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SUMMARY

Software is becoming increasingly pervasive and complex. These trends expose masses

of users to unintended software failures and deliberate cyber-attacks. A widely adopted

solution to enforce software quality is automated program analysis. Existing program anal-

yses are expressed in the form of logical rules that are handcrafted by experts. While such

a logic-based approach provides many benefits, it cannot handle uncertainty and lacks the

ability to learn and adapt. This in turn hinders the accuracy, scalability, and usability of

program analysis tools in practice.

We seek to address these limitations by proposing a methodology and framework for

incorporating probabilistic reasoning directly into existing program analyses that are based

on logical reasoning. The framework consists of a frontend, which automatically integrates

probabilities into a logical analysis by synthesizing a system of weighted constraints, and a

backend, which is a learning and inference engine for such constraints. We demonstrate that

the combined approach can benefit a number of important applications of program analysis

and thereby facilitate more widespread adoption of this technology. We also describe new

algorithmic techniques to solve very large instances of weighted constraints that arise not

only in our domain but also in other domains such as Big Data analytics and statistical AI.

xvi



CHAPTER 1

INTRODUCTION

Software is becoming increasingly pervasive and complex. A pacemaker comprises a hun-

dred thousand lines of code; a mobile application can comprise a few million lines of code;

and all the programs in an automobile together consist of up to 100 million lines of code.

While programs have become an indispensable part of our daily life, their growing com-

plexity poses a dire challenge for the software industry to build software artifacts that are

correct, efficient, secure, and reliable. In particular, traditional methods for ensuring soft-

ware quality (e.g., testing and code review) require a considerable amount of manual effort

and therefore struggle to scale with such increasing software complexity.

One promising solution for enhancing software quality is automated program analysis.

Program analyses are algorithms that discover a wide range of useful facts about programs,

including proofs, bugs, and specifications. They have achieved remarkable success in dif-

ferent application domains: SLAM [1] is a program analysis tool based on model checking

that has been applied widely for verifying safety properties of Windows device drivers;

ASTREÉ [2], which is based on abstract interpretation, has been applied to Airbus flight

controller software to prove the absence of runtime errors; Coverity [3], which is based on

data-flow analysis, has found many bugs in real-world enterprise applications; and more

recently, Facebook developed Infer [3], which is based on separation logic, to improve

memory safety of mobile applications.

Although the techniques underlying these tools vary, their algorithms are all expressed

in the form of logical axioms and inference rules that are handcrafted by experts. This logic-

based approach provides many benefits. First, logical rules are human-comprehensible,

making it convenient for analysis writers to express their domain knowledge. Secondly, the

results produced by solving logical rules often come with explanations (e.g., provenance

1



information), making analysis tools easy to use. Last but not least, logical rules enable

program analyses to provide rigorous formal guarantees such as soundness.

While logic-based program analyses have achieved remarkable success, however, they

have significant limitations: they cannot handle uncertain knowledge and they lack the

abilities to learn and adapt. Although the semantics of most programs are determinis-

tic, uncertainties arise in many scenarios due to reasons such as imprecise specifications,

missing program parts, imperfect environment models, and many others. Current program

analyses rely on experts to manually choose their representations, and these representations

cannot be changed once they are deployed to end-users. However, the diversity of usage

scenarios prevents such fixed representations from addressing the needs of individual end-

users. Moreover, the analysis does not improve as it reasons about more programs, and is

therefore prone to repeating past mistakes.

To overcome the drawbacks of the existing logical approach, this thesis proposes to

combine logical and probabilistic reasoning in program analysis. While the logical part

preserves the benefits of the current approach, the probabilistic part enables handling un-

certainties and provides the additional ability to learn and adapt. Moreover, such a com-

bined approach enables to incorporate probability directly into existing program analyses,

leveraging a rich literature.

In the rest of this thesis, we demonstrate how such a combined approach can improve

the state-of-the-art of important program analysis applications, describe a general recipe

for incorporating probabilistic reasoning into existing program analyses that are based on

logical reasoning, and present a system for supporting this recipe.

1.1 Motivating Applications

We present an informal overview of three prominent applications of program analysis to

motivate our approach: automated verification, interactive verification, and static bug de-

tection. For ease of exposition, we presume the given analysis operates on an abstract
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Figure 1.1: Graphs depicting how different applications of our approach enable a program
analysis to avoid reporting false information flow from node 1 to node 8 in two programs.

program representation in the form of a directed graph. We illustrate our three applications

using a static information-flow analysis applied to the two graphs depicted in Figure 1.1.

We elide presenting details of this analysis that are not relevant. Chapter 3 discusses each

application in more detail.

1.1.1 Automated Verification

A central problem in automated verification concerns picking an abstraction of the program

that balances accuracy and scalability. An ideal abstraction should keep only as much

information relevant to proving a program property of interest. Efficiently finding such an

abstraction is challenging because the space of possible abstractions is typically exponential

in program size or even infinite.

Consider the graph in Figure 1.1(a). Suppose the possible abstractions are indicated by

dotted ovals, each of which independently enables the analysis to lose distinctions between

the contained nodes, and thereby trade accuracy for scalability. We thus have a total of 23

= 8 abstractions. We denote each abstraction using a bitstring b2b4b6 where bit bi is 0 iff the

distinction between nodes i, i+ 1 is lost by that abstraction. The least precise but cheapest

abstraction 000 loses all distinctions, whereas the most precise but costliest abstraction 111

keeps all distinctions. Suppose we wish to prove that this graph does not have a path from

node 1 to node 8. The absence of such a path may, for instance, implies the absence of
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malicious information flow in the original program. The ideal abstraction for this purpose

is 010, that is, it loses distinctions between nodes 2, 3 and nodes 6, 7 but differentiates

between nodes 4, 5.

Limits of purely logical reasoning. A purely logical approach, such as one that is based

on the popular CEGAR (counter-example guided abstraction refinement) technique [4],

starts with the cheapest abstraction and iteratively refines parts of it by generalizing the

cause of failure of the abstraction used in the current iteration. For instance, in our example,

it starts with abstraction 000, which fails to prove the absence of a path from node 1 to node

8. However, it faces a non-deterministic choice of whether to refine b2, b4, or b6 next. A

poor choice hinders scalability or even termination of the analysis (in the case of an infinite

space of abstractions).

Incorporating probabilistic reasoning. A probabilistic approach can help guide a logi-

cal approach to better abstraction selection. For instance, it can leverage the success prob-

ability of each abstraction, which in turn can be obtained from a probability model built

from training data. In our example, such a model may predict that refining b4 has a higher

success probability than refining b2 or b6.

The case for a combined approach. The above two approaches in fact address com-

plementary aspects of abstraction selection. A combined approach stands to gain their

benefits without suffering from their limitations. For instance, a logical approach can infer

with certainty that refining b2 is futile due to the presence of the edge from node 1 to node 4.

However, it is unable to decide whether refining b4 or b6 next is more likely to prove our

property of interest. Here, a probabilistic approach can provide the needed bias towards

refining b4 over b6, enabling the combined approach to select abstraction 010 next.

In summary, the combined approach attempts only two cheap abstractions, 000 and 010,

before successfully proving the given property. Besides allowing logical and probabilistic
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elements to interact in a fine-grained manner and amplify the benefits of these individual

approaches, the combined approach also allows to encode other objective functions uni-

formly with probabilities. These may include, for instance, the relative costs of different

abstractions, and rewards for proving different properties. The combined approach thus al-

lows to strike a more effective balance between accuracy and scalability than the individual

approaches.

1.1.2 Interactive Verification

Automated verification is inherently incomplete due to undecidability reasons. Interactive

verification seeks to address this limitation by introducing a human in the loop. A cen-

tral challenge for an interactive verifier concerns reducing user effort by deciding which

questions to the user are expected to yield the highest payoff.

Consider the graph in Figure 1.1(b). Suppose we once again wish to prove that this

graph does not have a path from node 1 to node 8. Suppose the dotted edge from node 4

to node 5 is spurious, that is, it is present due to the incompleteness of the verifier. This

spurious edge results in the verifier reporting a false alarm. Suppose the questions that the

user is capable of answering are of the form: “Is edge (x, y) spurious?”. Then, the ideal set

of questions to ask in this example is the single question: “Is edge (4, 5) spurious?”.

Limits of purely logical reasoning. A purely logical approach can help prune the space

of possible questions to ask. In particular, for our example, it can determine that it is

fruitless to ask the user whether any of edges (2, 4), (3, 4), (5, 6), and (5, 7) is spurious.

But it faces a non-deterministic choice of whether to ask the user about the spuriousness

of edge (1, 4), (4, 5), or (5, 8). In the worst case, this approach ends up asking all three

questions, instead of just (4, 5).

Incorporating probabilistic reasoning. A probabilistic approach can help guide a log-

ical approach to better question selection in interactive verification. In particular, it can
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leverage the likelihood of different answers to each question, which in turn can be obtained

from a probability model built from dynamic or static heuristics. In our example, for in-

stance, test runs of the original program may reveal that edges (1, 4) and (5, 8) are definitely

not spurious, but edge (4, 5) may be spurious. Similarly, a static heuristic might state that

an edge (x, y) with a high in-degree for x and a high out-degree for y is likely spurious—a

criterion that only edge (4, 5) meets in our example.

The case for a combined approach. The above two approaches can be combined to

compute the expected payoff of each question. For instance, the inference by the prob-

abilistic approach that edge (4, 5) is likely spurious can be combined with the inference

by the logical approach that no path exists from node 1 to node 8 if edge (4, 5) is absent,

thereby proving our property of interest. This approach can thus infer that the question of

whether edge (4, 5) is spurious is the one with the highest payoff.

The combined approach allows encoding other objective functions that may be desir-

able in interactive verification. Consider a scenario in which multiple false alarms arise

from a common root cause. In our example, such a scenario arises when we wish to verify

that there is no path from any node in {1, 2, 3} to any node in {6, 7, 8}. Maximizing the

payoff in this scenario involves asking the least number of questions that are likely to rule

out the most number of these paths. In our example, even assuming equal likelihood of

each answer to any question, we can conclude that the payoff in this scenario is maximized

by asking whether edge (4, 5) is spurious: it has a payoff of 9/1 compared to, for instance,

a payoff of 5/2 for the set of questions {(1, 4), (5, 8)} (since 5 of the 9 paths are ruled out

if both edges in this set are deemed spurious by the user).

1.1.3 Static Bug Detection

Another widespread application of program analysis is bug detection. Its key challenge

lies in the need to avoid false positives (or false bugs) and false negatives (or missed bugs).
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They arise because of various approximations and assumptions that an analysis writer must

necessarily make. However, they are absolutely undesirable to analysis users.

Consider the graph in Figure 1.1(b). Suppose this time all edges in the graph are real

but certain paths are spurious, resulting in a mix of true positives and false positives among

the paths from nodes in {1, 2, 3} to nodes in {6, 7, 8}.

Limits of purely logical reasoning. A purely logical approach allows the analysis writer

to express idioms for bug detection. An idiom in our graph example is:

“If there is an edge (x, y) then there is a path (x, y).”

Another idiom captures the transitivity rule:

“If there is a path (x, y) and an edge (y, z), then there is a path (x, z).”

These idioms enable to suppress certain false positives, e.g., they prevent reporting a

path from node 8 to node 1. However, they cannot incorporate feedback from an analysis

user about retained false positives and generalize it to suppress similar false positives. For

instance, suppose subpath (1, 5) is spurious. Even if the analysis user labels paths (1, 6)

and (1, 7) as spurious, a purely logical approach cannot deduce that the subpath (1, 5) is

the likely source of imprecision, and generalize it to suppress reporting path (1, 8). As a

result, an analysis user must manually inspect each of the 9 paths to sift the true positives

from the false positives.

Incorporating probabilistic reasoning. A probabilistic approach can provide the ability

to associate a probability with each analysis fact and compute it based on a model trained

using past data. In our example, it can compute a probability for each path in the graph. For

instance, a model might predict that paths of longer length are less likely. Ranking-based

bug detection tools exemplify this approach.

The case for a combined approach. The above two approaches can be combined to

incorporate positive (resp. negative) feedback from an analysis user about true (resp. false)
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Figure 1.2: Architecture of our system for incorporating probabilistic reasoning in a logical
program analysis.

positives, and learn from it to retain (resp. suppress) similar true (resp. false) positives. For

this purpose, we associate a probability with each idiom written by the analysis writer using

the logical approach, and obtain the probability by training on previously labeled data. In

our example, then, suppose the analysis user labels paths (1, 6) and (1, 7) as spurious. These

labels are themselves treated probabilistically. The objective function seeks to balance the

confidence of the analysis writer in the idioms with the confidence of the analysis user in

the labels. In our example, the optimal solution involves suppressing the subpath (1, 5),

which in turn prevents deducing path (1, 8).

1.2 System Architecture

We need to address two central technical challenges in order to effectively combine logical

and probabilistic reasoning in program analysis and thereby enable the three aforemen-

tioned applications as well as other emerging applications:

C1. How can we incorporate probabilistic reasoning into an existing logical analysis

without requiring excessive effort from the analysis designer? While the probabilis-

tic part provides more expressiveness, the analysis designer is challenged with new

design decisions. Specifically, it can be a delicate task to combine logic and proba-

bility in a meaningful manner and set suitable parameters for the probabilistic part.

Ideally, we should provide an automated way to incorporate probabilistic reasoning
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into a conventional logical analysis and thereby avoid changing the analysis design

process significantly.

C2. How can we scale the combined analysis to real-world programs? The improvement

in expressiveness of the combined analysis comes at the cost of increased complex-

ity. While the conventional logical approach typically requires solving a decision

problem, the new combined approach now requires solving an optimization problem

or a counting problem. Since the latter is often computationally harder than its coun-

terpart of the former (e.g., in propositional logic, maximum satisfiability and model

counting vs. satisfiability), we need novel algorithms to scale the combined approach

to large real-world programs.

We address the above two challenges by proposing a system whose high-level architec-

ture is depicted in Figure 1.2. Our system takes a logical program analysis specification and

a program as inputs, and outputs program facts that the input analysis intends to discover

(e.g., bugs, proofs, or specifications). Besides the two inputs, it is parameterized by the

analysis application. The system consists of a frontend and a backend, which address the

above two challenges respectively. We describe them briefly below, while Chapter 3 and

Chapter 4 include more detailed discussions of both ends respectively.

The frontend, PETABLOX, addresses the first challenge (C1) for program analyses spec-

ified declaratively in a constraint language. We target constraint-based program analy-

ses for two reasons: first, it allows PETABLOX to leverage many existing benefits of the

constraint-based approach [5]; second, it enables PETABLOX to provide a general and au-

tomatic mechanism for combining logic and probability by analyzing the analysis con-

straints. Specifically, PETABLOX requires the input analysis to be specified in Datalog [6],

a declarative logic programming language that is widely popular for formulating program

analyses [7, 8, 9, 10, 11]. By analyzing the input analysis and program, PETABLOX auto-

matically synthesizes a novel program analysis instance that combines logical and proba-

bilistic reasoning via a system of weighted constraints. This system of weighted constraints
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is specified via a Markov Logic Network [12], a declarative language for combining logic

and probability from the Artificial Intelligence community. Based on the specified applica-

tion, PETABLOX formulates the analysis instance differently.

The backend, NICHROME, which is a learning and inference engine for Markov Logic

Networks, then solves the synthesized analysis instance and produces the final analysis

results. We address the second challenge (C2) in NICHROME by applying novel algorithms

that exploit domain insights in program analysis. These algorithms enable NICHROME to

solve Markov Logic Network instances generated from real-world analyses and programs

in a sound, accurate, and scalable manner.

1.3 Thesis Contributions

We summarize the contributions of this thesis below:

1. We propose a new paradigm to program analysis that augments the conventional

logic-based approach with probability, which we envision will benefit and enable

traditional and emerging applications.

2. We describe a general recipe to incorporate probabilistic reasoning in a conventional

logical program analysis by converting a Datalog analysis into a novel analysis in-

stance specified in Markov Logic Networks, a declarative language for combining

logic and probability.

3. We present an effective system that implements the proposed paradigm and recipe,

which includes a frontend that automates the conversion from Datalog analyses to

Markov Logic Networks, and a backend that is an effective learning and inference

engine for Markov Logic Networks.

4. We show empirically that the proposed approach significantly improves the effec-

tiveness of program analyses for three important applications: automatic verification,

interactive verification, and static bug detection.
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1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 describes the necessary back-

ground knowledge, which includes the notions of constraint-based program analysis, Dat-

alog, and Markov Logic Network; Chapter 3 describes how PETABLOX incorporates prob-

ability in existing conventional program analyses for emerging applications; Chapter 4

presents novel algorithms applied in NICHROME, which allows solving combined analysis

instances in an efficient and accurate manner; Chapter 5 discusses future research direc-

tions; finally, Chapter 6 concludes the thesis. We include the proofs to most propositions,

lemmas, and theorems in Appendix A except for the ones in Chapter 4.2 as these proofs

themselves are among the main contributions of that section.
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CHAPTER 2

BACKGROUND

This section describes the concept of constraint-based program analysis, the syntax and

semantics of Datalog, and the syntax and semantics of Markov Logic Networks.

2.1 Constraint-Based Program Analysis

Designing a program analysis that works in practice is a challenging task. In theory, any

nontrivial analysis problem is undecidable in general [13]; in practice, however, there are

concerns related to scalability, imprecisely defined specifications, missing program parts,

etc. Due to these constraints, program analysis designers have to make various approxima-

tions and assumptions that balance competing aspects like scalability, accuracy, and user

effort. As a result, there are various approaches to program analysis, each with their own

advantages and drawbacks.

One popular approach is constraint-based program analysis, whose key idea is to divide

a program analysis into two stages: constraint generation and constraint resolution. The

former generates constraints from the input program that constitute a declarative specifica-

tion of the desired information of the program, while the latter then computes the desired

information by solving the constraints. The constraint-based approach has several benefits

that make it one of the preferred approaches to program analysis [5]:

1. It separates analysis specification from implementation. Constraint generation is the

specification of the analysis while constraint resolution is the implementation. Such

separation of concerns not only helps organize the analysis but also simplifies under-

standing it. Specifically, one only needs to inspect constraint generation to reason

about correctness and accuracy without understanding the low-level implementation
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details of the constraint solver; on the other hand, one only needs to inspect the

underlying algorithm of the constraint solver to reason about performance while ig-

noring the analysis specification. Most importantly, this separation allows analysis

writers to focus on the high-level design issues such as formulating the analysis spec-

ification and choosing the right approximations and assumptions, without concerning

low-level implementation details.

2. Constraints are natural for specifying program analyses. Each constraint is usually

local, which means it individually captures a subset of the input program syntax

attributes without considering the rest. The conjunctions of local constraints in turn

capture global properties of the program.

3. It enables program analyses to leverage the sophisticated implementations of existing

constraint solvers. The constraint-based approach has emerged as a popular comput-

ing paradigm not only in program analysis, but in all areas of computer science (e.g.,

hardware design, machine learning, natural language processing at al.), and even in

other fields (e.g., mathematical optimization, biology, planning et al.). Motivated by

such dire demands, the constraint-solving community has made remarkable strides

in both algorithms and engineering of constraint solvers, which can be all leveraged

by the constraint-based program analysis.

Because of the above benefits, the constraint-based approach has been widely used

to formulate program analyses. Popular constraint problem formulations include boolean

satisfiability (SAT), Datalog, satisfiability modulo theories (SMT), and integer linear pro-

gramming (ILP). Our approach uses Datalog as the constraint language of the input analy-

sis, which we introduce in the next section.
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(program) C ::= {c1, . . . , cn} (constraint) c ::= l0 : - l1, . . . , ln
(literal) l ::= r(α1, . . . , αn) (argument) α ::= v | d

(variable) v ∈ V = {x, y, . . .} (constant) d ∈ N = {0, 1, . . .}
(relation name) r ∈ R = {a, b, . . .} (tuple) t ∈ T = R× N∗

Figure 2.1: Datalog syntax.

JCK ∈ 2T

JcK ∈ 2T → 2T

JlK ∈ Σ→ T, where Σ = (N ∪ V)→ N
JCK = lfp λT . T ∪

⋃
c∈CJcK(T )

Jl0 : - l1, . . . , lnK(T ) = {Jl0K(σ) | (∀i ∈ [1, n] . JliK(σ) ∈ T ) ∧ σ ∈ Σ}
Jr(α1, . . . , αn)K(σ) = r(σ(α1), . . . , σ(αn))

Figure 2.2: Datalog semantics.

2.2 Datalog

Datalog [6] is a declarative logic programming language which originated as a querying

language for deductive databases. Compared to the standard querying language SQL, it

supports recursive queries. It is popular for specifying program analyses due to its declar-

ativity, deductive constraint format, and least fixed point semantics.

Figure 2.1 shows the syntax of Datalog. A Datalog program C is a set of constraints

{c1, . . . , cn}. A constraint c is a deductive rule which consists a head literal l0 and a body

l1, . . . , ln that is a set of literals, which can be empty. Each literal l is a relation name

r followed by a list of arguments α1, . . . , αn each of which can be either a variable or a

constant. We also call a literal a tuple or a ground literal if its arguments are all constants.

Note the standard Datalog syntax includes input tuples which can be changed to vary the

output. Without loss of generality, we treat input tuples as constraints with empty bodies.

Figure 2.2 shows the semantics of Datalog. Let T be the domain of tuples. A Datalog

C program computes a set of output tuples, which is denoted by JCK. It obtains JCK by

computing the least fixed point of its constrains. More concretely, starting with an empty

set as the initial output To, it keeps growing To by applying each constraint until To no
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(program) C ::= {c1, . . . , cn} (constraint) c ::= ch | cs
(hard constraint) ch ::= l1 ∨ . . . ∨ ln (soft constraint) cs ::= (ch, w)

(literal) l ::= l+ | l− ∈ L (weight) w ∈ R+

(positive literal) l+ ::= r(α1, . . . , αn) (negative literal) l− ::= ¬ l+
(relation name) r ∈ R = {a, b, . . .} (argument) α ::= v | d

(variable) v ∈ V = {x, y, . . .} (constant) d ∈ N = {0, 1, . . .}
(tuple) t ∈ T = R× N∗

Figure 2.3: Markov Logic Network syntax.

longer changes. For a given constraint c = l0 : - l1, . . . , ln, it is applied as follows: if there

exists a substitution σ ∈ (N ∪V)→ N such that {Jl1K(σ), . . . , JlnK(σ)} ⊆ To, then Jl0K(σ)

is added to To. In the very first iteration, only constraints with empty bodies are triggered.

The following standard result will be used tacitly in later arguments.

Proposition 1 (Monotonicity). If C1 ⊆ C2, then JC1K ⊆ JC2K.

Example. Below is a Datalog program that computes pairwise node reachability in a di-

rected graph:

c1 : path(a, a) c2 : path(a, c) : - path(a, b), edge(b, c)

Besides the above two constraints, the input tuples, which are also part of the constraints,

are edge tuples which encode the input graph, while the output tuples are path tuples that

encode the reachability information. Constraints c1 and c2 capture two axioms about graph

reachability respectively: (1) any node can reach itself, and (2) if there is a path from a

to b, and there is an edge from b to c, then there is a path from a to c. The program

successfully computes the reachability information by evaluating the least fixed point of

these two constraints along with the input tuples.
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JCKP ∈ 2T 7→ [0, 1]

JcKP ∈ Σ× T 7→ {−∞} ∪R+
0 , where Σ = (N ∪ V) 7→ N

JlK ∈ Σ 7→ L
JCKP (T ) = 1

Z
exp(WC(T )), where Z =

∑
T ′⊆T

exp(WC(T ′))

WC(T ) =
∑

c∈C,σ∈Σ

JcKP (σ, T )

Jl1 ∨ . . . ∨ lnKP (σ, T ) =

{
0, iff T |= Jl1K(σ) ∨ . . . ∨ JlnK(σ)
−∞, otherwise

J(l1 ∨ . . . ∨ ln, w)KP (σ, T ) =

{
w, iff T |= Jl1K(σ) ∨ . . . ∨ JlnK(σ)
0, otherwise

T |= Jl1K(σ) ∨ . . . ∨ JlnK(σ) iff ∃ i ∈ [1, n].T |= JliK(σ)

Jr(α1, . . . , αn)K(σ) = r(σ(α1), . . . , σ(αn))

J¬r(α1, . . . , αn)K(σ) = ¬r(σ(α1), . . . , σ(αn))

T |= r(d1, . . . , dn) iff r(d1, . . . , dn) ∈ T
T |= ¬r(d1, . . . , dn) iff r(d1, . . . , dn) 6∈ T

Figure 2.4: Markov Logic Network semantics.

2.3 Markov Logic Networks

Our system takes a Datalog analysis and synthesizes a novel analysis that combines logic

and probability. The new analysis is also constraint-based, and the constraint language

we apply is a variant of Markov Logic Networks [12], a declarative language for combin-

ing logic and probability. Compared to the original Markov Logic Networks proposed by

Richardson and Domingos [12], our variant is different in the following two ways: (1) the

logical part is a decidable fragment of the first-order logic instead of the complete first-order

logic; and (2) besides constraints with weights, our language also includes constraints with-

out weights. The second difference allows us to directly support hard constraints, which are

constraints that cannot be violated. On the other hand, such constraints are typically rep-

resented using constraints with very high weights in the original Markov Logic Networks.

We next introduce the syntax and semantics of our language in detail.

Figure 2.3 shows the syntax of a Markov Logic Network. A Markov Logic Network
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program C is a set of constraints {c1, . . . , cn} each of which is either a hard constraint or a

soft constraint. Each hard constraint ch is a disjunction of literals, while each soft constraint

cs is a hard constraint extended with a positive real weight w. A literal l can be either a

positive literal or a negative literal: a positive literal l+ is a relation name r followed by

a list of parameters α1, . . . , αn each of which is either a variable or a constant, while a

negative literal l− is a negated positive literal. In the rest of the thesis, we sometimes write

constraints in the form of implications (e.g., r1(a) =⇒ r2(a) instead of ¬r1(a) ∨ r2(a)).

Similar to the Datalog syntax, we call a positive literal whose arguments are all constants

a tuple. We call constraint ci an instance or a ground constraint of c if we can obtain ci by

substituting all variables in c with certain constants. We call the set of all instances of c

the grounding of c. Similarly we call the union of all instances of the constraints in C the

grounding of C. Formally:

grounding(l1 ∨ . . . ∨ ln) = {Jl1K(σ) ∨ . . . ∨ JlnK(σ) | σ ∈ Σ},

grounding(C) =
⋃
c∈C

grounding(c).

Different from the Datalog syntax, we parameterize the Markov Logic Network syntax

with the domain of constants, which allows us to control the size of the grounding. More

concretely, when the domain of constants is some subset N ⊆ N, the domain of substitu-

tions Σ becomes (N ∪V) 7→ N and the domain of tuples T becomes R×N∗. This further

affects the performance of the underlying Markov Logic Network solver (as we shall see

in Chapter 3.1). However, unless explicitly specified (only in Chapter 3.1), the domain of

constants is the set of all constants N. We introduce a function constants : 2C 7→ 2N that

returns all the constants that appear in constraints C.

Figure 2.4 shows the semantics of a Markov Logic Network. Compared to a Datalog

program, which defines a unique output, a Markov Logic Network defines a joint distribu-

tion of outputs. Given a set of tuples T , program C returns its probability, which is denoted
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by JCKP (T ). Specifically, we say T is not a valid output if JCKP (T ) = 0. Intuitively,

T is valid iff it does not violate any hard constraint instance, and the more soft constraint

instances it satisfies, the higher probability it has. We calculate JCKP (T ) by dividing the

result of applying the exponential function exp to the weight of T (denoted by WC(T ))

by a normalization factor Z. The normalization factor Z is calculated by adding up the

results of applying exp to the weights of all tuple sets and thereby guarantees that (1) all

probabilities are between 0 and 1, and (2) the sum of all probabilities is 1 1. For a set of

tuples T , we calculate its weight by summarizing its weight over each constraint instance

(denoted by
∑

c∈C,σ∈Σ

JcKP (σ, T )). Given a hard constraint l1 ∨ . . . ∨ ln and a substitution

σ ∈ (N ∪ V) → N, the weight of T over the instance Jl1K(σ) ∨ . . . ∨ JlnK(σ) is 0 if T

satisfies it and −∞ otherwise. Given a soft constraint (l1 ∨ . . . ∨ ln, w) and a substitu-

tion σ, the weight of T over the instance (Jl1K(σ) ∨ . . . ∨ JlnK(σ), w) is w if T satisfies

Jl1K(σ) ∨ . . . ∨ JlnK(σ) and 0 otherwise. Note that when the domain of constants is spec-

ified as some subset of all constants N ⊆ N, the domain of substitutions Σ changes to

(N ∪ V) 7→ N and the domain of tuples T becomes R×N∗.

In all our applications, we are interested in finding an output with the highest proba-

bility while satisfying all hard constraint instances, which can be obtained by solving the

maximum a posteriori probability (MAP) inference problem. We define the MAP inference

problem below:

Problem 2 (MAP Inference). Given a Markov Logic Network C, the MAP inference prob-

lem is to find a valid set of tuples that maximizes the probability:

MAP(C) =


UNSAT, if max

T
(JCKP (T )) = 0,

T such that T ∈ arg max
T

(JCKP (T )), otherwise.

1 To ensure that Z is a finite number, the domain of constants of C needs to be finite, which is not required
for Datalog. Throughout this thesis, we assume N to be finite except in Chapter 3.1. In that section, however,
the domains of constants of all discussed Markov Logic Networks are always some finite subsets of N.
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Since Z is a constant and exp is monotonic, we can rewrite arg max
T

(JCKP (T )) as:

arg max
T

(JCKP (T )) = arg max
T

1

Z
exp(

∑
c∈C,σ∈Σ

JcKP (σ, T )) = arg max
T

∑
c∈C,σ∈Σ

JcKP (σ, T ).

In other words, the MAP inference problem is equivalent to finding a set of output tuples

that maximizes the sum of the weights of satisfied ground soft constraints while satisfying

all the ground hard constraints. Note that, once we obtain the grounding of C, we can solve

this problem directly by casting it as a maximum satisfiability (MAXSAT) problem, which

in turn can be solved by an off-the-shelf MAXSAT solver.

Example. Consider the same graph reachability example in Chapter 2.2, we can express

the problem using the Markov Logic Network below:

c1 : path(a, a) c2 : path(a, b) ∧ edge(b, c) =⇒ path(a, c) c3 : ¬path(a, b) weight 1.

Besides the above three constraints, we also add each input tuple in the original Datalog ex-

ample as a hard constraint to the program, which we omit for elaboration. Among the three

constraints, hard constraints c1 and c2 are used to express the same two axioms that their

counterparts in the example Datalog program express, while soft constraint c3 is used to

bias towards a minimal model as the MAP solution. As a result, by solving the MAP infer-

ence problem of this Markov Logic Network, we obtain the same solution as the previous

example Datalog program produces.
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CHAPTER 3

APPLICATIONS

This chapter discusses how PETABLOX incorporates probabilistic reasoning in a conven-

tional logic-based program analysis to address key challenges in three prominent appli-

cations: automated verification, interactive verification, and static bug detection. For au-

tomated verification, it addresses the challenge of selecting an abstraction that balances

precision and scalability; for interactive verification, it addresses the challenge of reducing

user effort in resolving analysis alarms; and for static bug detection, it addresses the chal-

lenge of sifting true alarms from false alarms. These applications were originally discussed

in our previous publications [8, 14, 9].

Table 3.1 summarizes the Markov Logic Network encoding for each application. Briefly,

while the hard constraints encode the correctness conditions (e.g., soundness), the soft

constraints balance various trade-offs of the analysis; by solving the combined analysis

instance, we obtain a correct analysis result that strikes the best balance between these

trade-offs.

In the rest of this chapter, we discuss each application in detail, including the moti-

vation, our approach (in particular, the underlying Markov Logic Network encoding), the

empirical evaluation, and related work.

3.1 Automated Verification

3.1.1 Introduction

Building a successful program analysis requires solving high-level conceptual issues, such

as finding an abstraction of programs that keeps just enough information for a given veri-

fication problem, as well as handling low-level implementation issues, such as coming up
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Table 3.1: Markov Logic Network encodings of different program analysis applications.

