time step, the agent first decides whether to attach

the subexpression Tt to an existing disjunction, or create a new disjunction and add

it to the list of conjunctions. We use T (<t) to denote the partial tree generated by

time t so far. So the policy π(T |G) is decomposed into:

π(T |G) =
T∏
t=1

π(at|T (<t), G) =
T∏
t=1

π(opt, Tt|T (<t), G) (5.5)

where T (<1) is empty at the first step. The generation process of subtree Tt is also an
autoregressive model implemented by LSTM. However, generating a valid program

is nontrivial, since strong syntax and semantics constraints should be enforced. Re-

cent advances in neural program synthesis [134, 104] utilize formal language in-

formation to help the generation process. Here we use the Syntax-Directed decoder

proposed in [55] to guarantee both the syntax and semantics validity. Specifically,

• Syntax constraints: The AST generation follows the grammar of loop invariants

described in Eq 5.4. Operators such as +, -, * are non-terminal nodes in the

76



AST while operands such as constants or variables are leaf nodes.

• Semantic constraints: We regulate the generated loop invariant to be meaning-

ful. For example, a valid loop invariant must contains all the variables that appear

in the given assertion. Otherwise, the missing variables can take arbitrary val-

ues, causing the assertion to be violated. In contrast to offline checking which

discards invalid programs after generation, such online regulation restricts the

output space of the program generative model, which in turn makes learning

efficient.

state: At time step t = 1, the state is simply the weighted average of structured

memory f(G). At each later time step t > 1, the action at should be conditioned on

graph memory, as well as the partial tree generated so far. Thus st = (G, T (<t)).

Memory query with attention

A program is encoded as an external memory to an agent, i.e. a deep learning

model used to construct candidate loop invariants. A memory query from the agent

intuitively means looking into certain part of the program, which resembles human

focus or attention on the source code. Note that the attention evolves along with

the invariant construction. To mimic such process, we model the attention as a

mapping from partially generated invariant to some region of the external memory.

More concretely, we use TreeLSTM [177] to represent this mapping. At time step

t, we compute an embedding vT (<t) of the partially generated invariant T (<t)

vT (<t) = TreeLSTM(T (<t)) (5.6)

which can be viewed a “context” that is subsequently used to determine the atten-

tion

αv =
expµ>v vT (<t)∑
v∈V expµ>v vT (<t)

(5.7)

With attention αv, the agent eventually read out
∑

v∈V αvµv.

77



5.4 Reinforcement Learning
The undecidability of the loop invariant generation problem hinders the ability to

obtain ground truth solutions as supervisions for training. Inspired by recent ad-

vances in combinatorial optimization [29, 54], where the agent learns a good policy

by trial-and-error, we employ reinforcement learning to learn to propose loop invari-

ants. Ideally, we seek to learn a policy π(T |G) that proposes a correct loop invariant

T for a program graph G. However, directly solving such a model is practically not

feasible, since:

• In contrast to problems tackled by existing work, where the objective function is

relatively continuous (e.g., tour length of traveling salesman problem), the pro-

posed loop invariant only has binary objective (i.e., correct or not). This makes

the loss surface of the objective function highly non-smooth.

• Finding the loop invariant is a bandit problem where the binary reward is given

only after the invariant is proposed. Also, in contrast to two player games [167]

where a default policy (e.g., random rollout) can be used to estimate the reward,

it is a single player game with an extremely sparse reward.

To tackle the above two challenges, the multi-step decision making model pro-

posed in Section 5.3.2 is used, where a fine-grained reward is also designed for each

step. In the last step, a continuous feedback is provided based on the counterexam-

ples collected by the agent itself.

5.4.1 Reward Design

Section 5.3.2 defines the state and action representation used for inference. We next

describe our reward design which is important to properly train a reinforcement

learning agent.

reward: In each intermediate step t ∈ 1, . . . , T − 1, an intermediate reward rt

is given to regulate the generation process. For example, a subexpression should

be non-trivial, and it should not contradict T (<t). In the last step, the generated

78



loop invariant T is given to a theorem prover, which returns success or failure. In

the latter case, the theorem prover also tells which step (pre, inv, post) failed, and

provides a counterexample. The failure step can be viewed as a “milestone” of the

verification process, providing a coarse granularity feedback. To achieve continuous

(i.e. fine granularity) reward within each step, we exploit the counterexamples

collected so far. For instance, the ratio of passed examples is a good indicator of the

learning progress.

termination: There are several conditions that may trigger the termination of tree

generation: (1) the agent executes the “stop” action, as illustrated in Figure 5.3;

(2) the generated tree has the maximum number of branches allowed; or (3) the

agent generates an invalid action.

5.4.2 Training

We use the advantage actor critic (A2C) algorithm [101] to train the above rein-

forcement learning policy. Specifically, let θ = {Wi} be the parameters in graph

memory representation f(·; θ), and φ be the parameter used in π(at|T (<t), G;φ),

our objective is to maximize the expected policy reward:

max
θ,φ

Eπ(opt,Tt|T (<t),G;φ)(
T∑
t′=t

γt
′−trt′ − b(T (<t), G;ψ)) (5.8)

To reduce the variance of policy gradient, we use the baseline function b(T (<t), G;ψ)

modeled as a two-layer MLP parameterized by ψ, which is trained to minimize

Eπ,t‖
∑T

t′=t γ
t′−trt′− b(T (<t), G;ψ)‖. Given that the MDP has a finite horizon, we set

the discounting factor γ to 1 to encourage the long-term gain.

79



0 10 20 30 40 50 60 70 80 90 100110
# instances solved 

100

101

102

103

# 
Z3

 q
ue

rie
s

C2I
LoopInvGen
ICE-DT
Code2Inv

(a) verification cost by each solver

0 10 20 30 40 50 60 70 80 90 100110
# instances solved

100

101

102

103

104

105

106

# 
ca

nd
id

at
es

 g
en

er
at

ed

C2I
Code2Inv

(b) sample complexity

Figure 5.5: Comparison of Code2Inv with state-of-the-art solvers on bench-
mark dataset.

5.5 Experiments

We evaluate Code2Inv on a suite of 133 benchmark programs from recent works [60,

133, 68] and the 2017 SyGuS competition [176].11 Each program consists of three

parts: a number of assumption or assignment statements, one loop which contains

nested if-else statements with arithmetic operations, and one assertion statement.

We first evaluate Code2Inv as an out-of-the-box solver, i.e., without any training

or fine-tuning with respect to the dataset. We then conduct an ablation study to

justify various design choices. Finally, we evaluate the impact of training Code2Inv

on a similar dataset.

5.5.1 Learning Loop Invariants from Scratch

In this section, we study the capability of Code2Inv with no training, that is, using

it as an out-of-the-box solver. We compare Code2Inv with three state-of-the-art

solvers: C2I [161], which is based on stochastic search; LoopInvGen [133], which

searches a conjunctive normal form over predicates synthesized by an underlying

engine, Escher [8]; and ICE-DT [68], which learns a decision tree over manually

designed features (e.g. predicate templates). The last two solvers are the winners of
11Our code and data are publicly available from https://github.com/PL-ML/code2inv

80

https://github.com/PL-ML/code2inv


the invariant synthesis track of the SyGuS 2017 and 2016 competitions, respectively.

A uniformmetric is needed to compare the different solvers since they can lever-

age diverse performance optimizations. For instance, Code2Inv can take advantage

of GPUs and TPUs, and C2I can benefit from massive parallelization. Instead of

comparing absolute running times, we observe that all four solvers are based on

the Z3 theorem prover [56] and rely on the counterexamples from Z3 to adjust

their search strategy. Therefore, we compare the number of queries to Z3, which

is usually the performance bottleneck for verification tasks. We run all solvers on

a single 2.4 GHz AMD CPU core up to 12 hours and using up to 4 GB memory for

each program.

Figure 5.5a shows the number of instances solved by each solver and the cor-

responding number of queries to Z3. Code2Inv solves the largest number of in-

stances, which is 106. In contrast, ICE-DT, LoopInvGen and C2I solve 100, 77 and

74 instances, respectively. ICE-DT heavily relies on predicate templates designed by

human experts, which are insufficient for 19 instances that are successfully solved

by Code2Inv. Furthermore, to solve the same amount of instances, Code2Inv costs

orders of magnitude fewer queries to Z3 compared to the other solvers.

We also run Code2Inv using the time limit of one hour from the 2017 SyGuS

competition. Code2Inv solves 92 instances within this time limit with the same

hardware configuration. While it cannot outperform existing state-of-the-art solvers

based on absolute running times, however, we believe its speed can be greatly im-

proved by (1) pre-training on similar programs, which we show in Section 5.5.3;

and (2) an optimized implementation that takes advantage of GPUs or TPUs.

Code2Inv is most related to C2I since both use accumulated counterexamples to

adjust the sample distribution of loop invariants. The key difference is that C2I uses

MCMC sampling whereas Code2Inv learns using RL. Figure 5.5b shows the sample

complexity, i.e., number of candidates generated before successfully finding the

desired loop invariant. We observe that Code2Inv needs orders of magnitude less

81



samples which suggests that it is more efficient in learning from failures.

5.5.2 Ablation Study

We next study the effectiveness of two key components in our framework via ab-

lation experiments: counterexamples and attention mechanism. We use the same

dataset as in Section 5.5.1. Table 5.1 shows our ablation study results. We see that

besides providing a continuous reward, the use of counterexamples (CE) signifi-

cantly reduces the verification cost, i.e., number of Z3 queries. On the other hand,

the attentionmechanism helps to reduce the training cost, i.e., number of parameter

updates. Also, it helps to reduce the verification cost modestly. Code2Inv achieves

the best performance with both components enabled—the configuration used in

other parts of our evaluation.

Additionally, to test the effectiveness of neural graph embedding, we study a

simpler encoding, that is, viewing a program as a sequence of tokens and encoding

the sequence using an LSTM. The performance of this setup is shown in the last row

of Table 5.1. With a simple LSTM embedding, Code2Inv solves 13 fewer instances

and, moreover, requires significantly more parameter updates.

Table 5.1: Ablation study for different configurations of Code2Inv.

configuration #solved instances max #Z3 queries max #updates

without CE, without attention 91 415K 441K
without CE, with attention 94 147K 162K
with CE, without attention 95 392 337K
with CE, with attention 106 276 290K

LSTM embedding + CE + attention 93 32 661K

5.5.3 Boosting the Search with Pre-training

We next address the question: given an agent that is pre-trained on programs

Ptrain = {pi} ∼ P, can the agent solve new programs Ptest = {p̃i} ∼ P faster

than solving from scratch? We prepare the training and testing data as follows. We

82



0 100 200 300 400 500
# instances solved

100

101

102

# 
Z3

 q
ue

rie
s

untrained
pretrained

(a) with 1 confounding
variable

0 100 200 300 400
# instances solved

100

101

102

# 
Z3

 q
ue

rie
s

untrained
pretrained

(b) with 5 confounding
variables

(c) attention for invariant
a == b

(d) attention for the first
part of invariant: c >=
−1 && n >= 1

Figure 5.6: (a) and (b) are verification costs of pre-trained model and un-
trained model; (c) and (d) are attention highlights for two example programs.

take the programs solved by Code2Inv as the initial set and augment it by creating

100 variations for each of them by introducing confounding variables and state-

ments in such a way that any valid loop invariant for the original program is still

valid. Finally, 90% of them serves as Ptrain, and the rest are used for Ptest.

After pre-training the agent on Ptrain for 50 epochs, we save the model and then

reuse it for “fine tuning” (or active search [29]), i.e., the agent continues the trial-

and-error reinforcement learning, on Ptest. Figure 5.6a and Figure 5.6b compare the

verification costs between the pre-trained model and untrained model on datasets

augmented with 1 and 5 confounding variables, respectively. We observe that, on

one hand, the pre-trained model has a clear advantage over the untrained model

on either dataset; but on the other hand, this gap reduces when more confounding

variables are introduced. This result suggests an interesting future research direc-

tion: how to design a learning agent to effectively figure out loop invariant related

variables from a potentially large number of confounding variables.

83



5.5.4 Attention Visualization

Figure 5.6c and 5.6d show the attention highlights for two example programs. The

original highlights are provided on the program graph representation described in

Section 5.3.2. We manually converted the graphs back to source code for clarity.

Figure 5.6c shows an interesting example for which Code2Inv learns a strategy of

showing the assertion is actually not reachable, and thus holds trivially. Figure 5.6d

shows another interesting example for which Code2Inv performs a form of abductive

reasoning.

5.5.5 Discussion of limitations

We conclude our study with a discussion of limitations. For most of the instances

that Code2Inv fails to solve, we observe that the loop invariant can be expressed in

a compact disjunctive normal form (DNF) representation, which is more suited for

the decision tree learning approach with hand-crafted features. However, Code2Inv

is designed to produce loop invariants in the conjunctive normal form (CNF). The

reduction of loop invariants from DNF to CNF could incur an exponential blowup in

size. An interesting future research direction concerns designing a learning agent

that can flexibly switch between these two forms.