Application Hard Constraints Soft Constraints Trade-off

Automated
Verification

Analysis Rules

Abstraction1 ⊕ . . .⊕
Abstractionn

¬ Resulti weight wi
where wi is the award for

resolving Resulti

Abstractionj weight wj
where wj is the cost of
applying Abstractionj

Accuracy vs.
Scalability

Interactive
Verification

Analysis Rules

¬ Resulti weight wi
where wi is the award for

resolving Resulti

Causej weight wj
where wj is the cost of

inspecting Causej

Accuracy vs.
User Effort

Static Bug
Detection

Analysis Rules
(Optional)

Analysis Rulei weight wi
where wi is the writer’s

confidence in Rulei

Feedbackj weight wj
where wj is the user’s

confidence in Feedbackj

Writer’s Idioms vs.
User’s Feedback

with efficient data structures and algorithms for the analysis.

One popular approach for addressing this problem is to use Datalog [15, 16, 17, 18].

In this approach, a program analysis only specifies how to generate Datalog constraints

from program text. The task of solving the generated constraints is then delegated to an

off-the-shelf Datalog constraint solver, such as that underlying BDDBDDB [19], Doop [20],

Jedd [21], and Z3’s fixpoint engine [22], which in turn relies on efficient symbolic algo-

rithms and data structures, such as Binary Decision Diagrams (BDDs).

The benefits of using Datalog for program analysis, however, are currently limited to

the automation of low-level implementation issues. In particular, finding an effective pro-

gram abstraction is done entirely manually by analysis designers, which results in undesir-

able consequences such as ineffective analyses hindered by inflexible abstractions or undue

tuning burden for analysis designers.

In this section, we present a new approach for lifting this limitation by automatically

finding effective abstractions for program analyses written in Datalog. Our approach is
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based on counterexample-guided abstraction refinement (CEGAR), which was developed

in the model-checking community and has been applied effectively for software verification

with predicate abstraction [4, 23, 1, 24, 25]. A counterexample in Datalog is a derivation of

an output tuple from a set of input tuples via Horn-clause inference rules: the rules specify

the program analysis, the set of input tuples represents the current program abstraction, and

the output tuple represents a (typically undesirable) program property derived by the anal-

ysis under that abstraction. The counterexample is spurious if there exists some abstraction

under which the property cannot be derived by the analysis. The CEGAR problem in our

approach is to find such an abstraction from a given family of abstractions.

We propose solving this problem by formulating it as a Markov Logic Network. We

give an efficient construction of Markov Logic Network constraints from a Datalog solver’s

solution in each CEGAR iteration. Our main theoretical result is that, regardless of the

Datalog solver used, its solution contains information to reason about all counterexamples,

which is captured by the hard constraints in our problem formulation. This result seems

unintuitive because a Datalog solver performs a least fixed-point computation that can stop

as soon as each output tuple that is derivable has been derived (i.e., the solver need not

reason about all possible ways to derive a tuple).

The above result ensures that solving our Markov Logic Network formulation general-

izes the cause of verification failure in the current CEGAR iteration to the maximum extent

possible, eliminating not only the current abstraction but all other abstractions destined to

suffer a similar failure. There is still the problem of deciding which abstraction to try next.

We show that the soft constraints in our problem formulation enables us to identify the

cheapest refined abstraction. Our approach avoids unnecessary refinement by using this

abstraction in the next CEGAR iteration.

We have implemented our approach and applied it to two realistic static analyses writ-

ten in Datalog, a pointer analysis and a typestate analysis, for Java programs. These two

analyses differ significantly in aspects such as flow sensitivity (insensitive vs. sensitive),
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context sensitivity (cloning-based vs. summary-based), and heap abstraction (weak vs.

strong updates), which demonstrates the generality of our approach. On a suite of eight

real-world Java benchmark programs, our approach searches a large space of abstractions,

ranging from 21k to 25k for the pointer analysis and 213k to 254k for the typestate analy-

sis, for hundreds of analysis queries considered simultaneously in each program, thereby

showing the practicality of our approach.

We summarize the main contributions of our work:

1. We propose a CEGAR-based approach to automatically find effective abstractions

for analyses in Datalog. The approach enables Datalog analysis designers to spec-

ify high-level knowledge about abstractions while continuing to leverage low-level

implementation advances in off-the-shelf Datalog solvers.

2. We solve the CEGAR problem using a Markov Logic Network formulation that has

desirable properties of generality, completeness, and optimality: it is independent of

the Datalog solver, it fully generalizes the failure of an abstraction, and it computes

the cheapest refined abstraction.

3. We show the effectiveness of our approach on two realistic analyses written in Dat-

alog. On a suite of real-world Java benchmark programs, the approach explores a

large space of abstractions for a large number of analysis queries simultaneously.

3.1.2 Overview

We illustrate our approach using a graph reachability problem that captures the core concept

underlying a precise pointer analysis.

The example program in Figure 3.1 allocates an object in each of methods f and g,

and passes it to methods id1 and id2. The pointer analysis is asked to prove two queries:

query q1 stating that v6 is not aliased with v1 at the end of g, and query q2 stating that

v3 is not aliased with v1 at the end of f. Proving q1 requires a context-sensitive analysis
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1 f() { v1 = new ...;
2 v2 = id1(v1);
3 v3 = id2(v2);
4 q2: assert(v3 != v1);
5 }
6 id1(v) { return v; }

7 g() { v4 = new ...;
8 v5 = id1(v4);
9 v6 = id2(v5);

10 q1: assert(v6 != v1);
11 }
12 id2(v) { return v; }

Figure 3.1: Example program.

that distinguishes between different calling contexts of methods id1 and id2. Query q2,

on the other hand, cannot be proven since v3 is in fact aliased with v1.

A common approach to distinguish between different calling contexts is to clone (i.e.,

inline) the body of the called method at a call site. However, cloning each called method

at each call site is infeasible even in the absence of recursion, as it grows program size

exponentially and hampers the scalability of the analysis. We seek to address this problem

by cloning selectively.

For exposition, we recast this problem as a reachability problem on the graph in Fig-

ure 3.2. In that graph, nodes 0, 1, and 2 represent basic blocks of f, while nodes 3, 4, and

5 represent basic blocks of g. Nodes 6 and 7 represent the bodies of id1 and id2 respec-

tively, while nodes 6′, 6′′, 7′ and 7′′ are their clones at different call sites. Edges denoting

matching calls and returns have the same label. A choice of labels constitutes a valid ab-

straction of the original program if, for each of a, b, c, and d, either the zero (non-cloned)

or the one (cloned) version is chosen. Then, proving query q1 corresponds to showing that

node 5 is unreachable from node 0 under some valid choice of labeled edges, which is the

case if edges labeled {a1, b0, c1, d0} are chosen; proving query q2 corresponds to finding

a valid combination of edge labels that makes node 2 unreachable from node 0, but this is

impossible.

Our graph reachability problem can be expressed in Datalog as shown in Figure 3.2.

A Datalog program consists of a set of input relations, a set of derived relations, and a

set of rules that express how to compute the derived relations from the input relations.
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Input relations:
edge(i, j, n) (edge from node i to node j labeled n)
abs(n) (edge labeled n is allowed)

Derived relations:
path(i, j) (node j is reachable from node i)

Rules: (1): path(i, i).
(2): path(i, j) : - path(i, k), edge(k, j, n), abs(n).

0"

1"

2"

3"

4"

5"

6’"

7"

6" 6’’"

7’" 7’’"

a1" a0" b0"

c1" c0" d0" d1"

a1"

c1" c0"

b0" b1"

d1"d0"

a0"

b1"
Input tuples: Derived tuples:
edge(0, 6, a0) path(0, 0)
edge(6, 1, a0) path(0, 6)
edge(1, 7, c0) path(0, 1)
... ...
abs(a0) Query tuples:
abs(c0) path(0, 5)
... path(0, 2)

Figure 3.2: Graph reachability example in Datalog.

There are two input relations in our example: edge, representing the possible labeled edges

in the given graph; and abs, containing labels of edges that may be used in computing

graph reachability. Relation abs specifies a program abstraction in our original setting; for

instance, abs = {a1, b0, c1, d0} specifies the abstraction in which only the calls to methods

id1 and id2 from f are inlined.

The derived relation path contains each tuple (i, j) such that node j is reachable from

node i along a path with only edges whose labels appear in relation abs. This computation

is expressed by rules (1) and (2) both of which are Horn clauses with implicit universal

quantification. Rule (1) states that each node is reachable from itself. Rule (2) states that if

node k is reachable from node i and edge (k, j) is allowed, then node j is reachable from

node i. Queries in the original program correspond to tuples in relation path. Proving a

query amounts to finding a valid instance of relation abs such that the tuple corresponding

to the query is not derived.

Our two queries q1 and q2 correspond to tuples path(0, 5) and path(0, 2) respectively.

There are in all 16 abstractions, each involving a different choice of the zero/one versions
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abs(d0)(

path(0,6)"edge(6,1,a0)" edge(6,4,b0)"

path(0,1)" path(0,4)"abs(c0)( edge(1,7,c0)" edge(4,7,d0)"

path(0,7)"edge(7,2,c0)" edge(7,5,d0)"

path(0,2)" path(0,5)"

abs(a0)(edge(0,6,a0)"path(0,0)"

abs(a0)( abs(b0)(

abs(c0)( abs(d0)(

(a) Using abs = {a0, b0, c0, d0}.

abs(a1)(

abs(c0)( edge(1,7,c0)"

edge(0,6’,a1)"path(0,0)"

path(0,6’)" edge(6’,1,a1)"

path(0,1)"

path(0,7)"edge(7,2,c0)" edge(7,5,d0)"

path(0,2)" path(0,5)"

abs(a1)(

abs(d0)(abs(c0)(

(b) Using abs = {a1, b0, c0, d0}.

path(0,7’)" edge(7’,2,c1)"

path(0,2)"

abs(c1)(

abs(a1)(

abs(c1)(

edge(0,6’,a1)"path(0,0)"

path(0,6’)" edge(6’,1,a1)"abs(a1)(

edge(1,7’,c1)"path(0,1)"

(c) Using abs = {a1, b0, c1, d0}.

Figure 3.3: Derivations after different iterations of our approach on our graph reachability
example.

Table 3.2: Each iteration (run) eliminates a number of abstractions. Some are eliminated
by analyzing the current Datalog run (within run); some are eliminated because of the
derivations from the current run interact with derivations from previous runs (across runs).

eliminated abstractions
run used abstraction within run across runs

q1 q2 q2

1 a0 b0 c0 d0
a0 b0 ∗ d0
a0 ∗ c0 d0

a0 ∗ c0 ∗

2 a1 b0 c0 d0 a1 ∗ c0 d0 a1 ∗ c0 ∗

3 a1 b0 c1 d0 a1 ∗ c1 ∗ a0 ∗ c1 ∗

of labels a through d in relation abs. Since we wish to minimize the amount of cloning in

the original setting, abstractions with more zero versions of edge labels are cheaper. Our

approach, outlined next, efficiently finds the cheapest abstraction abs = {a1, b0, c1, d0} that

proves q1, and shows q2 cannot be proven by any of the 16 abstractions.

Our approach is based on iterative counterexample-guided abstraction refinement. Ta-

ble 3.2 illustrates its iterations on the graph reachability example. In the first iteration, the

cheapest abstraction abs = {a0, b0, c0, d0} is tried. It corresponds to the case where neither

of nodes 6 and 7 is cloned (i.e., a fully context-insensitive analysis). This abstraction fails to
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prove both of our queries. Figure 3.3a shows all the possible derivations of the two queries

using this abstraction. Each set of edges in this graph, incoming into a node, represents an

application of a Datalog rule, with the source nodes denoting the tuples in the body of the

rule and the target node denoting the tuple at its head.

The first question we ask is: how do we generalize the failure of the current abstraction

to avoid picking another that will suffer a similar failure? Our solution is to exploit a

monotonicity property of Datalog: more input tuples can only derive more output tuples. It

follows from this property that the maximum generalization of the failure can be achieved

if we find all minimal subsets of the set of tuples in the current abstraction that suffice to

derive queries. From the derivation in Figure 3.3a, we see that these minimal subsets are

{a0, b0, d0} and {a0, c0, d0} for query path(0, 5), and {a0, c0} for query path(0, 2). We thus

generalize the current failure to the maximum possible extent, eliminating any abs that is a

superset of {a0, b0, d0} or {a0, c0, d0} for query path(0, 5) and any abs that is a superset of

{a0, c0} for query path(0, 2).

The next question we ask is: how do we pick the abstraction to try next? Our solution is

to use the cheapest abstraction of the ones not eliminated so far for both the queries. From

the fact that label a0 is in both minimal subsets identified above, and that zero labels are

cheaper than the one labels, and we conclude that this abstraction is abs = {a1, b0, c0, d0},

which corresponds to only cloning method id1 at the call in f.

In the second iteration, our approach uses this abstraction, and again fails to prove both

queries. But this time the derivation, shown in Figure 3.3b, is different from that in the

first iteration. This time, we eliminate any abs that is a superset of {a1, c0, d0} for query

path(0, 5), and any abs that is a superset of {a1, c0} for query path(0, 2). The cheapest of

the remaining abstractions, not eliminated for both the queries, is abs = {a1, b0, c1, d0},

which corresponds to cloning methods id1 and id2 in f (but not in g).

Using this abstraction in the third iteration, our approach succeeds in proving query

path(0, 5), but still fails to prove query path(0, 2). As seen in the derivation in Figure 3.3c,
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this time {a1, c1} is the minimal failure subset for query path(0, 2) and we eliminate any

abs that is its superset.

At this point, four abstractions remain in trying to prove query path(0, 2). However,

another novel feature of our approach allows us to eliminate these remaining abstractions

without any more iterations. After each iteration, we accumulate the derivations generated

by the current run of the Datalog program with the derivations from all the previous itera-

tions. Then, in our current example, at the end of the third iteration, we have the following

derivations available:

path(0, 6) : - path(0, 0), edge(0, 6, a0), abs(a0)

path(0, 1) : - path(0, 6), edge(6, 1, a0), abs(a0)

path(0, 7′) : - path(0, 1), edge(1, 7′, c1), abs(c1)

path(0, 2) : - path(0, 7′), edge(7′, 2, c1), abs(c1)

The derivation of path(0, 1) using abs(a0) comes from the first iteration of our ap-

proach. Similarly, the derivation of path(0, 2) using path(0, 1) and abs(c1) is seen during

the third iteration. However, accumulating the derivations from different iterations allows

our approach to explore the above derivation of path(0, 2) using abs(a0) and abs(c1) and de-

tect {a0, c1} to be an additional minimal failure subset for query path(0, 2). Consequently,

we remove any abs that is a superset of {a0, c1}. This eliminates all the remaining abstrac-

tions for query path(0, 2) and our approach concludes that the query cannot be proven by

any of the 16 abstractions.

We summarize the three main strengths of our approach over previous CEGAR ap-

proaches. (1) Given a single failing run of a Datalog program on a single query, it reasons

about all counterexamples that cause the proof of the query to fail and generalizes the

failure to the maximum extent possible. (2) It reasons about failures and discovers new

counterexamples across iterations by mixing the already available derivations from differ-

ent iterations. (3) It generalizes the causes of failure for multiple queries simultaneously.

Together, these three features enable faster convergence of our approach.
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Hard constraints:
path(i, i)
path(i, k) ∧ edge(k, j, n) ∧ abs(n) =⇒ path(i, j)
edge(0, 6, a0)
edge(6, 1, a0)
edge(1, 7, c0)
...

Soft constraints:
abs(a0) weight 1
abs(b0) weight 1
abs(c0) weight 1
abs(d0) weight 1

¬path(0, 5) weight 5
¬path(0, 2) weight 5

Figure 3.4: Formula from the Datalog run’s result in the first iteration.

Encoding as a Markov Logic Network. In the graph reachability example, our ap-

proach searched a space of 16 different abstractions for each of two queries. In practice,

we seek to apply our approach to real-world programs and analyses, where the space of ab-

stractions is 2x for x of the order of tens of thousands, for each of hundreds of queries. To

handle such large spaces efficiently, our frontend PETABLOX formulates a Markov Logic

Network from the output of the Datalog computation in each iteration, and solves it using

our backend solver NICHROME to obtain the abstraction to try in the next iteration. For

our example, Figure 3.4 shows the Markov Logic Network PETABLOX constructs at the

end of the first iteration. It has two kinds of constraints: hard constraints, whose instances

must be satisfied, and soft constraints, each of which is associated with a weight and whose

instances may be left unsatisfied. We seek to find a solution that maximizes the sum of the

weights of satisfied soft constraint instances, which can be obtained by solving the MAP

inference problem of the constructed formula.

Briefly, the formula has three parts. The first part is hard constraints that encode the

derivation. Concretely, the first two hard constraints corresponds to the two rules in the

original Datalog program, while the rest hard constraints correspond to non-abstraction

input tuples. The instances of the rule constraints and the non-abstraction input tuple con-

straints together capture the derivation of the Datalog program.

The second part is soft constraints that guide NICHROME to pick the cheapest abstrac-

tion among those that satisfy the hard constraints. In our example, a weight of 1 is accrued

when the solver picks an abstraction that contains zero label and, implicitly, a weight of 0
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when it contains a one label.

The third part of the formula is soft constraints that negate each unproven query so

far. The reason is that, to prove a query, we must find an abstraction that avoids deriving

the query. One may wonder why we make these soft instead of hard constraints. The

reason is that certain queries (e.g., path(0, 2)) cannot be proven by any abstraction; these

would make the entire formula unsatisfiable and prevent other queries (e.g., path(0, 5))

from being proven. But we must be careful in the weights we attach: these weights can

affect the convergence characteristics of our approach. Returning to our example, making

such a soft clause unsatisfiable incurs a weight of 5, which implies that no abstraction –

not just the cheapest – can prove that query, the reason being that even the most expensive

abstraction incurs a weight of 4.

The formula constructed in each subsequent iteration conjoins those from all previous

iterations with the formula encoding the derivation of the current iteration. We also add

additional hard constraints to encode the space of valid abstractions. For instance, abs(a0)∨

abs(a1) and ¬abs(a0) ∨ ¬abs(a1) are added to the formula constructed at the end of the

second iteration to denote that one must choose to either clone id1 at the call in f or not,

and cannot choose both simultaneously.

For efficiency concerns, we limit the domain of constants to ones that appear in the

output tuples of the Datalog runs. Given the space of valid abstractions can be very large

and even infinite, such treatment is essential to the scalability of the underlying Markov

Logic Network solver.

3.1.3 Parametric Dataflow Analyses

Datalog is a logic programming language that is capable of naturally expressing many

static analyses [19, 20]. In this section, we review this use of Datalog, especially for

developing parametric static analyses. Such an analysis takes (an encoding of) the program

to analyze, a set of queries, and a setting of parameters that dictate the degree of program
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abstraction. The analysis then outputs queries that it could successfully verify using the

chosen abstraction. Our goal is to develop an efficient algorithm for automatically adjusting

the setting of these abstraction parameters for a given program and set of queries. We

formally state this problem in this subsection and present our CEGAR-based solution in

the subsequent subsection.

3.1.3.1 Abstractions and Queries

Datalog programs that implement parametric static analyses contain three types of con-

straints: (1) those that encode the abstract semantics of the programming language, (2) those

that encode the program being analyzed, and (3) those that determine the degree of program

abstraction used by the abstract semantics.

Example. Our graph reachability example (Figure 3.2) is modeled after a parametric pointer

analysis, and is specified using these three types of constraints. The two rules in the fig-

ure describe inference steps for deriving tuples of the path relation. These rules apply for

all graphs, and they are constraints of type (1). Input tuples of the edge relation encode

information about a specific graph, and are of type (2). The remaining input tuples of the

abs relation specify the amount of cloning and control the degree of abstraction used in the

analysis; they are thus constraints of type (3).

Hereafter, we refer to the set A of constraints of type (3) as the abstraction, and the

set C of constraints of types (1) and (2) as the analysis. This further grouping reflects

the different treatment of constraints by our refinement approach – the constraints in the

abstraction change during iterative refinement, whereas the constraints in the analysis do

not. Given an analysis, only abstractions from a certain family A ⊆ P(T) make sense. We

say that A is a valid abstraction when A ∈ A. The result for evaluating the analysis C

with such a valid abstraction A is the set JC ∪ AK of tuples 1.

1To join with C, we implicitly cast a set of tuples A as a set of constraints each of which is a unit clause.
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A query q ∈ Q ⊆ T is just a particular kind of tuple that describes a bug or an undesir-

able program property. We assume that a set Q ⊆ Q of queries is given in the specification

of a verification problem. The goal of a parametric static analysis is to show, as much as

possible, that the bugs or properties described by Q do not arise during the execution of

a given program. We say of a valid abstraction A that it rules out a query q if and only

if q /∈ JC ∪ AK. Note that an abstraction either derives a query, or rules it out. Different

abstractions rule out different queries, and we will often refer to the set of queries ruled out

by several abstractions taken together. We denote by R(A, Q) the set of queries out of Q

that are ruled out by some abstraction A ∈ A:

R(A, Q) = Q \
⋂
{ JC ∪ AK | A ∈ A}

Conversely, we say that an abstraction A is unviable with respect to a set Q of queries if

and only if A does not rule out any query in Q; that is, Q ⊆ JC ∪ AK.

Example. In our graph reachability example, the family A of valid abstractions consists of

sets {abs(ai), abs(bj), abs(ck), abs(dl)} for all i, j, k, l ∈ {0, 1}. They describe 16 options

of cloning nodes in the graph. The set of queries is Q= {path(0, 5), path(0, 2)}.

We assume that the family A of valid abstractions is equipped with the precision pre-

order v and the efficiency preorder �. Intuitively, A1 v A2 holds when A1 is at most as

precise as A2, and so it rules out fewer queries. Formally, we require that the precision

preorder obeys the following condition:

A1 v A2 =⇒ JC ∪ A1K ∩Q ⊇ JC ∪ A2K ∩Q

Some analyses have a most precise abstraction A>, which can rule out most queries. This

abstraction, however, is often impractical, in the sense that computing JC∪A>K requires too

much time or space. The efficiency preorder captures the notion of abstraction efficiency:
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A1 � A2 denotes that A1 is at most as efficient as A2. Often, the two preorders point in

opposite directions.

Example. Abstractions of our running example are ordered as follows. Let A = {abs(ai),

abs(bj), abs(ck), abs(dl)} and B = {abs(ai′), abs(bj′), abs(ck′), abs(dl′)}. Then, A v B if

and only if i ≤ i′ ∧ j ≤ j′ ∧ k ≤ k′ ∧ l ≤ l′. Also, A � B if and only if (i+ j + k + l) ≥

(i′+j′+k′+l′). These relationships formally express that cloning more nodes can improve

the precision of the analysis but at the same time it can slow down the analysis.

3.1.3.2 Problem Statement

Our aim is to solve the following problem:

Definition 3 (Datalog Analysis Problem). Suppose we are given an analysis C, a set

Q ⊆ Q of queries, and an abstraction family (A,v,�). Compute the set R(A, Q) of

queries that can be ruled out by some valid abstraction.

Since A is typically finite, a brute force solution is possible: simply apply the definition

of R(A, Q). However, |A| is often exponential in the size of the analyzed program. Thus,

it is highly desirable to exploit the structure of the problem to obtain a better solution.

In particular, the information embodied by the efficiency preorder � and by the precision

preorder v should be exploited.

Our general approach, in the vein of CEGAR, is to run Datalog, in turn, on a finite

sequence A1, . . . , An of abstractions. In the ideal scenario, every query q ∈ Q is ruled out

by some abstraction in the sequence, and the combined cost of running the analysis for all

the abstractions in the sequence is as small as possible. The efficiency preorder � provides

a way to estimate the cost of running an analysis without actually doing so; the precision

preorder v could be used to restrict the search for abstractions. We describe the approach

in detail in the next section.
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Example. What we have described for our running example provides the instance (C,Q,

(A,v,�)) of the Datalog Analysis problem. Recall that Q = {path(0, 2), path(0, 5)}.

As we explained in Chapter 3.1.2, among these two queries, only path(0, 5) can be ruled

out by some abstraction. A cheapest such abstraction according to the efficiency order

� is A = {abs(a1), abs(b0), abs(c1), abs(d0)}, which clones two nodes, while the most

expensive one is B = {abs(a1), abs(b1), abs(c1), abs(d1)} with four clones. Hence, the

answer R(A, Q) for this problem is {path(0, 5)}, and our goal is to arrive at this answer

in a small number of refinement iterations, while mostly trying a cheap abstraction in each

iteration, such as the abstraction A rather than B.

3.1.4 Algorithm

In this section, we present our CEGAR algorithm for parametric analyses expressed in

Datalog. Our algorithm frees the designer of the analysis from the task of describing how

to do refinement. All they must do is to describe which abstractions are valid. We achieve

such a high degree of automation while remaining efficient due to two main ideas. The

first is to record the result of a Datalog run using a set of hard constraints that compactly

represents large sets of unviable abstractions. The second is to reduce the problem of

finding a good abstraction to a MAP inference problem on a Markov Logic Network that

augments these hard constraints with soft constraints.

We begin by presenting the first idea (Chapter 3.1.4.1): how Datalog runs are encoded

in sets of hard constraints, and what properties this encoding has. In particular, we observe

that conjoining the encoding of multiple Datalog runs gives an under-approximation for the

set of unviable abstractions (Theorem 5). This observation motivates the overall structure

of our CEGAR-based solution to the Datalog analysis problem, which we describe next

(Chapter 3.1.4.2). The algorithm relies on a subroutine for choosing the next abstraction.

While arguing for the correctness of the algorithm, we formalize the requirements for this

subroutine: it should choose a cheap abstraction not yet known to be unviable. We finish by
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describing the second idea (Chapter 3.1.4.3), how choosing a good abstraction is essentially

a MAP inference problem, thus completing the description of our solution.

3.1.4.1 From Datalog Derivations to Hard Constraints

In the CEGAR algorithm, we iteratively call a Datalog solver. It is desirable to do so as few

times as possible, so we wish to eliminate as many unviable abstractions as possible without

calling the solver. To do so, we need to rely on more information than the binary answer of

a Datalog run, on whether an abstraction derives or rules out a query. Intuitively, there is

more information, waiting to be exploited, in how a query is derived. Theorem 4 shows that

by recording the Datalog run for an abstractionA as a set of hard constraints it is possible to

partly predict what Datalog will do for other abstractions that share tuples with A. Perhaps

less intuitively, Theorem 5 shows that it is sound to mix (parts of) derivations seen for

different runs of Datalog. Thus, in some situations we can predict that an abstraction A1

will derive a certain query by combining tuple dependencies observed in runs for two other

abstractions A2 and A3.

Our method of producing a set of hard constraints from the result of running analy-

sis C with abstraction A is straightforward: we simply take all the constraints in C and

limit the domain of constants to the ones that are present in JC ∪ AK, which we refer to as

constants(JC ∪ AK). While the set of constructed constraints do not change across itera-

tions, the information that they capture about the Datalog runs increases as the domain of

constants grows. We grow the domain of constants lazily as the MAP inference problem of

Markov Logic Networks is computationally challenging and the domain of constants can

be very large and even infinite (when the space of valid abstractions is infinite). However,

we show that such a set of constraints still contain sufficient information about existing

derivations. The following theorem states that such a set of constraints allows us to predict

what Datalog would do for those abstractions A′ ⊆ A.

Theorem 4. Given a set of Datalog constraintsC and a set of tuplesA, letA′ be a subset of

35



A. Then the Datalog run result JC ∪A′K is fully determined by the Markov Logic Network

C where the domain of constants is constants(JC ∪ AK), as follows:

t ∈ JC ∪ A′K ⇐⇒ ∀T.(T = MAP(C ∪ A′)) =⇒ t ∈ T,

where constants(JC ∪ AK) is the domain of constants of Markov Logic Network C ∪ A′.

One interesting instantiation of the theorem is the case that A is a valid abstraction. To

see the importance of this case, consider the first iteration of the running example (Chapter

3.1.2), where A is {abs(a0), abs(b0), abs(c0), abs(d0)}. The theorem says that it is possible

to predict exactly what Datalog would do for subsets of A. If such a subset derives a query

then, by monotonicity (Proposition 1), so do all its supersets. In other words, we can give

lower bounds for which queries do other abstractions derive. (All other abstractions are

supersets of subsets of A.)

When the analysisC is run multiple times with different abstractions, the resultsA1, . . . ,

An of these runs lead to the same set of hard constraints with different constant domains

constants(JC ∪ A1K), . . . , constants(JC ∪ AnK). The next theorem points out the benefit

of considering these formulas together, as illustrated in Chapter 3.1.2. It implies that by

conjoining these formulas, we can mix derivations from different runs, and identify more

unviable abstractions.

Theorem 5. Let A1, . . . , An be sets of tuples. For all A′ ⊆
⋃

i∈[1,n]

Ai,

∀T.(T = MAP(C ∪ A′)) =⇒ t ∈ T =⇒ t ∈ JC ∪ A′K,

where
⋃

i∈[1,n]

constants(JC ∪ AiK) is the domain of constants of Markov Logic Network

C ∪ A′.
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Algorithm 1 CEGAR-based Datalog analysis.
1: INPUT: Queries Q
2: OUTPUT: A partition (R, I) of Q, where R contains queries that have been ruled out and
I queries impossible to rule out.

3: var R := ∅, T := ∅
4: loop
5: A := choose(T,C,Q \R)
6: if (A = impossible) return (R,Q \R)
7: T ′ := JC ∪ A′K
8: R := R ∪ (Q \ T ′)
9: T := T ∪ T ′

10: end loop

3.1.4.2 The Algorithm

Our main algorithm (Algorithm 1) classifies the queries Q into those that are ruled out

by some abstraction and those that are impossible to rule out using any abstraction. The

algorithm maintains its state in two variables, R ∈ P(Q) and T ∈ P(T), where R is the

set of queries that have been ruled out so far and T is the union of the tuples derived by the

Datalog runs so far.

The call choose(T,C,Q′) evaluates to impossible only if all queries in Q′ are impossi-

ble to rule out, according to the information encoded in C where the domain of constants is

constants(T ). Thus, the algorithm terminates only if all queries that can be ruled out have

been ruled out. Conversely, choose never returns an abstraction whose analysis was pre-

viously recorded in C and T . Intuitively, C with constants(T ) as the domain of constants

represents the set of abstractions known to be unviable for the remaining set of queries

Q′ = (Q \ R). Formally, this notion is captured by the concretization function γ, whose

definition is justified by Theorem 5. Let C be the domain of constraints, we have

γ ∈ P(T)× P(C)× P(Q)→ P(A)

γ(T,C,Q′)
∆
=
{
A ∈ A

∣∣ ∀T ′.(T ′ = MAP(C ∪ (A ∩ T ))) =⇒ Q′ ⊆ T ′,

where the domain of constants is constants(T )
}
.

The condition that ∀T.(T = MAP(C ∪ (A ∩ T ))) =⇒ Q′ ⊆ T appears complicated, but
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it is just a formal way to say that all queries in Q′ are derivable from A using derivations

encoded in C with constants(T ) as the domain of constants. Hence, γ(T,C,Q′) contains

the abstractions known to be unviable with respect to Q′; thus A \ γ(T,C,Q′) is the set of

valid abstractions that, according to C and T , might be able to rule out some queries in Q′.

The function choose(T,C,Q′) chooses an abstraction from A \ γ(T,C,Q′), if this set is

not empty.

Each iteration of 1 begins with a call to choose (Line 5). If all remaining queries Q \R

are impossible to rule out, then the algorithm terminates. Otherwise, a Datalog solver is

run with the new abstraction A (Line 7). The set R of ruled out queries is updated (Line 8)

and the relevant abstraction are recorded in T (Line 9).

Theorem 6. If choose(T,C,Q′) evaluates to an element of the set A\γ(T,C,Q′) whenever

such an element exists, and to impossible otherwise, then Algorithm 1 is partially correct:

it returns (R, I) such that R = R(A, Q) and I = Q \ R. In addition, if A is finite, then

Algorithm 1 terminates.