5.6 Related Work
We survey work in program synthesis, program learning, learning loop invariants,

and learning combinatorial optimizations.

Program synthesis. Automatically synthesizing a program from its specification

has been a key challenge problem since Manna and Waldinger’s work [119]. In this

context, syntax-guided synthesis (SyGuS) [13] was proposed as a common format

to express these problems. Besides several implementations of SyGuS solvers [79,

16, 151, 13], a number of probabilistic techniques have been proposed to model

84



syntactic aspects of programs and to accelerate synthesis[31, 115, 131]. While log-

ical program synthesis approaches guarantee semantic correctness, they are chiefly

limited by their scalability and requirement of rigorous specifications.

Program learning. There have been several attempts to learn general programs

using neural networks. One large class of projects includes those attempting to use

neural networks to accelerate the discovery of conventional programs [26, 129, 59,

134]. Most existing works only consider specifications which are in the form input-

output examples, where weak supervision [110, 40, 38] or more fine grained trace

information is provided to help training. In our setting, there is no supervision for

the ground truth loop invariant, and the agent needs to be able to compose a loop

invariant purely from trial-and-error. Drawing inspiration from both programming

languages and embedding methods, we build up an efficient learning agent that

can perform end-to-end reasoning, in a way that mimics human experts.

Learning program loop invariants. Our work is closely related to recent work

on learning loop invariants from either labeled ground truth [36] or active inter-

actions with human experts [34]. Brockschmidt et al. [36] learn shape invariants

for data structures (e.g. linked lists or trees). Their approach first extracts features

using n-gram and reachability statistics over the program’s heap graph and then

applies supervised learning to train a neural network to map features to shape in-

variants. In contrast, we are concerned with general loop invariant generation, and

our approach employs graph embedding directly on the program’s AST and learns

a generation policy without using ground truth as supervision. Bounov et al. [34]

propose inferring loop invariants through gamification and crowdsourcing, which

relieves the need for expertise in software verification, but still requires significant

human effort. In contrast, an automated theorem prover suffices for our approach.

Learning combinatorial optimizations. Our work is also related to recent ad-

vances in combinatorial optimization using machine learning [95, 29, 54, 154].

85



However, as elaborated in Section 5.4, the problem we study is significantly more

difficult, in the sense that the objective function is non-smooth (binary objective),

and the positive reward is extremely sparse due to the exponentially growing size

of the search space with respect to program size.

5.7 Discussion
We studied the problem of learning loop invariants for program verification. Our

proposed end-to-end reasoning framework learns to compose the solution automat-

ically without any manual labels. It solves a comparable number of benchmarks

as the state-of-the-art solvers while requiring much fewer queries to a theorem

prover. Moreover, after being pre-trained, it can generalize the strategy to new

instances much faster than starting from scratch. In the future, we plan to extend

the framework to discover loop invariants for larger programs which present more

confounding variables, as well as to discover other kinds of program correctness

properties such as ranking functions for proving program termination [46] and sep-

aration predicates for proving correctness of pointer-manipulating programs [143].

Furthermore, inputs to the framework is not restricted to programs and can be any-

thing reducible to graphs. Similarly, the interaction is not restricted to a theorem

prover and can be any checker adaptable to provide a numerical reward.

This chapter is adapted from the following published work:

. Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learn-

ing Loop Invariants for Program Verification. In Advances in Neural Informa-

tion Processing Systems, NeurIPS 2018, Montréal, Canada, pages 7762–7773.

86



CHAPTER 6

INTRIGUING EXTENSIONS OF CODE2INV

In this section, we discuss two preliminary but intriguing extensions of Code2Inv,

the deep reinforcement learning framework presented in the last section. Though

Code2Inv is originally designed for generating loop invariants, it can be extended

in many flexible ways. This is in part due to that Code2Inv follows the design of the

widely used CEGIS framework. On the other hand, deep learningmodels, especially

graph neural networks, provide a whole new dimension of flexibility. Although

Code2Inv is an end-to-end learning framework, it can be conceptually decomposed

into two parts: the frontend, which embeds programs into high-dimensional vectors

(also called neural representation), and the backend, which maps the neural repre-

sentation to invariants. The frontend and backend are trained jointly by interacting

with a checker. The programs, invariants, and checker are all configurable. Programs

are essentially graphs, and invariants are some structural output or solution, which

can be validated by a checker.

In this chapter, we first present a general formalization of the Code2Inv frame-

work, which is more familiar to the PL/FM community, and then discuss two in-

triguing extensions on constrained Horn clauses (CHC) solving and syntax-guided

program synthesis task.

6.1 Formalization

In the last chapter, Code2Inv is simply presented with some high-level intuition

followed by neural network structure description and details of training. Though

the semantics of neural networks are not well-understood yet, here we aim to give

87



a formal treatment of Code2Inv, demystifying the cryptic nature of neural networks

and providing meaningful insights for various extensions.

Domains of Program Structures:
G(T ) = Ginst (Ginst is graph rep. of verification instance T )
G(A) = Ginv (Ginv is graph rep. of invariant grammar A)

A = 〈Σ ]H,N, P, S〉 (invariant grammar)
x ∈ H ]N (placeholder symbols and non-terminals)
v ∈ Σ (terminals)
n ∈ N (non-terminals)
p ∈ P (production rule)

S (start symbol)
inv ∈ L(A) (invariant candidate)
cex ∈ C (counterexample)
C ∈ P(C) (set of counterexamples)

check(T, inv) ∈ {⊥} ] C (invariant validation)

Domains of Neural Structures:
π = 〈νT, νA, ηT, ηA, αctx, εinv〉 (neural policy)

d (positive integer size of embedding)
νT, ηT(Ginst) ∈ R|Ginst|×d (graph embedding of verification instance)
νA, ηA(Ginv) ∈ R|Ginv|×d (graph embedding of invariant grammar)

ctx ∈ Rd (neural context)
state ∈ Rd (partially generated invariant state)
αctx ∈ Rd × Rd → Rd (attention context)
εinv ∈ L(A)→ Rd (invariant encoder)

aggregate ∈ Rk×d → Rd (aggregation of embeddings)
νA[n] ∈ Rk×d (embedding of prod. rules for non-terminal n,

where k is #production rules of n in Ginv)
νT[h] ∈ Rk×d (embedding of nodes annot. by placeholder h,

where k is #nodes annotated by h in Ginst)

Figure 6.1: Semantic domains of Code2Inv.

Fig. 6.1 defines the domains of program structures and neural structures used

in Code2Inv. The framework is parameterized by graph constructors G that pro-

duce graph representations of a verification instance T and an invariant grammarA,

denoted Ginst and Ginv, respectively. The invariant grammar uses placeholder sym-

bols H, which represent abstract values of entities such as variables, constants, and

88



operators, and will be replaced by concrete values from the verification instance dur-

ing invariant generation. The framework requires a black-box function check that

takes a verification instance T and a candidate invariant inv, and returns success

(denoted ⊥) or a counterexample cex.

The key component of the framework is a neural policy π which comprises four

neural networks. Two graph neural networks, ηT and ηA, are used to compute neu-

ral embeddings, νT and νA, for graph representations Ginst and Ginv, respectively.

The neural network αctx, implemented as a GRU, maintains the attention context

ctxwhich controls the selection of the production rule to apply or the concrete value

to replace a placeholder symbol at each step of invariant generation. The neural

network εinv, implemented as a Tree-LSTM, encodes the partially generated invari-

ant into a numeric vector denoted state, which captures the state of the generation

that is used to update the attention context ctx.

Algorithm 4 depicts the main algorithm underlying Code2Inv. It takes a verifica-

tion instance and a proof checker as input and produces an invariant that suffices to

verify the given instance12. At a high level, Code2Inv learns a neural policy, in lines

1-5. The algorithm first initializes the neural policy and the set of counterexamples

(line 1-2). The algorithm then iteratively samples a candidate invariant (line 4)

and improves the policy using a reward for the new candidate based on the accu-

mulated counterexamples (line 5). We next elucidate upon the initialization, policy

sampling, and policy improvement procedures.

Initialization. The initPolicy procedure (line 6-10) initializes the neural pol-

icy. All four neural networks are initialized with randomweights (line 7), and graph

embeddings νT, νA for verification task T and invariant grammar A are computed by

applying corresponding graph neural networks ηT, ηA to their graph representations

G(T ),G(A) respectively. Alternatively, the neural networks can be initialized with

pre-trained weights, which can boost overall performance.
12Fuzzers may be applied first so that the confidence of existence of a proof is high.

89



Algorithm 4: Code2Inv Framework
Input: a verification instance T and a proof checker check
Output: a invariant inv satisfying check(T, inv) = ⊥
Parameter: graph constructor G and invariant grammar A

1 π ← initPolicy(T,A)
2 C ← ∅
3 while true do
4 inv ← sample(π, T,A)
5 〈π,C〉 ←improve(π, inv, C)

6 Function initPolicy(T,A)
7 Initialize weights of ηT, ηA, αctx, εinv with random values
8 νT ← ηT(G(T ))
9 νA ← ηA(G(A))

10 return 〈νT, νA, ηT, ηA, αctx, εinv〉

11 Function sample(π, T,A)
12 inv ← A.S
13 ctx← aggregate(π.νT)
14 while inv is partially derived do
15 x← leftmost non-terminal or placeholder symbol in inv
16 state← π.εinv(inv)
17 ctx← π.αctx(ctx, state)
18 if x is non-terminal then
19 p← attention(ctx, π.νA[x],G(A))
20 expand inv according to p
21 else
22 v ← attention(ctx, π.νT[x],G(T ))
23 replace x in inv with v

24 return inv

25 Function improve(π, inv, C)
26 n← number of counter-examples C that inv can satisfy
27 if n = |C| then
28 cex← check(T, inv)
29 if cex = ⊥ then
30 save inv and weights of π
31 exit // a sufficient invariant is found
32 else
33 C ← C ∪ {cex}

34 r ← n/|C|
35 π ← updatePolicy(π, r)
36 return 〈π,C〉

37 Function updatePolicy(π, r)
38 Update weights of π.ηT, π.ηA, π.αctx, π.εinv, π.νT, π.νA by
39 standard policy gradient [175] using reward r

40 Function attention(ctx, ν,G)
41 Return node t in G such that dot product of ctx and ν[t]
42 is maximum over all nodes of G

90



Neural policy sampling. The sample procedure (lines 11-24) generates a can-

didate invariant by executing the current neural policy. The candidate is first initial-

ized to the start symbol of the given grammar (line 12), and then updated iteratively

(lines 14-23) until it is complete (i.e. there are no non-terminals). Specifically, the

candidate is updated by either expanding its leftmost non-terminal according to one

of its production rules (lines 19-20) or by replacing its leftmost placeholder symbol

with some concrete value from the verification instance (lines 22-23). The selec-

tion of a production rule or concrete value is done through an attention mechanism,

which picks the most likely one according to the current context and correspond-

ing region of external memory. The neural context is initialized to the aggregation

of embeddings of the given verification instance (line 13), and then maintained

by αctx (line 17) which, at each step, incorporates the neural state of the partially

generated candidate invariant (line 16), where the neural state is encoded by εinv.

Neural policy improvement. The improve procedure (lines 25-36) improves

the current policy by means of a continuous reward. Simply checking whether the

current candidate invariant is sufficient or not yields a discrete reward of 1 (yes)

or 0 (no). This reward is too sparse to improve the policy, since most candidate

invariants generated are insufficient, thereby almost always yielding a zero reward.

Code2Inv addresses this problem by accumulating counterexamples provided by

the checker. Whenever a new candidate invariant is generated, Code2Inv tests the

number of counterexamples it can satisfy (line 26), and uses the fraction of satis-

fied counterexamples as the reward (line 34). If all counterexamples are satisfied,

Code2Inv queries the checker to validate the candidate (line 28). If the candidate

is accepted by the checker, then a sufficient invariant was found, and the learned

weights of the neural networks are saved for speeding up similar verification in-

stances in the future (lines 29-31). Otherwise, a new counterexample is accumu-

lated (line 33). Finally, the neural policy (including the neural embeddings) is

updated based on the reward (line 35).

91



6.2 Code2Inv as a CHC solver

(set-logic HORN)
(declare-rel itp (Int Int))
...
(rule (=> (and (itp D C) 

(= A (+ 2 C))
(= B (+ 1 D)))

(itp B A)))
...             

(a) CHC instance snippet

1 2

itp-v1 itp-v2

(b) node representation

Figure 6.2: A snippet of CHC instance and its corresponding degenerate graph
representation, i.e. node representation.