The next section gives one definition of the function choose that satisfies the require-

ments of Theorem 6, thus completing the description of a correct algorithm. The definition

of choose from Chapter 3.1.4.3 makes use of the efficiency preorder �, such that the re-

sulting algorithm is not only correct, but also efficient. Our implementation also makes use

of the precision preorder v to further improve efficiency. The main idea is to constrain the

sequence of used abstractions to be ascending with respect to v. For this to be correct,

however, the abstraction family must satisfy an additional condition: for any two abstrac-

tions A1 and A2 there must exist another abstraction A such that A w A1 and A w A2. The

proofs are available in Appendix A.2.

3.1.4.3 Choosing Good Abstractions via Mixed Hard and Soft Constraints

The requirement that function choose(T,C,Q′) should satisfy was laid down in the pre-

vious section: it should return an element of A \ γ(T,C,Q′), or say impossible if no
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such element exists. In this subsection we describe how to choose the cheapest element,

according to the preorder �. The type of function choose is

choose ∈ P(T)× P(C)× P(Q) → A ] {impossible}

The function choose is essentially a reduction to the MAP problem of a Markov Logic Net-

work that extends the hard constraints C with additional soft constraints. Before describing

the formulation in general, let us examine an example.

Example. Consider an analysis with parameters p1, p2, . . . , pn, each taking a value from

{1, 2, . . . , k}. The set of valid abstractions is A = {1, 2, . . . , n} → {1, 2, . . . , k}. We

use [pi = j] to refer to the Datalog tuple that encodes pi has value j. Let the queries be

{q1, q2, q3}, the Datalog program be C, and suppose we have tried abstractions
∧
i

pi = 1

and
∧
i

pi = 2 and none of the queries has been resolved. We construct the hard constraint

such that (1) only valid abstractions are considered, (2) abstractions known to be unviable

with respect to {q1, q2, q3} are avoided. For efficiency, we limit the domain of constants to

the ones that appear in the existing derived tuples.

ψ0 = δA ∪ C ∪ {¬q1 ∨ ¬q2 ∨ ¬q3 }

The formula δA encodes the space of valid abstractions which can be very large and even

infinite. We introduce a new relation [pi > j] to represent the set of parameter settings

where pi > j. It serves two purposes: (1) it helps compactly represent the large number of

unexplored abstractions without expanding the domain of constants with ones that do not

appear in existing derived tuples, and (2) it allows δA to grow linearly with the maximum

pi that the Datalog runs have tried so far rather than quadratically as a natively encoding
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will do. We define δA as
⋃

1≤i≤n
δiA where

δiA
∆
={ [pi = 1] ∨ [pi = 2] ∨ [pi > 2] }

∪{¬([pi > j] ∧ [pi = j]) | 1 ≤ j ≤ 2 }

∪{ ([pi > j] ∨ [pi = j])⇔ [pi > j − 1] | j = 2 }
)

Formula δiA says that pi can either take exactly one of the values that the Datalog runs have

explored so far (pi = 1 or pi = 2) or an unexplored value (pi > 2). When pi > 2 is

chosen, it is up to the designer to choose which concrete value to try next, as long as the

chosen values form a cheapest abstraction among the valid ones that have not been shown

as unviable. For example, if a larger pi yields a more expensive analysis, the designer would

choose pi = 3 as the parameter. We use Γ ∈ P(T) ] {UNSAT} 7→ P(A) ] {impossible}

where Γ(UNSAT) = impossible to denote the user-defined function that converts the MAP

inference result into an abstraction to try next.

It remains to construct the soft constraints. The first category of soft constraints give

estimations of the costs of different abstractions. To a large extent, this is done based on

knowledge about the efficiency characteristics of a particular analysis, and thus is left to

the designer of the analysis. For example, if the designer knows from experience that the

analysis tends to take longer as
∑
pi increases, then they could include two kinds of soft

constraints: (1) [pi = j] with weight k−j, for each i ∈ [1, n] and j ∈ [1, 2], and (2) [pi > j]

with weight k− j − 1 for each i ∈ [1, n] and j = 2. The former encodes the costs incurred

by the parameter values that have been explored while the latter gives a lower bound to the

costs incurred by the parameter values that have not been explored so far. We use k− j− 1

as the weight for [pi > j] as pi = j + 1 would yield the cheapest setting among values in

pi > j.

The remaining soft constraints that we include are independent of the particular analy-

sis, and they express that abstractions should be preferred when they could potentially help
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with more queries. In this example, the extra soft constraints are ¬q1, ¬q2, ¬q3, all with

some large weight w. Suppose an abstraction A1 is known to imply q1, and an abstraction

A2 is known to imply both q1 and q2. Then A1 is preferred over A2 because of the last three

soft constraints. Note that an abstraction is not considered at all only if it is known to imply

all three queries, because of the hard constraint.

In general, choose is defined as follows:

choose(T,C,Q)
∆
= Γ

(
MAP

(
δA ∪ C ∪ α(Q) ∪ ηA ∪ βA(Q)

))
,

where the domain of constants of the constructed Markov Logic Network is constants(T ).

The boolean formula δA encodes the set A of valid abstractions, the soft constraints ηA

encode the efficiency preorder�, and function Γ converts a MAP solution to an abstraction.

Formally, we require δA, ηA, and Γ to satisfy the conditions

T ′ = MAP(δA) =⇒ Γ(T ′) ∈ A (1)

∀A′ ∈ A.∃T ′ =MAP(δA).A′ � Γ(T ′) ∧ (Γ(T ′) ∩ T = A′ ∩ T ) (2)

Γ(T1) � Γ(T2) ⇐⇒ WηA(T1) ≤ WηA(T2) (3)

where both T1 and T2 are MAP solutions to δA.

Condition (1) specifies that Γ always convert a map solution of δA to a valid abstraction.

Condition (2) specifies that for any given valid abstraction A′, δA encodes an abstraction

that share the same set of abstraction tuples in T and is not more expensive; this condition

ensures that if there exists a valid abstraction that avoids problematic derivations (that is,

the ones that lead to queries) captured by C and T , then δA encodes an abstraction that

avoids the same derivations and is not more expensive. Condition (3) specifies that ηA

captures the costs of different abstractions.
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Table 3.3: Benchmark characteristics. All numbers are computed using a 0-CFA call-graph
analysis.

description # classes # methods bytecode (KB) source (KLOC)
app total app total app total app total

toba-s Java bytecode to C compiler 25 158 149 745 32 56 6 69
javasrc-p Java source code to HTML translator 49 135 461 789 43 60 13 66
weblech website download/mirror tool 11 576 78 3,326 6 208 12 194
hedc web crawler from ETH 44 353 230 2,134 16 140 6 153
antlr parser/translator generator 111 350 1,150 2,370 128 186 29 131
luindex document indexing and search tool 206 619 1,390 3,732 102 235 39 190
lusearch text indexing and search tool 219 640 1,399 3,923 94 250 40 198
shroeder-m sampled audio editing tool 109 936 617 6,435 37 352 12 334

Finally, the hard constraint α(Q) and the soft constraints βA(Q) are

α(Q)
∆
= {¬q | q ∈Q } βA(Q)

∆
= { (wA + 1,¬q) | q ∈Q }

where wA is an upper bound on the weight given by ηA to a valid abstraction; for example,

the sum
∑n

i=1wi of all weights would do.

Discussion. The function choose(A,C,Q) reasons about a possibly very large set

γ(A,C,Q) of abstractions known to be unviable, and it does so by using the compact

representation C where N = N(C ∪ A) of previous Datalog runs, together with several

helper formulas, such as δA and ηA. Moreover, the reduction to a Markov Logic Network

is natural and involves almost no transformation of the formulas involved.

Our algorithm provides a general algorithm to find a viable abstraction that satisfies

a given metric. One only needs to replace the soft constraints ηA to extend it to other

metrics rather than analysis costs. For example, to speed up the convergence of the overall

algorithm, one can factor in the probability that a given abstraction can resolve a certain

query [26].

3.1.5 Empirical Evaluation

In this section, we empirically evaluate our approach on real-world analyses and programs.

The experimental setup is described in Chapter 3.1.5.1 and the evaluation results are dis-

cussed in Chapter 3.1.5.2.
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3.1.5.1 Evaluation Setup

We evaluate our approach on two static analyses written in Datalog, a pointer analysis and

a typestate analysis, for Java programs. We study the results of applying our approach

to each of these analyses on eight Java benchmark programs described in Table 3.3. We

analyzed the bytecode of the programs including the libraries that they use. The programs

are from Ashes Suite and DaCapo Suite.

We implemented our approach using NICHROME and an open-source Datalog solver

without any modification. Both our analyses are expressed and solved using bddbddb [15],

a BDD-based Datalog solver. We use NICHROME to solve Markov Logic Networks gener-

ated by this algorithm. All our experiments were done using Oracle HotSpot JVM 1.6 on

a Linux machine with 128GB memory and 3.0GHz processors. We next describe our two

analyses in more detail.

Pointer Analysis. Our pointer analysis is flow-insensitive but context-sensitive, based

on k-object-sensitivity [27]. It computes a call graph simultaneously with points-to re-

sults, because the precision of the call graph and points-to results is inter-dependent due to

dynamic dispatching in OO languages like Java.

The precision and efficiency of this analysis depends heavily on how many distinctions

it makes between different calling contexts. In Java, the value of the receiver object this

provides context at runtime. But a static analysis cannot track concrete objects. Instead,

static analyses typically track the allocation site of objects. In general, in object-sensitive

analyses the abstract execution context is an allocation string h1, . . . , hk. The site h1 is

where the receiver object was instantiated. The allocation string h2, . . . , hk is the context

of h1, defined recursively. Typically, all contexts are truncated to the same length k.

In our setting, an abstractionA enables finer control on how contexts are truncated: The

context for allocation site h is truncated to length A(h). Thus, truncation length may vary

from one allocation site to another. This finer control allows us to better balance precision

and efficiency. Abstractions are ordered as follows:
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(precision) A1 v A2 ⇐⇒ ∀h : A1(h) ≤ A2(h)

(efficiency) A1 � A2 ⇐⇒ ΣhA1(h) ≥ ΣhA2(h)

These definitions reflect the intuition that making more distinctions between contexts in-

creases precision but is more expensive.

Typestate Analysis. Our typestate analysis is based on that by Fink et al. [28]. It

differs in three major ways from the pointer analysis described above. First, it is fully

flow-sensitive, whereas the pointer analysis is fully flow-insensitive. Second, it is fully

context-sensitive, using procedure summaries instead of cloning, and therefore capable of

precise reasoning for programs with arbitrary call chain depth, including recursive ones. It

is based on the tabulation algorithm [29] that we expressed in Datalog. Third, it performs

both may- and must-alias reasoning; in particular, it can do strong updates, whereas our

pointer analysis only does weak updates. These differences between our two analyses

highlight the versatility of our approach.

More specifically, the typestate analysis computes at each program point, a set of ab-

stract states of the form (h, t, a) that collectively over-approximate the typestates of all

objects at that program point. The meaning of these components of an abstract state is as

follows: h is an allocation site in the program, t is the typestate in which a certain object

allocated at that site might be in, and a is a finite set of heap access paths with which that

object is definitely aliased (called must set). The precision and efficiency of this analysis

depends heavily on how many access paths it tracks in must sets. Hence, the abstraction

A we use to parameterize this analysis is a set of access paths that the analysis is allowed

to track: any must set in any abstract state computed by the analysis must be a subset of

the current abstraction A. The specification of this parameterized analysis differs from the

original analysis in that the parameterized analysis simply checks before adding an access

path p to a must set m whether p ∈ A: if not, it does not add p to m; otherwise, it proceeds

as before. Note that it is always safe to drop any access path from any must set in any ab-

stract state, which ensures that it is sound to run the analysis using any set of access paths
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Table 3.4: Results showing statistics of queries, abstractions, and iterations of our approach
(CURRENT) and the baseline approaches (BASELINE) on the pointer analysis.

queries abstraction size
iterations

total
resolved

final max.
CURRENT BASELINE

toba-s 7 7 0 170 17,820 10
javasrc-p 46 46 0 470 18,450 13
weblech 5 5 2 140 30,950 10
hedc 47 47 6 730 29,480 18
antlr 143 143 5 970 29,170 15
luindex 138 138 67 1,160 40,550 26
lusearch 322 322 29 1,460 39,360 17
schroeder-m 51 51 25 450 58,260 15

as the abstraction. Different abstractions, however, do affect the precision and efficiency of

the analysis, and are ordered as follows:

(precision) A1 v A2 ⇐⇒ A1 ⊆ A2

(efficiency) A1 � A2 ⇐⇒ |A1| ≥ |A2|

which reflects the intuition that tracking more access paths makes the analysis more precise

but also less efficient.

Using the typestate analysis client, we compare our refinement approach to a scalable

CEGAR-based approach for finding optimal abstractions proposed by Zhang et al. [30]. A

similar comparison is not possible for the pointer analysis client since the work by Zhang

et al. cannot handle non-disjunctive analyses. Instead, we compare the precision and scal-

ability of our approach on the pointer analysis client with an optimized Datalog-based im-

plementation of k-object-sensitive pointer analysis that uses k = 4 for all allocation sites in

the program. Using a higher k value caused this baseline analysis to timeout on our larger

benchmarks.

3.1.5.2 Evaluation Results

Table 3.4 and Table 3.5 summarize the results of our experiments. It shows the numbers

of queries, abstractions, and iterations of our approach (CURRENT) and the baseline ap-
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Table 3.5: Results showing statistics of queries, abstractions, and iterations of our approach
(CURRENT) and the baseline approaches (BASELINE) on the typestate analysis.

queries abstraction size
iterations

total
resolved

final max.
CURRENT BASELINE

toba-s 543 543 62 14,781 15 159
javasrc-p 159 159 89 13,653 14 92
weblech 13 13 33 25,781 14 16
hedc 24 24 14 23,622 7 10
antlr 77 77 66 24,815 12 45
luindex 26 248 248 79 33,835 16
lusearch 45 45 74 33,526 13 52
schroeder-m 194 194 71 54,741 9 49

proaches (BASELINE) for each analysis and benchmark.

The ‘total’ column under queries shows the number of queries posed by the analysis on

each benchmark. For the pointer analysis, each query corresponds to proving that a certain

dynamically dispatching call site in the benchmark is monomorphic; i.e., it has a single

target method. We excluded queries that could be proven by a context-insensitive pointer

analysis. For the typestate analysis, each query corresponds to a typestate assertion. We

tracked typestate properties for the objects from the same set of classes as used by Fink et

al. [28] in their evaluation.

The ‘resolved’ column shows the number of queries proven or shown to be impossible

to prove using any abstraction in the search space. For the pointer analysis, impossibility

means that a call site cannot be proven monomorphic no matter how high the k values

are. For the typestate analysis, impossibility implies that the typestate assertion cannot be

proven even by tracking all program variables. In our experiments, we found that our ap-

proach successfully resolved all the queries for the pointer analysis, by using a maximum k

value of 10 at any allocation site. However, the baseline 4-object-sensitive analysis without

refinement could only resolve up to 50% of the queries. Selectively increasing the k value

allowed our approach to scale better and try higher k values, leading to greater precision.

For the typestate analysis client, both of our approach and the baseline approach resolved

all queries.
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Table 3.4 and Table 3.5 give the abstraction size, which is an estimate of how costly

it is to run an abstraction. An abstraction is considered to be more efficient when its size

is smaller. But the size of abstraction A is defined differently for the two analyses: for

pointer analysis, it is
∑

hA(h); for typestate analysis, it is |A|. The ‘max.’ column shows

the maximum size of an abstraction for the given program. For the pointer analysis, the

maximum size corresponds to 10-object-sensitive analysis. for the typestate analysis, the

maximum size corresponds to tracking all access paths. Even on the smallest benchmark,

these costly analyses ran out of memory, emphasizing the need for our CEGAR approach.

The ‘final’ column shows the size of the abstraction used in the last iteration. In all cases

the size of the final abstraction is less than 5% of the maximum size.

The ‘iterations’ column shows the total number of iterations until all queries were

solved. These numbers show that our approach is capable of exploring a huge space of

abstractions for a large number of queries simultaneously, in under a few iterations. In

comparison, the baseline approach (BASELINE) of Zhang et al. invokes the typestate client

analysis far more frequently because it refines each query individually. For example, the

baseline approach took 159 iterations to finish the typestate analysis on toba-s, while our

approach only needed 15 iterations. Since the baseline for the pointer analysis client is not

a refinement-based approach, it invokes the client analysis just once and is not comparable

with our approach.

In the rest of this section, we evaluate the performance of the Datalog solver and the

Markov Logic Network solver in more detail.

Performance of Datalog solver. Table 3.6 shows statistics of the running time of the

Datalog solver in different iterations of our approach. These statistics include the minimum,

maximum, and average running time over all iterations for a given analysis and benchmark.

The numbers in Table 3.6 indicate that the abstractions chosen by our approach are small

enough to allow the analyses to scale. For schroeder-m, one of our largest benchmarks,

the change in running time from the slowest to the fastest run is only 2X for both client
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Table 3.6: Running time (in seconds) of the Datalog solver in each iteration.

pointer analysis typestate analysis
BASELINE min. max. avg. min. max. avg.

toba-s 11 5 7 6 49 82 68.1
javasrc-p 29 7 11 9 76 152 120.8
weblech 2,574 44 54 47.5 121 172 146.6
hedc 5,058 21 37 27.9 52 58 54.3
antlr 3,723 30 55 39.3 193 325 264.8
luindex 913 59 84 76.4 311 512 426.7
lusearch 7,040 59 85 72.7 238 437 343.9
schroeder-m 23,038 192 428 289.6 1,778 2,681 2,304.6
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Figure 3.5: Running time of the Datalog solver and abstraction size for pointer analysis on
schroeder-m in each iteration.

analyses. This further indicates that our approach is able to resolve all posed queries si-

multaneously before the sizes of the chosen abstractions start affecting the scalability of

the client Datalog analyses. In contrast, the baseline k-object-sensitive analysis could only

scale upto k = 4 on our larger benchmarks. Even with k = 4, the Datalog solver ran

for over six hours on our largest benchmark when using the baseline approach. With our

approach, on the other hand, the longest single run of the Datalog solver for the pointer

analysis client was only seven minutes.

Figures 3.5 and 3.6 show the change in abstraction size and the analysis running time

across iterations for the pointer and typestate analysis, respectively, applied on schroeder-m.

There is a clear correlation between the growth in abstraction size and the increase in the

running times. For both analyses, since our approach only chooses the cheapest viable ab-
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Figure 3.6: Running time of the Datalog solver and abstraction size for typestate analysis
on schroeder-m in each iteration.

Table 3.7: Running time (in seconds) of the Markov Logic Network solver in each iteration.

pointer analysis typestate analysis
min. max. avg. min. max. avg.

toba-s 2 7 3.1 1 6 3.1
javasrc-p <1 4 1.6 2 19 6.4
weblech 5 11 6.7 3 8 5.3
hedc 1 23 3.7 1 2 1.7
antlr 11 44 24.1 5 27 13.25
luindex 8 48 16.3 6 26 14.7
lusearch 7 62 23.9 6 29 15.9
schroeder-m 34 257 114 37 308 138.6

straction in each iteration, the abstraction size grows almost linearly, as expected. Further,

for typestate analysis, an increase in abstraction size typically results in an almost linear

growth in the number of abstract states tracked. Consequently, the linear growth in the

running time for the typestate analysis is also expected behavior. However, for the pointer

analysis, typically, the number of distinct calling contexts grows exponentially with the in-

crease in abstraction size. The linear curve for the running time in Figure 3.5 indicates that

the abstractions chosen by our approach are small enough to limit this exponential growth.

Performance of Markov Logic Network solver. Table 3.7 shows statistics of the run-

ning time of the Markov Logic Network solver in different iterations of our approach. The

metrics reported are the same as those for the Datalog solver. Although the performance

of Markov Logic Network solvers is not completely deterministic, it is largely affected
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Figure 3.7: Running time of the Markov Logic Network solver for pointer analysis on
schroeder-m in each iteration.

by two factors, (1) the size of the grounding of the instance posed to the solver, and (2)

the structure of the constraints in this grounding. For both analyses, as seen previously,

the abstraction size increases with the number of iterations while the number of unresolved

queries decreases. Growth in abstraction size increases the complexity of the client Datalog

analyses, causing an increase in the number of constraints in the grounding of the Markov

Logic Network instance generated. On the other hand, fewer queries tends to simplify the

structure of the constraints to be solved.

Figure 3.7 shows the running time of the Markov Logic Network solver across all iter-

ations for the pointer analysis applied to our largest benchmark schroeder-m. Initially,

the solver running time shows an increasing trend but this reverses towards the end. We

believe that the two conflicting factors of size and structure of the constraints are at play

here. While the complexity of the constraints increases initially due to the growing size

of their grounding, after a certain iteration, the number of unresolved queries becomes

small enough to suitably simplify the structure of the constraints and overwhelm the effect

of growing grounding size. For the remaining benchmarks and analyses, we observed a

similar trend, which we omit for the sake of brevity.
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3.1.6 Related Work

Our approach is broadly related to work on constraint-based analysis, including analysis

based on boolean constraints, set constraints, and SMT constraints. Constraint-based anal-

ysis has well-known benefits that our approach also avails, such as the ability to reason

about the analysis and leveraging sophisticated solvers to implement the analysis. A key

difference is that constraint-based analyses typically solve constraints generated from pro-

gram text, whereas our approach solves constraints generated from an analysis run, which

is itself obtained by solving constraints generated from program text.

Our approach is also related to work on CEGAR-based model checking and program

analyses using Datalog, as we discuss next.

CEGAR-based Model Checking. CEGAR was originally proposed to enable model

checkers to scale to even larger state-spaces than those possible by symbolic approaches

such as BDDs [4]. Our motivation for using CEGAR, in contrast, is to enable designers of

analyses in Datalog to express flexible abstractions. Moreover, our notions of counterex-

amples and refined abstractions differ radically from those in model checkers.

Our work is most closely related to recent work on synthesizing software verifiers from

proof rules for safety and liveness properties in the form of Horn-like clauses [31, 32, 33].

Their approach is also CEGAR-based but differs in two key ways: (1) they can identify

internal nodes of derivations where information gets lost due to the current abstraction,

which they subsequently refine, whereas we focus on leaf nodes of derivations; and (2)

they use CEGAR to solve difficult Horn constraints formulated even on infinite domains,

whereas we use CEGAR for finding a better abstraction, which is then used to generate

new Horn constraints. As such, their approach is more expressive and flexible, but ours

appears to scale better.

Zhang et al. [30] propose a CEGAR-based approach for efficiently finding an optimal

abstraction in a parametric program analysis. Our approach improves on Zhang et al. in

three aspects. First, their counterexample generation requires a parametric static analysis
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to be disjunctive (which implies path-sensitivity), whereas any analysis written in Data-

log, including non-disjunctive ones, can be handled by our approach. As a result, their

approach is not applicable to the pointer analysis in Chapter 3.1.5. Second, their approach

relies on a nontrivial backward analysis for analyzing a counterexample and selecting a

next abstraction to try, but this backward analysis is not generic and should be designed

for each parametric analysis. Our approach, on the other hand, uses a generic algorithm

based on Markov Logic Networks for the counterexample analysis and the abstraction se-

lection, which only requires users to define the cost model of abstractions. Conversely, [30]

converges faster for certain problems. Finally, the approach in [30] cannot mix counterex-

amples across iterations to generate new counterexamples for free, a feature that is present

in our approach as illustrated in Section 3.1.2.

Program Analysis Using Datalog. Recent years have witnessed a surge of interest

in using Datalog for program analysis (see Chapter 3.1.1). Datalog solvers have simulta-

neously advanced, using either symbolic representations of relations such as BDDs (e.g.,

BDDBDDB [19] and Jedd [21]) or even explicit representations (e.g., Doop [20]). More

recently the popular Z3 SMT solver has been extended to compute least fixpoints of con-

straints expressed in Datalog [22]. Our CEGAR approach is independent of the underlying

Datalog solver and leverages these advances.

Liang et al. [34] propose a cause-effect dependence analysis technique for analyses in

Datalog. The technique identifies input tuples that definitely do not affect output tuples.

More specifically, it computes the transitive closure of all derivations of an output tuple

to identify an over-approximation of the set of input tuples needed in any derivation (e.g.,

{t1, t2, t3}). In contrast, our approach identifies the exact set of input tuples needed in each

of even exponentially many derivations (e.g., {{t1}, {t2, t3}}). Thus, in our example, their

approach prunes abstractions that contain {t1, t2, t3}, whereas ours also prunes those that

only contain {t1} or {t2, t3}.
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3.1.7 Conclusion

We presented a novel CEGAR-based approach to automatically find effective abstractions

for program analyses written in Datalog. We formulated the abstraction refinement problem

for each iteration as a Markov Logic Network that not only successfully eliminates all

abstractions which fail in a similar way but also finds the next cheapest viable abstraction.

We showed the generality of our approach by applying it to two different and realistic

static analyses. Finally, we demonstrated its practicality by evaluating it on a suite of eight

real-world Java benchmarks.

3.2 Interactive Verification

3.2.1 Introduction

Automated static analyses make a number of approximations. These approximations are

necessary because the static analysis problem is undecidable in general [13]. However,

they result in many false alarms in practice, which in turn imposes a steep burden on users

of the analyses.

A common pragmatic approach to reduce false alarms involves applying heuristics to

suppress their root causes. For instance, such a heuristic may ignore a certain code con-

struct that can lead to a high false alarm rate [3]. While effective in alleviating user burden,

however, such heuristics potentially render the analysis results unsound.

In this paper, we propose a novel methodology that synergistically combines a sound

but imprecise analysis with precise but unsound heuristics, through user interaction. Our

key idea is that, instead of directly applying a given heuristic in a manner that may un-

soundly suppress false alarms, the combined approach poses questions to the user about

the truth of root causes that are targeted by the heuristic. If the user confirms them, only

then is the heuristic applied to eliminate the false alarms, with the user’s knowledge.

To be effective, however, the combined approach must accomplish two key goals: gen-
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eralization and prioritization. We describe each of these goals and how we realize them.

Generalization. The number of questions posed to the user by our approach should

be much smaller compared to the number of false alarms that are eliminated. Otherwise,

the effort in answering those questions could outweigh the effort in resolving the alarms

directly. To realize this objective for analyses that produce many alarms, we observe that

most alarms are often symptoms of a relatively small set of common root causes. For

example, a method that is falsely deemed reachable can result in many false alarms in the

body of that method. Inspecting this single root cause is easier than inspecting multiple

alarms.

Prioritization. Since the number of false alarms resulting from different root causes

may vary, the user might wish to only answer questions with relatively high payoffs. Our

approach realizes this objective by interacting with the user in an iterative manner instead

of posing all questions at once. In each iteration, the questions asked are chosen such that

the expected payoff is maximized. Note that the user may be asked multiple questions

per iteration because single questions may be insufficient to resolve any of the remaining

alarms. Asking questions in order of decreasing payoff allows the user to stop answering

them when diminishing returns set in. Finally, the iterative process allows incorporating the

user’s answers to past questions in making better choices of future questions, and thereby

further amplify the reduction in user effort.

We formulate the problem to be solved in each iteration of our approach as a non-linear

optimization problem called the optimum root set problem. This problem aims at finding a

set of questions that maximizes the benefit-cost ratio in terms of the number of false alarms

expected to be eliminated and the number of questions posed. We propose an efficient

solution to this problem by reducing it to a sequence of Markov Logic Networks. Each

Markov Logic Network encodes the dependencies between analysis facts, and weighs the

benefits and costs of questioning different sets of root causes. Since our objective function

is non-linear, we solve a sequence of Markov Logic Networks that performs a binary search
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between the upper bound and lower bound of the benefit-cost ratio.

Our approach automatically generates the Markov Logic Network formulation for any

analysis specified in a constraint language. Specifically, we target Datalog, a declarative

logic programming language that is widely used in formulating program analyses [7, 8,

10, 9, 20, 19]. Our constraint-based approach also allows incorporating orthogonal tech-

niques to reduce user effort, such as alarm clustering techniques that express dependencies

between different alarms using constraints, possibly in a different abstract domain [35, 36].

We have implemented our approach in a tool called URSA and evaluate it on a static

datarace analysis using a suite of 8 Java programs comprising 41-194 KLOC each. URSA

eliminates 74% of the false alarms per benchmark with an average payoff of 12× per

question. Moreover, URSA effectively prioritizes questions with high payoffs. Further,

based on data collected from 40 Java programmers, we observe that the average time to

resolve a root cause is only half of that to resolve an alarm. Together, these results show

that our approach achieves significant reduction in user effort.

We summarize our contributions below:

1. We propose a new paradigm to synergistically combine a sound but imprecise analy-

sis with precise but unsound heuristics, through user interaction.

2. We present an interactive algorithm that implements the paradigm. In each iteration,

it solves the optimum root set problem which finds a set of questions with the highest

expected payoff to pose to the user.

3. We present an efficient solution to the optimum root set problem using Markov Logic

Networks for a general class of constraint-based analyses.

4. We empirically show that our approach eliminates a majority of the false alarms by

asking a few questions only. Moreover, it effectively prioritizes questions with high

payoffs.
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1 public class FTPServer implements Runnable{
2 private ServerSocket serverSocket;
3 private List conList;
4
5 public void main(String args[]){
6 ...
7 startButton.addActionListener(
8 new ActionListener(){
9 public void actionPerformed(...){

10 new Thread(this).start();
11 }
12 });
13 stopButton.addActionListener(
14 new ActionListener() {
15 public void actionPerformed(...){
16 stop();
17 }
18 });
19 }
20
21 public void run(){
22 ...
23 while (runner != null){
24 Socket soc = serverSocket.accept();
25 connection = new RequestHandler(soc);
26 conList.add(connection);
27 new Thread(connection).start();
28 }
29 ...
30 }
31
32 private void stop(){
33 ...
34 for (RequestHandler con : conList)
35 con.close();
36 serverSocket.close();
37 }
38 }

39 public class RequestHandler implements Runnable{
40 private FtpRequestImpl request;
41 private Socket controlSocket;
42 ...
43
44 public RequestionHandler(Socket socket){
45 ...
46 controlSocket = socket;
47 request = new FtpRequestImpl();
48 request.setClientAddress(socket.getInetAddress());
49 ...
50 }
51
52 public void run(){
53 ...
54 // log client information
55 clientAddr = request.getRemoteAddress();
56 ...
57 input = controlSocket.getInputStream();
58 reader = new BufferedReader(new

InputStreamReader(input));
59 while (!isConnectionClosed){
60 ...
61 commandLine = reader.readLine();
62 // parse and check permission
63 request.parse(commandLine);
64 // execute command
65 service(request);
66 }
67 }
68
69 public synchronized void close(){
70 ...
71 controlSocket.close();
72 controlSocket = null;
73 request.clear();
74 request = null;
75 }
76 }

Figure 3.8: Example Java program extracted from Apache FTP Server.

3.2.2 Overview

We illustrate our approach by applying a static race detection tool to the multi-threaded Java

program shown in Figure 3.8, which is extracted from the open-source program Apache

FTP server [37]. It starts by constructing a GUI in the main method that allows the ad-

ministrator to control the status of the server. In particular, it creates a startButton and

a stopButton, and registers the corresponding callbacks (on line 7-18) for switching the

server on/off. When the administrator clicks the startButton, a thread starts (on line 10)

to execute the run method of class FTPServer, which handles connections in a loop (on

line 23-28). We refer to this thread as the Server thread. In each iteration of the loop, a fresh

RequestHandler object is created to handle the incoming connection (on line 25). Then,

it is added to field conList of FTPServer, which allows tracking all connections. Finally,

a thread is started asynchronously to execute the run method of class RequestHandler.
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Input Relations:
access(p, o) (program point p accesses some field of abstract object o)
alias(p1, p2) (program points p1 and p2 access same memory location)
escape(o) (abstract object o is thread-shared)
parallel(p1, p2) (program points p1 and p2 can be reached by different threads simultaneously)
unguarded(p1, p2) (program points p1 and p2 are not guarded by any common lock)

Output Relations:
shared(p) (program point p accesses thread-shared memory location)
race(p1, p2) (datarace between program points p1 and p2)

Rules:
shared(p) : - access(p, o), escape(o). (1)

race(p1, p2) : - shared(p1), shared(p2), alias(p1, p2), parallel(p1, p2), unguarded(p1, p2). (2)

Figure 3.9: Simplified static datarace analysis in Datalog.

We refer to this thread as the Worker thread. We next inspect the RequestHandler class

more closely. It has multiple fields that can be accessed from different threads and po-

tentially cause dataraces. For brevity, we only discuss accesses to fields request and

controlSocket, which are marked in bold in Figure 3.8. Both fields are initialized in

the constructor of RequestHandler which is invoked by the Server thread on line 25.

Then, they are accessed in the run method by the Worker thread. Finally, they are ac-

cessed and set to null in the close method which is invoked to clean up the state of

RequestHandler when the current connection is about to be closed. The close method

can be either invoked in the service method by the Worker thread when the thread fin-

ishes processing the connection, or be invoked by the Java GUI thread in the stop method

(on line 35) when the administrator clicks the stopButton to shut down the entire server

by invoking stop (on line 16). The accesses in close are guarded by a synchronization

block (on line 69-75) to prevent dataraces between them.

The program has multiple harmful race conditions: one on controlSocket between

line 72 and line 57, and three on request between line 74 and line 55, 63, and 65. More

concretely, these two fields can be accessed simultaneously by the Worker thread in run

and the Java GUI thread in close. The race conditions can be fixed by guarding lines

55-66 with a synchronization block that holds a lock on the this object.
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escape(25)

shared(46) shared(47) shared(48)shared(57) shared(71) shared(72) shared(55) shared(63) shared(65) shared(73) shared(74)

race(46,57) race(46,71) race(46,72) race(47,55) race(47,63) race(47,65) race(47,73) race(47,74) race(48,74)

Figure 3.10: Derivation of dataraces in example program.

We next describe using a static analysis to detect these race conditions. In our im-

plementation, we use the static datarace analysis from Chord [38], which is context- and

flow-sensitive, and combines a thread-escape analysis, a may-happen-in-parallel analysis,

and a lockset analysis. Here, for ease of exposition, we use a much simpler version of that

analysis, shown in Figure 3.9. It comprises two logical inference rules in Datalog. Rule (1)

states that the instruction at program point p accesses a thread-shared memory location if

the instruction accesses a field of an object o, and o is thread-shared. Since these properties

are undecidable, the rule over-approximates them using abstract objects o, such as object

allocation sites. Rule (2) uses the thread-escape information computed by Rule (1) along

with several input relations to over-approximate dataraces: instructions at p1 and p2, at least

one of which is a write, may race if a) each of them may access a thread-shared memory

location, b) both of them may access the same memory location, c) they may be reached

from different threads simultaneously, and d) they are not guarded by any common lock.

All input relations are in fact calculated by the analysis itself but we treat them as inputs

for brevity.

Since the analysis is over-approximating, it not only successfully captures the four real

dataraces but also reports nine false alarms. The derivation of these false alarms is shown

by the graph in Figure 3.10. We use line numbers of the program to identify program points

p and object allocation sites o. Each hyperedge in the graph is an instantiation of an analysis

rule. In the graph, we elide tuples from all input relations except the ones in escape. For

example, the dotted hyperedge is an instantiation of Rule (2): it derives race(48, 74), a race
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between lines 48 and 74, from facts shared(48), shared(74), alias(48, 74), parallel(48, 74),

and unguarded(48, 74) which in turn are recursively derived or input facts.

Note that the above analysis does not report any datarace between accesses in the con-

structor of RequestHandler. This is because, by excluding tuples such as parallel(46, 46),

the parallel relation captures the fact that the constructor can be only invoked by the Server

thread. Likewise, it does not report any datarace between accesses in the close method

as it is able to reason about locks via the unguarded relation. However, there are still nine

false alarms among the 13 reported alarms. To find the four real races, the user must inspect

all 13 alarms in the worst case.

To reduce the false alarm rate, Chord incorporates various heuristics, one of which is

particularly effective in reducing false alarms in our scenario. This heuristic can be turned

on by running Chord with option chord.datarace.exclude.init=true, which causes

Chord to ignore all races that involve at least one instruction in an object constructor. In-

ternally, the heuristic suppresses all shared tuples whose instruction lies in an object con-

structor. Intuitively, most of such memory accesses are on the object being constructed

which typically stays thread-local until the constructor returns. Indeed, in our scenario,

shared(46), shared(47), and shared(48) are all spurious (as the object only becomes thread-

shared on line 27) and lead to nine false alarms. However, applying the heuristic can render

the analysis result unsound. For instance, the object under construction can become thread-

shared inside the constructor by being assigned to the field of a thread-shared object or by

starting a new thread on it. Applying the heuristic can suppress true alarms that are derived

from shared tuples related to such facts.

We present a new methodology and tool, URSA, to address this problem. Instead of

directly applying the above heuristic in a manner that may introduce false negatives, URSA

poses questions to the user about root causes that are targeted by the heuristic. In our

example, such causes are the shared tuples in the constructor of RequestHandler. If the

user confirms such a tuple as spurious, only then it is suppressed in the analysis, thereby
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eliminating all false alarms resulting from it.

URSA has two features that make it effective. First, it can eliminate a large number

of false alarms by asking a few questions. The key insight is that most alarms are often

symptoms of a relatively small set of common root causes. For instance, false alarms

race(47, 55), race(47, 63), race(47, 65), race(47, 73), and race(47, 74) are all derived due

to shared(47). Inspecting this single root cause is easier than inspecting all four alarms.

Second, URSA interacts with the user in an iterative manner, and prioritizes questions

with high payoffs in earlier iterations. This allows the user to only answer questions with

high payoffs and stop the interaction when the gain in alarms resolved has diminished

compared to the effort in answering further questions.

URSA realizes the above two features by solving an optimization problem called the

optimum root set problem, in each iteration. Recall that Chord’s heuristic identified as

potentially spurious the tuples shared(46), shared(47), shared(48); these appear in red in

the derivation graph. We wish to ask the user if these tuples are indeed spurious, but not

in an arbitrary order, because a few answers to well-chosen questions may be sufficient.

We wish to find a small non-empty subset of those tuples, possibly just one tuple, which

could rule out many false alarms. We call such a subset of tuples a root set, as the tuples

in it are root causes for the potential false alarms, according to the heuristic. Each root set

has an expected gain (how many false alarms it could rule out) and a cost (its size, which

is how many questions the user will be asked). The optimum root set problem is to find a

root set that maximizes the expected gain per unit cost. We refer to the gain per unit cost

as the payoff. We next describe each iteration of URSA on our example. Here, we assume

the user always answers the question correctly. Later we discuss the case where the user

occasionally gives incorrect answers (Chapter 3.2.4.6 and Chapter 3.2.6.2).

Iteration 1. URSA picks {shared(47)} as the optimum root set since it has an ex-

pected payoff of 5, which is the highest among those of all root sets. Other root sets like

{shared(46), shared(47)}may resolve more alarms but end up with lower expected payoffs
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due to larger numbers of required questions.

Based on the computed root set, URSA poses a single question about shared(47) to

the user: “Does line 47 access any thread-shared memory location? If the answer is no,

five races will be suppressed as false alarms.” Here URSA only asks one question, but

there are other cases in which it may ask multiple questions in an iteration depending

on the size of the computed optimum root set. Besides the root set, we also present the

corresponding number of false alarms expected to be resolved. This allows the user to

decide whether to answer the questions by weighing the gains in reducing alarms against

the costs in answering them.

Suppose the user decides to continue and answers no. Doing so labels shared(47)

as false, which in turn resolves five race alarms race(47, 55), race(47, 63), race(47, 65),

race(47, 73), and race(47, 74), highlighting the ability of URSA to generalize user input.

Next, URSA repeats the above process, but this time taking into account the fact that

shared(47) is labeled as false.

Iteration 2. In this iteration, we have two optimum root set candidates: {shared(46)}

with an expected payoff of 3 and {shared(48)} with an expected payoff of 1. While resolv-

ing {shared(46)} is expected to eliminate {race(46, 57), race(46, 71), race(46, 72)}, resolv-

ing {shared(48)} can only eliminate {race(48, 74)}.

URSA picks {shared(46)} as the optimum root set and poses the following question

to the user: “Does line 46 access any thread-shared memory location? If the answer is

no, three races will be suppressed as false alarms.” Compared to the previous iteration,

the expected payoff of the optimum root set has reduced, highlighting URSA’s ability to

prioritize questions with high payoffs.

We assume the user answers no, which labels shared(46) as false. As a result, race

alarms race(46, 57), race(46, 71), and race(46, 72) are eliminated. At the end of this iter-

ation, eight out of the 13 alarms have been eliminated. Moreover, only one false alarm

race(48, 74) remains.
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a ∈ A ⊆ T (alarms) q ∈ Q ⊆ T (potential causes) f ∈ F ⊆ Q (causes)

(a) Auxiliary definitions and notations.

JCKF := lfp SFF
C

SFF
C(T ) := SC(T ) \ F

SC(T ) := T ∪ { t | t ∈ sc(T ) and c ∈ C }
sl0 :- l1,...,ln(T ) := {σ(l0) | σ(l1) ∈ T, . . . , σ(ln) ∈ T }

(b) Augmented semantics of Datalog.

Figure 3.11: Syntax and semantics of Datalog with causes.

Iteration 3. In this iteration, there is only one root set {shared(48)} which has an ex-

pected payoff of 1. Similar to the previous two iterations, URSA poses a single question

about shared(48) to the user along with the number of false alarms expected to be sup-

pressed. At this point, the user may prefer to resolve the remaining five alarms manually,

as the expected payoff is too low and very few alarms remain unresolved. URSA terminates

if the user makes this decision. Otherwise, the user proceeds to answer the question regard-

ing shared(48) and therefore resolve the only remaining false alarm race(48, 74). At this

point, URSA terminates as all three tuples targeted by the heuristic have been answered.

In summary, URSA resolves, in a sound manner, 8 (or 9) out of 9 false alarms by only

asking two (or three) questions. Moreover, it prioritizes questions with high payoffs in

earlier iterations.

3.2.3 The Optimum Root Set Problem

In this section, we define the Optimum Root Set problem, abbreviated ORS, in the context

of static analyses expressed in Datalog.

3.2.3.1 Declarative Static Analysis

We say that an analysis is sound when it over-approximates the concrete semantics. We

augment the semantics of Datalog in a way that allows us to control the over-approximation.

Figure 3.11(a) introduces three special subsets of tuples: alarms, potential causes, and
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causes. An alarm corresponds to a bug report. A potential cause is a tuple that is identified

by a heuristic as possibly spurious. A cause is a tuple that is identified by an oracle (e.g., a

human user) as indeed spurious.

Figure 3.11(b) gives the augmented semantics of Datalog, which allows controlling the

over-approximation with a set of causes F. It is similar to the standard Datalog semantics

except that in each iteration it removes tuples in causes F from derived tuples T (denoted

by function SFF
C). Since a cause in F is never derived, it is not used in deriving other

tuples. In other words, the augmented semantics do not only suppress the causes but also

spurious tuples that can be derived from them.

3.2.3.2 Problem Statement

We assume the following are fixed: a set C of Datalog constraints, a set A of alarms,

a set Q of potential causes, and a set F of confirmed causes. Informally, our goal is to

grow F such that JCKF contains fewer alarms. To make this precise, we introduce a few

terms. Given two sets T1 ⊇ T2 of tuples, we define the gain of T2 relative to T1, as the

number of alarms that are in T1 but not in T2:

gain(T1, T2) :=
∣∣(T1 \ T2) ∩A

∣∣
A root set R is a non-empty subset of potential but unconfirmed causes: R ⊆ Q \ F.

Intuitively, the name is justified because we will aim to put in R the root causes of the

false alarms. The potential causes in R are those we will investigate, and for that we

have to pay a cost |R|. The potential gain of R is the gain of JCKF∪R relative to JCKF.

The expected payoff of R is the potential gain per unit cost. (The actual payoff depends

on which potential causes in R will be confirmed.) With these definitions, we can now

formally introduce the ORS problem.

Problem 7 (Optimum Root Set). Given a setC of constraints, a set Q of potential causes, a
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set F of confirmed causes, and a set A of alarms, find a root set R ⊆ Q\F that maximizes

gain
(
JCKF, JCKF∪R

)
/|R|, which is the expected payoff.

3.2.3.3 Monotonicity

The definitions from the previous two subsections (Chapter 3.2.3.1 and Chapter 3.2.3.2)

immediately imply some monotonicity properties. We list these here, because we refer to

them in later sections.

Lemma 8. If T1 ⊆ T2 and F1 ⊇ F2, then SFF1
C (T1) ⊆ SFF2

C (T2). In particular, if

F1 ⊇ F2, then JCKF1 ⊆ JCKF2 .

Lemma 9. If T1 ⊆ T ′1 and T ′2 ⊆ T2, then gain(T ′1, T
′
2) ≥ gain(T1, T2). Also, gain(T, T ) =

0 for all T .

3.2.3.4 NP-Completeness

Problem 7 is an optimization problem which can be turned into a decision problem in the

usual way, by providing a threshold for the objective. The question becomes whether there

exists a root set R that can achieve a given gain. This decision problem is clearly in NP:

the set R is a suitable polynomial certificate.

The problem is also NP-hard, which we can show by a reduction from the minimum

vertex cover problem. Given a graph G = (V,E), a subset U ⊆ V of vertices is said to be

a vertex cover when it intersects all edges {i, j} ∈ E. The minimum vertex cover problem,

which asks for a vertex cover of minimum size, is well-known to be NP-complete. We

reduce it to the ORS problem as follows. We represent the graph G with three relations

R = {vertex, edge, alarm}. Without loss of generality, let V be the set {0, . . . , n − 1},

for some n. Thus, we identify vertices with Datalog constants. For each edge {i, j} ∈ E
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we include two ground constraints:

edge(i, j) : - vertex(i), vertex(j)

alarm() : - edge(i, j)

We set F = ∅, A := {alarm()}, and Q := { vertex(i) | i ∈ V }. Since A has size 1,

the gain can only be 0 or 1. To maximize the ORS objective, the gain has to be 1. Further,

the size of the root set R has to be minimized. But, one can easily see that a root set leads

to a gain of 1 if and only if it corresponds to a vertex cover.

3.2.4 Interactive Analysis

Our interactive analysis combines three ingredients: (a) a static analysis; (b) a heuristic;

and (c) an oracle. We require the static analysis to be implemented in Datalog, which lets

us track dependencies. The requirements on the heuristic and the oracle are mild: given a

set of Datalog tuples they must pick some subset. These are all the requirements. Suppose

there is a ground truth that returns the truth of each analysis fact based on the concrete

semantics. It helps to think of the three ingredients intuitively as follows:

(a) the static analysis is sound, imprecise with respect to the ground truth and fast;

(b) the heuristic is unsound, precise with respect to the ground truth and fast; and

(c) the oracle agrees with the ground truth and is slow.

Technically, we show a soundness preservation result (Theorem 13): if the given oracle

agrees with the ground truth and the static analysis over-approximates it, then our combined

analysis also over-approximates the ground truth. Soundness preservation holds with any

heuristic. When a heuristic agrees with the ground truth, we say that it is ideal; when it

almost agrees with the ground truth, we say that it is precise. Even though which heuristic

one uses does not matter for soundness, we expect that more precise heuristics lead to better
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Algorithm 2 Interactive Resolution of Alarms
INPUT: constraints C, and potential alarms A
OUTPUT: remaining alarms

1: Q := Heuristic()
2: F := ∅
3: while Q 6= F do
4: R := OptimumRootSet(C,A,Q,F)
5: Y,N := Decide(R)
6: Q := Q \ Y
7: F := Q \ JCKF∪N
8: end while
9: return A ∩ JCKF

performance. We explore speed and precision later, through experiments (Chapter 3.2.6).

Also later, we discuss what happens in practice when the static analysis is unsound or the

oracle does not agree with the ground truth (Chapter 3.2.4.6).

The high level intuition is as follows. The heuristic is fast. But, since the heuristic

might be unsound, we need to consult an oracle before relying on what the heuristic re-

ports. However, consulting the oracle is an expensive operation, so we would like to not

do it often. Here is where the static analysis specified in Datalog helps. On one hand, by

analyzing the Datalog derivation, we can choose good questions to ask the oracle. On the

other hand, after we obtain information from the oracle, we can propagate that information

through the Datalog derivation, effectively finding answers to questions we have not yet

asked.

We begin by showing how the static analysis, the heuristic, and the oracle fit together

(Chapter 3.2.4.1), and why the combination preserves soundness Chapter 3.2.4.2). A key

ingredient in our algorithm is solving the ORS problem. We do this solving a sequence of

Markov Logic Networks (Chapter 3.2.4.3). Each Markov logic Network encodes the prob-

lem whether, given a Datalog derivation, a certain payoff is feasible (Chapter 3.2.4.4 and

Section 3.2.4.5). Finally, we close with a short discussion (Chapter 3.2.4.6).

66



3.2.4.1 Main Algorithm

Algorithm 2 brings together our key ingredients:

(a) the set C of constraints and the set A of potential alarms represent the static analysis

implemented in Datalog;

(b) Heuristic is the heuristic; and

(c) Decide is the oracle.

The key to combining these ingredients into an analysis that is fast, sound, and precise is

the procedure OptimumRootSet, which solves Problem 7.

From now on, the set C of constraints and the set A of potential alarms should be

thought of as immutable global variables: they do not change, and they will be available in

subroutines even if not explicitly passed as arguments. In contrast, the set Q of potential

causes and the set F of confirmed causes do change in each iteration, while maintaining

the invariant F ⊆ Q. Initially, the invariant holds because no cause has been confirmed,

F = ∅.

In each iteration, we invoke the oracle for a set of potential causes that are not yet

confirmed: we call Decide(R) for some non-empty R ⊆ Q \ F. The result we get back

is a partition (Y,N) of R. In Y we have tuples that are in fact true, and therefore are not

causes for false alarms; in N we have tuples that are in fact false, and therefore are causes

for false alarms. We remove tuples Y from the set Q of potential causes (line 6); we insert

tuples N into the set F of confirmed causes, and we also insert all other potential causes

that may have been blocked by N (line 7).

At the end, we return the remaining alarms A ∩ JCKF.

3.2.4.2 Soundness

For correctness, we require that the oracle is always right. In particular, the answers given

by the oracle should be consistent: if asked repeatedly, the oracle should give the same
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answer about a tuple. Formally, we require that there exists a partition of all tuples T into

two subsets True and False such that

Decide(T ) = (T ∩ True, T ∩ False) for all T ⊆ T (3.1)

We refer to the set True as the ground truth. We say that the analysis C is sound when

F ⊆ False implies JCKF ⊇ True (3.2)

That is, a sound analysis is one that over-approximates, as long as we do not explicitly

block a tuple in the ground truth.

Lemma 10. A sound analysis C can derive the ground truth; that is, True = JCKFalse.

The correctness of Algorithm 2 relies on the analysisC being sound and also on making

progress in each iteration, which we ensure by requiring

∅ ⊂ OptimumRootSet(C,A,Q,F) ⊆ Q \ F (3.3)

Lemma 11. In Algorithm 2, suppose that Heuristic returns all tuples T. Also, assume (3.1),

(3.2), and (3.3). Then, Algorithm 2 returns the true alarms A ∩ True.

Proof sketch. The key invariant is that

F ⊆ False ⊆ Q (3.4)

The invariant is established by setting F := ∅ and Q := T. By (3.1), we know that

Y ⊆ True and N ⊆ False, on line 5. It follows that the invariant is preserved by removing

Y from Q, on line 6. It also follows that F∪N ⊆ False and, by (3.2), that JCKF∪N ⊇ True.

So, the invariant is also maintained by line 7. We conclude that (3.4) is indeed an invariant.
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Because R is nonempty, the loop terminates (details in appendix). When it does, we

have F = Q. Together with the invariant (3.4), we obtain that F = False. By Lemma 10, it

follows that Algorithm 2 returns A ∩ True.

We can relax the requirement that Heuristic returns T because of the following result:

Lemma 12. Consider two heuristics which compute, respectively, the sets Q1 and Q2 of

potential causes. Let A1 and A2 be the corresponding sets of alarms computed by 2. If

Q1 ⊆ Q2, then A1 ⊇ A2.

Proof sketch. Use the same argument as in the proof of Lemma 11, but replace the invari-

ant (3.4) with

F ⊆ Q0 ∩ False ⊆ Q

where Q0 ∈ {Q1,Q2} is the initial value of Q.

From Lemmas 11 and 12, we conclude that 2 is sound, for all heuristics.

Theorem 13. Assume that there is a ground truth, the analysis C is sound, and Optimum-

RootSet makes progress; that is, assume (3.1), (3.2), and (3.3). Then, 2 terminates and it

returns at least the true alarms A ∩ True.

Observe that there is no requirement on Heuristic. If Heuristic always returns ∅, then our

method degenerates to simply using the imprecise but fast static analysis implemented in

Datalog. If Heuristic always returns T and the oracle is a precise analysis, then our method

degenerates to an iterative combination between the imprecise and the precise analyses.

Usually, we would use a heuristic that has demonstrated its effectiveness in practice, even

though it may lack theoretical guarantees for soundness. In our approach, soundness is

inherited from the static analysis specified in Datalog and from the oracle. If the oracle is

unsound, perhaps because the user makes mistakes, then so is our analysis. Thus, Theo-

rem 13 is a relative soundness result.
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Algorithm 3 OptimumRootSet

INPUT: constraints C, potential alarms A, potential causes Q, causes F
OUTPUT: root set R with maximum payoff

1: ratios := Sorted
(
{ a/b | a ∈ {0, . . . , |A|} and b ∈ {1, . . . , |Q \ F|} }

)
2: i := 0 k := |ratios| {ratios is an array indexed from 0, and |ratios| is its length}
3: while i+ 1 < k do
4: j := b(i+ k)/2c
5: if IsFeasible(ratios[j], C,A,Q,F) then
6: i := j
7: else
8: k := j
9: end if

10: end while
11: return FeasibleSet(ratios[i], C,A,Q,F)

3.2.4.3 Finding an Optimum Root Set

We want to find a root set R that maximizes expected payoff

gain
(
JCKF, JCKF∪R

)
|R|

=

∣∣(JCKF \ JCKF∪R

)
∩A

∣∣
|R|

This expression is nonlinear, so it is not obvious how to maximize it by using a solver for

linear programs. Our solution is to do a binary search on the payoff values, as seen in Algo-

rithm 3. Given a gain a, a cost b, an analysis of constraintsC and alarms A, potential causes

Q, and causes F, we find out if a payoff a/b is feasible by calling IsFeasible(a/b, C,A,Q,F),

which we will implement by solving a Markov Logic Network (Chapter 3.2.4.5). Similarly,

we implement FeasibleSet(a/b, C,A,Q,F) using a Markov Logic Network solver, to find

a root set R ⊆ Q \ F with payoff ≥ a/b. We require, as a precondition, that Q \ F is

nonempty. The array ratios contains all possible payoff values, sorted.

3.2.4.4 From Augmented Datalog to Markov Logic Network

Let us begin by encoding the augmented Datalog semantics (Figure 3.11(b)) into Markov

Logic Networks: Given F, we want the Markov Logic Network solver to compute JCKF.

Standard Datalog semantics correspond to the case F = ∅. So, to find JCK∅ and all
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rule instances t0 : - t1, . . . , tn, we start by running a Datalog solver once. We set T :=

JCK∅. Knowing the result of the standard Datalog solver, the task is to construct a Markov

Logic Network that would compute JCKF for an arbitrary F. For each relation r ∈ R,

we introduce new relations Xr, Yr, Zr. Consequently, we introduce new tuples xt, yt, zt for

each tuple t. Let X be the union of Xr’s computed by the Markov Logic Network solver,

and we define Y and Z similarly. We will construct our Markov logic Network such that

X = JCKF, Y = SC(X), and Z = F. We encode Z = F by having hard constraints

zt for each t ∈ F

¬zt for each t /∈ F

We encode Y ⊇ SC(X) by having constraints

X1 ∧ . . . ∧Xn =⇒ Y0 for each l0 : - l1, . . . , ln

where Xi corresponds to the relation in li. Note we use the same list of arguments in Xi as

the ones used in li, which we elide for elaboration.

Finally, we encode X ⊇ Y \ Z by

Yr ∧ ¬Zr =⇒ Xr for each r ∈ R.

Observe that X ⊇ Y \Z together with Y ⊇ SC(X) imply that X ⊇ SFZ
C(X); that is, X is

a post fixed point of SFZ
C . By Lemma 8 and the Knaster–Tarski theorem, the least post

fixed point of SFZ
C coincides with its least fixed point. Thus, to guarantee that X = JCKF,

it only remains to add soft constraints {¬Xr weight 1 | r ∈ R} to minimize |X|. Note

X = JCKF implies X = SFZ
C(X), which together with X ⊇ Y \ Z ⊇ SFZ

C(X) imply that

Y = SC(X).

We use the Markov Logic Network solver as follows. Given a set F, we create con-
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X1 ∧ . . . ∧Xn =⇒ Y0 for each l0 : - l1, . . . , ln (3.1)

Yr ∧ ¬Zr =⇒ Xr for each r ∈ R (3.2)

¬zt for t /∈ Q (3.3)

zt for t ∈ F (3.4)∨
t∈Q\F

zt (requires |R| > 0) (3.5)

b
∑

t∈A∩JCKF

(1− xt)− a
∑
t∈Q\F

zt ≥ 0 (requires payoff ≥ a/b) (3.6)

Figure 3.12: Implementing IsFeasible and FeasibleSet by solving a Markov Logic Network.
All xt, yt, zt are tuples except that in 3.6, they are variables taking values in {0, 1} which
represent whether the corresponding tuples are derived.

straints as above. Then we run the Markov Logic Network solver, which will return a set

of tuples. The desired JCKF is encoded in the derived tuples {xt}t∈T.

3.2.4.5 Feasible Payoffs

In this section, we adjust the Markov Logic Network encoding of augmented Datalog so

that we can implement the subroutines IsFeasible and FeasibleSet used in Algorithm 3.

Given sets A,Q,F and a rational payoff a/b, we want to decide whether there exists a

nonempty root set R ⊆ Q \F that achieves the payoff (IsFeasible), and find an example of

such a set (FeasibleSet). In other words, we want to find a set R such that

b ·
∣∣(JCKF \ JCKF∪R

)
∩A

∣∣− a · |R| ≥ 0

and |R| > 0. The resulting encoding appears in Figure 3.12. As before, we introduce new

relations Xr, Xr, Xr and new tuples xt, yt, zt, but with slightly different meanings: The

constraints are set up such that X ⊇ JCKZ and Z = F ∪ R. As before (Chapter 3.2.4.4),

constraints (1)-(4) in Figure 3.12 encode Y ⊇ SC(X) and X ⊇ Y \ Z, which imply that

X is a post fixed point of SFZ
C . We dropped the optimization objective that ensured we

compute least fixed points, which is why X ⊇ JCKZ rather than X = JCKZ. However,

using Lemma 9, we can show that there exists a post fixed point of SFZ
C that leads to the
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payoff a/b (that is, satisfies constraints (5) and (6) in Figure 3.12) if and only if the least

fixed point of SFZ
C leads to the payoff. So, the minimization of |X| is unnecessary. Note,

for elaboration, we write the payoff constraint (6) as a linear constraint. It can be encoded

as Markov Logic Network constraints in a way akin to standard approaches for converting

linear constraints to SAT constraints [39].

Example. We show the IsFeasible encoding for the second iteration of the example from

Chapter 3.2.2.

We first show the encoding that corresponds to constraints (1) in Figure 3.12. Recall the

analysis rules from Figure 3.9, we can encode them using the following hard constraints:

Xaccess(p, o) ∧Xescape(o) =⇒ Yshared(p)

Xshared(p1) ∧Xshared(p2) ∧Xalias(p1, p2) ∧Xparallel(p1, p2) ∧Xunguarded(p1, p2)

=⇒ Yrace(p1, p2).

We also model the inputs with unit hard constraints such as Xescape(25).

Then, for every relation r in Figure 3.9, we add Yr ∧ ¬Zr =⇒ Xr (e.g., Yshared(p) ∧

¬Zshared(p) =⇒ Xshared(p)), which correspond to constrains (2) in Figure 3.12.

The potential causes returned by the heuristic are Q = {shared(46), shared(47),

shared(48)}. At the beginning of the second iteration one cause had been confirmed,

F = {shared(47)}. We have zt for t ∈ F, and ¬zt for t /∈ Q, which correspond to

constraints (4) and (3) in Figure 3.12 respectively.

For constraints (5), we have Zshared(6) ∨ Zshared(9).

Finally,

b · (1−Xrace(46, 57) + 1−Xrace(46, 71) + 1−Xrace(46, 72) + 1−Xrace(48, 74))

−a · (Zshared(46) + Zshared(48)) ≥ 0
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where the X tuples range over the four unresolved alarms at the beginning of the second

iteration.

Let us see what we need to write down the constraints from Figure 3.12. First, we need

the result of running a standard Datalog solver: the set JCK∅, and the corresponding con-

straints C. We obtain these by running the Datalog solver once, in the beginning. Second,

we need the sets A, Q, and F. The set A is fixed, since it only depends on the analysis. Sets

Q and F do change, but they are sent as arguments to IsFeasible and FeasibleSet. Third,

we need the ratio a/b, which is also sent as an argument. Fourth, we need the set JCKF; we

can compute it as described earlier (Chapter 3.2.4.4).

If the Markov Logic Network solver finds the instance to be feasible, then it gives us

a set of output tuples, including tuples in Z. To implement FeasibleSet, we compute R

as Z \ F.

3.2.4.6 Discussion

First, we discuss a few alternatives for the payoff, for the termination condition, and for the

oracle. Then, we discuss the issue of soundness from the point of view of the mismatch

between theory and practice. Finally, we discuss how our approach could be applied in a

non-Datalog setting.

Payoff The algorithm presented above uses |R| as the cost measure. It might be, however,

that some potential causes are more difficult to investigate than others. If the user provides

us with an expected cost of investigating each potential cause, then we can adapt our algo-

rithm, in the obvious way, so that it prefers calling Decide on cheap potential causes.

In situations when multiple root sets have the same maximum payoff, we may want to

prefer one with minimum size. Intuitively, small root sets let us gather information from the

oracle quickly. To encode a preference for smaller root sets, we can extend the constraints

in Figure 3.12 with soft constraints { ¬zt weight 1 | t ∈ Q \ F }.
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Termination Algorithm 2 terminates when all potential causes have been investigated;

that is, when Q = F. Another option is to look at the current value of the expected payoff.

Suppose Algorithm 3 finds an expected payoff ≤ 1. This means that we expect that it will

not be easier to investigate potential causes rather than investigate the alarms themselves.

So, we could decide to terminate, as we do in our experiments (Chapter 3.2.6). Finally,

instead of looking at the expected payoff computed by the Markov Logic Network solver,

we could track the actual payoff for each iteration. Then, we could stop if the average

payoff in the last few iterations is less than some threshold.

Oracle. By default, the oracle Decide is a human user. However, we can also use a precise

yet expensive analysis as the oracle, which enables an alternative use case of our approach.

This use case focuses on balancing the overall precision and scalability of combining the

base analysis and the oracle analysis, rather than reducing user effort in resolving alarms.

Our approach allows the oracle analysis to focus on only the potential causes that are rel-

evant to the alarms, especially the ones with high expected payoffs. For example, the end

user might find it too long a time to apply the oracle analysis to resolve all potential causes.

By applying our approach, they can use the oracle analysis to only answer the potential

causes with high payoffs and resolve the rest alarms via other methods (e.g., manual in-

spection). Appendix B includes a more detailed discussion of this use case.

Soundness. In practice, most static analyses are unsound [40]. In addition, in our setting,

the user may answer incorrectly. We discuss each of these issues below.

Many program analyses are designed to be sound in theory but are unsound in practice

due to engineering compromises. If certain language features were handled in a sound

manner, then the analysis would be unscalable or exceedingly imprecise. For example, in

Java, such features include reflection, dynamic class loading, native code, and exceptions.

If we start from an unsound static analysis, then our interactive analysis is also unsound.

However, Theorem 13 gives evidence that we do not introduce new sources of unsoundness.
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More importantly, our approach is still effective in suppressing false alarms and therefore

reduces user effort, as we demonstrate through experiments (Chapter 3.2.6).