Constrained Horn Clauses (CHC) are a uniformway to represent recursive, inter-

procedural, and multi-threaded programs, and serve as a suitable basis for auto-

matic program verification [32] and refinement type inference [121]. Solving a

CHC instance involves determining unknown predicates that satisfy a set of logical

constraints. Figure 6.2a shows a simple example of a CHC instance where itp is

the unknown predicate. It is easy to see that itp in fact represents an invariant of

a loop. Thus, CHC solving can be viewed as a generalization of finding loop invari-

ants [32]. This close connection suggests Code2Inv can be immediately extended

as a CHC solver, for which the only required change is to have a new frontend that

embeds constraint Horn clauses into high dimensional vectors.

Unlike C programs, which have explicit control-flow and data-flow information,

a CHC instance is a set of un-ordered Horn rules. The graph construction for Horn

rules is not as obvious as for C programs. Therefore, instead of deliberately con-

structing a graph that incorporates detailed domain-specific information, we use a

node representation, which is a degenerate case of graph representation and requires

only necessary nodes but no edges. Figure 6.2b shows the node representation for

the CHC example from Figure 6.2a. The top two nodes are derived from the signa-

ture of unknown predicate itp and represent the first and the second arguments of

92



itp. The bottom two nodes are constants extracted from the Horn rule. We empiri-

cally show that node representation works reasonably well. The downside of node

representation is that no structural information is captured by the neural embed-

dings which in turn prevents the learned neural policy from generalizing to other

structurally similar instances.

6.2.1 Empirical Evaluations

Benchmarks and evaluation setup. We collect 120 CHC instances using Sea-

Horn [84] to reduce the C benchmark programs into CHCs13. In addition, we also

introduce 7 CHC instances that involve non-linear arithmetics, which are meant

to be challenging. We compare Code2Inv with two state-of-the-art CHC solvers:

Spacer [100], which is the default fixedpoint engine of Z3, and DataDrivenCHC [195],

which extends Spacer with decision tree learning. We run all solvers on a single 2.4

GHz AMD CPU core up to 12 hours and using up to 4 GB memory. Unless specified

otherwise, Code2Inv is always initialized randomly, that is, untrained.

Preliminary results. Our evaluation shows that, without any prior knowledge

about Horn rules, Code2Inv can solve 94 (out of 120) CHC instances. Although it

is not on a par with state-of-the-art CHC solvers Spacer and LinearArbitrary, which

solve 112 and 118 instances, respectively, Code2Inv provides new insights for solv-

ing CHCs and could be further improved by better embeddings and reward design.

However, among the 7 challenging instances involving non-linear arithmetic, our

case study shows that Code2Inv successfully solves 5 of them, while both Spacer and

DataDrivenCHC failed to solve any of them. Tasks involving non-linear arithmetic

are particularly challenging because the underlying checker is more likely to get

stuck, and no feedback (e.g. counterexample) can be provided, which is critical for
13SeaHorn produces empty Horn rules on 13 (out of 133) C programs due to optimizations during

VC generation that result in proving the assertions of interest.

93



existing solvers like Spacer and DataDrivenCHC to make progress. This highlights

another strength of Code2Inv—even if the checker gets stuck, the learning process

can still continue by simply assigning zero or negative reward.

Solution found by Spacer: 
(and (or (not (<= B 16)) (not (>= A 8)))  

(not (<= B 0)) 
(or (not (<= B 2)) (<= A 0)) 
(or (not (<= B 4)) (not (>= A 2))) 
(or (not (<= B 6)) (not (>= A 3))) 
(or (not (<= B 8)) (not (>= A 4)))
(or (not (<= B 10)) (not (>= A 5)))
(or (not (<= B 12)) (not (>= A 6))) 
(or (not (<= B 14)) (not (>= A 7)))))))

Code2Inv: (<= v0 (- v1 v0)) 

(a) Spacer on add2.smt

Solution found by LinearArbitrary: 
(or 
(and true !(V0<=-50) 

V1<=5  ((1*V0)+(-1*V1))<=-45 
V1<=4  !(((1*V0)+(-1*V1))<=-51) 
!(V1<=2)!(((1*V0)+(-1*V1))<=-50) 
!(V1<=3) ((1*V0)+(1*V1))<=-40

)
... // omitting other 4 similar (and ...)

)

Code2Inv: (or (< V0 (+ 0 0)) (> V1 V0))

(b) LinearArbitrary on 84.c.smt

Figure 6.3: Comparison of solution naturalness.

Naturalness. We further share a case study on the naturalness of solutions. As

illustrated in Fig. 6.3, solutions discovered by Code2Inv tend to be more natural,

whereas Spacer and LinearArbitrary tend to find solutions that unnecessarily de-

pend on constants from the given verification instance. Such overfitted solutions

may become invalid when these constants change. Note that expressions such as

(+ 0 0) in Code2Inv’s solutions can be eliminated by post-processing simplification

akin to peephole optimization in compilers. Alternatively, the reward mechanism

in Code2Inv could incorporate a regularizer on the naturalness.

6.3 Meta-Learning for Syntax-guided Synthesis

Program synthesis concerns automatically generating a program that satisfies de-

sired functional requirements. The Syntax-Guided Synthesis (SyGuS) [13] poses a

common formulation — the program synthesizer takes as input a logical formula

φ and a grammar G, and produces as output a program in G that satisfies φ. In

this formulation, φ constitutes a semantic specification that describes the desired

functional requirements, and G is a syntactic specification that constrains the space

94



of possible programs. Figure 6.4 shows us an instance of the SyGuS problem, which

synthesizes a new and equivalent circuit following the given grammar that is prop-

erly designed to control timing channels. Our discussion and evaluation will focus

on cryptographic circuit synthesis tasks, but the presented idea is applicable for

other SyGuS tasks.

S   -> d1 XOR d1 |  d1 OR  d1
d1 -> d2 XOR d2 |  NOT d2 | Y
d2 -> d3 XOR d3 | d3 AND  d3
d3 -> d4 XOR d4 |  NOT  d4
d4 ->  X

Grammar ! (syntax)

∀#, %, & #, % ≡ ((#, %)

Constraint (Semantic)

Logical Spec  &
OR

X Y

OR

NOT Y

XOR

NOT

X

XOR

X X

Solution (

Synthesize

Figure 6.4: An example of a circuit synthesis task from the 2017 SyGuS com-
petition. Given the original program specification which is represented as an
abstract syntax tree (left), the solver is tasked to synthesize a new circuit f
(right). The synthesis process is specified by the syntactic constraint G (top),
and the semantic constraint (bottom) specifies that f must have functionality
equivalent to the original program.

A straightforward extension of Code2Inv is to view the logical specification as a

program, design actions according to the given grammar, and replace the loop in-

variant checker with a corresponding checker for the given synthesis task. Such an

approach essentially customizes Code2Inv for one particular synthesis task, which

makes reinforcement learning process an adaptive search. Although this is a feasible

solution, the learned policy cannot generalize to different synthesis tasks because

actions are hardcoded according to the given grammar, which varies from task to

task. Note that this is not an issue for loop invariants, because the invariant gram-

mar (e.g. CNF) is generally shared across different programs.

95



Global nodeNon-terminalsTerminals

Graph Representation  !(#, %)

Typed ASTAST edgeGlobal link

Logical Spec #
X OR Y AND Z

Grammar %
s -> d1 OR d1 | d1 AND d1
d1 -> X | Y | d2 OR d2
d2 -> ......

XX d2

<spec>

OR

AND

Y Z

X

S

S_OR S_AND

d1

NT_DNT_D

AN
D_DAND_DOR_DOR_D

YX

d1T
NT_D

d1_or

d2

NT_D

OR_D

OR_DT_DT_
D

X

Y

Z

AND

OR

X_D

<spec>

OR

AND

Y Z

X

S

NI_DNI_D

YX
d2

OR_D

OR_D

T_DT_D

X

Y

Z

AND

OR

<spec>

OR

Y Z

X

S

S_OR

d1

NI_DNI_D

AND_D

AND_DOR_D

OR_D

YX

d1T

NI_D

d1_or

d2

NI_D

OR_D

OR_D

T_DT_D

X

Y

Z

OR

<spec>

OR

AND

Y Z

X

S

S_OR S_AND

NI_DNI_D

AND_D

AND_DOR_D

OR_D

d1_or

d2

NI_D

OR_D

OR_D

X

Y

Z

AND

OR

......

S_OR S_AND

d1

AND_D

AND_DOR_D

OR_D

d1T

NI_D

d1_or

NI_D

S_AND

AND

AND

d1

YX

d1T

NI_D

T_DT_D

Repeat ' times

• Global graph embedding:

• Node embeddings:

Output

......

s

d1

z

• Embed production rules 

s -> d1 OR d1
| d1 AND d1

S_OR

S_AND

==>

ℎ(!)

......
One step of message 

passing update

Figure 6.5: Graph representation of a cryptographic circuit synthesis task. Log-
ical specification and grammar are jointly represented as a graph.

6.3.1 A Meta-learning Extension.

We explore an extension that is suitable for meta-learning, i.e. learning across dif-

ferent SyGuS tasks, each of which has a different grammar. The key insight is to

make the grammar as part of the external memory accessed by the neural agent (i.e.

the backend of Code2Inv). That is, both the specification φ and the grammar G are

viewed as “an input program” and represented as a graph, which is then embedded

as high-dimensional vectors (i.e. external memory).

Figure 6.5 illustrates how to jointly represent the specification and grammar as

a graph for a cryptographic circuit synthesis task. The graph consists of two parts

— the part on the left is an abstract syntax tree of the specification φ, and the other

part on the right is a graph representation of the grammar G, each node of which

corresponds to either a non-terminal or a terminal symbol or a production rule in

the grammar. In addition, these two parts are linked together by unique global copy

for shared symbols between them.

Then, we only need to slightly adapt the backend of Code2Inv. Instead of taking

hardcoded actions, the backend selects the most likely action stored in the exter-

nal memory, specifically the embeddings of production rules, through the attention

96



mechanism.

6.3.2 Empirical Evaluations

We evaluate this extension, named MetaL14 on 214 cryptographic circuit synthesis

tasks, which are from the general track of the 2017 SyGuS competition[176]. The

experiments are conducted in two learning settings. First, we test MetaL as an out-

of-box solver, which is directly applied on a synthesis task without training. This

setting enables us to compare MetaL to classical solvers developed in the formal

methods community. As those solvers do not utilize learning-based strategies, it

is sensible to also limit MetaL not to carry over prior knowledge from a separate

training set. Second, we evaluate MetaL as a meta-solver which is trained over a

training set D, and finetuned on each of the new tasks in a separate set D′. In

this setting, we aim to demonstrate that MetaL is capable of learning a transferable

representation and policy in order to efficiently adapt to unseen tasks.

6.3.3 Learning an Out-of-Box Solver

Table 6.1: Number of instances solved using: 1) EUSolver, 2) CVC4, 3) ESym-
bolic, and 4) MetaL (out-of-box). For each solver, the maximum time in solving
an instance and the average and median time over all solved instances are also
shown below.

# instances solved Max time Avg time Median time

EUSolver 153 / 214 1h39m 3m 3s
CVC4 129 / 214 5h50m 30m 6s
ESymbolic 31 / 214 40m 8m 5m
MetaL (out-of-box) 141 / 214 4h11m 33m 3m

In the out-of-box solver setting, we compare MetaL against solvers built based

on two classical approaches: a SAT/SMT constraint solving based approach and a
14The code and data are available on GitHub: https://github.com/PL-ML/metal

97

https://github.com/PL-ML/metal


search based approach. For the former, we choose CVC4 [142], which is the state-

of-the-art SMT constraint solver; for the latter, we choose EUSolver [16], which is

the winner of the SyGuS 2017 Competition [15]. Furthermore, we build a search

based solver as baseline, ESymbolic, which systematically expands non-terminals

in a predefined order (e.g. depth-first-search) and effectively prunes away partially

generated candidates by reducing it to 2QBF [24] satisfiability check. ESymbolic

can be viewed as a generalization of EUSolver by replacing the carefully designed

domain-specific heuristics (e.g. indistinguishability and unification) with 2QBF.

In order to make the comparison fair, we run all solvers on the same platform

with a single core CPU15. We measure the performance of each solver by counting

the number of instances it can solve given a 6 hours limit spent on each task.

Table 6.1 summarizes the total number of instances solved by each solver as

well as the maximum, average and median running time spent on solved instances.

In terms of the absolute number of solved instances, MetaL is not yet as good as

EUSolver, which is equipped with specialized heuristics. However, EUSolver fails

to solve 4 instances that are only solved by our framework. All instances solved

by CVC4 and ESymbolic are a strict subset of instances solved by EUSolver. Thus,

besides being a new promising approach, our framework already plays a supple-

mentary role for improving the current state-of-the-art. Compared with the state-

of-the-art CVC4 solver, MetaL has smaller maximum time but higher average and

median time usage. This suggests that MetaL excels at solving difficult instances

with better efficiency.