In theory, the oracle never makes mistakes; in practice, users do make mistakes, of two

kinds: they may label a true tuple as spurious, and they may label a spurious tuple as true. If

a true tuple is labeled as spurious, then the interactive analysis becomes unsound. However,

if the user answers x% of questions incorrectly, then we expect that the fraction of false

negatives is not far from x%. Our experiments show that, even better, the fraction of false

negatives tends to be less than x%. A consequence of this observation is that, if potential

causes are easier to inspect than alarms, then our approach will decrease the chances that

real bugs are missed.

If a spurious tuple is labeled as true, then the interactive analysis may ask more ques-

tions. It is also possible that fewer false alarms are filtered out: the user could make the

mistake on the only remaining question with expected payoff > 1, which in turn would

cause the interaction to terminate earlier. (See the previous discussion on termination.)

Later, we analyze both kinds of mistakes quantitatively (Chapter 3.2.6.2 and Table 3.9).

Non-Datalog Analyses. We focus on program analyses implemented in Datalog for two

reasons: (1) it is easy to capture provenance information for such analyses; and (2) there is a

growing trend towards specifying program analyses in Datalog [20, 10, 11, 8, 9]. However,

not all analyses are implemented in Datalog; for example, see [3, 41, 42]. In principle, it

is possible to apply our approach to any program analysis. To do so, the analysis designer

would need to figure out how to capture provenance information of an analysis’ execution.

This might not be an easy task, but it is a one-time effort.

3.2.5 Instance Analyses

We demonstrate our approach on the datarace analysis from Chord, a static datarace detec-

tor for Java programs. To show the generality and versatility of our approach, Appendix B
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describes its instantiation on a pointer analysis for the alternative use case, where the oracle

is a precise yet expensive static analysis. Next, we briefly describe the datarace analysis,

its notions of alarms and causes, and our implementation of the procedure Heuristic.

The datarace analysis is a context- and flow-sensitive analysis introduced by [43]. It

comprises 30 rules, 18 input relations, and 18 output relations. It combines a thread-escape

analysis, a may-happen-in-parallel analysis, and a lockset analysis. It reports a datarace

between each pair of instructions that access the same thread-shared object, are reachable

by different threads in parallel, and are not guarded by a common lock.

While the alarms are the datarace reports, the potential causes, which are identified by

Heuristic, could be any set of tuples in theory. However, we found it useful to focus our

heuristics on two relations: shared and parallel, which we observe to often contain

common root causes of false alarms. The shared relation contains instructions that may

access thread-shared objects; the parallel relation contains instruction pairs that may be

reachable in parallel. We call the set of all tuples from these two relations the universe of

potential causes.

We provide four different Heuristic instantiations, which are shown in Figure 3.13.

Instantiations static optimistic and static pessimistic contain static rules that

reflect analysis designers’ intuition. Instantiation dynamic leverages a dynamic analysis to

identify analysis facts that are likely spurious. Finally, instantiation aggregated combines

the previous three instantiations using a decision tree. We next describe each instantiation

in detail.

Instantiation static optimistic encodes a heuristic applied in the implementation

by [43], which treats shared tuples whose associated access occurs in an object con-

structor as spurious. Moreover, it includes parallel tuples related to instructions in

Thread.run() and Runnable.run() in the potential causes as they are often falsely

derived due to a context-insensitive call-graph. Instantiation static pessimistic is

similar to static optimistic except it aggressively classifies all shared tuples as false,
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static optimistic() = {shared(i) | instruction i is in a constructor} ∪
{parallel(i, t1, t2) | instruction i is in java.lang.Thread.run() or

java.lang.Runnable.run())}
static pessimistic() = {shared(i) | i is an instruction} ∪

{parallel(i, t1, t2) | instruction i is in java.lang.Thread.run() or
java.lang.Runnable.run())}

dynamic() = {shared(i) | Instruction i is executed and only accesses thread-local
objects during the runs} ∪

{parallel(i, t1, t2) | whenever thread t1 executes instruction i in
the run, t2 is not running}

aggregated() = decisionTree(dynamic, static optimistic, static pessimistic)

Figure 3.13: Heuristic instantiations for the datarace analysis.

capturing the intuition that most accesses are thread-local.

When applying our approach, one might lack intuitions like the above ones to effec-

tively identify potential causes. In this case, they can leverage the power of testing, akin to

work on discovering likely invariants [44]: if an analysis fact is not observed consistently

across different runs, then it is very likely to be false. We provide instantiation dynamic to

capture this intuition. It leverages a dynamic analysis and returns tuples whose associated

program points are reached but associated program facts are not observed across runs.

Having multiple Heuristic instantiations is not unusual; we gain the benefits of each of

them using a combined instantiation aggregated, which decides whether to classify each

given tuple as a potential cause by considering the results of all the individual instantia-

tions. Instantiation aggregated realizes this idea by using a decision tree that aggregates

the results of the other instantiations. We obtain such a decision tree by training it on

benchmarks where the tuples in the universe of potential causes are fully labeled.

3.2.6 Empirical Evaluation

This section evaluates the effectiveness of our approach by applying it to the datarace anal-

ysis on a suite of 8 Java programs. In addition, Appendix B discusses the evaluation results

for the use case where the oracle is a precise yet expensive analysis, by applying our ap-

proach to the pointer analysis on the same benchmark suite.
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Table 3.8: Benchmark characteristics. Column |A| shows the numbers of alarms. Column
|QU | shows the sizes of the universes of potential causes, where k stands for thousands.
All the reported numbers except for |A| and |QU | are computed using a 0-CFA call-graph
analysis.

# Classes # Methods Bytecode (KB) Source (KLOC) |A| |QU |
app total app total app total app total false total false%

raytracer 18 87 74 283 5.1 18 1.8 41.4 226 411 55% 5.3k
montecarlo 18 114 115 442 5.2 23 3.5 50.8 37 38 97.4% 4.4k
sor 6 100 12 431 1.8 30 0.6 52.5 64 64 100% 940
elevator 5 188 24 899 2.3 52 0.6 88 100 100 100% 1.4k
jspider 113 391 422 1572 17.7 74.6 6.7 106 214 264 81.1% 82k
hedc 44 353 230 2,134 16 140 6.1 128 317 378 83.9% 38k
ftp 119 527 608 2,705 36.5 142 18.2 162 594 787 75.5% 131k
weblech 11 576 78 3,326 6 208 12 194 6 13 46.2% 6.2k

3.2.6.1 Evaluation Setup

We implemented our approach in a tool called URSA for analyses specified in Datalog that

target Java programs. We use Chord [38] as the Java analysis framework and bddbddb

[19] as the Datalog solver. All experiments were done using Oracle HotSpot JVM 1.6 on a

Linux machine with 64GB memory and 2.7GHz processors.

Table 3.8 shows the characteristics of each benchmark. In particular, it shows the num-

bers of alarms and tuples in the universes of potential causes. Note that the size of the

universe of potential causes is one to two orders of magnitude higher than the alarms for

each benchmark, highlighting the large search space of our problem.

We next describe how we instantiate the main algorithm (Algorithm 2) of URSA by

describing our implementations of Heuristic, Decide, and the termination check.

Heuristic. We evaluate all Heuristic instantiations described in Chapter 3.2.5, plus an

ideal one that answers according to the ground truth. We define aggregated by

aggregated() := { t ∈ QU | f(t ∈ static optimistic(), t ∈ static pessimistic(), t ∈

dynamic())}

where f is a ternary Boolean function represented by a decision tree. We learn this decision

tree, using the C4.5 algorithm [45], on the four smaller benchmarks. Each data point
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corresponds to a tuple in the universes of potential causes and we obtain the expected

output by invoking the Decide procedure, whose implementation is described immediately

after the current discussion on Heuristic. The result of learning is f(x, y, z) = x∧ z, which

leads to

aggregated() = static optimistic() ∩ dynamic().

Thus, aggregated only classifies a tuple as spurious when both static optimistic

and dynamic do so. We find aggregated to be the best instantiation overall in terms of

numbers of questions asked and alarms resolved by URSA.

To evaluate the effectiveness of various heuristics, we also define the heuristic ideal() :=

QU ∩True. This heuristic requires precomputing the ground truth, which one would not do

for using URSA normally. As ground truth, we use consensus between answers from many

users. Note that the interactive analysis will treat ideal as it does with any of the other

heuristics, cross-checking its answers against the oracle.

Decide. In practice, Decide is implemented by a real user or an expensive analysis that

provides answers to questions posed by URSA in an online manner. To evaluate our ap-

proach uniformly under various settings, however, we obtained answers to all the alarms

and potential causes offline. To obtain such answers, we hired a group of 44 Java devel-

opers on UpWork [46], a freelancer platform. For improved confidence in the answers, we

required them to have prior experience with concurrent programming in Java; moreover,

we filtered out 4 users who gave incorrect answers to three hidden diagnostic questions,

resulting in 40 valid participants. Finally, to reduce the answering effort, we applied a dy-

namic analysis and marked facts observed to hold in concrete runs as true, and required

answers only for the unresolved ones.

Termination. As described in Chapter 3.2.4.6, we decide to terminate the algorithm

when the expected payoff is ≤ 1. Intuitively, there is no root cause left that could explain
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Figure 3.14: Number of questions asked over total number of false alarms (denoted by the
lower dark bars) and percentage of false alarms resolved (denoted by the upper light bars)
by URSA. Note that URSA terminates when the expected payoff is ≤ 1, which indicates
that the user should stop looking at potential causes and focus on the remaining alarms.

more than one alarm. Thus, the user may find it more effective to inspect the remaining

reports directly or use other techniques to further reduce the false alarms.

3.2.6.2 Evaluation Results

Our evaluation addresses the following five questions:

1. Generalization: How effectively does URSA identify the fewest queries that eliminate

the most false alarms?

2. Prioritization: How effectively does URSA prioritize those queries that eliminate the

most false alarms?

3. User time for causes vs. alarms: How much time do users spend inspecting a potential

cause versus a potential alarm?

4. Impact of incorrect user answers: How do incorrect user answers affect the effectiveness

of URSA in terms of precision, soundness, and user effort?

5. Scalability: Does the optimization procedure of URSA scale to large programs?
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Figure 3.15: Number of questions asked and number of false alarms resolved by URSA in
each iteration.

6. Effect of different heuristics: What is the impact of different heuristics on generalization

and prioritization?

We report all averages using arithmetic means except average payoffs and average speedups,

which are calculated using geometric means.

Generalization results. Figure 3.14 shows the generalization results of URSA with

aggregated, the best available Heuristic instantiation. For comparison, we also include

the ideal heuristic. For each benchmark under both settings, we show the percentage of

resolved false alarms (the upper light bars) and the number of asked questions over the total

number of false alarms (the lower dark bars). The figure also shows the absolute numbers

of asked questions (denoted by the numbers over dark bars) and the numbers of false alarms

produced by the input static analysis (denoted by the numbers at the top).

URSA is able to eliminate 73.7% of the false alarms with an average payoff of 12× per

question. On ftp, the benchmark with the most false alarms, the gain is as high as 87%

and the average payoff increases to 29×. Note that URSA does not resolve all alarms as

it terminates when the expected payoff becomes 1 or smaller, which means there are no

common root causes for the remaining alarms. These results show that most of the false

alarms can indeed be eliminated by inspecting only a few common root causes.
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URSA eliminates most of the false alarms for all benchmarks except hedc, where only

17.7% of the false alarms are eliminated. In fact, even under the ideal setting, only 34%

of the false alarms can be eliminated. Closer inspection revealed that most alarms in hedc

indeed do not share common root causes. However, the questions asked comprise only 7%

of the false alarms. This shows that even when there is scarce room to generalize, URSA

does not ask unnecessary questions.

In the ideal case, URSA eliminates an additional 15.6% of false alarms on average,

which modestly improves over the results with aggregated. We thus conclude the

aggregated instantiation is effective in identifying common root causes of false alarms.

Prioritization results. Figure 3.15 shows the prioritization results of URSA. In the plots,

each iteration of Algorithm 2 has a corresponding point, which represents the number of

false alarms eliminated (y-axis) and the number of questions (x-axis) asked so far. As

before, we compare the results of URSA to the ideal case, which has a perfect heuristic.

We observe that a few causes often yield most of the benefits. For instance, three

causes can resolve 323 out of 594 false alarms on ftp, yielding a payoff of 108×. URSA

successfully identifies these causes with high payoffs and poses them to the user in the

earliest few iterations. In fact, for the first three iterations on most benchmarks, URSA

asks exactly the same set of questions as the ideal setting. The results of these two settings

only differ in later iterations, where the payoff becomes relatively low. We also notice

that there can be multiple causes in the set that gives the highest benefit (for instance,

the aforementioned ftp results). The reason is that there can be multiple derivations to

each alarm. If we naively search the potential causes by fixing the number of questions in

advance, we can miss such causes. URSA, on the other hand, successfully finds them by

solving the optimal root set problem iteratively.

The fact that URSA is able to prioritize causes with high payoffs allows the user to stop

interacting after a few iterations and still get most of the benefits. URSA terminates either

when the expected payoff drops to 1 or when there are no more questions to ask. But in
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practice, the user might choose to stop the interaction even earlier. For instance, the user

might be satisfied with the current result or she may find limited payoff in answering more

questions.

We study these causes with high payoffs more closely. For our datarace analysis, the

two main categories of causes are (i) spurious thread-shared memory access (shared)

tuples in object constructors of classes that extend the java.lang.Thread class or im-

plement the java.lang.Runnable interface, and (ii) spurious may-happen-in-parallel

(parallel) tuples in the run methods of similar classes. The objects whose constructors

contain spurious (shared) tuples are mostly created in loops where a new thread is created

and executes the run methods of these objects in each iteration. The datarace analysis is

unable to distinguish the objects created in different iterations and considers them all as

thread-shared after the first iteration. This leads to many false datarace alarms between

the main thread which invokes the constructors and the threads created in the loops which

also access the objects by executing their run methods. The spurious parallel tuples are

produced due to the context-insensitive call-graphs which mismatch the run methods con-

taining them to Thread.start invocations that cannot actually reach these run methods.

This in turn leads to many false alarms between multiple threads.

User time for causes vs. alarms. While URSA can significantly reduce the number of

alarms that a user must inspect, it comes at the expense of the user inspecting causes. We

measured the time consumed by each programmer when labeling individual causes and

alarms for the datarace analysis. Our measurements show that it takes 578 seconds on

average for a user to inspect a datarace alarm but only 265 seconds on average to inspect

a cause. This is because reasoning about an alarm often requires reasoning about multiple

causes and other program facts that can derive it. To precisely quantify the reduction in user

effort, a more rigorous user study is needed, which is beyond the scope of the current paper.

However, the massive reduction in the number of alarms that a user needs to inspect and
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Table 3.9: Results of URSA on ftp with noise in Decide. The baseline analysis produces
193 true alarms and 594 false alarms. We run each setting for 30 times and take the aver-
ages.

% Noise
# Resolved

False Alarms
% Resolved
False Alarms

# False
Negatives

% Retained
True Alarms

# Questions Payoff

0% 517.0 87.0% 0.0 100.0% 18.0 28.7
1% 516.4 86.9% 0.0 100.0% 18.1 28.6
5% 515.4 86.8% 4.9 97.4% 18.2 28.4

10% 505.0 85.0% 9.2 95.2% 19.4 26.3

the fact that a cause is on average much less expensive to inspect shows URSA’s potential

to significantly reduce overall user effort.

In practice, there might be cases where the causes are much more expensive to inspect

than alarms. However, as discussed in Chapter 3.2.4.6, as long as the costs can be quantified

in some way, we can naturally encode them in our optimization problem. As a result, URSA

will be able to find the set of questions that maximizes the payoff in user effort.

Impact of incorrect user answers. As we discussed earlier (Chapter 3.2.4.6), users can

make mistakes. We analyze the impact of mistakes quantitatively by injecting random noise

in Decide: we flip its answer to each tuple with probability x%. We set x to 1, 5, 10, and

apply URSA on ftp, the benchmark with the most alarms. We run the experiment under

each setting for 30 times and calculate the averages of all statistics. Table 3.9 summarizes

the results in terms of precision, soundness, and user effort. We also show the results of

URSA without noise as a comparison.

Columns 2 and 3 show, respectively, the number and the percentage of false alarms

that are resolved by URSA with noise. When the amount of noise increases, both statistics

drop. This is due to Decide incorrectly marking certain spurious tuples posed by URSA as

true. These tuples might well be the only tuples that can resolve certain alarms and are with

payoff > 1. However, we also notice that the drop is modest: a noise of 10% leads to a

drop in resolved false alarms of 2% only.

Columns 4 and 5 show, respectively, the number of false negatives and the percentage of

retained true alarms. URSA can introduce false negatives when a noisy Decide incorrectly
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Figure 3.16: Time consumed by URSA in each iteration.

marks a true tuple as spurious. The number of false negatives grows as the amount of noise

increases, but the growth is not significant: a noise of 10% leads to missing 4.8% true

alarms only. This shows that URSA does not amplify user errors. It is especially true for

datarace analysis, given that its alarms are harder to inspect compared to the root causes.

Columns 6 and 7 show, respectively, the number of questions asked by URSA and the

payoff of answering these questions. As expected, more noise leads to more questions and

smaller payoffs. But, the effect is modest: a noise of 10% increases the number of questions

by 7.7% and decreases the payoff by 8.4%.

In summary, URSA is resilient to user mistakes.

Scalability results. Figure 3.16 shows the distributions of the time consumed by URSA

in each iteration. As the figure shows, almost all iterations finish within half a minute.

After closer inspection, we find that most of the time is spent in the Markov Logic Network

solver. While each invocation only takes less than 5 seconds, one iteration consists of up

to 20 invocations. We note that while the user inspects causes (which takes 265 seconds

on average), URSA would have time to speculate what the answers will be, and prepare the

next set of questions accordingly. There are two cases in which URSA spent more than half

a minute: the first iterations of jspider and ftp. This iteration happens after the static

analysis runs and before the user interaction starts. So, from the point of view of the user,
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Figure 3.17: Number of questions asked and number of false alarms eliminated by URSA

with different Heuristic instantiations.

it is the same as having a slightly longer static analysis time. Moreover, on the smaller four

benchmarks, each iteration of URSA takes only a few seconds. Such fast response times

ensure URSA’s usability in an interactive setting.

Effect of different heuristics. The results of running the datarace analysis under each

heuristic (Chapter 3.2.5) are shown in Figure 3.17: (a) generalization and (b) prioritization.

Generalization. We begin with a basic sanity check. By Lemma 12, if a heuris-

tic returns a subset of potential causes, then it cannot resolve more false alarms. Thus,

aggregated can never resolve more false alarms than static optimistic or dynamic,

and static optimistic can never resolve more false alarms than static pessimistic.

This is indeed the case, as we can see from the white bars in Figure 3.17(a).

We make two main observations: (i) dynamic has wide variation in performance, and
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(ii) aggregated has the best average performance. As before, we measure generaliza-

tion performance by payoff. The variation in payoff under the dynamic heuristic can be

explained by a variation in test coverage: dynamic performs well for montecarlo and

elevator (which have good test coverage), and poorly for raytracer and hedc (which

have poor test coverage). The good average payoff of aggregated shows that aggressive

heuristics guide our approach towards asking good questions.

Prioritization. Figure 3.17(b) shows the prioritization result for each instantiation on

raytracer. For comparison, we also show the result with a baseline Heuristic instanti-

ation which returns all tuples in the shared and parallel relations as potential causes.

Instantiation aggregated yields the best result: the first six questions posed under it are

same as those under the ideal case, and answering these questions resolves 177 out of 226

false alarms. The other instantiations perform slightly worse but still prioritize the top three

questions in terms of payoff in the first 10 questions. On the other hand, the baseline fails

to resolve any alarms for the first 107 iterations, highlighting the effectiveness of using any

of our Heuristic instantiations over using none of them.

3.2.7 Related Work

We survey techniques for reducing user effort in inspecting static analysis alarms. Then,

we explain the relation with techniques for combining analyses.

Models for interactive analysis. Different usage models have been proposed to counter

the impact of approximations [47, 48, 9] or missing specifications [49, 50] on the accuracy

of static analyses.

In the approaches proposed by [48, 9], user annotations on inspected alarms are gener-

alized to re-rank or re-classify the remaining alarms. These approaches are probabilistic,

and do not guarantee soundness. Also, users inspect alarm reports rather than intermediate

causes.
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The technique proposed by [47] asks users to resolve intermediate causes that are guar-

anteed to resolve individual alarms soundly. It aims to minimize user effort needed to

resolve a single alarm. In contrast, our approach aims to minimize user effort to resolve

all alarms considered together, making it more suitable for static analyses that report large

numbers of alarms with shared underlying causes of imprecision.

Instead of approximations, the approaches proposed by [50, 49] target specifications

for missing program parts that result in misclassified alarms. In particular, they infer can-

didate specifications that are needed to verify a given assertion, and present them to users

for validation. These techniques are applicable to analyses based on standard graph reach-

ability [49] or CFL reachability [50], while we target analyses specified in Datalog.

Just-in-time analysis aims at low-hanging fruit: it first presents alarms that can be found

quickly, are unlikely to be false positives, and involve only code close to where the pro-

grammer edits. While the programmer responds to these alarms, the analysis searches for

more alarms, which are harder to find. A just-in-time analysis exploits user input only in

a limited sense: it begins by looking at the code in the programmer’s working set. [51]

show how to transform an analysis based on the IFDS/IDE framework into a just-in-time

analysis. By comparison, our approach targets Datalog (rather than IFDS/IDE), requires a

delay in the beginning to run the underlying analysis, but then fully exploits user input and

provenance information to minimize the number of alarms presented to the user.

The Ivy model checker takes user guidance to infer inductive invariants [52]. Our ap-

proach is to start with an over-approximation and ask for user help to prune it down towards

the ground truth; the Ivy approach is to guess a separating frontier between reachable and

error states and ask for user help in refining this guess both downwards and upwards, un-

til no transition crosses the frontier. Ivy targets small, modeling languages, rather than

full-blown programming languages like Java.
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Solvers for interactive analysis. Various solving techniques have been developed to in-

corporate user feedback into analyses or to ask relevant questions to analysis users. Ab-

ductive inference, used by [47, 49], involves computing minimum satisfying assignments

to SMT formulae [47] or minimum-size prime implicants of Boolean formulae [49]. The

maximum satisfiability problem used by [9] involves solving a system of mixed hard and

soft constraints. While the hard constraints encode soundness conditions, the soft con-

straints encode various objectives such as the costs of different user questions, likelihood

of different outcomes, and confidence in different hypotheses. These problems are NP-

hard; in contrast, the CFL reachability algorithm used by [50] is polynomial time.

Report ranking and clustering. A common approach for reducing a user’s effort in in-

specting static analysis alarms is to rank them by their likelihood of being true [53, 54, 55].

In the work by [53], a statistical post-analysis is presented that computes the probability

of each alarm being true. Z-ranking [54] employs a simple statistical model based on se-

mantic inconsistency detection [56] to rank those alarms most likely to be true errors over

those that are least likely. In the work by [55], a post-processing technique also based on

semantic inconsistency detection is proposed to de-prioritize reporting alarms in modular

verifiers that are caused by overly demonic environments.

Report clustering techniques [35, 36, 48] group related alarms together to reduce user

effort in inspecting redundant alarms. These techniques either compute logical dependen-

cies between alarms [35, 36], or employ a probabilistic model for finding correlated alarms

[48]. Unlike these techniques, our approach correlates alarms by identifying their common

root causes, which are obtained by analyzing the abstract semantics of the analysis at hand.

Our approach is complementary to the above techniques; information such as the truth

likelihood of alarms and logical dependencies between alarms can be exploited to further

reduce user effort in our approach.
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Spectrum-based fault localization. There is a large body of work on fault localization,

especially spectrum-based techniques [57, 58, 59, 60, 61] that seek to pin-point the root

causes of failing tests in terms of program behaviors that differ in passing tests, and thereby

reduce programmers’ debugging effort. Analogously, our approach aims to identify the root

causes of alarms, albeit with two crucial differences: our approach is not aware upfront

whether each alarm is true or false, unlike in the case of fault localization where each test

is known to be failing or passing; secondly, our approach operates on an abstract program

semantics used by the given static analysis, whereas fault localization techniques operate

on the concrete program semantics.

Interactive Program Optimization. IOpt [62, 63] is an interactive program optimizer.

While it targets program performance rather than correctness, it also uses benefit-cost ratios

to rank the questions, where the benefit is the expected program speedup and the cost is the

estimated user effort in answering the question. However, the underlying techniques to

compute such ratios are radically different: while IOpt’s approach is based on heuristics,

our approach solves a rigorous optimization problem that is generated from the analysis

semantics.

Combining multiple analyses. Our method allows a user and an analysis to work to-

gether interactively. It is possible to replace the user with another analysis, thus obtaining a

method for combining two analyses. We note that the converse is often false: If one starts

with a method for combining analyses, then it is usually impossible to replace one of the

analyses with the user. The reason is that humans need an interface with low bandwidth.

In our case, they get simple yes/no questions. But, if we look at the approach proposed

by [8], which is closest to our work on a technical level, then we see a tight integration

between analyses, in which most state is shared, and it is even difficult to say where the

interface between analyses lies. There is no user that would be happy to be presented with

the entire internal state of an analysis and asked to perform an update on it. Designing a

91



fruitful method for combining analyses becomes significantly more difficult if one adds the

constraint that the interaction must be low bandwidth, and such a constraint is necessary if

a user is to be involved.

Low-bandwidth methods for combining analyses may prove useful even in the absence

of a user because they do not require analyses to be alike. This is speculation, but we

can point to a similar situation that is reality: The Nelson–Oppen method for combining

decision procedures is wildly successful because it requires only equalities to be commu-

nicated [64].

Existing methods for combining analyses do not have the low-bandwidth property. In

previous works by [65, 66, 67], a fast pre-analysis is used to infer a precise and efficient

abstraction for a parametric analysis. This pre-analysis can be either an over-approximating

static analysis [66] or an under-approximating dynamic analysis [65, 67].

3.2.8 Conclusion

We presented an interactive approach to resolve static analysis alarms. The approach en-

compasses a new methodology that synergistically combines a sound but imprecise analysis

with precise but unsound heuristics. In each iteration, it solves the optimum root set prob-

lem which finds a set of questions with the highest expected payoff to pose to the user. We

presented an efficient solution to this problem based on Markov Logic Networks for a gen-

eral class of constraint-based analyses. We demonstrated the effectiveness of our approach

in practice at eliminating a majority of false alarms by asking only a few questions, and at

prioritizing questions with high payoffs.

3.3 Static Bug Detection

3.3.1 Introduction

Program analysis tools often make approximations. These approximations are a necessary

evil as the program analysis problem is undecidable in general. There are also several
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specific factors that drive various assumptions and approximations: program behaviors that

the analysis intends to check may be impossible to define precisely (e.g., what constitutes a

security vulnerability), computing exact answers may be prohibitively costly (e.g., worst-

case exponential in the size of the analyzed program), parts of the analyzed program may be

missing or opaque to the analysis (e.g., if the program is a library), and so on. As a result,

program analysis tools often produce false positives (or false bugs) and false negatives (or

missed bugs), which are absolutely undesirable to users. Users today, however, lack the

means to guide such tools towards what they believe to be “interesting” analysis results,

and away from “uninteresting” ones.

This section presents a new approach to user-guided program analysis. It shifts deci-

sions about the kind and degree of approximations to apply in an analysis from the analysis

writer to the analysis user. The user conveys such decisions in a natural fashion, by giving

feedback about which analysis results she likes or dislikes, and re-running the analysis.

Our approach is a radical departure from existing approaches, allowing users to control

both the precision and scalability of the analysis. It offers a different, and potentially more

useful, notion of precision—one from the standpoint of the analysis user instead of the

analysis writer. It also allows the user to control scalability, as the user’s feedback enables

tailoring the analysis to the precision needs of the analysis user instead of catering to the

broader precision objectives of the analysis writer.

Our approach and tool called EUGENE satisfies three useful goals: (i) expressiveness:

it is applicable to a variety of analyses, (ii) automation: it does not require unreasonable

effort by analysis writers or analysis users, and (iii) precision and scalability: it reports

interesting analysis results from a user’s perspective and it handles real-world programs.

EUGENE achieves each of these goals as described next.

Expressiveness. An analysis in EUGENE is expressed as a Markov Logic Network, which

is a set of logic inference rules with optional weights (Chapter 3.3.3). In the absence of

weights, rules become “hard rules”, and the analysis reduces to a conventional one where a
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solution that satisfies all hard rules is desired. Weighted rules, on the other hand, constitute

“soft rules” that generalize a conventional analysis in two ways: they enable to express dif-

ferent degrees of approximation, and they enable to incorporate feedback from the analysis

user that may be at odds with the assumptions of the analysis writer. The desired solution

of the resulting analysis is one that satisfies all hard rules and maximizes the weight of

satisfied soft rules. Such a solution amounts to respecting all indisputable conditions of the

analysis writer, while maximizing precision preferences of the analysis user.

Automation. EUGENE takes as input analysis rules from the analysis writer, and automat-

ically learns their weights using an offline learning algorithm (Chapter 3.3.4.2). EUGENE

also requires analysis users to specify which analysis results they like or dislike, and auto-

matically generalizes this feedback using an online inference algorithm (Chapter 3.3.4.1).

The analysis rules (hard and soft) together with the feedback from the user (modeled as

soft rules) forms a probabilistic constraint system that EUGENE solves efficiently.

Precision and Scalability. EUGENE maintains precision by ensuring integrity and optimal-

ity in solving the rules without sacrificing scalability. Integrity (i.e., satisfying hard rules)

amounts to respecting indisputable conditions of the analysis. Optimality (i.e., maximally

satisfying soft rules) amounts to generalizing user feedback effectively. Together these as-

pects ensure precision. Satisfying all hard rules and maximizing the weight of satisfied

soft rules corresponds to the aforementioned MAP inference problem of Markov Logic

Networks. EUGENE leverages our learning and inference engine, NICHROME, to solve

Markov Logic Networks in a manner that is integral, optimal, and scalable.

We demonstrate the precision and scalability of EUGENE on two analyses, namely,

datarace detection, and monomorphic call site inference, applied to a suite of seven Java

programs of size 131–198 KLOC. We also report upon a user study involving nine users

who employ EUGENE to guide an information-flow analysis on three Java micro-benchmarks.

In these experiments, EUGENE significantly reduces misclassified reports upon providing

limited amounts of feedback.
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1 package org.apache.ftpserver;
2 public class RequestHandler {
3 Socket m_controlSocket;
4 FtpRequestImpl m_request;
5 FtpWriter m_writer;
6 BufferedReader m_reader;
7 boolean m_isConnectionClosed;
8 public FtpRequest getRequest() {
9 return m_request;

10 }
11 public void close() {
12 synchronized(this) {
13 if (m_isConnectionClosed)
14 return;
15 m_isConnectionClosed = true;
16 }
17 m_request.clear();
18 m_request = null;
19 m_writer.close();
20 m_writer = null;
21 m_reader.close();
22 m_reader = null;
23 m_controlSocket.close();
24 m_controlSocket = null;
25 }
26 }

Figure 3.18: Java code snippet of Apache FTP server.

In summary, our work makes the following contributions:

1. We present a new approach to user-guided program analysis that shifts decisions

about approximations in an analysis from the analysis writer to the analysis users,

allowing users to tailor its precision and cost to their needs.

2. We formulate our approach in terms of solving a combination of hard rules and soft

rules, which enables leveraging off-the-shelf solvers for weight learning and infer-

ence that scale without sacrificing integrity or optimality.

3. We show the effectiveness of our approach on diverse analyses applied to a suite of

real-world programs. The approach significantly reduces the number of misclassified

reports by using only a modest amount of user feedback.

3.3.2 Overview

Similar to the interactive verification example described in Chapter 3.2.2, we illustrate our

approach using the example of applying the static race detection tool Chord [38] to a real-

world multi-threaded Java program, Apache FTP server [37]. However, for elaboration,
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Analysis Relations:
next(p1, p2) (program point p1 is immediate successor of program point p2)
parallel(p1, p2) (different threads may reach program points p1 and p2 in parallel)
alias(p1, p2) (instructions at program points p1 and p2 may access the same memory location,

and constitute a possible datarace)
unguarded(p1, p2) (no common lock guards program points p1 and p2)
race(p1, p2) (datarace may occur between different threads while executing the instructions at

program points p1 and p2)

Analysis Rules:
parallel(p3, p2) : - parallel(p1, p2), next(p3, p1). (1)
parallel(p2, p1) : - parallel(p1, p2). (2)

race(p1, p2) : - parallel(p1, p2), alias(p1, p2), unguarded(p1, p2). (3)

Figure 3.19: Simplified race detection analysis.

the example in this subsection looks slightly different, as the approach we will present

improves a program analysis in a different manner and is complementary to the previous

approach.

Figure 3.18 shows a code snippet from the program. The RequestHandler class is used

to handle client connections and an object of this class is created for every incoming con-

nection to the server. The close() method is used to clean up and close an open client con-

nection, while the getRequest() method is used to access the m request field. Both these

methods can be invoked from various components of the program (not shown), and thus can

be simultaneously executed by multiple threads in parallel on the same RequestHandler

object. To ensure that this parallel execution does not result in any dataraces, the close()

method uses a boolean flag m isConnectionClosed. If this flag is set, all calls to close()

return without any further updates. If the flag is not set, then it is first updated to true,

followed by execution of the clean-up code (lines 17–24). To avoid dataraces on the flag

itself, it is read and updated while holding a lock on the RequestHandler object (lines

12–16). All the subsequent code in close() is free from dataraces since only the first call

to close() executes this section. However, note that an actual datarace still exists between

the two accesses to field m request on line 9 and line 18.

We motivate our approach by contrasting the goals and capabilities of a writer of an
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E1: Race on field org.apache.ftpserver.RequestHandler. m_isConnectionClosed

org.apache.ftpserver.RequestHandler: 13 org.apache.ftpserver.RequestHandler: 15

Eliminated Races

R1: Race on field org.apache.ftpserver.RequestHandler.m_request

org.apache.ftpserver.RequestHandler: 9 org.apache.ftpserver.RequestHandler: 18

R2: Race on field org.apache.ftpserver.RequestHandler.m_request

org.apache.ftpserver.RequestHandler: 17 org.apache.ftpserver.RequestHandler: 18

R3: Race on field org.apache.ftpserver.RequestHandler.m_writer

org.apache.ftpserver.RequestHandler: 19 org.apache.ftpserver.RequestHandler: 20

R4: Race on field org.apache.ftpserver.RequestHandler.m_reader

org.apache.ftpserver.RequestHandler: 21 org.apache.ftpserver.RequestHandler: 22

R5: Race on field org.apache.ftpserver.RequestHandler.m_controlSocket

org.apache.ftpserver.RequestHandler: 23 org.apache.ftpserver.RequestHandler: 24

Detected Races

(a) Before feedback.

R1: Race on field org.apache.ftpserver.RequestHandler.m_request

org.apache.ftpserver.RequestHandler: 9 org.apache.ftpserver.RequestHandler: 18

Detected Races

E2: Race on field org.apache.ftpserver.RequestHandler.m_request

org.apache.ftpserver.RequestHandler: 17 org.apache.ftpserver.RequestHandler: 18

E3: Race on field org.apache.ftpserver.RequestHandler.m_writer

org.apache.ftpserver.RequestHandler: 19 org.apache.ftpserver.RequestHandler: 20

E4: Race on field org.apache.ftpserver.RequestHandler.m_reader

org.apache.ftpserver.RequestHandler: 21 org.apache.ftpserver.RequestHandler: 22

E5: Race on field org.apache.ftpserver.RequestHandler.m_controlSocket

org.apache.ftpserver.RequestHandler: 23 org.apache.ftpserver.RequestHandler: 24

E1: Race on field org.apache.ftpserver.RequestHandler. m_isConnectionClosed

org.apache.ftpserver.RequestHandler: 13 org.apache.ftpserver.RequestHandler: 15

Eliminated Races

(b) After feedback.

Figure 3.20: Race reports produced for Apache FTP server. Each report specifies the field
involved in the race, and line numbers of the program points with the racing accesses. The
user feedback is to “dislike” report R2.

analysis, such as the race detection analysis in Chord, with those of a user of the analysis,

such as a developer of the Apache FTP server.

The role of the analysis writer. The designer or writer of a static analysis tool, say

Alice, strives to develop an analysis that is precise yet scales to real-world programs, and is

widely applicable to a large variety of programs. In the case of Chord, this translates into

a race detection analysis that is context-sensitive but path-insensitive. This is a common

design choice for balancing precision and scalability of static analyses. The analysis in

Chord is expressed using Datalog, a declarative logic programming language, and Figure

3.19 shows a simplified subset of the logical inference rules used by Chord. The actual

analysis implementation uses a larger set of more elaborate rules but the rules shown here

suffice for the discussion. These rules are used to produce output relations from input rela-

tions, where the input relations express known program facts and output relations express

the analysis outcome. These rules express the idioms that the analysis writer Alice deems

to be the most important for capturing dataraces in Java programs. For example, Rule (1)

in Figure 3.19 conveys that if a pair of program points (p1, p2) can execute in parallel, and

if program point p3 is an immediate successor of p1, then (p3, p2) are also likely to happen
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in parallel. Rule (2) conveys that the parallel relation is symmetric. Via Rule (3), Alice

expresses the idiom that only program points not guarded by a common lock can be poten-

tially racing. In particular, if program points (p1, p2) can happen in parallel, can access the

same memory location, and are not guarded by any common lock, then there is a potential

datarace between p1 and p2.

The role of the analysis user. The user of a static analysis tool, say Bob, ideally

wants the tool to produce exact (i.e., sound and complete) results on his program. This

allows him to spend his time on fixing the bugs in the program instead of classifying the

reports generated by the tool as spurious or real. In our example, suppose that Bob runs

Chord on the Apache FTP server program in Figure 3.18. Based on the rules in Figure

3.19, Chord produces the list of datarace reports shown in Figure 3.20(a). Reports R1–R5

are identified as potential dataraces in the program, whereas for report E1, Chord detects

that the accesses to m isConnectionClosed on lines 13 and 15 are guarded by a common

lock, and therefore do not constitute a datarace. Typically, the analysis user Bob is well-

acquainted with the program being analyzed, but not with the details of underlying analysis

itself. In this case, given his familiarity with the program, it is relatively easy for Bob to

conclude that the code from line 17–24 in the body of the close() method can never be

executed by multiple threads in parallel, and thus reports R2–R5 are spurious.

The mismatch between analysis writers and users. The design decisions of the anal-

ysis writer Alice have a direct impact on the precision and scalability of the analysis. The

datarace analysis in Chord is imprecise for various theoretical and usability reasons.

First, the analysis must scale to large programs. For this reason, it is designed to be

path-insensitive and over-approximates the possible thread interleavings. To eliminate spu-

rious reports R2–R5, the analysis would need to only consider feasible thread interleavings

by accurately tracking control-flow dependencies across threads. However, such precise

analyses do not scale to programs of the size of Apache FTP server, which comprises 130

KLOC.
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Scalability concerns aside, relations such as alias are necessarily inexact as the corre-

sponding property is undecidable for Java programs. Chord over-approximates this prop-

erty by using a context-sensitive but flow-insensitive pointer analysis, resulting in spurious

pairs (p1, p2) in this relation, which in turn are reported as spurious dataraces.

Third, the analysis writer may lack sufficient information to design a precise analysis,

because the program behaviors that the analysis intends to check may be vague or ambigu-

ous. For example, in the case of datarace analysis, real dataraces can be benign in that they

do not affect the program’s correctness [68]. Classifying such reports typically requires

knowledge about the program being analyzed.

Fourth, the program specification can be incomplete. For instance, the race in report R1

above could be harmful but impossible to trigger due to timing reasons extrinsic to Apache

FTP server, such as the hardware environment.

In short, while the analysis writer Alice can influence the design of the analysis, she

cannot foresee every usage scenario or program-specific tweaks that might improve the

analysis. Conversely, analysis user Bob is acquainted with the program under analysis, and

can classify the analysis reports as spurious or real. But he lacks the tools or expertise to

suppress the spurious bugs by modifying the underlying analysis based on his intuition and

program knowledge.

Closing the gap between analysis writers and users. Our user-guided approach aims

to empower the analysis user Bob to adjust the underlying analysis as per his demands

without involving the analysis writer Alice. Our system, EUGENE, achieves this by auto-

matically incorporating user feedback into the analysis. The user provides feedback in a

natural fashion, by “liking” or “disliking” a subset of the analysis reports, and re-running

the analysis. For example, when presented with the datarace reports in Figure 3.20(a), Bob

might start inspecting from the first report. This report is valid and Bob might choose to ei-

ther like or ignore this report. Liking a report conveys that Bob accepts the reported bug as

a real one and would like the analysis to generate more similar reports, thereby reinforcing
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the behavior of the underlying analysis that led to the generation of this report. However,

suppose that Bob ignores the first report, but indicates that he dislikes the second report by

clicking on the corresponding icon. Re-running Chord after providing this feedback pro-

duces the reports shown in Figure 3.20(b). While the true report R1 is generated in this run

as well, all the remaining spurious reports are eliminated. This highlights a key strength

of our approach: EUGENE not only incorporates user feedback, but it also generalizes the

feedback to other similar results of the analysis. Reports R2–R5 are correlated and are spu-

rious for the same root cause: the code from line 17–24 in the body of the close() method

can never be executed by multiple threads in parallel. Bob’s feedback on report R2 conveys

to the underlying analysis that lines 17 and 18 cannot execute in parallel. EUGENE is able

to generalize this feedback automatically and conclude that none of the lines from 17–24

can execute in parallel.

In the following subsections, we describe the underlying details of EUGENE that allow

it to incorporate user feedback and generalize it automatically to other reports.

3.3.3 Analysis Specification

EUGENE uses a constraint-based approach wherein analyses are written in a declarative

constraint language. Constraint languages have been widely adopted to specify a broad

range of analyses. The declarative nature of such languages allows analysis writers to

focus on the high-level analysis logic while delegating low-level implementation details

to off-the-shelf constraint solvers. In particular, Datalog, a logic programming language,

is widely used in such approaches. Datalog has been shown to suffice for expressing a

variety of analyses, including pointer and call-graph analyses [15, 16, 18, 7], concurrency

analyses [43, 69], security analyses [70, 71], and reflection analysis [72].

Existing constraint-based approaches allow specifying only hard rules where an accept-

able solution is one that satisfies all the rules. However, this is insufficient for incorporating

feedback from the analysis user that may be at odds with the assumptions of the analysis
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Input tuples:
next(18, 17) alias(18, 17) guarded(13, 13)
next(19, 18) alias(20, 19) guarded(15, 15)
next(20, 19) alias(22, 21) guarded(15, 13) ...

Ground formula:
w1 : (¬parallel(17, 17) ∨ ¬next(18, 17) ∨ parallel(18, 17)) ∧

(¬parallel(18, 17) ∨ parallel(17, 18)) ∧
w1 : (¬parallel(17, 18) ∨ ¬next(18, 17) ∨ parallel(18, 18)) ∧
w1 : (¬parallel(18, 18) ∨ ¬next(19, 18) ∨ parallel(19, 18)) ∧

(¬parallel(19, 18) ∨ parallel(18, 19)) ∧
w1 : (¬parallel(18, 19) ∨ ¬next(19, 18) ∨ parallel(19, 19)) ∧
w1 : (¬parallel(19, 19) ∨ ¬next(20, 19) ∨ parallel(20, 19)) ∧(

¬parallel(18, 17) ∨ ¬alias(18, 17) ∨
¬unguarded(18, 17) ∨ race(18, 17)

)
∧(

¬parallel(20, 19) ∨ ¬alias(20, 19) ∨
¬unguarded(20, 19) ∨ race(20, 19)

)
∧

w2 : ¬race(18, 17) ∧ ...

Output tuples (before feedback):
parallel(18, 9) parallel(20, 19) race(18, 9) race(20, 19) ...
parallel(18, 17) parallel(22, 21) race(18, 17) race(22, 21)

Output tuples (after feedback):
parallel(18, 9) race(18, 9) ...

Figure 3.21: Probabilistic analysis example.

writer. To enable the flexibility of having conflicting constraints, it is necessary to allow soft

rules that an acceptable solution can violate. Our user-guided approach is based on Markov

Logic Networks that extend Datalog rules with weights. We refer to analyses specified in

this extended language as probabilistic analyses. The semantics of these analyses is en-

coded as MAP inference problems of corresponding Markov Logic Networks.

Example. Recall the syntax and semantics of Markov Logic Networks (Chapter 2.3),

we now describe how EUGENE works on the race detection example from Chapter 3.3.2.

Figure 3.21 shows a subset of the input and output facts as well as a snippet of the ground

formula constructed for the example. The input tuples are derived from the analyzed pro-

gram (Apache FTP server) and comprise the next, alias, and unguarded relations. In all

these relations, the domain of program points is represented by the corresponding line

number in the code. Note that all the analysis rules expressed in Figure 3.19 are hard rules
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since existing tools like Chord do not accept soft rules. However, we assume that when this

analysis is fed to EUGENE, rule (1) is specified to be soft by analysis writer Alice, which

captures the fact that the parallel relation is imprecise. EUGENE automatically learns the

weight of this rule to be w1 by applying the learning engine of NICHROME to training data

(see Chapter 3.3.4.2 for details).

To understand how EUGENE generalizes user feedback, we inspect the ground formula

generated from the probabilistic datarace analysis. Given these input tuples and rules,

the ground formula is generated by grounding the analysis rules, and a snippet of the con-

structed ground formula is shown in Figure 3.21. Recall the definition of the MAP inference

problem: it is to find a set of output tuples that maximizes the sum of the weights of satis-

fied ground soft rules while satisfying all ground hard rules. Ignoring the clause enclosed

in the box, solving this ground formula (without the boxed clause) yields output tuples,

a subset of which is shown under “Output tuples (before feedback)” in Figure 3.21. The

output includes multiple spurious races like race(18, 17), race(20, 19), and race(22, 21).

As described in Chapter 3.3.2, when analysis user Bob provides feedback that race(18, 17)

is spurious, EUGENE suppresses all spurious races while retaining the real race race(18, 9).

EUGENE achieves this by incorporating the user feedback itself as a soft rule, represented

by the boxed clause ¬race(18, 17) in Figure 3.21. The weight for such user feedback is

also learned during the training phase. Assuming the weight w2 of the feedback clause is

higher than the weight w1 of rule (1)—a reasonable choice that emphasizes Bob’s pref-

erences over Alice’s assumptions—the MAP problem semantics ensures that the solver

prefers violating rule (1) over violating the feedback clause. When the ground formula

(with the boxed clause) in Figure 3.21 is then solved, the output solution violates the clause

w1 : (¬parallel(17, 17) ∨ ¬next(18, 17) ∨ parallel(18, 17)) and does not produce tuples

parallel(18, 17) and race(18, 17) in the output. Further, all the tuples that are dependent

on parallel(18, 17) are not produced either.2 This implies that tuples like parallel(19, 18),

2This is due to implicit soft rules that negate each output relation, such as w0 : ¬parallel(p1, p2) where
w0 < w1, in order to obtain the least solution.
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Figure 3.22: Workflow of the EUGENE system for user-guided program analysis.

parallel(20, 19), parallel(22, 21) are not produced, and therefore race(20, 19) and race(22, 21)

are also suppressed. Thus, EUGENE is able to generalize user feedback. The degree of gen-

eralization depends on the quality of the weights assigned or learned for the soft rules.

3.3.4 The EUGENE System

This section describes our system EUGENE for user-guided program analysis. Its workflow,

shown in Figure 3.22, comprises an online inference stage and an offline learning stage.

In the online stage, EUGENE takes the probabilistic analysis specification together

with a program P that an analysis user Bob wishes to analyze. The inference engine of

NICHROME (Chapter 4), uses these inputs to produce the analysis output Q. Further, the

online stage allows Bob to provide feedback on the produced output Q. In particular,

Bob can indicate the output queries he likes (QL) or dislikes (QD), and invoke the inference

engine withQL andQD as additional inputs. The inference engine incorporates Bob’s feed-

back as additional soft rules in the probabilistic analysis specification used for producing

the new result Q. This interaction continues until Bob is satisfied with the analysis output.

The accuracy of the produced results in the online stage is sensitive to the weights as-

signed to the soft rules. Manually assigning weights is not only inefficient, but in most cases

it is also infeasible since weight assignment needs analysis of data. Therefore, EUGENE

provides an offline stage that automatically learns the weights of soft rules in the proba-

bilistic analysis specification. In the offline stage, EUGENE takes a logical analysis speci-

fication from analysis writer Alice and training data in the form of a set of input programs
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Algorithm 4 Inference: Online component of EUGENE.

1: PARAM(wl, wd): Weights of liked and disliked queries.
2: INPUT:C = Ch ∪ Cs: Probabilistic analysis, where Ch are the hard rules and Cs are the

soft rules.
3: INPUT:P : Program to analyze.
4: OUTPUT:Q: Final output of user-guided analysis.
5: QL := ∅; QD := ∅
6: C ′h := Ch ∪ P
7: repeat
8: C ′s := Cs ∪ {(t, wl) | t ∈ QL} ∪ {(¬t, wd) | t ∈ QD}
9: Q := MAP(C ′h ∪ C ′s)

10: QL := PositiveUserFeedback(Q)
11: QD := NegativeUserFeedback(Q)
12: until QL ∪QD = ∅

and desired analysis output on these programs. These inputs are fed to the learning en-

gine of NICHROME (Chapter 4). The logical analysis specification includes hard rules as

well as rules marked as soft whose weights need to be learnt. The learning engine infers

these weights to produce the probabilistic analysis specification. The learning engine en-

sures that the learnt weights maximize the likelihood of the training data with respect to the

probabilistic analysis specification.

3.3.4.1 Online Component of EUGENE: Inference

Algorithm 4 describes the online component Inference of EUGENE, which leverages the

inference engine of NICHROME. Inference takes as input, a probabilistic analysis C

(with learnt weights), and the program P to be analyzed. First, in line 6, the algorithm

augments the hard and soft rules Ch, Cs of the analysis with the inputs P , QL, QD to the

analysis, to obtain an extended set of rules C ′h ∪ C ′s (lines 6 and 8). Notice that the user

feedback QL (liked queries) and QD (disliked queries) are incorporated as soft rules in the

extended rule set. Each liked query feedback is assigned the fixed weight wl, while each

disliked query feedback is assigned weight wd (line 8). Weights wl and wd are learnt in

the offline stage and fed as parameters to Algorithm 4. Instead of using fixed weights

for the user feedback, two other options are: (a) treating user feedback as hard rules, and
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Algorithm 5 Learning: Offline component of EUGENE.
1: INPUT:C: Initial probabilistic analysis.
2: INPUT:Q: Desired analysis output.
3: OUTPUT:C ′: Probabilistic analysis with learnt weights.
4: C ′ = learn(C,Q)

(b) allowing a different weight for each query feedback. Option (a) does not account for

users being wrong, leaving no room for the inference engine to ignore the feedback if

necessary. Option (b) is too fine-grained, requiring learning separate weights for each

query. We therefore take a middle ground between these two extremes.

Next, in line 9, the algorithm invokes the inference engine of NICHROME with the

extended set of rules. Note that EUGENE treats the solver as a black-box and any suitable

solver suffices. The solver produces a solution Q that satisfies all the hard rules in the

extended set, while maximizing the weight of satisfied soft rules. The solution Q is then

presented to Bob who can give his feedback by liking or disliking the queries (lines 10–11).

The sets of liked and disliked queries,QL andQD, are used to further augment the soft rules

Cs of the analysis. This loop (lines 7–12) continues until no further feedback is provided

by Bob.

3.3.4.2 Offline Component of EUGENE: Learning

Algorithm 5 describes the offline component Learning of EUGENE, which leverages the

learning engine of NICHROME. Learning takes a probabilistic analysis C with arbitrary

weights, a set of programs P and the desired analysis output Q ⊆ T as input, and outputs

a probabilistic analysis C ′ with learnt weights. Without loss of generality, we assume that

P is encoded as a set of hard rules and is part of C. Learning computes the output

analysis C ′ by invoking the learning engine of NICHROME (denoted by learn) with the

input analysis C and the desired analysis output Q.
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3.3.5 Empirical Evaluation

We implemented EUGENE atop Chord [38], an extensible program analysis framework for

Java bytecode that supports writing analyses in Datalog. In our evaluation, we investigate

the following research questions:

• RQ1: Does using EUGENE improve analysis precision for practical analyses applied

to real-world programs? How much feedback is needed for the same, and how does

the amount of provided feedback affect the precision?

• RQ2: Does EUGENE scale to large programs? Does the amount of feedback influ-

ence the scalability?

• RQ3: How feasible is it for users to inspect analysis output and provide useful feed-

back to EUGENE?

3.3.5.1 Evaluation Setup

We performed two different studies with EUGENE: a control study and a user study.

First, to evaluate the precision and scalability of EUGENE, we performed a control study

using two realistic analyses expressed in Datalog applied to seven Java benchmark pro-

grams. The goal of this study is to thoroughly investigate the performance of EUGENE in re-

alistic scenarios and with varying amounts of feedback. To practically enable the evaluation

of EUGENE over a large number of a data-points in the (benchmark, analysis,#feedback)

space, this study uses a more precise analysis, instead of a human user, as an oracle for gen-

erating the feedback to be provided. This study helps us evaluate RQ1 and RQ2.

Second, to evaluate the practical usability of EUGENE when human analysis users are

in the loop, we conducted a user study with nine users who employed EUGENE to guide an

information-flow analysis on three benchmark programs. In contrast to the first study, the

human users provide the feedback in this case. This study helps us evaluate RQ3.
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Table 3.10: Statistics of our probabilistic analyses.

rules input relations output relations
datarace 30 18 18
polysite 76 50 42
infoflow 76 52 42

All experiments were run using Oracle HotSpot JVM 1.6.0 on a Linux server with

64GB RAM and 3.0GHz processors.

Clients. Our two analyses in the first study (Table 3.10) are datarace detection (datarace)

and monomorphic call site inference (polysite), while we use an information-flow (infoflow)

analysis for the user study. Each of these analyses is sound, and composed of other anal-

yses written in Datalog. For example, datarace includes a thread-escape analysis and a

may-happen-in-parallel analysis, while polysite and infoflow include a pointer analysis and

a call-graph analysis. The pointer analysis used here is a flow/context-insensitive, field-

sensitive, Andersen-style analysis using allocation site heap abstraction [73]. The datarace

analysis is from [43], while the polysite analysis has been used in previous works [8, 74,

75] to evaluate pointer analyses. The infoflow analysis only tracks explicit information

flow similar to the analysis described in [76]. For scalability reasons, all these analyses are

context-, object-, and flow-insensitive, which is the main source of false positives reported

by them.

Benchmarks. The benchmarks for the first study (upper seven rows of Table 3.11) are

131–198 KLOC in size, and include programs from the DaCapo suite [77] (antlr, avrora,

luindex, lusearch) and from past works that address our two analysis problems.

The benchmarks for the user study (bottom three rows of Table 3.3) are 0.6–4.2 KLOC

in size, and are drawn from Securibench Micro [78], a micro-benchmark suite designed to

exercise different parts of a static information-flow analyzer.
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Methodology. We describe the methodology for the offline (learning) and online (infer-

ence) stages of EUGENE.

Offline stage. We first converted the above three logical analyses into probabilistic

analyses using the offline training stage of EUGENE. To avoid selection bias, we used a

set of small benchmarks for training instead of those in Table 3.11. Specifically, we used

elevator and tsp (100 KLOC each) from [79]. While the training benchmarks are smaller

and fewer than the testing benchmarks, they are sizable, realistic, and disjoint from those

in the evaluation, demonstrating the practicality of our training component. Besides the

sample programs, the training component of EUGENE also requires the expected output

of the analyses on these sample programs. Since the main source of false positives in our

analyses is the lack of context- and object-sensitivity, we used context- and object-sensitive

versions of these analyses as oracles for generating the expected output. Specifically, we

used k-object-sensitive versions [27] with cloning depth k=4. Note that these oracle anal-

yses used for generating the training data comprise their own approximations (for example,

flow-insensitivity), and thus do not produce the absolute ground truth. Using better training

data would only imply that the weights learnt by EUGENE are more reflective of the ground

truth, leading to more precise results.

Online stage. We describe the methodology for the online stage separately for the

control study and the user study.

Control study methodology. To perform the control study, we started by running the

inference stage of EUGENE on our probabilistic analyses (datarace and polysite) with no

feedback to generate the initial set of reports for each benchmark. Next, we simulated

the process of providing feedback by: (i) randomly choosing a subset of the initial set of

reports, (ii) classifying each of the reports in the chosen subset as spurious or real, and (iii)

re-running the inference stage of EUGENE on the probabilistic analyses with the labeled

reports in the chosen subset as feedback. To classify the reports as spurious or real, we
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Table 3.11: Benchmark statistics. Columns “total” and “app” are with and without JDK
library code.

# classes # methods bytecode (KB) source (KLOC)
app total app total app total app total

antlr 111 350 1,150 2,370 128 186 29 131
avrora 1,158 1,544 4,234 6,247 222 325 64 193
ftp 93 414 471 2,206 29 118 13 130
hedc 44 353 230 2,134 16 140 6 153
luindex 206 619 1,390 3,732 102 235 39 190
lusearch 219 640 1,399 3,923 94 250 40 198
weblech 11 576 78 3,326 6 208 12 194
secbench1 4 5 10 13 0.3 0.3 0.08 0.6
secbench2 3 4 9 12 0.2 0.2 0.07 0.6
secbench3 2 17 4 46 0.3 1.25 0.06 4.2

used the results of k-object-sensitive versions of our client analyses as ground truth. In

other words, if a report in the chosen subset is also generated by the precise version of the

analysis, it is classified as a real report, otherwise it is labeled as a spurious report. For

each (benchmark, analysis) pair, we generated random subsets that contain 5%, 10%,

15%, and 20% of the initial reports. This allows us to study the effect of varying amounts

of feedback on EUGENE’s performance. Moreover, EUGENE can be sensitive to not just

the amount of feedback, but also to the actual reports chosen for feedback. To mitigate this

effect, for a given (benchmark, analysis) pair, and a given feedback subset size, we ran

EUGENE thrice using different random subsets of the given size in each run. Randomly

choosing feedback ensures that we conservatively estimate the performance of EUGENE.

Finally, we evaluated the quality of the inference by comparing the output of EUGENE with

the output generated by the k-object-sensitive versions of our analyses with k=4.

User study methodology. For the user study, we engaged nine users, all graduate stu-

dents in computer science, to run EUGENE on infoflow analysis. Each user was assigned

two benchmarks from the set of {secbench1, secbench2, secbench3}, such that each of

these benchmarks was assigned to six users in total. The users interacted with EUGENE

by first running it without any feedback so as to produce the initial set of reports. The

users then analyzed these produced reports, and were asked to provide any eight reports
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Figure 3.23: Results of EUGENE on datarace analysis.

with their corresponding label (spurious or real) as feedback. Also, for each benchmark,

we recorded the time spent by each user in analyzing the reports and generating the feed-

back. Next, EUGENE was run with the provided feedback, and the produced output was

compared with manually generated ground truth for each of the benchmarks.

We next describe the results of evaluating EUGENE’s precision (RQ1), scalability (RQ2),

and usability (RQ3).

3.3.5.2 Evaluation Results

Precision of EUGENE. The analysis results of our control study under varying amounts

of feedback are shown in Figures 3.23 and 3.24. In these figures, “baseline false re-

ports” and “baseline true reports” are the numbers of false and true reports produced when

EUGENE is run without any feedback. The light colored bars above and below the x-axis

indicate the % of false reports eliminated and the % of true reports retained, respectively,

when the % of feedback indicated by the corresponding dark colored bars is provided. For

each benchmark, the feedback percentages increase from left to right, i.e., 5% to 20%. Ide-

ally, we want all the false reports to be eliminated and all the true reports to be retained,

which would be indicated by the light color bars extending to 100% on both sides.
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Figure 3.24: Results of EUGENE on polysite analysis.

Even without any feedback, our probabilistic analyses are already fairly precise and

sophisticated, and eliminate all except the non-trivial false reports. Despite this, EUGENE

helps eliminate a significant number of such hard-to-refute reports. On average 70% of the

false reports are eliminated across all our experiments with 20% feedback. Likewise im-

portantly, on average 98% of the true reports are retained when 20% feedback is provided.

Also, note that with 5% feedback the percentage of false reports eliminated falls to 44% on

average, while that of true reports retained is 94%. A finer-grained look at the results for

individual benchmarks and analyses reveals that in many cases, increasing feedback only

leads to modest gains.

We next discuss the precision of EUGENE for each of our probabilistic analyses. For

DataraceAnalysis, with 20% feedback, an average of 89% of the false reports are eliminated

while an average of 98% of the true reports are retained. Further, with 5% feedback the

averages are 66% for false reports eliminated and 97% for true reports retained. Although

the precision of EUGENE increases with more feedback in this case, the gains are relatively

modest. Note that given the large number of initial reports generated for luindex and

avrora (4421 and 1038 respectively), it is somewhat impractical to expect analysis users

to provide up to 20% feedback. Consequently, we re-run EUGENE for these benchmarks
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Figure 3.25: Results of EUGENE on datarace analysis with feedback (0.5%,1%,1.5%,2%,
2.5%).

with 0.5%, 1%, 1.5%, 2% and 2.5% feedback. The results are shown in Figure 3.25.

Interestingly, we observe that for luindex, with only 2% feedback on the false reports and

1.9% feedback on true reports, EUGENE eliminates 62% of false reports and retains 89%

of the true reports. Similarly for avrora, with only 2.3% feedback on the false reports and

1.8% feedback on true reports, EUGENE eliminates 76% of false reports and retains 96%

of the true reports. These numbers indicate that, for the datarace client, EUGENE is able to

generalize even with a very limited amount of user feedback.

For polysite, with 20% feedback, an average of 57% of the false reports are eliminated

and 99% of the true reports are retained, while with 5% feedback, 29% of the false reports

are eliminated and 92% of the true reports are retained. There are two important things to

notice here. First, the number of eliminated false reports does not always grow monotoni-

cally with more feedback. The reason is that EUGENE is sensitive to the reports chosen for

feedback, but in each run, we randomly choose the reports to provide feedback on. Though

the precision numbers here are averaged over three runs for a given feedback amount, the

randomness in choosing feedback still seeps into our results. Second, EUGENE tends to do

a better job at generalizing the feedback for the larger benchmarks compared to the smaller
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Figure 3.26: Running time of EUGENE.

ones. We suspect the primary reason for this is the fact that smaller benchmarks tend to

have a higher percentage of bugs with unique root causes, and thereby a smaller number of

bugs are attributable to each unique cause. Consequently, the scope for generalization of

the user feedback is reduced.

Answer to RQ1: EUGENE significantly reduces false reports with only modest feedback,

while retaining the vast majority of true reports. Though increasing feedback leads to

more precise results in general, for many cases, the gain in precision due to additional

feedback is modest.

Scalability of EUGENE. The performance of EUGENE for our control study, in terms of

the inference engine running time, is shown in Figure 3.26. For each (benchmark, analysis,

#feedback) configuration, the running time shown is an average over the three runs of the

corresponding configuration. We observe two major trends from this figure. First, as ex-

pected, the running time is dependent on the size of the benchmark and the complexity of

the analysis. For both the analyses in the control study, EUGENE takes the longest time for

avrora, our largest benchmark. Also, for each of our benchmarks, the datarace analysis,

with fewer rules, needs shorter time. Recollect that EUGENE uses an off-the-shelf solver

113



for solving the constraints of probabilistic analysis, and thus the performance of the infer-

ence engine largely depends on the performance of the underlying solver. The running time

of all such solvers depends on the number of ground clauses that are generated, and this

number in turn depends on the size of the input program and complexity of the analysis.

Second, the amount of feedback does not significant affect running time. Incorporating

the feedback only requires adding the liked/disliked queries as soft rules, and thus does not

significantly alter the underlying set of constraints.

Finally, the fact that EUGENE spends up to 120 minutes (polysite analysis on avrora

with 15% feedback) might seem disconcerting. But note that this represents the time spent

by the system rather than the user, in computing the new results after incorporating the user

feedback. Since EUGENE uses the underlying solver as a black-box, any improvement in

solver technology directly translates into improved performance of EUGENE. Given the

variety of solvers that already exist [80, 81, 82, 83, 84, 85], and the ongoing active research

in this area, we expect the running times to improve further.