6.3.4 Learning Across Different Tasks

We next evaluate whether MetaL is capable of learning transferable knowledge

across different synthesis tasks. We randomly split the 214 circuits synthesis tasks
15The SyGuS 2017 competition gives each solver 4-core 2.4GHz Intel processors with 128 GB

memory and wallclock time limit of 1 hour; our evaluation uses AMD Opteron 6220 processor,
assigns each solver a single core with 32 GB memory and wallclock time limit of 6 hours.

98



# candidates
generated

Percentage solved
20% 40% 60%

MetaL (out-of-box) 2564 18K 102K
MetaL (pre-trained) 205 4.5K 59K
Reduction 12.5× 4.0× 1.7×

(a)
(b)

Figure 6.6: Performance improvement with meta-learning. (a) Accumulated
number of candidates generated in order to solve 20%, 40%, and 60% of the
testing tasks; and (b) speedup distribution over individual instances.

into two sets: 150 tasks for training and the rest 64 tasks for testing. MetaL is then

trained on the training set for 35000 epochs. For each epoch, a batch of 10 tasks

are sampled. The gradients of each task are averaged and applied to the model pa-

rameters using Adam optimizer. In testing phase, MetaL is finetuned on each task

in the testing set until either a correct program is synthesized or timeout occurs.

We compare the trainedmeta-solver with the out-of-box solver in solving tasks in

the test set. Out of 64 testing tasks, the out-of-box solver and meta-solver can solve

36 and 37 tasks, respectively. Besides the additional task solved, the performance is

also greatly improved by meta-solver, which is shown in Figure 5. Table 5(a) shows

the accumulated number of candidates generated to successfully solve various ra-

tios of testing tasks. We see that the number of explored candidates by meta-solver

is significantly reduced: for 40% of testing tasks (i.e., 66% of solved tasks), meta-

learning enable 4x reduction on average. The accumulated reduction for all solved

tasks (60% of testing tasks) is not that significant. This is because meta-learning im-

prove dramatically for most (relatively) easy tasks but helps slightly for a few hard

tasks, which actually dominate the number of generated candidates. Figure 5(b)

shows the speedup distribution over the 36 commonly solved tasks. Meta-solver

achieves at least 2x speedup for most benchmarks, orders of magnitude improve-

ment for 10 out of 36 unseen tasks, and solves one task that is not solvable without

99



meta-learning.

6.4 Discussion

In this chapter, we formalize the Code2Inv framework and demonstrate two inter-

esting extensions on constraint Horn clause (CHC) solving and syntax-guided pro-

gram synthesis (SyGuS) tasks, respectively. Our evaluation indicates that Code2Inv

outperforms the specialized state-of-the-art solvers on many small yet challenging

instances. To make Code2Inv a competitive tool in general, there are a few impor-

tant challenges to address. First, a modular and scalable representation is necessary.

Second, the effectiveness of deep learning as well as meta-learning is still an empir-

ical observation, which deserves a formal analysis. Third, the reward design should

leverage more structural information, instead of simple statistics.

This chapter is adapted from the following published work:

. Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. Code2Inv: A

Deep Learning Framework for Program Verification. In Proceedings of 32nd In-

ternational Conference on Computer-Aided Verification, CAV 2020, Los Angeles,

California, USA.

. Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. Learning a

Meta-Solver for Syntax-Guided Program Synthesis. In Proceedings of 7th In-

ternational Conference on Learning Representations, ICLR 2019, New Orleans,

Louisiana, USA.

100



CHAPTER 7

FUTURE WORK

Recent advances of machine learning, especially deep learning, foster numerous

applications in various domains. In this dissertation, we have studied a few exciting

applications of machine learning on tasks involving sophisticated logical reasoning,

specifically logical rule synthesis, program verification, and constraint solving. We

outline a number of future directions on combining machine learning and logical

reasoning, which we envision will play an important role in advancing artificial

intelligence and broadening its application scope.

Reasoning with perceptual data. Deep learning has made remarkable successes

in computer vision and surpassed the human-level performance on many classifica-

tion tasks [58, 92]. However, it has limited capability of performing reasoning. For

instance, deep neural networks can be trained to classify images over one thousand

categories (e.g. animals, plants, foods, etc) very accurately, but cannot answer sim-

ple queries like “what are things with two ears in the image?”, “will the ball drop if

the man loosen his hand?”, or “is the baby happy?”. This is largely due to the lack

of interpretability as well as common sense. Of course, understanding the query

itself might be a challenging task, but even if the query is stated in an unambiguous

and succinct logical form, deep learning models would fail to answer these queries.

One promising way to address these challenges is to equip deep learning mod-

els with an explicitly reasoning component. By doing so, on one hand, the learned

system has a good interpretability; on the other hand, it is easy to incorporate com-

monsense knowledge, which also significantly improves data efficiency. In Chap-

ter 4, we showed that gradient-based approaches can be used to learn interpretable

101



logical rules. Given that gradient-basedmethods have also been successfully applied

to perceptual data like images, it is foreseeable to adapt Difflog to perceptual data

processing, which adds reasoning capability to the learned model. Furthermore,

common sense knowledge can be encoded as relational facts, which are directly

taken as input by Difflog.

Learning domain specific heuristics. Designing effective heuristics is arguably

the commonest endeavor across all research areas of computer science. The ef-

fort and expertise involved are non-trivial — an effective heuristic could be worth

an award winning Ph.D. thesis [192]. Heuristics are unavoidable due to funda-

mental challenges like NP-Hardness or undecidability, for which there is no known

algorithms that are efficient (i.e. of polynomial time) or terminating eventually.

Can these heuristics be learned rather than designed? Recently, there has been a

number of work learning search heuristics [54, 30, 111] for various NP-Complete

problems like minimum vertex cover (MVC), traveling salesman problem (TSP) and

Boolean satisfiability (SAT). Existing approaches have a specialized design for each

problem, limiting space of possible heuristics. Because a heuristic can be viewed as

a program in some domain specific language (DSL). A more flexible and general ap-

proach is to view heuristics learning as program synthesis, similar to what we have

discussed in Chapter 6. We have already shown that Code2Inv can be customized

as a CHC solver. Instead of letting the machine learning model directly explore in

the solution space, it is more promising to explore in the space of heuristics. We

envision this general idea will help to learn effective heuristics for many important

problems in software development and maintenance, such as proof assistant au-

tomation, software model checking, software testing, fuzzing, symbolic execution,

compiler optimization, to name a few.

Robustness and fairness of machine learning. In this thesis, we borrow and

adopt techniques developed in the machine learning community to improve pro-

102



gram verification and synthesis. Exploring the opposite direction, that is, using

verification and synthesis techniques to improve machine learning, is equally inter-

esting and perhaps more profound. It is a big surprise that a well-trained machine

learning model could give a dramatically different prediction when only a few pixels

are perturbed. This is known as adversarial examples [71]. The existence of such

adversarial examples in real world [103] makes machine learning applications con-

cerning in many safety critical areas like autonomous driving, disease diagnosis

and medical devices. Furthermore, another concern is that machine learning might

make biased decisions [48] in many social activities like hiring, commercial loan,

criminal justice, etc. Introducing more training data and reducing data bias are

helpful ways to improve robustness and fairness, however, which cannot provide

any formal guarantees. Program verification and analysis techniques developed in

formal methods and programming languages community have a great potential

in addressing these critical concerns of machine learning. The key insight is that

machine learning models can be viewed as programs, and robustness and fairness

can be formalized as certain properties of those programs. Recently, there are a

few work [94, 9, 69] in this line of research, which leverages standard SMT solv-

ing techniques and abstract interpretation to verify robustness and fairness of deep

neural networks. More promising applications of formal reasoning techniques in

machine learning research are forthcoming given that machine learning is becom-

ing ubiquitous in various aspects of our daily life.

103



CHAPTER 8

CONCLUSION

This thesis presents a new paradigm for program reasoning tasks, specifically, pro-

gram synthesis and program verification, which improves the state-of-the-art tech-

niques in a general and end-to-end learning fashion, completely different from the

traditional case-by-case manual design. We leverage recent advances in machine

learning community and draw inspirations from the formal methods and program-

ming language community, especially the popular counterexample-guided induc-

tive synthesis (CEGIS) framework.

The machine learning view of sophisticated logical reasoning tasks enables a

whole new dimension of innovations — correct proofs, desired programs, and effi-

cient heuristics can be automatically learned through self-supervision, e.g. interact-

ing with underlying checkers. These checkers could be a simple numerical function

computing losses like mean squared error (MSE) and cross-entropy, which are suit-

able for traditional machine learning applications, or a non-trivial symbolic reason-

ing process like SAT solving, SMT solving, or least fixed-point computation, which

are unavoidable for program reasonings. This thesis developed techniques pass-

ing learning signals through such complicated symbolic reasoning processes, which

is essential for an end-to-end learning framework for program reasoning. First,

this thesis proposes a novel numerical relaxation of logical rules, making it feasible

to synthesize a rich set of logical rules using efficient gradient-based approaches.

In addition, a sound early termination condition is proposed, and parallelization

could further speed up the synthesis due to the stochastic nature of the optimiza-

tion process. Second, this thesis proposes a deep reinforcement learning framework

for program verifications, where graph neural networks are used to learn effective

104



representations of programs and reinforcement learning is used to infer loop invari-

ants, which is achieved in a sample efficient way because of a counterexample-based

continuous reward mechanism. Furthermore, the same deep reinforcement learn-

ing framework is formalized and extended to handle quite different tasks such as

solving Constrained Horn Clauses and syntax-guided program synthesis.

This thesis explored a few point successes of leaning-aided design in the do-

main of program verification and synthesis. Looking forward, this insight applies

to a broad range of problems from low-level constraint solving such as SAT solving,

SMT solving, and combinatorial optimization to high-level program reasoning and

testing such as software model checking, automated theorem proving, symbolic ex-

ecution, fuzzing, and concolic testing. On the other hand, these program reasoning

techniques have a great potential in improving and verifying properties like robust-

ness and fairness of machine learning models, since machine learning models are

essentially programs as well.

105



APPENDIX A

PROOFS AND ARTIFACTS

A.1 Proofs of Properties in Chapter 4

Theorem 4.4.2. Let S = (I,O, I, O+, O−, R) be a synthesis problem such that there

exists a solution to S. Let P be the output of ALPS. Then:

1. (Soundness) Every P ∈ P is a solution to S.

2. (Completeness) For every solution P ∈ H to S, there exist programs Pl, Pu ∈ P

such that Pl v P v Pu. An immediate corollary is that if there exists a program

P that is a solution to S, then P is nonempty.

3. (Termination) ALPS terminates.

To prove Theorem 4.4.2, we use two key properties about the interplay between

qbc and bidirectional search. The following lemma captures the fact that the algo-

rithm does not miss any controversial examples, and thus always makes progress in

terms of pruning the search space.

Lemma A.1.1. Let P ⊆ H and e ∈ B. Then D(e,P) 6= 0 iff there exist programs

P1, P2 ∈ P such that P1 ∪ I |= e and P2 ∪ I 6|= e.

Proof. This is directly implied by the definition of vote entropy (see Definition 4.4.1).

The next lemma states key invariants that hold at every iteration of the algo-

rithm: (i) It does not miss any programs that are solutions to the synthesis problems,

by ensuring that the contours of the version space form an upper/lower bound of ev-

ery solution. (ii) It ensures that if the current version space contains non-solutions,

106



then there are non-zero entropy examples we can ask the oracle that can eliminate

them.

Lemma A.1.2 (Invariant). Let S = (H,O, I) be a synthesis problem such that a

solution to S exists inH. Let E = (E+, E−) be the set of known examples at any point

during execution, and P = P ∪P. Then:

1. For every solution P ′ ∈ H to S, there exist programs Pl, Pu ∈ P such that

Pl v P ′ v Pu.

2. If there exists a programP ∈ P that is not a solution to S, then ∃e ∈ B. D(e,P) 6=
0.

Proof. We first show item (1). First, notice that every solution P ′ ∈ H to S belongs

in the version space VE, since it satisfies all current examples. Since P ⊇ max(VE)

(by the definition of F ↑ in Algo. 1), there exists Pu ∈ P such that P ′ v Pu. Similarly,

since P ⊇ min(VE), there exists Pl ∈ P such that Pl v P ′.

We next show item (2). Suppose that P ∈ P is not a solution to S, and let P ′ be

a solution to S. Then, there exists an example e ∈ B such that either (a) P ∪ I |= e

and P ′ ∪ I 6|= e, or (b) P ∪ I 6|= e and P ′ ∪ I |= e. We now distinguish two different

cases:

• Case (a) holds: since P ′ is a solution, item (1) tells us that there exists Pu ∈ P

such that P ′ v Pu. This implies that Pu ∪ I 6|= e. Because now P, Pu disagree

on example e, Lemma A.1.1 implies that D(e,P) 6= 0.