Answer to RQ2: EUGENE effectively scales to large programs up to a few hundred

KLOC, and its scalability will only improve with advances in underlying solver tech-

nology. Additionally, the amount of feedback has no significant effect on the scalability

of EUGENE.

Usability of EUGENE Next we evaluate the results of our user study conducted using

EUGENE. The usage model for EUGENE assumes that analysis users are familiar with the

kind of reports produced by the analysis as well as with the program under analysis. To

ensure familiarity with reports produced by infoflow analysis, we informed all our users

about the expected outcomes of a precise infoflow analysis in general. However, familiarity

with the program under analysis is harder to achieve and typically requires the user to have

spent time developing or fixing the program. To address this issue, we choose relatively

smaller benchmarks in our study that users can understand without too much effort or

expertise. The users in this study were not informed about the internal working of either
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Figure 3.27: Time spent by each user in inspecting reports of infoflow analysis and provid-
ing feedback.

EUGENE or the infoflow analysis.

The two main questions that we evaluate here are: (i) the ease with which users are

able to analyze the reported results and provide feedback, and (ii) the quality of the user

feedback. To answer the first question, we record the time spent by each user in analyzing

the infoflow reports and providing the feedback for each benchmark. Recall that we ask

each user to provide eight reports as feedback, labeled either spurious or real. Figure 3.27

shows the time spent by each user on analyzing the reports and providing feedback. We

observe that the average time spent by the users is only 8 minutes on secbench1, 11.5

minutes on secbench2, and 5.5 minutes on secbench3. These numbers show that the

users are able to inspect the analysis output and provide feedback to EUGENE with relative

ease on these benchmarks.

To evaluate the quality of the user provided feedback, we consider the precision of

EUGENE when it is run on the probabilistic version of infoflow analysis with the feedback.

Figure 3.28 shows the false bugs eliminated and the true bugs retained by EUGENE for each

user and benchmark. This figure is similar in format to Figures 3.23 and 3.24. However, for

each benchmark, instead of different bars representing different amounts of feedback, the

different bars here represent different users, with feedback amount fixed at eight reports.

The varying behavior of EUGENE on these benchmarks highlights the strengths and limits

of our approach.
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Figure 3.28: Results of EUGENE on infoflow analysis with real user feedback. Each bar
maps to a user.

For secbench1, an average of 78% of the false reports are eliminated and 62.5% of the

true reports are retained. The important thing to note here is that the number of true reports

retained is sensitive to the user feedback. With the right feedback, all the true reports are

retained (5th bar). However, in the case where the user only chooses to provide one true

feedback report (4th bar), EUGENE fails to retain most of the true reports.

For secbench2, an average of 79% of the false reports are eliminated and 100% of

the true reports are retained. The reason EUGENE does well here is that secbench2 has

multiple large clusters of reports with the same root cause. User feedback on any report

in such clusters generalizes to other reports in the cluster. This highlights the fact that

EUGENE tends to produce more precise results when there are larger clusters of reports

with the same root cause.

For secbench3, an average of 46% of the false reports are eliminated while 82% of the

true reports are retained. First, notice that this benchmark produces only eight false reports.

We traced the relatively poor performance of EUGENE in generalizing the feedback on false

reports to limiting the analysis user’s interaction with the system to liking or disliking the

results. This does not suffice for secbench3 because, to effectively suppress the false
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reports in this case, the user must add new analysis rules. We intend to explore this richer

interaction model in future work.

Finally, we observed that for all the benchmarks in this study, the labels provided by the

users to the feedback reports matched with the ground truth. While this is not unexpected,

it is important to note that EUGENE is robust even under incorrectly labeled feedback, and

can produce precise answers if a majority of the feedback is correctly labeled.

Answer to RQ3: It is feasible for users to inspect analysis output and provide feedback to

EUGENE since they only needed an average of 8 minutes for this activity in our user study.

Further, in general, EUGENE produce precise results with this user feedback, leading to

the conclusion that it is not unreasonable to expect useful feedback from users.

Limitations of EUGENE EUGENE requires analyses to be specified using the Datalog-

based language described in Chapter 2.2. Additionally, the program to be analyzed itself

has to be encoded as a set of ground facts. This choice is motivated by the fact that a

growing number of program analysis tools including bddbddb [19], Chord [38], Doop [20],

LLVM [86], Soot [21], and Z3 [87] support specifying analyses and programs in Datalog.

The offline (learning) component of EUGENE requires the analysis designer to spec-

ify which analysis rules must be soft. Existing analyses employ various approximations

such as path-, flow-, and context-insensitivity; in our experience, rules encoding such ap-

proximations are good candidates for soft rules. Further, the learning component requires

suitable training data in the form of desired analysis output. We expect such training data

to be either annotated by the user, or generated by running a precise but unscalable version

of the same analysis on small sample programs. Learning using partial or noisy training

data is an interesting future direction that we plan to explore.

3.3.6 Related Work

Our work is related to past work on classifying error reports and applications of probabilis-

tic reasoning in program analysis.
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Dillig et al. [47] propose a user-guided approach to classify reports of analyses as errors

or non-errors. They use abductive inference to compute small, relevant queries to pose to

a user that capture exactly the information needed to discharge or validate an error. Their

approach does not incorporate user feedback into the analysis specification and generalize

it to other reports. Blackshear and Lahiri [55] propose a post-processing framework to

prioritize alarms produced by a static verifier based on semantic reasoning of the program.

Statistical error ranking techniques [54, 48, 53] employ statistical methods and heuristics to

rank errors reported by an underlying static analysis. Non-statistical clustering techniques

correlate error reports based on a root-cause analysis [36, 35]. Our technique, on the other

hand, makes the underlying analysis itself probabilistic.

Recent years have seen many applications of probabilistic reasoning to analysis prob-

lems. In particular, specification inference techniques based on probabilistic inference [88,

89, 90] can be formulated as Markov Logic Networks (as defined in Chapter 2.3). Another

connection between user-guided program analysis and specification inference is that user

feedback can be looked upon as an iterative method by means of which the analysis user

communicates a specification to the program analysis tool. Finally, the inferred specifica-

tions can themselves be employed as soft rules in our system.

3.4 Conclusion

We presented a user-guided approach to program analysis that shifts decisions about the

kind and degree of approximations to apply in analyses from analysis writers to analysis

users. Our approach enables users to interact with the analysis by providing feedback on

a portion of the results produced by the analysis, and automatically uses the feedback to

guide the analysis approximations to the user’s preferences. We implemented our approach

in a system EUGENE and evaluated it on real users, analyses, and programs. We showed

that EUGENE greatly reduces misclassified reports even with limited user feedback.
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CHAPTER 4

SOLVER TECHNIQUES

This chapter discusses our backend, NICHROME, a learning and inference system for Markov

Logic Networks. In order to solve the problems generated by aforementioned applications

in a efficient and accurate manner, NICHROME exploits various domain insights that are

not limited to our applications. We first give an overview of our learning and inference

algorithms, then discuss how the algorithms exploit these insights in detail. In particular,

most of the discussion will focus on the inference algorithm as the learning algorithm is

eventually reduced to a sequence of invocations to the inference algorithm. The algorithms

discussed in this chapter were originally described in our previous publications [85, 91].

Weight Learning. NICHROME supports weight learning assuming the structure of the

constraints is given. Example applications include learning weights that represent design-

ers’ confidence for constraints from an existing Datalog analysis in the static bug detection

application (Section 3.3). We adapted the gradient descent algorithm described in [92] for

weight learning which reduces the learning problem into a sequence of MAP inference

problems.

Algorithm 6 outlines our algorithm. The inputs are a Markov Logic Network C which

consists of hard constraints Ch and soft constraints Cs. The output is a Markov Logic

Network C ′. C ′ has the same structure as C has but the weights in soft constraints Cs are

updated with learnt weights. Our algorithm calculates the weights such that the expected

MAP solution T becomes the output of MAP(C ′).

As a first step, in line 5, our algorithm assigns initial weights to all the soft con-

straints. The initial weight w′ of a constraint (ch, w
′) ∈ C ′s is computed as a log of

the ratio of the number of instances of ch satisfied by the desired output T (denoted by
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Algorithm 6 Weight learning algorithm for Markov Logic Networks.
1: PARAM α: rate of change of weight of soft rules.
2: INPUT: A Markov Logic Network C = Ch ∪ Cs, where Ch are the hard constraints and
Cs are the soft constraints.

3: INPUT:T , expected output tuples.
4: OUTPUT:C ′, a Markov Logic Network with the same structure as C has but with learnt

weights.
5: C ′s := { (ch, w

′) | ∃w.(ch, w) ∈ Cs ∧ w′ = log(n1/n2) } where n1 =
|Satisfactions(ch, T )|, and n2 = |Violations(ch, T )|.

6: repeat
7: C ′ := Ch ∪ C ′s
8: T ′ = MAP(C ′)
9: Cs := C ′s

10: C ′s := { (ch, w
′) | ∃w.(ch, w) ∈ Cs ∧ w′ = w + α × (n1 − n2) } where n1 =

|Violations(ch, T
′)| and n2 = |Violations(ch, T )|.

11: until C ′s = Cs

|Satisfactions(ch, T )|) to the number of instances of ch violated by T (denoted by

|Violations(ch, T )|). In other words, the initial weight captures the log odds of a rule

being true in the training data. Note that, in the case |Violations(h, T )| = 0, it is

substituted by a suitably small value [92]. We formally define Satisfactions and

Violations below:

Satisfactions(l1 ∨ . . . ∨ ln, T ) := { Jl1K(σ) ∨ . . . ∨ JlnK(σ) | σ ∈ Σ ∧

T |= Jl1K(σ) ∨ . . . ∨ JlnK(σ) }

Violations(l1 ∨ . . . ∨ ln, T ) := { Jl1K(σ) ∨ . . . ∨ JlnK(σ) | σ ∈ Σ ∧

T 6|= Jl1K(σ) ∨ . . . ∨ JlnK(σ) }

Next, in line 8, we perform MAP inference on the Markov Logic Network C ′ (defined

in line 8) with the initialized weights. This produces a solution T ′, which then used to

update the weights of the soft constraints. The weights are updated according to the for-

mulae in lines 10. The basic intuition for updating weights is as follows: weights learnt by

the learning algorithm must be such that MAP(C ′) is as close to the desired output T as

possible. Towards that end, if the current output T ′ produces more violations for a rule than
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the desired output, it implies that the rule needs to be strengthened and its weight should be

increased. On the other hand, if the current output T ′ produces fewer violations for a rule

then T , the rule needs to be weakened and its weight should be reduced. The formula in

the algorithm has exactly the same effect as described here. Moreover, the rate of change

of weights can be controlled by an input parameter α. The learning process continues it-

eratively until the learnt weights do not change. In practice, the learning process can be

terminated after a fixed number of iterations, or when the difference in weights between

successive iterations does not change significantly.

Since the above algorithm eventually reduces the learning problem into a series of MAP

inference problems, the key component that decides the effectiveness of NICHROME is the

inference algorithm. As a result, most of our technical innovations are on the inference

algorithm, which we will illustrate in detail in the rest of the chapter.

MAP Inference. Before illustrating our approach, we first describe the properties of an

ideal inference solver and identify key challenges in implementing such an ideal solver.

Ideally, an inference solver should satisfy the following three criteria:

Soundness. We say an inference solver is sound if any solution it produces does not

violate any hard constraint in the input formula. Soundness is necessary as it ensures

correctness properties of the applications built upon the inference solver. For instance,

applying an unsound solver on the formulae generated by the automated verification appli-

cation (Section 3.1) can produce unviable abstractions that repeat the same mistakes and

even invalid abstractions. As a result, the application may not terminate even when the

space of valid abstractions is finite. As another example, applying an unsound solver in the

static bug detection application can lead to solutions that violate analysis constraints that

should definitely hold based on the analysis designers’ knowledge. This in turn can greatly

degrade the quality of the results (i.e., lead to a lot of false positives or false negatives).
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Optimality. We say an inference solver is optimal if any solution it produces maximizes

the sum of the weights of the satisfied soft constraints while respecting the soundness prop-

erty. Optimality is important as it impacts the quality of the up-level application. For

instance, returning suboptimal answers in the automated verification application will result

in non-minimal abstractions, which can still resolve the desired queries but may result in

program analyses with unnecessarily high costs. And these analyses might not even termi-

nate if the resources are limited. As another example, a non-optimal solver can cause the

user to spend extra effort in inspecting computed root causes in the interactive verification

setting. In worst case, the user may end up spending up more time inspecting these root

causes than inspecting the final alarms directly.

Scalability. Finally, a practical solver should be able to solve large Markov Logic Net-

work large instances generated from real-world applications. This is especially important

to our setting as the instances generated by our applications are more demanding compared

to past applications of Markov Logic Networks, which we will discuss later.

Since Markov Logic Networks have emerged as a promising model for combining logic

and probability, researchers from different communities have developed various MAP in-

ference solvers [80, 81, 84, 83, 22]. However, none of them satisfies all three criteria. Tuffy

[80] and Alchemy [81] are probably the most well-known Markov Logic Network solvers

from the Artificial Intelligence community. They enforce neither soundness nor optimal-

ity. They do not enforce soundness as unlike problems in program reasoning, problems in

Artificial Intelligence typically do not require rigorous formal guarantees. Moreover, while

they scale well at problems in the Artificial Intelligence domain, they have difficulties ter-

minating on our problems, whose characteristics are radically different. Markov thebeast

[84] and Rockit [83] are two solvers that are developed by Artificial Intelligence researchers

later. While both enforce soundness and optimality, they also do not scale on our problems.

Finally, Z3 [22] is the most successful constraint solver from the program reasoning com-

munity. While it is possible to use Z3’s MaxSMT engine to solve Markov Logic Networks
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indirectly by converting the instances into MaxSMT instances, the approach does not scale

well while being able to enforce soundness and optimality.

Before introducing our approach, we first discuss key challenges in designing a sound,

optimal, and scalable MAP inference solver. At a high level, all the algorithms employed

by the aforementioned solvers can be divided into two phases. The first phase is ground-

ing, where the input Markov Logic Network is reduced to a weighted propositional for-

mula by instantiating all variables with constants in the domain. The generated formulae

are instances of Maximum Satisfiability (or MAXSAT), an optimization of the well-known

boolean satisfiability problem. Specifically, we use one of its variants, Partial Weighted

MAXSAT. Then the generated MAXSAT instance is solved by a MAXSAT solver in the

solving phase. Both phases are challenging to scale: for the grounding phase, if we naively

replace variables with all constants in the domain, we can easily get a MAXSAT formula

comprising over 1030 clauses, which is intractable for any existing MAXSAT solver; for the

solving phase, the MAXSAT problem is a combinatorial optimization problem, which is

known for being computationally challenging.

We next describe two approaches that address the challenges in the above two phases

respectively. Briefly, the first approach enables effective grounding by exploiting two ob-

servations: 1) solutions are typically “sparse”, meaning that most of the tuples in the do-

main will not be derived in the output, and 2) a majority of the constraints in the formula

are Horn as they come from a Datalog analysis. The second approach enables effective

MAXSAT solving by exploiting the insight that in all our applications, we are only inter-

ested in part of the result that is about a few tuples – intuitively, if we only care about

these few tuples, we do not always have to reason about the complete formula to get a

correct partial solution. This is in line with locality, a property that is universal to program

analysis and has been successfully leveraged by query-driven and demand-driven program

analysis for better efficiency and precision. In the rest of the chapter, we describe these two

approaches in detail.
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c1 : path(a, a) c2 : path(a, b) ∧ edge(b, c) =⇒ path(a, c) c3 : ¬path(a, b) weight 1

Figure 4.1: Graph reachability in Markov Logic Network.
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...

Figure 4.2: Example graph reachability input and solution.

4.1 Iterative Lazy-Eager Grounding

4.1.1 Introduction

We first show informally why a naive grounding strategy which eagerly replace variables

with all constants will produce intractable formulae. Consider the Markov Logic Network

encoding the graph reachability problem in Figure 4.1 and Figure 4.2. Eagerly grounding

constraint c2 entails instantiating a, b, c over all nodes in the graph, producing N3 ground

constraints, where N is the number of nodes. Hence, the number of ground constraints

quickly becomes intractable as the size of the input graph grows.

In order to generate tractable MAXSAT formulae, several techniques have been pro-

posed to lazily ground constraints [80, 81, 82, 83, 84]. For the scale of problems we con-

sider, however, these techniques are either too lazy and converge very slowly, or too eager

and produce instances that are beyond the reach of sound MAXSAT solvers (i.e., solvers

that do not produce solutions that violate hard clauses). For instance, a recent technique

[82] grounds hard constraints too lazily and soft constraints too eagerly. Specifically, for

the graph reachability example, this technique takes L iterations to lazily ground hard con-

straint c2 (where L is the length of the longest path in the input graph), and generates N2

constraints upfront by eagerly grounding soft constraint c3.

In this section, we propose an iterative eager-lazy algorithm that strikes a balance be-

tween eager grounding and lazy grounding. Our key underlying idea comprises two com-
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plementary optimizations: eagerly exploiting proofs and lazily refuting counterexamples.

To eagerly exploit proofs, our algorithm uses an efficient procedure to upfront ground

constraints that will necessarily be grounded during the iterative process. As a concrete

instance of this procedure, we use a Datalog solver, which efficiently computes the least

solution of a set of recursive Horn constraints 1. In practice, most constraints in many

inference tasks are Horn, allowing to effectively leverage a Datalog solver. For instance,

both hard constraints c1 and c2 in our graph reachability example are Horn. Our algorithm

therefore applies a Datalog solver to efficiently ground them upfront. On the example graph

in Figure 4.2, this produces 7 ground instances of c1 and only 10 instances of c2.

To lazily refute counterexamples, our algorithm uses an efficient procedure to check for

violations of constraints by the MAXSAT solution to the set of ground constraints in each

iteration, terminating the iterative process in the absence of violations. We use a Datalog

solver as a concrete instance of this procedure as well. Existing lazy techniques, such as

Cutting Plane Inference (CPI) [84] and SoftCegar [82], can be viewed as special cases of

our algorithm in that they only lazily refute counterexamples. For this purpose, CPI uses

a relational database query engine and SoftCegar uses a satisfiability modulo theories or

SMT theorem prover [22], whereas we use a Datalog solver; engineering differences aside,

the key motivation underlying all three approaches is the same: to use a separate procedure

that is efficient at refuting counterexamples. Our main technical insight is to apply this

idea analogously to eagerly exploit proofs. Our resulting strategy of guiding the grounding

process based on both proofs and counterexamples gains the benefits of both eager and lazy

grounding without suffering from the disadvantages of either.

We apply our algorithm to enable sound and efficient inference for large problem in-

stances not only from the aforementioned program analysis applications, but also from in-

formation retrieval application, which concern discovering relevant information from large,

unstructured data collections.
1A Horn constraint is a disjunction of literals with at most one positive (i.e., unnegated) literal.
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The graph reachability example illustrates important aspects of inference tasks in both

these domains. For program analysis, the reader can refer to the pointer analysis example

described in Section 3.1.2. In the information retrieval domain, an example task is the

entity resolution problem for removing duplicate entries in a citation database [93]. In

this problem, a hard constraint similar to transitivity constraint c2 in Figure 4.1 encodes an

axiom about the equivalence of citations:

sameBib(v1, v2) ∧ sameBib(v2, v3) =⇒ sameBib(v1, v3)

We evaluate our algorithm on three benchmarks with three different input datasets gen-

erated from real-world information retrieval and program analysis applications. Our em-

pirical evaluation shows that our approach achieves significant improvement over three

state-of-art approaches, CPI [84], RockIt [83], and Tuffy [80], in running time as well as

the quality of the solution.

4.1.2 The IPR Algorithm

We propose an efficient iterative algorithm IPR (Inference via Proof and Refutation) for

solving Markov Logic Networks. The algorithm has the following key features:

1. Eager proof exploitation. IPR eagerly explores the logical structure of the relational

constraints to generate an initial grounding, which has the effect of speeding up the

convergence of the algorithm. When the relational constraints are in the form of Horn

constraints, we show that such an initial grounding is optimal (Theorem 15).

2. Lazy counterexample refutation. After solving the constraints in the initial ground-

ing, IPR applies a refutation-based technique to refine the solution: it lazily grounds

the constraints that are violated by the current solution, and solves the accumulated

grounded constraints in an iterative manner.
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Algorithm 7 IPR: the eager-lazy algorithm.
1: INPUT:C = Ch ∪ Cs, a Markov Logic Network where Ch are the hard constraints and
Cs are the soft constraints.

2: OUTPUT:T ⊆ T, solution (assumes MAP(C) 6= UNSAT).

3: φ := any
n⋃
i=1

{ρi} such that ∀i ∈ [1, n].∃l1 ∨ . . . ∨ lm ∈ Ch.∃σ ∈ (N ∪ V) 7→ N.ρi =

Jl1K(σ) ∨ . . . ∨ JlnK(σ)

4: ψ := any
n⋃
i=1

{(ρi, wi)} such that ∀i ∈ [1, n].∃(l1 ∨ . . . ∨ lm, w) ∈ Cs.w = wi ∧ (∃σ ∈

(N ∪ V) 7→ N.ρi = Jl1K(σ) ∨ . . . ∨ JlnK(σ))
5: T := ∅; w := 0
6: while true do
7: φ′ :=

⋃
ch∈Ch

Violations(ch, T )

8: ψ′ :=
⋃

(ch,w)∈Cs

{ (ρ, w) | ρ ∈ Violations(ch, T ) }

9: (φ, ψ) := (φ ∪ φ′, ψ ∪ ψ′)
10: T ′ := MAXSAT (φ, ψ)
11: w′ := WEIGHT (ψ, T ′)
12: if (w′ = w ∧ φ′ = ∅) then return T
13: T := T ′; w := w′

14: end while

3. Termination with soundness and optimality. IPR performs a termination check

that guarantees the soundness and optimality of the solution if an exact MAXSAT

solver is used. Moreover, this check is more precise than the termination checks in

existing refutation-based algorithms [84, 82], therefore leading to faster convergence.

Before presenting the algorithm, we first introduce two functions MAXSAT and WEIGHT

to abstract the interface of a MAXSAT solver, which allows us to focus our discussion on

the grounding subproblem of the MAP inference problem. We will discuss the MAXSAT

problem definition and our MAXSAT solver implementation in detail in the next section. To

define these two functions, We introduce a symbol ρ to represent a ground hard constraint.

That is

ρ ::=
∨

i∈[1,n]

ti ∨
∨
j∈1,m

¬tj.

Let φ be a set of ground hard constraints {ρi | 0 < i < n} and ψ be a set of ground soft
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constraints {(ρi, wi) | 0 < i < m}, then we have

WEIGHT(ψ, T ) =
∑

(ρ,w)∈ψ′
w, where ψ′ = {(ρ, w) | (ρ, w) ∈ psi ∧ T |= ρ},

MAXSAT(φ, ψ) =


UNSAT if ∀T.∃ρ ∈ φ.T 6|= ρ,

T such that T ∈ arg max
T ′∈T

WEIGHT(ψ, T ′) otherwise.

where T = {T ′ | ∀ρ ∈ φ.T ′ |= ρ}

Intuitively, WEIGHT returns the sum of the weights of ground soft constraints which are sat-

isfied by a given solution, while MAXSAT returns a set of tuples which maximizes WEIGHT

and satisfies all ground hard constraints.

Now we introduce the IPR algorithm. IPR (Algorithm 7) takes a Markov Logic Net-

work C as input and produces a set of tuples T as output. The input C is divided into hard

constraints Ch and soft constraints Cs. For elaboration, we assume the hard constraints Ch

as satisfiable, allowing us to elide showing UNSAT as a possible alternative to output T .

We next explain each component of IPR separately.

Eager proof exploitation. To start with, IPR computes an initial set of ground hard con-

straints φ and ground soft constraints ψ by exploiting the logical structure of the constraints

(line 3–4 of Algorithm 7). The sets φ and ψ can be arbitrary subsets of the ground hard

constraints and ground soft constraints in the full grounding. When φ and ψ are both empty,

the behavior of IPR defaults to lazy approaches like CPI [84] (Definition 14).

As a concrete instance of eager proof exploitation, when a subset of the relational con-

straints have a recursive Horn form, IPR applies a Datalog solver to efficiently compute

the least solution of this set of recursive Horn constraints, and find a relevant subset of

clauses to be grounded upfront. In particular, when all the hard constraints are Horn, IPR

prescribes a recipe for generating an optimal initial set of grounded constraints.

Theorem 15 shows that for hard relational constraints in Horn form, lazy approaches

like CPI ground at least as many ground hard constraints as the number of true ground
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facts in the least solution of such Horn constraints. Also, and more importantly, we show

there exists a strategy that can upfront discover the set of all these necessary ground hard

constraints and guarantee that no more ground constraints, besides those in the initial set,

will be grounded. In practice, eager proof exploitation is employed for both hard and soft

Horn constraints. Theorem 15 guarantees that if upfront grounding is applied to ground

hard Horn constraints, then only relevant constraints are grounded. While this guarantee

does not apply to upfront grounding of soft Horn constraints, we observe empirically that

most such ground constraints are relevant. Moreover, as Section 4.1.3 shows, using this

strategy for initial grounding allows the iterative process to terminate in far fewer iterations

while ensuring that each iteration does approximately as much work as before (without

initial grounding).

Definition 14. (Lazy Algorithm) Algorithm Lazy is an instance of IPR with φ = ψ = ∅

as the initial grounding.

Theorem 15 (Optimal initial grounding for Horn constraints). If a Markov Logic Net-

work comprises a set of hard constraintsCh, each of which is a Horn constraint
∧n
i=1 li =⇒

l0, whose least solution is desired:

T = lfp λT ′. T ′ ∪ { Jl0K(σ) | (
∧n
i=1 li =⇒ l0) ∈ Ch

∧ ∀i ∈ [1, n].JliK(σ) ∈ T ′ ∧ σ ∈ Σ },

then for such a system, (a) Lazy(Ch, ∅) grounds at least |T | constraints, and (b) CEGAR(Ch, ∅)

with the initial grounding φ does not ground any more constraints where

φ =
⋃
{

n∨
i=1

¬JliK(σ) ∨ Jl0K(σ) | (
n∧
i=1

li =⇒ l0) ∈ Ch ∧ ∀i ∈ [0, n].JliK(σ) ∈ T ∧ σ ∈ Σ }.

Lazy counterexample refutation. After generating the initial grounding, IPR iteratively

grounds more constraints and refines the solution by refutation (lines 6–14 of Algorithm 7).
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In each iteration, the algorithm keeps track of the previous solution T , and the weight w of

the solution T . Initially, the solution is empty with weight zero (line 5).

In line 7, IPR computes all the violations of the hard constraints for the previous so-

lution T using Violations (defined at the beginning of this chapter). Similarly, in line

8, the set of ground soft constraints ψ′ violated by the previous solution T is computed.

In line 9, both sets of violations φ′ and ψ′ are added to the corresponding sets of ground

hard constraints φ and ground soft constraints ψ respectively. The intuition for adding vi-

olated hard φ′ to the set φ is straightforward—the set of ground hard constraints φ is not

sufficient to prevent the MAXSAT procedure from producing a solution T that violates the

set of hard constraints H . The intuition for ground soft constraints is similar—since the

goal of MAXSAT is to maximize the sum of the weights of satisfied soft constraints in Cs,

and all weights in Markov Logic Networks are non-negative, any violation of a ground soft

constraint possibly leads to a sub-optimal solution which could have been avoided if the

violated constraint was present in the set of ground soft constraints ψ.

In line 10, this updated set φ of ground hard constraints and set ψ of ground soft con-

straints are fed to the MAXSAT procedure to produce a new solution T ′ and its correspond-

ing weight w′. At this point, in line 12, the algorithm checks if the terminating condition is

satisfied by the solution T ′.

Termination check. IPR terminates when no hard constraints are violated by current

solution (φ′ = ∅) and the current objective cannot be improved by adding more ground soft

constraints (w′ = w). This termination check improves upon that in previous works [84,

82], and speeds up the convergence of the algorithm in practice. Theorem 16 shows that our

CEGAR algorithm always terminates with a sound and optimum solution if the underlying

MAXSAT solver is exact.

Theorem 16 (Soundness and Optimality of IPR). For any Markov Logic NetworkCh∪Cs

where hard constraintsCh is satisfiable, CEGAR(C) produces a sound and optimal solution.
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Table 4.1: Clauses in the initial grounding and additional constraints grounded in each
iteration of IPR for graph reachability example.

Initial
¬path(0, 0) ∨ ¬edge(0, 1) ∨ path(0, 1) ¬path(0, 0) ∨ ¬edge(0, 2) ∨ path(0, 2) path(0, 0)
¬path(1, 1) ∨ ¬edge(1, 3) ∨ path(1, 3) ¬path(1, 1) ∨ ¬edge(1, 4) ∨ path(1, 4) path(1, 1)
¬path(2, 2) ∨ ¬edge(2, 5) ∨ path(2, 5) ¬path(2, 2) ∨ ¬edge(2, 6) ∨ path(2, 6) path(2, 2)
¬path(0, 1) ∨ ¬edge(1, 3) ∨ path(0, 3) ¬path(0, 1) ∨ ¬edge(1, 4) ∨ path(0, 4) path(3, 3)
¬path(0, 2) ∨ ¬edge(2, 5) ∨ path(0, 5) ¬path(0, 2) ∨ ¬edge(2, 6) ∨ path(0, 6) path(4, 4)

path(5, 5) path(6, 6)

Iteration 1
¬path(0, 0) weight 1 ¬path(1, 1) weight 1 ¬path(2, 2) weight 1
¬path(3, 3) weight 1 ¬path(4, 4) weight 1 ¬path(5, 5) weight 1
¬path(6, 6) weight 1 ¬path(0, 1) weight 1 ¬path(0, 2) weight 1
¬path(1, 3) weight 1 ¬path(1, 4) weight 1 ¬path(2, 5) weight 1
¬path(2, 6) weight 1 ¬path(0, 3) weight 1 ¬path(0, 4) weight 1
¬path(0, 5) weight 1 ¬path(0, 6) weight 1

Example. The IPR algorithm takes two iterations and grounds 17 ground hard constraints

and 17 ground soft constraints to solve the graph reachability example in Figures 4.1 and

4.2. Table 4.1 shows the constraints in the initial grounding computed using a Datalog

solver and additional constraints grounded in each iteration of CEGAR. IPR grounds no

additional constraints in Iteration 2. Therefore, the corresponding table is omitted in Ta-

ble 4.1.

On the other hand, an eager approach with full grounding needs to ground 392 hard

constraints and 49 soft constraints, which is 12× of the number of constraints grounded in

CEGAR. Moreover, the eager approach generates ground constraints such as ¬path(0, 1) ∨

¬edge(1, 5) ∨ path(0, 5) and ¬path(1, 4) ∨ ¬edge(4, 2) ∨ p(1, 2), that are trivially satisfied

given the input edge relation.

A lazy approach with an empty initial grounding grounds the same number of hard

constraints and soft constraints as CEGAR. However, it takes 5 iterations to terminate, which

is 2.5× of the number of iterations needed by CEGAR.

The results on the graph reachability example show that, IPR combines the benefits of

the eager approach and the lazy approach while avoiding their drawbacks. �
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Table 4.2: Statistics of application constraints and datasets.

# rela- # rules # EDB tuples # clauses in full grounding
tions E1 E2 E3 E1 E2 E3

PA 94 89 1,274 3.9 ×106 1.1× 107 2× 1010 1.6 ×1028 1.2 ×1030

AR 14 24 607 3,595 7,010 1.7 ×108 1.1 ×109 2.4×1010

RC 5 17 1,656 3,190 7,766 7.9 ×1011 1.2 ×1013 3.8 ×1014

Table 4.3: Results of evaluating CPI, IPR1, ROCKIT, IPR2, and TUFFY, on three bench-
mark applications. CPI and IPR1 use LBX as the underlying solver, while ROCKIT and
IPR2 use GUROBI. In all experiments, we used a memory limit of 64GB and a time limit
of 24 hours. Timed out experiments (denoted ‘–’) exceeded either of these limits.