• Case (b) holds: since P ′ is a solution, item (1) tells us that there exists Pl ∈ P

such that Pl v P ′. This implies that Pl ∪ I |= e. Because now P, Pl disagree

on example e, Lemma A.1.1 implies that D(e,P) 6= 0.

Thus, in both cases we find an example e such that D(e,P) 6= 0.

We are ready to prove Theorem 4.4.2 using the Lemmas A.1.1 and A.1.2.

107



Proof. The algorithm terminates when for every example e ∈ B, we have D(e,P) =

0. Recall that P = P ∪P, where E = (E+, E−) are the known examples.

• (Soundness) As ∀e ∈ B. D(e,P) = 0, the contrapositive of item (2) of LemmaA.1.2

indicates that every P ∈ P is a solution.

• (Completeness) This holds directly from item (1) of Lemma A.1.2.

• (Termination) At every iteration, the algorithm adds one example to eitherE+

or E−. Notice that, after an example e is added to E = (E+, E−), it cannot be

added again, since it will never be controversial (D(e,P) 6= 0) from that point

on. Since we have finitely many examples in B, the algorithm terminates after

finitely many steps.

Theorem 4.2.2. Determining whether an instance of the rule selection problem, (I,
O, I, O+, O−, R), admits a solution is NP-hard.

Proof. Consider a 3-CNF formula ϕ over a set V of variables:

ϕ = (l11 ∨ l12 ∨ l13) ∧ (l21 ∨ l22 ∨ l23) ∧ · · · ∧ (lk1 ∨ lk2 ∨ lk3),

be the given 3-CNF formula, where each literal lij appearing in clause ci is either

a variable, vij ∈ V , or its negation, ¬vij. Assume that there are no trivial clauses

in ϕ, which simultaneously contain both a variable and its negation. We will now

encode its satisfiability as an instance of the rule selection problem.

1. For each variable v ∈ V , define the input relations:

posv = {(c) | v ∈ c}, and (A.1)

negv = {(c) | ¬v ∈ c}, (A.2)

108



consisting of all one-place tuples posv(c) and negv(c) indicating whether the

variable v occurs positively or negatively in the clause c.

2. Also, for each variable v, define the input relation varv which is inhabited by

a single tuple varv(v):

varv = {(v)}. (A.3)

3. The idea is to set up the candidate rules so that subsets of chosen rules corre-

spond to assignments of true / false values to the variables of ϕ. Let C2(c, v) be

an output relation: we are setting up the problem so that if the tuple C2(c, v)

is derivable in the synthesized solution, then there is a satisfying assignment

of ϕ where clause c is satisfied due to the assignment to variable v.

4. For each variable v, create a pair of candidate rules rv and r¬v as follows:

rv = “C2(c, v
′) :− posv(c), varv(v

′)”, and

r¬v = “C2(c, v
′) :− negv(c), varv(v

′)”.

Selecting the rule rv corresponds to assigning the value true to the correspond-

ing variable v, and selecting the rule r¬v corresponds to assigning it the value

false.

5. To prevent the simultaneous choice of rules rv and r¬v, we set up the three-

place input relation conflict(c, c′, v), which indicates that the reason for the

simultaneous satisfaction of clauses c and c′ cannot be a contradictory variable

v:

conflict = {(c, c′, v) | v ∈ c and ¬v ∈ c′} ∪ {(a, a, a)}, (A.4)

where a is some new constant not seen before. We will motivate its necessity

109



while defining the canary output relation error next.

6. We detect the simultaneous selection of a pair of rules rv and r¬v using the

rule re:

re = “error(c, c′, v) :− C2(c, v), C2(c
′, v), conflict(c, c′, v)”

Here error is a three-place output relation indicating the selection of an in-

consistent assignment. We would like to force the synthesizer to choose the

error-detecting rule re. The selection of the rule re, the presence of the input

tuple conflict(a, a, a), and the selection of the rule ra:

ra = “C2(x, x) :− conflict(x, x, x)”

is the only way to produce the output tuple error(a, a, a), which we will mark

as desired.

7. The output tuple C2(c, v) indicates the satisfaction of the clause c because of

the assignment to variable v. We use the presence of such tuples to mark the

clause c itself as being satisfied: let C1(c) be a one-place output relation, and

include the rule:

rc = “C1(c) :− C2(c, v)”.

8. In summary, let the rule selection problem Pϕ = (I,O, I, O+, O−, R) be de-

fined as follows:

(a) I = {varv, posv, negv | v ∈ V } ∪ {conflict}.

(b) O = {C2, C1, error}.

(c) Define the set of input tuples, I, using equations A.1, A.2, A.3, and A.4.

(d) O+ = {C1(c) | clause c ∈ ϕ} ∪ {error(a, a, a)}.

110



(e) O− = {error(c, c′, v) | clauses c, c′ and variable v occurring in ϕ}.

(f) R = {rv, r¬v | v ∈ V } ∪ {re, ra, rc}.

Given a 3-CNF formula ϕ, the corresponding instance Pϕ of the rule selection prob-

lem can be constructed in polynomial time. Furthermore, it can be seen that, by

construction, Pϕ admits a solution iff ϕ is satisfiable. It follows that the rule selection

problem is NP-hard.

Next, we turn our attention to Theorem 4.5.2. The first part of the claim fol-

lows immediately from the definition in Equation 4.2. We therefore focus on the

second part: Note that the proof of continuity does not immediately follow from

Equation 4.2 because the supremum of an infinite set of continuous functions need

not itself be continuous. It instead depends on the observation that there is a finite

subset of dominating derivation trees whose values suffice to compute vt(w).

Theorem 4.5.2. The value of the output tuples, vt(w), varies monotonically with the

rule weights w, and is continuous in the region 0 < wr < 1.

Proof. Fix an assignment of rule weights w. Next, focus on a specific output tuple

t, and consider the set of all its derivation trees τ . Let στ be a pre-order traver-

sal over its nodes. For example, for the tree τ1 in Figure 4.3a, we obtain στ1 =

samegen(Will, Ann), r1(Will, Ann, Ben), parent(Will, Ben), parent(Ann, Ben). It can be shown

that the set of all pre-order traversals, στ , over all derivation trees τ forms a context-

free grammar Lt.

We are interested in trees τ with high values vτ (w), where the value of a tree

depends only on the number of occurrences of each rule r. It therefore follows that

the weight vτ (w) is completely specified by the Parikh image, {r 7→ #r in τ}, which
counts the number of occurrences of each symbol in each string of the language Lt.

From Parikh’s lemma, we conclude that this forms a semilinear set. Let

p(Lt) =
m⋃
i=1

(ci0 +
n∑
j=1

cij)

111



be the Parikh image of Lt, and for each i ∈ {1, 2, . . . ,m}, let τi be the derivation

tree corresponding to the rule count ci0. It follows that:

vt(w) = sup
τ with conclusion t

vτ (w) =
m

max
i=1

vτi(w).

We have reduced the supremum over an infinite set of continuous functions to the

maximum of a finite set of continuous functions. It follows that vt(w) varies contin-

uously with w.

Finally, we turn to the proof of Theorem 4.5.3.

Theorem 4.5.3. Fix a set of input relations I, output relations O, and candidate

rules R. Let Evaluate(R,w, I) = (F,u, l). Then: (a) F = R(I), and (b) u(t) = vt(w).

Furthermore, Evaluate(R,w, I) returns in time poly(|I|).

Proof. The first part of the following result follows from similar arguments as the

correctness of the classical algorithm. We briefly describe the proof of the second

claim. For each output tuple t, consider all of its derivation trees τhi with maximal

value, and identify the tree τt with shortest height among these. All first-level sub-

trees of τt must themselves possess the shortest-height-maximal-value property, so

that their height is bounded by the number of output tuples. Since the (F,u, l)-loop

in step 3 of Algorithm 3 has to hit a fixpoint within as many iterations, and since

each iteration runs in polynomial time, the claim about running time follows.

A.2 Artifacts

We make the research artifact (including source code, benchmarks and pre-trained

models) of each project presented in this thesis publicly available. The artifact links

are shown in Table A.1.

112



Prototype Artifact Link Keywords

ALPS https://tinyurl.com/y7rfj99a
- logical rule synthesis
- bi-directional search
- active learning

Difflog https://tinyurl.com/y7oem4st
- logical rule synthesis
- numerical relaxation
- Las Vegas algorithm

Code2Inv https://tinyurl.com/ybvecubj
- loop invariant inference
- deep learning
- reinforcement learning

MetaL https://tinyurl.com/yd2sllfs
- crypto-circuits synthesis
- meta-learning

APISan https://tinyurl.com/y6vuybhx API sanitizer
Datalog-bench https://tinyurl.com/y8m6gdyu benchmark

Table A.1: Research artifact links.

113

https://tinyurl.com/y7rfj99a
https://tinyurl.com/y7oem4st
https://tinyurl.com/ybvecubj
https://tinyurl.com/yd2sllfs
https://tinyurl.com/y6vuybhx
https://tinyurl.com/y8m6gdyu


BIBLIOGRAPHY

[1] Bdd-based deductive database. http://bddbddb.sourceforge.net/. [Cited

on page 16]

[2] Datomic. https://www.datomic.com/. [Cited on page 16]

[3] Iris (integrated rule inference system) reasoner. http://repo.roscidus.

com/java/iris. [Cited on page 16]

[4] Logicblox. http://www.logicblox.com/. [Cited on page 16]

[5] Righting code. http://rightingcode.org/. [Cited on page 56]

[6] Semmle. https://semmle.com/. [Cited on page 16]

[7] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases.

Addison-Wesley, 1995. [Cited on pages 51, 55, and 56]

[8] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program

synthesis. In Proceedings of the International Conference on Computer Aided

Verification (CAV), 2013. [Cited on pages 70 and 80]

[9] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori.

Fairsquare: probabilistic verification of program fairness. Proc. ACM Pro-

gram. Lang., 1(OOPSLA):80:1–80:30, 2017. [Cited on page 103]

[10] Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith.

Constraint-based synthesis of Datalog programs. In Proceedings of the In-

ternational Conference on Principles and Practice of Constraint Programming

(CP), CP, 2017. [Cited on pages 32, 54, 57, and 59]

114

http://bddbddb.sourceforge.net/
https://www.datomic.com/
http://repo.roscidus.com/java/iris
http://repo.roscidus.com/java/iris
http://www.logicblox.com/
http://rightingcode.org/
https://semmle.com/


[11] Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and

Charles Sutton. Learning continuous semantic representations of symbolic

expressions. In Proceedings of the International Conference on Machine Learn-

ing (ICML), 2017. [Cited on page 74]

[12] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learn-

ing to represent programs with graphs. In Proceedings of the International

Conference on Learning Representations (ICLR), 2018. [Cited on page 13]

[13] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Se-

shia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided

synthesis. In 2013 Formal Methods in Computer-Aided Design, 2013. [Cited

on pages 3, 69, 84, and 94]

[14] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg,

Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo Martin, Mukund

Raghothaman, Shambwaditya Saha, Sanjit Seshia, Rishabh Singh, Armando

Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided synthe-

sis. In Dependable Software Systems Engineering, pages 1–25. 2015. [Cited

on pages 2, 33, and 36]

[15] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama.

Sygus-comp 2017: Results and analysis. arXiv preprint arXiv:1711.11438,

2017. [Cited on page 98]

[16] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative

program synthesis via divide and conquer. In Proceedings of the International

Conference on Tools and Algorithms for Construction and Analysis of Systems

(TACAS), 2017. [Cited on pages 5, 84, and 98]

[17] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama.

Search-based program synthesis. Commun. ACM, 61(12):84–93, November

115



2018. ISSN 0001-0782. doi: 10.1145/3208071. URL https://doi.org/

10.1145/3208071. [Cited on page 2]

[18] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak.

Consistency analysis in bloom: a calm and collected approach. In CIDR,

2011. [Cited on page 16]

[19] Lars Ole Andersen. Program analysis and specialization for the c program-

ming language. Technical report, DIKU, University of Copenhagen, 1994.

Ph.D. thesis. [Cited on pages 21, 55, and 56]

[20] Andrew W. Appel. Verified Software Toolchain. In Proceedings of the 20th

European Symposium on Programming (ESOP), 2011. [Cited on page 67]

[21] Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L Veldhuizen, and Geoffrey Washburn. Design and imple-

mentation of the Logicblox system. In Proceedings of the International Con-

ference on Management of Data (SIGMOD), pages 1371–1382. ACM, 2015.

[Cited on page 20]

[22] Michael Arntzenius and Neelakantan R. Krishnaswami. Datafun: A func-

tional datalog. In Proceedings of the ACM SIGPLAN International Conference

on Functional Programming (ICFP), 2016. [Cited on page 16]

[23] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate. In Proceedings of the

International Conference on Learning Representations (ICLR), 2015. [Cited

on page 13]

[24] Valeriy Balabanov, Jie-Hong Roland Jiang, Christoph Scholl, Alan

Mishchenko, and Robert K. Brayton. 2QBF: Challenges and solutions. In

Nadia Creignou and Daniel Le Berre, editors, Proceedings of the International

116

https://doi.org/10.1145/3208071
https://doi.org/10.1145/3208071


Conference on Theory and Applications of Satisfiability Testing (SAT), pages

453–469, 2016. [Cited on page 98]

[25] Thomas Ball and Sriram Rajamani. The SLAM project: Debugging system

software via static analysis. In Proceedings of the Symposium on Principles of

Programming Languages (POPL), 2002. [Cited on page 1]

[26] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deep-

coder: Learning to write programs. In Proceedings of the International Con-

ference on Learning Representations (ICLR), 2017. [Cited on page 85]

[27] V. Bapst, T. Keck, A. Grabska-Barwińska, C. Donner, E. D. Cubuk, S. S.

Schoenholz, A. Obika, A. W. R. Nelson, T. Back, D. Hassabis, and P. Kohli.

Unveiling the predictive power of static structure in glassy systems. Na-

ture Physics, 16(4):448–454, 2020. doi: 10.1038/s41567-020-0842-8. URL

https://doi.org/10.1038/s41567-020-0842-8. [Cited on page 2]

[28] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin G. Zorn. Flashre-

late: extracting relational data from semi-structured spreadsheets using ex-

amples. In Proceedings of the ACM Conference on Programming Language

Design and Implementation (PLDI), 2015. [Cited on page 2]

[29] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Ben-

gio. Neural combinatorial optimization with reinforcement learning. CoRR,

abs/1611.09940, 2016. [Cited on pages 68, 78, 83, and 85]

[30] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Ben-

gio. Neural combinatorial optimization with reinforcement learning. CoRR,

abs/1611.09940, 2016. URL http://arxiv.org/abs/1611.09940. [Cited

on page 102]

[31] Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: Probabilistic model

117

https://doi.org/10.1038/s41567-020-0842-8
http://arxiv.org/abs/1611.09940


for code. In Proceedings of the International Conference on Machine Learning

(ICML), 2016. [Cited on page 85]

[32] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Ry-

balchenko. Horn clause solvers for program verification. In Fields of Logic

and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His

75th Birthday, pages 24–51, 2015. [Cited on page 92]

[33] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent

Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static ana-

lyzer for large safety-critical software. In Proceedings of the ACM Conference

on Programming Language Design and Implementation (PLDI), 2003. [Cited

on page 1]

[34] Dimitar Bounov, Anthony DeRossi, Massimiliano Menarini, William G. Gris-

wold, and Sorin Lerner. Inferring loop invariants through gamification. In

Proceedings of the 2018 CHI Conference on Human Factors in Computing Sys-

tems, CHI ’18, 2018. [Cited on page 85]

[35] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specifica-

tion of sophisticated points-to analyses. In Proceedings of the 24th Annual

Conference on Object-Oriented Programming, Systems, Languages, and Appli-

cations, OOPSLA, 2009. [Cited on pages 16 and 32]

[36] Marc Brockschmidt, Yuxin Chen, Pushmeet Kohli, Siddharth Krishna, and

Daniel Tarlow. Learning shape analysis. In Proceedings of the Static Analysis

Symposium (SAS), 2017. [Cited on page 85]

[37] Lukas Bulwahn, Maryam Kamali, and Sven Linker, editors. Proceedings First

Workshop on Formal Verification of Autonomous Vehicles, FVAV@iFM 2017,

Turin, Italy, 19th September 2017, volume 257 of EPTCS, 2017. URL http:

//arxiv.org/abs/1709.02126. [Cited on page 1]

118

http://arxiv.org/abs/1709.02126
http://arxiv.org/abs/1709.02126


[38] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Push-

meet Kohli. Leveraging grammar and reinforcement learning for neural pro-

gram synthesis. In Proceedings of the International Conference on Learning

Representations (ICLR), 2018. [Cited on page 85]

[39] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter

Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Pur-

brick, and Dulma Rodriguez. Moving fast with software verification. In NASA

Formal Method Symposium. Springer, 2015. [Cited on page 1]

[40] Xinyun Chen, Chang Liu, and Dawn Song. Towards synthesizing complex

programs from input-output examples. In Proceedings of the International

Conference on Learning Representations (ICLR), 2018. [Cited on page 85]

[41] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio.

Empirical evaluation of gated recurrent neural networks on sequence mod-

eling. CoRR, abs/1412.3555, 2014. [Cited on page 12]

[42] William W. Cohen. Pac-learning non-recursive prolog clauses. Artificial In-

telligence, 79(1), 1995. [Cited on page 17]

[43] William W. Cohen and C. David Page. Polynomial learnability and induc-

tive logic programming: Methods and results. New Generation Comput., 13

(3&4):369–409, 1995. [Cited on page 65]

[44] Michael A. Colón, Sriram Sankaranarayanan, and Henny B. Sipma. Linear

invariant generation using non-linear constraint solving. In Proceedings of the

International Conference on Computer Aided Verification (CAV), 2003. [Cited

on page 70]

[45] Byron Cook. Formal reasoning about the security of amazon web services.

In Proceedings of the International Conference on Computer Aided Verifica-

119



tion (CAV), pages 38–47, 2018. doi: 10.1007/978-3-319-96145-3\_3. URL

https://doi.org/10.1007/978-3-319-96145-3_3. [Cited on page 1]

[46] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving program

termination. Communications of the ACM, 54(5), 2011. [Cited on page 86]

[47] Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran, Michael

Tautschnig, and Mark R. Tuttle. Model checking boot code from AWS data

centers. In Proceedings of the International Conference on Computer Aided Ver-

ification (CAV), pages 467–486, 2018. doi: 10.1007/978-3-319-96142-2\

_28. URL https://doi.org/10.1007/978-3-319-96142-2_28. [Cited on

page 1]

[48] Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fair-

ness: A critical review of fair machine learning. CoRR, abs/1808.00023,

2018. URL http://arxiv.org/abs/1808.00023. [Cited on page 103]

[49] Andrew Cropper, Alireza Tamaddoni-Nezhad, and Stephen H Muggleton.

Meta-interpretive learning of data transformation programs. In Proceedings

of the 24th International Conference on Inductive Logic Programming, 2015.

[Cited on pages 57 and 64]

[50] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently computing static single assignment form and the

control dependence graph. ACM Trans. Program. Lang. Syst., 13(4), 1991.

[Cited on page 74]

[51] Jacek Czerniak and Hubert Zarzycki. Artificial intelligence and security in

computing systems. chapter Application of Rough Sets in the Presumptive

Diagnosis of Urinary System Diseases. 2003. [Cited on page 56]

[52] Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, andWol-

fram Schulte. VCC: contract-based modular verification of concurrent C. In

120

https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96142-2_28
http://arxiv.org/abs/1808.00023


Proceedings of the International Conference on Software Engineering (ICSE),

pages 429–430, 2009. [Cited on page 1]

[53] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent vari-

able models for structured data. In Proceedings of the International Conference

on Machine Learning (ICML), 2016. [Cited on pages 13 and 74]

[54] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learn-

ing combinatorial optimization algorithms over graphs. In Advances in Neural

Information Processing Systems (NeurIPS), 2017. [Cited on pages 68, 78, 85,

and 102]

[55] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-

directed variational autoencoder for structured data. In Proceedings of the

International Conference on Learning Representations (ICLR), 2018. [Cited

on page 76]

[56] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT

solver. In Proceedings of the International Conference on Tools and Algorithms

for Construction and Analysis of Systems (TACAS), 2008. [Cited on pages 2,

68, 69, and 81]

[57] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A proba-

bilistic Prolog and its application in link discovery. In Proceedings of the 20th

International Joint Conference on Artificial Intelligence, 2007. [Cited on pages

50 and 64]

[58] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Ima-

genet: A large-scale hierarchical image database. In 2009 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR 2009),

20-25 June 2009, Miami, Florida, USA, pages 248–255. IEEE Computer So-

ciety, 2009. [Cited on page 101]

121



[59] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel

rahmanMohamed, and Pushmeet Kohli. Robustfill: Neural program learning

under noisy I/O. In Proceedings of the International Conference on Machine

Learning (ICML), 2017. [Cited on page 85]

[60] Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. Inductive invari-

ant generation via abductive inference. In Proceedings of the ACM Conference

on Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA), 2013. [Cited on pages 68, 70, and 80]

[61] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,

Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional net-

works on graphs for learning molecular fingerprints. In Advances in Neural

Information Processing Systems (NeurIPS), 2015. [Cited on page 74]

[62] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In En-

rico Giunchiglia and Armando Tacchella, editors, Theory and Applica-

tions of Satisfiability Testing, 6th International Conference, SAT 2003. Santa

Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume

2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

doi: 10.1007/978-3-540-24605-3\_37. URL https://doi.org/10.1007/

978-3-540-24605-3_37. [Cited on page 2]

[63] Varun Embar, Dhanya Sridhar, Golnoosh Farnadi, and Lise Getoor. Scalable

structure learning for Probabilistic Soft Logic. CoRR, abs/1807.00973, 2018.

[Cited on page 65]

[64] Richard Evans and Edward Grefenstette. Learning explanatory rules from

noisy data (Extended abstract). In Proceedings of the International Joint Con-

ference on Artificial Intelligence, 2018. [Cited on page 65]

122

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37


[65] Manuel Fahndrich and Francesco Logozzo. Static contract checking with

abstract interpretation. In Proceedings of the 2010 International Conference

on Formal Verification of Object-Oriented Software, 2010. [Cited on page 67]

[66] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective

sampling using the query by committee algorithm. Machine Learning, 28

(2-3), 1997. [Cited on page 44]

[67] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. Ice: A

robust framework for learning invariants. In Proceedings of the International

Conference on Computer Aided Verification (CAV), 2014. [Cited on page 70]

[68] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. Learning invari-

ants using decision trees and implication counterexamples. In Proceedings of

the ACM Symposium on Principles of Programming Languages (POPL), 2016.

[Cited on pages 67, 69, 70, and 80]

[69] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,

Swarat Chaudhuri, and Martin T. Vechev. AI2: safety and robustness cer-

tification of neural networks with abstract interpretation. In 2018 IEEE Sym-

posium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San

Francisco, California, USA, pages 3–18. IEEE Computer Society, 2018. doi:

10.1109/SP.2018.00058. URL https://doi.org/10.1109/SP.2018.00058.

[Cited on page 103]

[70] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and

George E. Dahl. Neural message passing for quantum chemistry. In Pro-

ceedings of the International Conference on Machine Learning (ICML), page

1263–1272, 2017. [Cited on page 13]

[71] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. In Yoshua Bengio and Yann LeCun, ed-

123

https://doi.org/10.1109/SP.2018.00058


itors, 3rd International Conference on Learning Representations, ICLR 2015,

San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL

http://arxiv.org/abs/1412.6572. [Cited on page 103]

[72] Georg Gottlob, Christoph Koch, Robert Baumgartner, Marcus Herzog, and

Sergio Flesca. The lixto data extraction project: Back and forth between

theory and practice. In PODS, 2004. [Cited on page 16]

[73] Alex Graves, GregWayne, and Ivo Danihelka. Neural turing machines. CoRR,

abs/1410.5401, 2014. URL http://arxiv.org/abs/1410.5401. [Cited on

page 13]

[74] S. Grebenshchikov, A. Gupta, N. Lopes, C. Popeea, and A. Rybalchenko.

HSF(C): A software verifier based on Horn clauses. In Proceedings of the

International Conference on Tools and Algorithms for Construction and Analy-

sis of Systems (TACAS), 2012. [Cited on page 16]

[75] Todd Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings.

In Proceedings of the 26th Symposium on Principles of Database Systems, PODS,

2007. [Cited on pages 33, 49, and 51]

[76] Todd J. Green. Logiql: A declarative language for enterprise applications. In

PODS, 2015. [Cited on page 20]

[77] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil

Blunsom. Learning to transduce with unbounded memory. In Advances in

Neural Information Processing Systems (NeurIPS), pages 1828–1836, 2015.

[Cited on page 13]

[78] Sumit Gulwani. Automating string processing in spreadsheets using input-

output examples. In Proceedings of the 38th Symposium on Principles of Pro-

gramming Languages, POPL, 2011. [Cited on pages 2 and 32]

124

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1410.5401


[79] Sumit Gulwani. Automating string processing in spreadsheets using input-

output examples. In Proceedings of the ACM Symposium on Principles of Pro-

gramming Languages (POPL), 2011. [Cited on page 84]

[80] Sumit Gulwani and Nebojsa Jojic. Program verification as probabilistic in-

ference. In Proceedings of the ACM Symposium on Principles of Programming

Languages (POPL), 2007. [Cited on page 70]

[81] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan.

Synthesis of loop-free programs. In Proceedings of the ACM Conference on

Programming Language Design and Implementation (PLDI), 2011. [Cited on

page 5]

[82] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H.

Muggleton, Ute Schmid, and Benjamin Zorn. Inductive programming meets

the real world. Communications of the ACM, 58(11), October 2015. [Cited

on page 2]

[83] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthe-

sis. Foundations and Trends in Programming Languages, 4(1-2):1–119, 2017.

[Cited on page 2]

[84] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.

The seahorn verification framework. In Proceedings of the International Con-

ference on Computer Aided Verification (CAV), pages 343–361, 2015. [Cited

on page 93]

[85] Isabelle Guyon, Masoud Nikravesh, Steve R. Gunn, and Lotfi A. Zadeh, edi-

tors. Feature Extraction - Foundations and Applications, volume 207 of Studies

in Fuzziness and Soft Computing. Springer, 2006. ISBN 978-3-540-35487-

1. doi: 10.1007/978-3-540-35488-8. URL https://doi.org/10.1007/

978-3-540-35488-8. [Cited on page 2]

125

https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1007/978-3-540-35488-8


[86] Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu,

Paraschos Koutris, Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk,

Jingjing Wang, Andrew Whitaker, Shengliang Xu, Magdalena Balazinska,

Bill Howe, and Dan Suciu. Demonstration of the Myria big data management

service. In Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors, SIGMOD,

2014. doi: 10.1145/2588555.2594530. [Cited on page 16]

[87] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,

pages 770–778, 2016. doi: 10.1109/CVPR.2016.90. URL https://doi.

org/10.1109/CVPR.2016.90. [Cited on page 2]

[88] C. A. R. Hoare. An axiomatic basis for computer programming. Communi-

cations of the ACM, 12(10), October 1969. [Cited on page 69]

[89] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computation, 9(8):1735–1780, 1997. [Cited on page 12]

[90] Kryštof Hoder, Nikolaj Bjørner, and Leonardo De Moura. µz–an efficient

engine for fixed points with constraints. In Proceedings of the International

Conference on Computer Aided Verification (CAV), 2011. [Cited on page 54]

[91] Kurt Hornik. Approximation capabilities of multilayer feedforward net-

works. Neural Networks, 4(2):251–257, 1991. doi: 10.1016/0893-6080(91)

90009-T. URL https://doi.org/10.1016/0893-6080(91)90009-T. [Cited

on page 11]

[92] Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H Schwartz,

and Hugo J W L Aerts. Artificial intelligence in radiology. Nature reviews.

Cancer, 18(8):500–510, 08 2018. doi: 10.1038/s41568-018-0016-5. URL

https://pubmed.ncbi.nlm.nih.gov/29777175. [Cited on pages 2 and 101]

126

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0893-6080(91)90009-T
https://pubmed.ncbi.nlm.nih.gov/29777175


[93] Feng-hsiung Hsu, Murray S. Campbell, and A. Joseph Hoane. Deep blue

system overview. In Proceedings of the 9th International Conference on Super-

computing, ICS ’95, page 240–244, New York, NY, USA, 1995. Association for

Computing Machinery. ISBN 0897917286. doi: 10.1145/224538.224567.

URL https://doi.org/10.1145/224538.224567. [Cited on page 14]

[94] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochen-

derfer. Reluplex: An efficient SMT solver for verifying deep neural networks.

In Rupak Majumdar and Viktor Kuncak, editors, Proceedings of the Interna-

tional Conference on Computer Aided Verification (CAV), volume 10426, pages

97–117. Springer, 2017. [Cited on page 103]

[95] Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L Nemhauser, and

Bistra N Dilkina. Learning to branch in mixed integer programming. 2016.

[Cited on page 85]

[96] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. An algebraic

Prolog for reasoning about possible worlds. In Proceedings of the Twenty-

Fifth AAAI Conference on Artificial Intelligence, 2011. [Cited on page 64]

[97] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Algebraic model

counting. J. of Applied Logic, 22(C), July 2017. [Cited on page 64]

[98] Ross D. King. Applying inductive logic programming to predicting gene func-

tion. AI Magazine, 25(1), March 2004. [Cited on page 16]

[99] Stanley Kok and Pedro M. Domingos. Learning the structure of Markov Logic

Networks. In Machine Learning, Proceedings of the Twenty-Second Interna-

tional Conference, 2005. [Cited on page 64]

[100] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. Smt-based model

checking for recursive programs. Formal Methods in System Design, 48(3):

175–205, 2016. [Cited on page 93]

127

https://doi.org/10.1145/224538.224567


[101] Vijay R. Konda and John N. Tsitsiklis. Actor-critic algorithms. In Advances

in Neural Information Processing Systems 12, [NIPS Conference, Denver, Col-

orado, USA, November 29 - December 4, 1999], pages 1008–1014, 1999.

[Cited on page 79]

[102] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifi-

cation with deep convolutional neural networks. In Advances in Neural In-

formation Processing Systems (NeurIPS), pages 1106–1114, 2012. [Cited on

page 2]

[103] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples

in the physical world. CoRR, abs/1607.02533, 2016. URL http://arxiv.

org/abs/1607.02533. [Cited on page 103]

[104] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar

variational autoencoder. In Proceedings of the International Conference on

Machine Learning (ICML), 2017. [Cited on page 76]

[105] Tessa A. Lau, Pedro Domingos, and Daniel S. Weld. Version space algebra

and its application to programming by demonstration. In Proceedings of the

International Conference on Machine Learning (ICML), pages 527–534, 2000.

ISBN 1-55860-707-2. [Cited on page 2]

[106] Vu Le and Sumit Gulwani. Flashextract: a framework for data extraction by

examples. In Proceedings of the ACM Conference on Programming Language

Design and Implementation (PLDI), 2014. [Cited on page 2]

[107] Rustan Leino. Dafny: An automatic program verifier for

functional correctness. In 16th International Conference,

LPAR-16, Dakar, Senegal, pages 348–370, April 2010. URL

https://www.microsoft.com/en-us/research/publication/

128

http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1607.02533
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/


dafny-automatic-program-verifier-functional-correctness-2/.

[Cited on page 1]

[108] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52

(7):107–115, July 2009. ISSN 0001-0782. doi: 10.1145/1538788.1538814.

URL https://doi.org/10.1145/1538788.1538814. [Cited on page 1]

[109] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph

sequence neural networks. arXiv preprint arXiv:1511.05493, 2015. [Cited

on page 13]

[110] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao. Neu-

ral symbolic machines: Learning semantic parsers on freebase with weak

supervision. arXiv preprint arXiv:1611.00020, 2016. [Cited on page 85]

[111] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Ex-

ponential recency weighted average branching heuristic for SAT solvers. In

Proceedings of the AAAI Conference on Artificial Intelligence, pages 3434–3440,

2016. [Cited on page 102]

[112] Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierar-

chical Bayesian approach. In Proceedings of the 27th International Conference

on Machine Learning, 2010. [Cited on page 66]

[113] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David Gay, Joseph Heller-

stein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Sto-

ica. Declarative networking: Language, execution and optimization. In Pro-

ceedings of the 2006 International Conference on Management of Data, SIG-

MOD, 2006. [Cited on page 32]

[114] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

129

https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://doi.org/10.1145/1538788.1538814


Stoica. Declarative networking. Communications of the ACM, 52(11), Novem-

ber 2009. [Cited on page 16]

[115] C.J. Maddison and D. Tarlow. Structured generative models of natural source

code. In Proceedings of the International Conference on Machine Learning

(ICML), 2014. [Cited on page 85]

[116] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. From datalog to flix: A

declarative language for fixed points on lattices. In Proceedings of the ACM

Conference on Programming Language Design and Implementation (PLDI),

PLDI ’16, pages 194–208, New York, NY, USA, 2016. ACM. ISBN 978-1-

4503-4261-2. doi: 10.1145/2908080.2908096. URL http://doi.acm.org/

10.1145/2908080.2908096. [Cited on page 16]

[117] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. A user-guided ap-

proach to program analysis. In Proceedings of the ACM Symposium on Foun-

dations of Software Engineering (FSE), 2015. [Cited on page 16]

[118] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas De-

meester, and Luc De Raedt. Deepproblog: Neural probabilistic logic pro-

gramming. In Advances in Neural Information Processing Systems (NeurIPS),

2018. [Cited on page 64]

[119] Zohar Manna and Richard J. Waldinger. Toward automatic program synthe-

sis. In Communications of the ACM, 1971. [Cited on page 84]

[120] Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan Godwin,

Natasha Antropova, Hutan Ashrafian, Trevor Back, Mary Chesus, Greg C.

Corrado, Ara Darzi, Mozziyar Etemadi, Florencia Garcia-Vicente, Fiona J.

Gilbert, Mark Halling-Brown, Demis Hassabis, Sunny Jansen, Alan Karthike-

salingam, Christopher J. Kelly, Dominic King, Joseph R. Ledsam, David Mel-

nick, Hormuz Mostofi, Lily Peng, Joshua Jay Reicher, Bernardino Romera-

130

http://doi.acm.org/10.1145/2908080.2908096
http://doi.acm.org/10.1145/2908080.2908096


Paredes, Richard Sidebottom, Mustafa Suleyman, Daniel Tse, Kenneth C.

Young, Jeffrey De Fauw, and Shravya Shetty. International evaluation

of an ai system for breast cancer screening. Nature, 577(7788):89–94,

2020. doi: 10.1038/s41586-019-1799-6. URL https://doi.org/10.1038/

s41586-019-1799-6. [Cited on page 2]

[121] Kenneth L McMillan and Andrey Rybalchenko. Solving constrained horn

clauses using interpolation. Tech. Rep. MSR-TR-2013-6, 2013. [Cited on

page 92]

[122] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object

sensitivity for points-to and side-effect analyses for java. In Proceedings of

the International Symposium on Software Testing and Analysis (ISSTA), 2002.

[Cited on pages 55 and 56]

[123] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine

Bordes, and Jason Weston. Key-value memory networks for directly reading

documents. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2016. [Cited on page 74]

[124] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-

ness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidje-

land, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis

Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,

and Demis Hassabis. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529–533, 2015. [Cited on page 14]

[125] Raymond J. Mooney. Inductive logic programming for natural language pro-

cessing. In Inductive Logic Programming: Selected papers from the 6th Inter-

national Workshop. Springer Verlag, 1996. [Cited on page 16]

131

https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1038/s41586-019-1799-6


[126] Stephen Muggleton. Inverse entailment and Progol. New generation comput-

ing, 13(3-4), 1995. [Cited on pages 17, 32, 55, and 56]

[127] Stephen Muggleton. Stochastic logic programs. In New Generation Comput-

ing. Academic Press, 1996. [Cited on page 65]

[128] StephenHMuggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad. Meta-

interpretive learning of higher-order dyadic datalog: Predicate invention re-

visited. Machine Learning, 100(1), 2015. [Cited on pages 18, 19, 33, 36,

38, 54, 55, 56, 58, and 65]

[129] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine.

Neural sketch learning for conditional program generation. In Proceedings of

the International Conference on Learning Representations (ICLR), 2018. [Cited

on page 85]

[130] Mayur Naik. Chord: A program analysis platform for Java. http://jchord.

googlecode.com/, 2011. [Cited on page 1]

[131] Anh Tuan Nguyen and Tien N. Nguyen. Graph-based statistical language

model for code. In Proceedings of the International Conference on Software

Engineering (ICSE), 2015. [Cited on page 85]

[132] OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Che-

ung, Przemysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer,

Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson,

Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan

Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor,

Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large

scale deep reinforcement learning. 2019. URL https://arxiv.org/abs/

1912.06680. [Cited on page 14]

132

http://jchord.googlecode.com/
http://jchord.googlecode.com/
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680


[133] Saswat Padhi, Rahul Sharma, and Todd Millstein. Data-driven precondition

inference with learned features. In Proceedings of the ACM Conference on

Programming Language Design and Implementation (PLDI), 2016. [Cited on

pages 69, 70, and 80]

[134] Emilio Parisotto, Abdel-rahmanMohamed, Rishabh Singh, Lihong Li, Dengy-

ong Zhou, and Pushmeet Kohli. Neuro-symbolic program synthesis. Proceed-

ings of the International Conference on Learning Representations (ICLR), 2016.

[Cited on pages 76 and 85]

[135] Gordon D Plotkin. A note on inductive generalization. Machine intelligence,

5(1), 1970. [Cited on page 41]

[136] Oleksander Polozov and Sumit Gulwani. Flashmeta: A framework for in-

ductive program synthesis. In Proceedings of the ACM Conference on Object-

Oriented Programming Systems, Languages and Applications (OOPSLA), 2015.

[Cited on page 2]

[137] David Poole. Logic programming for robot control. In Proceedings of the In-

ternational Joint Conference on Artificial Intelligence (IJCAI’95), 1995. [Cited

on pages 16 and 32]

[138] Rachel Potvin and Josh Levenberg. Why google stores billions of lines of

code in a single repository. Communications of the ACM, 59:78–87, 2016.

URL http://dl.acm.org/citation.cfm?id=2854146. [Cited on page 1]

[139] J. Ross Quinlan and R. Mike Cameron-Jones. Foil: A midterm report. In Pro-

ceedings of the European Conference on Machine Learning (ECML’93), 1993.

[Cited on page 17]

[140] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik.

User-guided program reasoning using Bayesian inference. In Proceedings

133

http://dl.acm.org/citation.cfm?id=2854146


of the ACM Conference on Programming Language Design and Implementation

(PLDI), 2018. [Cited on page 16]

[141] David A. Ramos and Dawson Engler. Under-constrained symbolic execution:

correctness checking for real code. In Proceedings of the USENIX Security

Symposium, 2015. [Cited on pages 26 and 27]

[142] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and

Clark W. Barrett. Counterexample-guided quantifier instantiation for syn-

thesis in SMT. In Proceedings of the International Conference on Computer

Aided Verification (CAV), 2015. [Cited on pages 2 and 98]

[143] John C. Reynolds. Separation logic: A logic for shared mutable data struc-

tures. In Proceedings of the IEEE Symposium on Logic in Computer Science

(LICS), 2002. [Cited on page 86]

[144] Matthew Richardson and Pedro Domingos. Markov Logic Networks.Machine

Learning, 62(1-2), 2006. [Cited on page 64]

[145] Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In

Advances in Neural Information Processing Systems (NeurIPS), 2017. [Cited

on page 65]

[146] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 2 edition, 2003. ISBN 0137903952. [Cited on page 18]

[147] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and

Ciera Jaspan. Lessons from building static analysis tools at Google. Commu-

nications of the ACM, 61(4), March 2018. [Cited on page 1]

[148] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Non-linear

loop invariant generation using Gröbner bases. In Proceedings of the ACM

134



Symposium on Principles of Programming Languages (POPL), 2004. [Cited

on page 70]

[149] JCA Santos, H Nassif, D Page, SHMuggleton, andMJE Sternberg. Automated

identification of protein-ligand interaction features using inductive logic pro-

gramming: a hexose binding case study. BMC BIOINFORMATICS, 13, 2012.

[Cited on page 16]

[150] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. The graph neural network model. IEEE Transactions

on Neural Networks, 20(1):61–80, 2009. [Cited on page 74]

[151] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimiza-

tion. In Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), 2013. ISBN

978-1-4503-1870-9. [Cited on pages 5 and 84]

[152] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic program optimiza-

tion. Communications of the ACM, 59(2), 2016. [Cited on page 66]

[153] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. On fast

large-scale program analysis in datalog. In Proceedings of the International

Conference on Compiler Construction (CC), CC 2016, 2016. [Cited on pages

16 and 20]

[154] Daniel Selsam, Matthew Lamm, Benedikt Bunz, Percy Liang, Leonardo

de Moura, and David L Dill. Learning a sat solver from single-bit supervision.

arXiv preprint arXiv:1802.03685, 2018. [Cited on page 85]

[155] Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Lau-

rent Sifre, Tim Green, Chongli Qin, Augustin Žídek, Alexander W. R. Nel-

son, Alex Bridgland, Hugo Penedones, Stig Petersen, Karen Simonyan, Steve

135



Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray Kavukcuoglu,

and Demis Hassabis. Improved protein structure prediction using poten-

tials from deep learning. Nature, 577(7792):706–710, 2020. doi: 10.1038/

s41586-019-1923-7. URL https://doi.org/10.1038/s41586-019-1923-7.

[Cited on page 2]

[156] Jiwon Seo. Datalog extensions for bioinformatic data analysis. In 40th An-

nual International Conference of the IEEE Engineering in Medicine and Biology

Society, EMBC, 2018. [Cited on page 32]

[157] Jiwon Seo, Stephen Guo, and Monica S Lam. SociaLite: Datalog extensions

for efficient social network analysis. In ICDE, 2013. [Cited on page 16]

[158] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and

Machine Learning, 6(1):1–114, 2012. [Cited on page 44]

[159] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In

Proceedings of the 5th Annual Workshop on Computational Learning Theory

(COLT’92), 1992. [Cited on page 44]

[160] Ehud Y. Shapiro. Algorithmic Program DeBugging. MIT Press, 1983. [Cited

on page 64]

[161] Rahul Sharma and Alex Aiken. From invariant checking to invariant infer-

ence using randomized search. In Proceedings of the International Conference

on Computer Aided Verification (CAV), 2014. [Cited on pages 69, 70, and 80]

[162] Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. Simplifying loop

invariant generation using splitter predicates. In Proceedings of the Interna-

tional Conference on Computer Aided Verification (CAV), 2011. [Cited on page

70]

136

https://doi.org/10.1038/s41586-019-1923-7


[163] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang,

and Aditya V. Nori. A data driven approach for algebraic loop invariants.

In Proceedings of the European Symposium on Programming (ESOP), 2013.

[Cited on page 70]

[164] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson

Condie, and Carlo Zaniolo. Big data analytics with datalog queries on spark.

In Proceedings of the International Conference on Management of Data (SIG-

MOD), 2016. [Cited on pages 16 and 32]

[165] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algo-

rithm for propositional satisfiability. IEEE Trans. Computers, 48(5):506–

521, 1999. doi: 10.1109/12.769433. URL https://doi.org/10.1109/12.

769433. [Cited on page 2]

[166] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Ve-

davyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,

John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,

Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.

Mastering the game of go with deep neural networks and tree search. Na-

ture, 529(7587):484–489, 2016. doi: 10.1038/nature16961. URL https:

//doi.org/10.1038/nature16961. [Cited on pages 2 and 14]

[167] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, et al. Mastering the game of Go without human knowledge. Na-

ture, 550(7676):354–359, 2017. [Cited on pages 2 and 78]

[168] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,

137

https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961


Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. A

general reinforcement learning algorithm that masters chess, shogi, and go

through self-play. Science, 362(6419):1140–1144, 2018. ISSN 0036-8075.

doi: 10.1126/science.aar6404. URL https://science.sciencemag.org/

content/362/6419/1140. [Cited on page 2]

[169] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated

feedback generation for introductory programming assignments. In Proceed-

ings of the ACM Conference on Programming Language Design and Implemen-

tation (PLDI), 2013. [Cited on page 64]

[170] Y. Smaragdakis and M. Bravenboer. Using Datalog for fast and easy program

analysis. In Datalog 2.0 Workshop, 2010. [Cited on page 1]

[171] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your con-

texts well: Understanding object-sensitivity. In Proceedings of the ACM Sym-

posium on Principles of Programming Languages (POPL), 2011. [Cited on

pages 55 and 56]

[172] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, and

Sanjit Seshia. Combinatorial sketching for finite programs. In Proceedings of

the International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), 2006. [Cited on pages 2, 3, 5,

and 64]

[173] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-based

program verification and program synthesis. International Journal on Soft-

ware Tools for Technology Transfer (STTT), 2013. [Cited on page 64]

[174] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory

networks. In Advances in Neural Information Processing Systems (NeurIPS),

2015. [Cited on pages 13 and 74]

138

https://science.sciencemag.org/content/362/6419/1140
https://science.sciencemag.org/content/362/6419/1140


[175] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduc-

tion. Adaptive computation and machine learning. MIT Press, 1998. ISBN

978-0-262-19398-6. [Cited on pages 15 and 90]

[176] SyGuS Competition, 2017. http://sygus.seas.upenn.edu/

SyGuS-COMP2017.html. [Cited on pages 80 and 97]

[177] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved se-

mantic representations from tree-structured long short-term memory net-

works. In Proceedings of the Association for Computational Linguistics (ACL),

2015. [Cited on pages 12 and 77]

[178] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-

Haim, Milo M.K. Martin, and Rajeev Alur. TRANSIT: Specifying protocols

with concolic snippets. In Proceedings of the ACM Conference on Programming

Language Design and Implementation (PLDI), 2013. [Cited on page 5]

[179] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu,

Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo

Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Dani-

helka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jader-

berg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dal-

ibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gul-

cehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama,

Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lil-

licrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.

Grandmaster level in starcraft ii using multi-agent reinforcement learning.

Nature, 575(7782):350–354, 2019. doi: 10.1038/s41586-019-1724-z. URL

https://doi.org/10.1038/s41586-019-1724-z. [Cited on page 14]

[180] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly

139

http://sygus.seas.upenn.edu/SyGuS-COMP2017.html
http://sygus.seas.upenn.edu/SyGuS-COMP2017.html
https://doi.org/10.1038/s41586-019-1724-z


expressive SQL queries from input-output examples. In Proceedings of

the ACM Conference on Programming Language Design and Implementation

(PLDI), 2017. [Cited on pages 21, 55, and 57]

[181] William Yang Wang, Kathryn Mazaitis, and William Cohen. Structure learn-

ing via parameter learning. In Proceedings of the 23rd ACM International

Conference on Conference on Information and Knowledge Management, 2014.

[Cited on page 65]

[182] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In

Yoshua Bengio and Yann LeCun, editors, Proceedings of the International Con-

ference on Learning Representations (ICLR), 2015. [Cited on page 13]

[183] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In Proceedings of the ACM Conference on

Programming Language Design and Implementation (PLDI), 2004. [Cited on

pages 55 and 56]

[184] J. Whaley, D. Avots, M. Carbin, and M. Lam. Using Datalog with binary de-

cision diagrams for program analysis. In Proceedings of the Asian Symposium

on Programming Languages and Systems (APLAS’05), 2005. [Cited on page

1]

[185] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau

Loo. Automated bug removal for software-defined networks. In Proceedings

of the USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2017. [Cited on page 16]

[186] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,

Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser,

Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,

140



George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason

Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jef-

frey Dean. Google’s neural machine translation system: Bridging the gap

between human and machine translation. CoRR, abs/1609.08144, 2016.

URL http://arxiv.org/abs/1609.08144. [Cited on page 2]

[187] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful

are graph neural networks? In Proceedings of the International Conference on

Learning Representations (ICLR), 2019. [Cited on page 13]

[188] Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of

logical rules for knowledge base reasoning. In Advances in Neural Information

Processing Systems (NeurIPS), 2017. [Cited on page 65]

[189] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamil-

ton, and Jure Leskovec. Hierarchical graph representation learning with

differentiable pooling. In Advances in Neural Information Processing Systems

(NeurIPS), 2018. [Cited on page 13]

[190] Alan L. Yuille, Peter W. Hallinan, and David S. Cohen. Feature extrac-

tion from faces using deformable templates. Int. J. Comput. Vis., 8(2):99–

111, 1992. doi: 10.1007/BF00127169. URL https://doi.org/10.1007/

BF00127169. [Cited on page 2]

[191] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur

Naik. Apisan: Sanitizing api usages through semantic cross-checking. In

Proceedings of the USENIX Security Symposium, 2016. [Cited on pages 55

and 56]

[192] Lintao Zhang. Searching for Truth: Techniques for Satisfiability of Boolean

Formulas. PhD thesis, Princeton University, 2003. [Cited on page 102]

141

http://arxiv.org/abs/1609.08144
https://doi.org/10.1007/BF00127169
https://doi.org/10.1007/BF00127169


[193] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang.

On abstraction refinement for program analyses in datalog. In Proceedings

of the ACM Conference on Programming Language Design and Implementation

(PLDI), 2014. [Cited on page 16]

[194] Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. Effective interactive

resolution of static analysis alarms. In Proceedings of the ACM Conference

on Object-Oriented Programming Systems, Languages and Applications (OOP-

SLA), 2017. [Cited on page 16]

[195] He Zhu, StephenMagill, and Suresh Jagannathan. A data-driven CHC solver.

In Proceedings of the ACM Conference on Programming Language Design and

Implementation (PLDI), 2018. [Cited on page 93]

142


	Introduction
	The New Driving Force for Program Reasoning
	A Learning-aided Reasoning Framework
	Contributions and Organizations

	Background
	Numerical Relaxation
	Deep Learning
	Reinforcement Learning

	Applications of Rule Learning
	Promising Examples
	A Case Study on Detecting API Misuses
	Discussion

	Learning-aided Rule Synthesis
	Introduction
	The Datalog Synthesis Problem
	Systematic Candidate Rule Generation
	Rule Selection by Bi-directional Search
	A Smoothed Interpretation for Datalog
	Formulating the Optimization Problem
	Empirical Evaluation
	Related Work
	Conclusion

	Deep Reinforcement Learning for Program Verification
	Introduction
	Problem Formulation
	End-to-End Reasoning Framework
	Reinforcement Learning
	Experiments
	Related Work
	Discussion

	Intriguing Extensions of Code2Inv
	Formalization
	Code2Inv as a CHC solver
	Meta-Learning for Syntax-guided Synthesis
	Discussion

	Future Work
	Conclusion
	Proofs and Artifacts
	Proofs of Properties in Chapter 4
	Artifacts