EDB # iterations
total time

(m = min., s = sec.)
# ground constraints

(K = thousand, M = million)
solution cost

(K = thousand, M = million)

CP
I

IP
R1

RO
CK
IT

IP
R2

CP
I

IP
R1

RO
CK
IT

IP
R2

TU
FF
Y

CP
I

IP
R1

RO
CK
IT

IP
R2

TU
FF
Y

CP
I

IP
R1

RO
CK
IT

IP
R2

TU
FF
Y

PA

E1 23 6 19 3 29s 28s 53s 13s 6m56s 0.6K 0.6K 0.6K 0.6K 0.6K 0 0 0 0 743
E2 171 8 185 3 235m 23m 286m 150m – 3M 3.2M 2.9M 3.2M – 46 46 35 35 –
E3 – 11 – – – 114m – – – – 13M – – – – 345 – – –

AR
E1 6 5 4 3 8s 8s 4s 8s 2m25s 9.8K 9.8K 27K 83K 589K 6.4K 6.4K 5.8K 6.1K 7K
E2 6 6 7 7 34m 36m 37s 42s – 2.3M 2.3M 0.4M 0.4M – 0.4M 0.4M 0.39M 0.39M –
E3 6 6 7 7 141m 124m 1m45s 2m1s – 8M 8M 1.4M 1.4M – 0.68M 0.68M 0.67M 0.67M –

RC
E1 17 6 5 4 3m5s 1m4s 6s 6s 11s 0.5M 0.3M 55K 68K 28K 5.7K 5.7K 5.7K 5.7K 160K
E2 8 8 5 3 6m19s 3m41s 9s 10s 2m28s 2.4M 1.3M 0.11M 0.17M 64K 10.7K 10.7K 10.6K 10.6K 42.7K
E3 17 13 20 20 150m 46m20s 2m35s 2m54s 180m 14M 4.5M 0.5M 1.2M 0.35M 25.1K 25.1K 24.9K 24.9K 0.25M

4.1.3 Empirical Evaluation

In this section, we evaluate CEGAR and compare it with three state-of-the-art approaches,

CPI [84], ROCKIT [83], and TUFFY [80], on three different benchmarks with three different-

sized inputs per benchmark.

We implemented CEGAR in roughly 10,000 lines of Java. To compute the initial ground

constraints, we use bddbddb [15], a Datalog solver. The same solver is used to identify

grounded constraints that are violated by a solution. For our evaluation, we use two dif-

ferent instances of CEGAR, referred as IPR1 and IPR2, that vary in the underlying solver

used for solving the constraints. For IPR1, we use LBX [94] as the underlying WPMS

solver which guarantees soundness of the solution (i.e., does not violate any hard clauses).

Though LBX does not guarantee the optimality of the solution, in practice, we find the cost

of the solution computed by LBX is close to that of the solution computed by an exact

solver. For IPR2, we use GUROBI as the underlying solver. GUROBI is an integer linear

program (ILP) solver which guarantees soundness of the solution. Additionally, it guaran-

tees that the cost of the generated solution is within a limited bound from that of the optimal
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solution. We incorporate it in our approach by replacing the call to MAXSAT (line 10 of

Algorithm 7) with a call to an ILP encoder followed by a call to GUROBI. The ILP encoder

translates the WPMS problem to an equivalent ILP formulation.

All experiments were done using Oracle HotSpot JVM 1.6.0 on a Linux server with

64GB RAM and 3.0GHz processors. The three benchmarks are as follows:

Program Analysis (PA): We choose static bug detection as a representative for the previ-

ously discussed program analysis applications. The datasets for this application are derived

from a pointer analysis on three real-world Java programs ranging in size from 1.4K to

190K lines of code.

Advisor Recommendation (AR): This is an advisor recommendation system to aid new

graduate students in finding good PhD advisors. The datasets for this application were

generated from the AI Genealogy Project (http://aigp.eecs.umich.edu) and from

DBLP (http://dblp.uni-trier.de).

Relational Classification (RC): In this application, papers from the Cora dataset [95] are

classified into different categories based on the authors and their main area of research.

Table 4.2 shows statistics of our three benchmarks (PA, AR, RC) and the corresponding

EDBs used in our evaluation.

We compare IPR1 and IPR2 with three state-of-the-art techniques, CPI, ROCKIT, and

TUFFY.

TUFFY employs a non-iterative approach which is composed of two steps: first, it gener-

ates an initial set of grounded constraints that is expected to be a superset of all the required

grounded constraints; next, TUFFY uses a highly efficient but approximate WPMS solver to

solve these grounded constraints. In our evaluation, we use the TUFFY executable available

from its website http://i.stanford.edu/hazy/hazy/tuffy/.

CPI is a fully lazy iterative approach, which refutes counterexamples in a way similar to

CEGAR. However, CPI does not employ proof exploitation and applies a more conservative

termination check. In order to ensure a fair comparison between CEGAR and CPI, we
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implement CPI in our framework by incorporating the above two differences and use LBX

as the underlying solver.

ROCKIT is also a fully lazy iterative approach similar to CPI. Additionally, like CPI,

ROCKIT does not employ proof exploitation and its termination check is as conservative as

CPI. The main innovation of ROCKIT is a clever ILP encoding for solving the underlying

constraints. This reduces the time per iteration for solving, but does not necessarily reduce

the number of iterations. In our evaluation, we use the ROCKIT executable available from

its website https://code.google.com/p/rockit/.

The primary innovation of ROCKIT is complementary to our approach. In fact, to ensure

a fair comparison between CEGAR and ROCKIT, in IPR2 we use the same ILP encoding as

used by ROCKIT. This combined approach yields the benefits of both ROCKIT and our

approach.

Table 4.3 summarizes the results of running CPI, IPR1, ROCKIT, IPR2, and TUFFY on

our benchmarks. IPR1 significantly outperforms CPI in terms of running time. Similarly,

IPR2 outperforms ROCKIT in running time and the number of iterations needed while

TUFFY has the worst performance. IPR1 terminates under all nine experiment settings,

while IPR2, CPI and ROCKIT terminate under eight settings and TUFFY only terminates

under five settings. In terms of the quality of the solution, IPR1 and CPI produce solutions

with similar costs under all settings. IPR2 and ROCKIT produce solutions with slightly

lower costs as they employ an ILP solver that guarantees a solution whose cost is within

a fixed bounded from that of the optimal solution. TUFFY produces solutions with signifi-

cantly higher costs. We next study the results for each benchmark more closely.

Program Analysis (PA): For PA, we first compare IPR1 with CPI. IPR1 significantly

outperforms CPI on larger datasets, with CPI not terminating on E3 even after 24 hours

while IPR1 terminates in under two hours. This is because most of the relational constraints

in PA are Horn, allowing IPR1 to effectively perform eager proof exploitation, and ground

relevant clauses upfront. This is also reflected in the reduced number of iterations for IPR1
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compared to CPI. IPR2, that also uses eager proof exploitation, similarly outperforms

ROCKIT on E1 and E2. However, both IPR2 and ROCKIT fail to terminate on E3. This

indicates that the underlying type of solver plays an important role in the performance

of these approaches. For PA, the WPMS solver employed by IPR1 is better suited to

the problem compared to the ILP solver employed by IPR2. TUFFY performs the worst

out of all the approaches, only terminating on the smallest dataset E1. Even for E1, the

cost of the final solution generated by TUFFY is significantly higher compared to the other

approaches. More acutely, TUFFY violates ten ground hard constraints on E1 which is

absolutely unacceptable for program analysis benchmarks.

Advisor Recommendation (AR): On AR, IPR1, IPR2, CPI and ROCKIT terminate on

all three datasets and produce similar results while TUFFY only terminates on the smallest

dataset. IPR1 and CPI have comparable performance on AR as a fully lazy approach

suffices to solve the relational constraint system efficiently. Similarly, IPR2 and ROCKIT

have similar performance. However, both IPR2 and ROCKIT significantly outperform IPR1

and CPI in terms of the running time although they need similar number of iterations. This

indicates that for AR, the smart ILP encoding leads to fewer constraints and also that the

ILP solver is better suited than the WPMS solver, leading to a lower running time per

iteration. Note that, all theses approaches except TUFFY terminate within seven iterations

on all three datasets. On the other hand, TUFFY times out on the two larger datasets without

passing its grounding phase, reflecting the need for lazily grounding the constraints.

Relational Classification (RC): All the approaches terminate on RC for all the three

datasets. However, IPR1 outperforms CPI and TUFFY significantly in terms of runtime on

the largest dataset. On the other hand, IPR2 and ROCKIT outperform IPR1. This is again

due to the faster solving time per iteration enabled by the smart ILP encoding and the use

of ILP solver. Unlike other benchmarks, the running time of TUFFY is comparable to the

other approaches. However, the costs of its solutions are on average 14× more than the

costs of the solutions produced by the other approaches.
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4.1.4 Related Work

A large body of work exists to solve weighted relational constraints in a lazy manner. Lazy

inference techniques [93, 96] rely on the observation that most ground facts in the final so-

lution to a relational inference problem have default values (a value appearing much more

often than the others). These techniques start by assuming a default value for all ground

facts, and gradually ground clauses as the values of facts are determined to be changed for

a better objective. Such techniques apply a loose termination check, and therefore do not

guarantee soundness nor optimality of the final solution. Iterative ground-and-solve ap-

proaches such as CPI [84] and RockIt [83] solve constraints lazily by iteratively grounding

only those constraints that are violated by the current solution. Compared to lazy inference

techniques, they apply a conservative termination check which guarantees the soundness

and optimality of the solution. Compared to our approach, all of the above techniques

either need more iterations to converge or have to terminate prematurely with potentially

unsound and suboptimal solutions.

Tuffy [80] applies a non-iterative technique which is divided into a grounding phase and

a solving phase. In the grounding phase, Tuffy grounds a set of constraints that it deems

relevant to the solution of the inference problem. In practice, this set is often imprecise,

which either hinders the scalability of the overall process (when the set is too large), or

degrades the quality of the solution (when the set is too small). Soft-CEGAR [82] grounds

the soft constraints eagerly and solves the hard constraints in a lazy manner. It uses a

SMT solver to efficiently find the hard constraints violated by a solution. Lifted inference

techniques [97, 98, 99] use approaches from first-order logic, like variable elimination, to

simplify the system of relational constraints. Such techniques can be used in conjunction

with various iterative techniques including our approach for solving such constraints.

136



4.1.5 Conclusion

We presented a new technique for grounding Markov Logic Networks. Existing approaches

either ground the constraints too eagerly, which produces intractably large propositional

instances to WPMS solvers, or they ground the constraints too lazily, which prohibitively

slows down the convergence of the overall process. Our approach strikes a balance be-

tween these two extremes by applying two complementary optimizations: eagerly exploit-

ing proofs and lazily refuting counterexamples. Our empirical evaluation showed that our

technique achieves significant improvement over two existing techniques in both perfor-

mance and quality of the solution.

4.2 Query-Guided Maximum Satisfiability

4.2.1 Introduction

The maximum satisfiability or MAXSAT problem [100] is an optimization extension of the

well-known satisfiability or SAT problem [101, 102]. A MAXSAT formula consists of a

set of conventional SAT or hard clauses together with a set of soft or weighted clauses.

The solution to a MAXSAT formula is an assignment to its variables that satisfies all the

hard clauses, and maximizes the sum of the weights of satisfied soft clauses. A number of

interesting problems that span across a diverse set of areas such as program reasoning [8,

9, 103, 104], information retrieval [105, 106, 80, 81], databases [107, 108], circuit de-

sign [109], bioinformatics [110, 111], planning and scheduling [112, 113, 114], and many

others can be naturally encoded as MAXSAT formulae. Many of these problems specify

hard constraints that encode various soundness conditions, and soft constraints that specify

objectives to optimize.

MAXSAT solvers have made remarkable strides in performance over the last decade

[115, 116, 117, 118, 119, 120, 121, 122, 123]. This in turn has motivated even more

demanding and emerging applications to be formulated using MAXSAT. Real-world in-
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stances of many of these problems, however, result in very large MAXSAT formulae [124].

These formulae, comprising millions of clauses or more, are beyond the scope of existing

MAXSAT solvers. Fortunately, for many of these problems, one is interested in a small set

of queries that constitute a very small fraction of the entire MAXSAT solution. For instance,

in program analysis, a query could be analysis information for a particular variable in the

program—intuitively, one would expect the computational cost for answering a small set of

queries to be much smaller than the cost of computing analysis information for all program

variables. In the MAXSAT setting, the notion of a query translates to the value of a specific

variable in a MAXSAT solution. Given a MAXSAT formula ϕ and a set of queries Q, one

obvious method for answering queries in Q is to compute the MAXSAT solution to ϕ and

project it to variables in Q. Needless to say, especially for very large MAXSAT formulae,

this is a non-scalable solution. Therefore, it is interesting to ask the following question:

“Given a MAXSAT formula ϕ and a set of queries Q, is it possible to answer Q by only

computing information relevant to Q?”. We call this question the query-guided maximum

satisfiability or Q-MAXSAT problem (ϕ,Q).

Our main technical insight is that a Q-MAXSAT instance (ϕ,Q) can be solved by com-

puting a MAXSAT solution of a small subset of the clauses in ϕ. The main challenge,

however, is how to efficiently determine whether the answers to Q indeed correspond to

a MAXSAT solution of ϕ. We propose an iterative algorithm for solving a Q-MAXSAT

instance (ϕ,Q) (Algorithm 8 in Section 4.2.4). In each iteration, the algorithm computes

a MAXSAT solution to a subset of clauses in ϕ that are relevant to Q. We also define

an algorithm (Algorithm 9 in Section 4.2.4.1) that efficiently checks whether the current

assignment to variables inQ corresponds to a MAXSAT solution to ϕ. In particular, our al-

gorithm constructs a small set of clauses that succinctly summarize the effect of the clauses

in ϕ that are not considered by our algorithm, and then uses it to overestimate the gap

between the optimum objective value of ϕ under the current assignment and the optimum

objective value of ϕ.
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We have implemented our approach in a tool called PILOT and applied it to 19 large

MAXSAT instances ranging in size from 100 thousand to 22 million clauses generated from

real-world problems in program analysis and information retrieval. Our empirical evalu-

ation shows that PILOT achieves significant improvements in runtime and memory over

conventional MAXSAT solvers: on these instances, PILOT used only 285 MB of memory

on average and terminated in 107 seconds on average. In contrast, conventional MAXSAT

solvers timed out for eight of the instances.

In summary, the main contributions of this paper are as follows:

1. We introduce and formalize a new optimization problem called Q-MAXSAT. In con-

trast to traditional MAXSAT, where one is interested in an assignment to all variables,

for Q-MAXSAT, we are interested only in an assignment to a subset of variables,

called queries.

2. We propose an iterative algorithm for Q-MAXSAT that has the desirable property

of being able to efficiently check whether an assignment to queries is an optimal

solution to Q-MAXSAT.

3. We present empirical results showing the effectiveness of our approach by apply-

ing PILOT to several Q-MAXSAT instances generated from real-world problems in

program analysis and information retrieval.

4.2.2 Example

We illustrate the Q-MAXSAT instance and our solution with the help of an example. Fig-

ure 4.3 represents a large MAXSAT formula ϕ in conjunctive form. Each variable vi in ϕ is

represented as a node in the graph labeled by its subscript i. Each clause is a disjunction of

literals with a positive weight. Nodes marked as T (or F) indicate soft clauses of the form

(100, vi) (or (100,¬vi)) while each edge from node i to a node j represents a soft clause of

the form (5,¬vi ∨ vj).
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Figure 4.3: Graph representation of a large MAXSAT formula ϕ.

Suppose we are interested in the assignment to the query v6 in ϕ (shown by the dashed

node in Figure 4.3). Then, the Q-MAXSAT instance that we want to solve is (ϕ, {v6}). A

solution to this Q-MAXSAT instance is a partial model which maps v6 to true or false such

that there is a completion of this partial model maximizing the objective value of ϕ.

A naive approach to solve this problem is to directly feed ϕ into a MAXSAT solver and

extract the assignment to v6 from the solution. However, this approach is highly inefficient

due to the large size of practical instances.

Our approach exploits the fact that the Q-MAXSAT instance only requires assignment

to specific query variables, and solves the problem lazily in an iterative manner. The high

level strategy of our approach (see Chapter 4.2.4 for details) is to only solve a subset of

clauses relevant to the query in each iteration, and terminate when the current solution

can be proven to be the solution to the Q-MAXSAT instance. In particular, our approach

proceeds in the following four steps.

Initialize. Given a Q-MAXSAT instance, our query-guided approach constructs an

initial set of clauses that includes all the clauses containing a query variable. We refer to

these relevant clauses as the workset of our algorithm.

Solve. The next step is to solve the MAXSAT instance induced by the workset. Our

approach uses an existing off-the-shelf MAXSAT solver for this purpose. This produces a

partial model of the original instance.
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Figure 4.4: Graph representation of each iteration in our algorithm when it solves the
Q-MAXSAT instance (ϕ, {v6}).

Check. The key step in our approach is to check whether the current partial model can

be completed to a model of the original MAXSAT instance. Since the workset only includes

a small subset of clauses from the complete instance, the challenge here is to summarize

the effect of the unexplored clauses on the assignment to the query variables. We propose

a novel technique for performing this check efficiently without actually considering all the

unexplored clauses (see Chapter 4.2.4.1 for formal details).

Expand. If the check in the previous step fails, it indicates that we need to grow our

workset of relevant clauses. Based on the check failure, in this step, our approach identifies

the set of clauses to be added to the workset for the next iteration.

As long as the Q-MAXSAT instance is finite, our iterative approach is guaranteed to

terminate since it only grows the workset in each iteration.

We next describe how our approach solves the Q-MAXSAT instance (ϕ, {v6}). To

resolve v6, our approach initially constructs the workset ϕ′ that includes all the clauses

containing v6. We represent ϕ′ by the subgraph contained within the dotted area in Fig-
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ure 4.4(a). By invoking a MAXSAT solver on ϕ′, we get a partial model αϕ′ = [v4 7→

false, v5 7→ false, v6 7→ false, v7 7→ false, v8 7→ false] as shown in Figure 4.4(a), with

an objective value of 20. Our approach next checks if the current partial model found is a

solution to the Q-MAXSAT instance (ϕ, {v6}). It constructs a set of clauses ψ which suc-

cinctly summarizes the effect of the clauses that are not present in the workset. We refer to

this set as the summarization set, and use the following expression to overestimate the gap

between the optimum objective value of ϕ under the current partial model and the optimum

objective value of ϕ:

max
α

eval(ϕ′ ∪ ψ, α)−max
α

eval(ϕ′, α),

where maxα eval(ϕ
′ ∪ ψ, α) and maxα eval(ϕ

′, α) are the optimum objective values of

ϕ′ ∪ ψ and ϕ′, respectively.

To construct such a summarization set, our insight is that the clauses that are not present

in the workset can only affect the query assignment via clauses sharing variables with the

workset. We call such clauses as the frontier clauses. Furthermore, if a frontier clause is

already satisfied by the current partial model, expanding the workset with such a clause

cannot further improve the partial model. We now try to construct a summarization set ψ

by taking all frontier clauses not satisfied by αϕ′ . As a result, our algorithm produces

ψ = {(100, v4), (100, v8)}. The check comparing the optimum objective values of ϕ′

and ϕ′ ∪ ψ fails in this case. In particular, by solving ϕ′ ∪ ψ, we get a partial model

αϕ′∪ψ = [v4 7→ true, v5 7→ true, v6 7→ true, v7 7→ true, v8 7→ true] with 220 as the

objective value, which is greater than the optimum objective value of ϕ′. As a consequence,

our approach expands the workset ϕ′ with (100, v4) and (100, v8) and proceeds to the next

iteration. We include these two clauses as these are not satisfied by αϕ′ in the last iteration,

but satisfied by αϕ′∪ψ, which indicates they are likely responsible for the failure of the

previous check.
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In iteration 2, invoking a MAXSAT solver on the new workset, ϕ′, produces αϕ′ =

[v4 7→ true, v5 7→ true, v6 7→ true, v7 7→ true, v8 7→ true], as shown in Figure 4.4(b),

with 220 as the objective value. The violated frontier clauses in this case are (100,¬v7),

(5,¬v5 ∨ v2), and (5,¬v5 ∨ v3). However, if this set of violated frontier clauses were to be

used as the summarization set ψ, the newly added variables v2 and v3 will cause the check

comparing the optimum objective values of ϕ′ and ϕ′ ∪ ψ to trivially fail. To address this

problem, and further improve the precision of our check, we modify the summarization

set as ψ = {(100,¬v7), (5,¬v5), (5,¬v5)} by removing v2 and v3 and strengthening the

corresponding clauses. In this case, it is equivalent to setting v2 and v3 to false (marked

as F in the graph). Intuitively, by setting these variables to false, we are overestimating the

effects of the unexplored clauses, by assuming these frontier clauses will not be satisfied

by unexplored variables like v2 and v3. By solving ϕ′ ∪ ψ, we get a partial model αϕ′∪ψ =

[v4 7→ true, v5 7→ false, v6 7→ true, v7 7→ false, v8 7→ true] with 320 as the objective

value, which is greater than the optimum objective value of ϕ′.

In iteration 3, as shown in Figure 4.4(c), our approach expands the workset ϕ′ with

(100,¬v7), (5,¬v5∨v2) and (5,¬v5∨v3). By invoking a MAXSAT solver on ϕ′, we produce

αϕ′ = [v2 7→ true, v3 7→ true, v4 7→ true, v5 7→ true, v6 7→ true, v7 7→ false, v8 7→ true]

with an objective value of 325. We omit the edges representing frontiers clauses that are

already satisfied by αϕ′ in Figure 4.4(c). To check the whether current partial model is a

solution to the Q-MAXSAT instance, we construct strengthened summarization set ψ =

{(5,¬v3)} from the frontier clause (5,¬v3 ∨ v1). By invoking MAXSAT on ϕ′ ∪ ψ, we

get an optimum objective value of 325 which is the same as that of ϕ′. As a result, our

algorithm terminates and extracts [v6 7→ true] as the solution to the Q-MAXSAT instance.

Despite the fact that many clauses and variables can reach v6 in the graph (i.e, they

might affect the assignment to the query), our approach successfully resolves v6 in three

iterations and only explores a very small, local subset of the graph, while successfully

summarizing the effects of the unexplored clauses.
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(variable) v ∈ V
(clause) c ::=

∨n
i=1 vi ∨

∨m
j=1 ¬v′j | 1 | 0

(weight) w ∈ R+

(soft clause) s ::= (w, c)
(formula) ϕ ::= {s1, ..., sn}

(model) α ∈ V → {0, 1}

fst = λ(w, c).w, snd = λ(w, c).c

∀α : α |= 1, ∀α : α 6|= 0

α |=
∨n
i=1 vi ∨

∨m
j=1 ¬v′j ⇔ ∃i : α(vi) = 1 or ∃j : α(v′j) = 0

eval({s1, ..., sn}, α) = Σn
i {fst(si) | α |= snd(si)}

MaxSAT (ϕ) = arg maxα eval(ϕ, α)

Figure 4.5: Syntax and interpretation of MAXSAT formulae.

4.2.3 The Q-MAXSAT Problem

First, we describe the standard MAXSAT problem [100]. The syntax of a MAXSAT formula

is shown in Figure 4.5. A MAXSAT formula ϕ consists of a set of soft clauses. Each soft

clause s = (w, c) is a pair that consists of a positive weight w ∈ R+, and a clause c that

is a disjunctive form over a set of variables V 2. We use 1 to denote true and 0 to denote

false. Given an assignment α : V → {0, 1} to each variable in a MAXSAT formula ϕ, we

use eval(ϕ, α) to denote the sum of the weights of the soft clauses in the formula that are

satisfied by the assignment. We call this sum the objective value of the formula under that

assignment. The space of models MaxSAT (ϕ) of a MAXSAT formula ϕ is the set of all

assignments that maximize the objective value of ϕ.

The query-guided maximum satisfiability or Q-MAXSAT problem is an extension to

the MAXSAT problem, that augments the MAXSAT formula with a set of queries Q ⊆ V .

In contrast to the MAXSAT problem, where the objective is to find an assignment to all

variables V , Q-MAXSAT only aims to find a partial model αQ : Q → {0, 1}. In particular,

given a MAXSAT formula ϕ and a set of queriesQ, the Q-MAXSAT problem seeks a partial

model αQ : Q → {0, 1} for ϕ, that is, an assignment to the variables in Q such that there

2Without loss of generality, we assume that MAXSAT formulae contain only soft clauses. Every hard
clause can be converted into a soft clause with a sufficiently high weight.
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exists a completion α : V → {0, 1} of αQ that is a model of the MAXSAT formula ϕ.

Formally:

Definition 17 (Q-MAXSAT problem). Given a MAXSAT formula ϕ, and a set of queries

Q ⊆ V , a model of the Q-MAXSAT instance (ϕ,Q) is a partial model αQ : Q → {0, 1}

such that

∃α ∈ MaxSAT (ϕ).(∀v ∈ Q.αQ(v) = α(v)).

Example. Let (ϕ,Q) where ϕ = {(5,¬a∨b), (5,¬b∨c), (5,¬c∨d), (5,¬d)} andQ = {a}

be a Q-MAXSAT instance. A model of this instance is given by αQ = [a 7→ 0]. Indeed,

there is a completion α = [a 7→ 0, b 7→ 0, c 7→ 0, d 7→ 0] that belongs to MaxSAT (ϕ) (in

other words, α maximizes the objective value of ϕ, which is equal to 20), and agrees with

αQ on the variable a (that is, α(a) = αQ(a) = 0).

Hereafter, we use Var(ϕ) to denote the set of variables occurring in MAXSAT formula ϕ.

For a set of variables U ⊆ V , we denote the partial model α : U → {0, 1} by αU . Also, we

use αϕ as shorthand for αVar(ϕ). Throughout the paper, we assume that for eval(ϕ, α), the

assignment α is well-defined for all variables in Var(ϕ).

4.2.4 Solving a Q-MAXSAT Instance

Algorithm 8 describes our technique for solving the Q-MAXSAT problem. It takes as

input a Q-MAXSAT instance (ϕ,Q), and returns a solution to (ϕ,Q) as output. The main

idea in the algorithm is to iteratively identify and solve a subset of clauses in ϕ that are

relevant to the set of queries Q, which we refer to as the workset of our algorithm.

The algorithm starts by invoking function INIT (line 3) which returns an initial set of

clauses ϕ′ ⊆ ϕ. Specifically, ϕ′ is the set of clauses in ϕ which contain variables in the

query set Q.

In each iteration (lines 4–12), Algorithm 8 first computes a model αϕ′ of the MAXSAT

formula ϕ′ (line 5). Next, in line 6, the function CHECK checks whether the model αϕ′
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Algorithm 8
1: INPUT: A Q-MAXSAT instance (ϕ,Q), where ϕ is a MAXSAT formula, and Q is a set

of queries.
2: OUTPUT: A solution to the Q-MAXSAT instance (ϕ,Q).
3: ϕ′ := INIT(ϕ,Q)
4: while true do
5: αϕ′ := MAXSAT(ϕ′)
6: ϕ′′ := CHECK((ϕ,Q), ϕ′, αϕ′), where ϕ′′ ⊆ ϕ \ ϕ′
7: if ϕ′′ = ∅ then
8: return λv.αϕ′(v),where v ∈ Q
9: else

10: ϕ′ := ϕ′ ∪ ϕ′′
11: end if
12: end while

Algorithm 9 CHECK((ϕ,Q), ϕ′, αϕ′)

1: INPUT: A Q-MAXSAT instance (ϕ,Q), a MAXSAT formula ϕ′ ⊆ ϕ, and a model αϕ′ ∈
MaxSAT (ϕ′).

2: OUTPUT: A set of clauses ϕ′′ ⊆ ϕ \ ϕ′.
3: ψ := APPROX(ϕ, ϕ′, αϕ′)
4: ϕ′′ := ϕ′ ∪ ψ
5: αϕ′′ := MAXSAT(ϕ′′)
6: if eval(ϕ′′, αϕ′′)− eval(ϕ′, αϕ′) = 0 then
7: return ∅
8: else
9: ϕs := {(w, c) | (w, c) ∈ ψ ∧ αϕ′′ |= c}

10: return REFINE(ϕs, ϕ, ϕ
′, αϕ′)

11: end if

is sufficient to compute a model of the Q-MAXSAT instance (ϕ,Q). If αϕ′ is sufficient,

then the algorithm returns a model which is αϕ′ restricted to the variables in Q (line 8).

Otherwise, CHECK returns a set of clauses ϕ′′ that is added to the set ϕ′ (line 10). It is easy

to see that Algorithm 8 always terminates if ϕ is finite.

The main and interesting challenge is the implementation of the CHECK function so that

it is sound (that is, when CHECK returns ∅, then the model αϕ′ restricted to the variables in

Q is indeed a model of the Q-MAXSAT instance), yet efficient.

4.2.4.1 Implementing an Efficient CHECK Function

Algorithm 9 describes our implementation of the CHECK function. The input to the
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CHECK function is a Q-MAXSAT instance (ϕ,Q), a MAXSAT formula ϕ′ ⊆ ϕ as described

in Algorithm 8, and a model αϕ′ ∈ MaxSAT (ϕ′). The output is a set of clauses ϕ′′ that

are required to be added to ϕ′ so that the resulting MAXSAT formula ϕ′ ∪ ϕ′′ is solved in

the next iteration of Algorithm 8. If ϕ′′ is empty, then this means that Algorithm 8 can stop

and return the appropriate model (as described in line 8 of Algorithm 8).

CHECK starts by calling the function APPROX (line 3) which takes ϕ, ϕ′ and αϕ′ as

inputs, and returns a new set of clauses ψ, which we refer to as the summarization set.

APPROX analyzes clauses in ϕ \ ϕ′, and returns a much smaller formula ψ which allows us

to overestimate the gap between the optimum objective value under current partial model

αϕ′ and the optimum objective value of ϕ. In line 5, CHECK computes a model αϕ′′ of the

MAXSAT formula ϕ′′ = ϕ′ ∪ ψ. Next, in line 6, CHECK compares the objective value of

ϕ′ with respect to αϕ′ and the objective value of ϕ′′ with respect to αϕ′′ . If these objective

values are equal, CHECK concludes that the partial assignment for the queries in αϕ′ is a

model to the Q-MAXSAT problem and returns an empty set (line 7). Otherwise, it computes

ϕs in line 9 which is the set of clauses satisfied by αϕ′′ in ψ. Finally, in line 10, CHECK

returns the set of clauses to be added to the MAXSAT formula ϕ′. This is computed by

REFINE, which takes ϕs, ϕ, ϕ′, and αϕ′ as input. Essentially, REFINE identifies the clauses

in ϕ\ϕ′ which are likely responsible for failing the check in line 6, and uses them to expand

the MAXSAT formula ϕ′.

Optimality check via APPROX. The core step of CHECK is line 6, which uses eval(ϕ′′, αϕ′′)−

eval(ϕ′, αϕ′) to overestimate the gap between the optimum objective value under current

partial model αϕ′ and the optimum objective value of ϕ. The key idea here is to apply

APPROX to generate a small set of clauses ψ which succinctly summarizes the effect of the

unexplored clauses ϕ \ ϕ′. We next describe the specification of the APPROX function, and

formally prove the soundness of the optimality check in line 6.

Given a set of variables U ⊆ Var(ϕ), and an assignment αU , we define a substitution
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operation ϕ[αU ] which simplifies ϕ by replacing all occurrences of variables in U with their

corresponding values in assignment αU . Formally,

{s1, ..., sn}[αU ] = {s1[αU ], ..., sn[αU ]}

(w, c)[αU ] = (w, c[αU ])

1[αU ] = 1

0[αU ] = 0

(
∨n
i=1 vi ∨

∨m
j=1 ¬v′j)[αU ] =

1, if αU |=
∨n
i=1 vi ∨

∨m
j=1 ¬v′j,

0, if {v1, .., vn} ⊆ U ∧ {v′1, ..., v′m} ⊆ U ∧

αU 6|=
∨n
i=1 vi ∨

∨m
j=1 ¬v′j,∨

v∈{v1,...,vn}\U v ∨
∨
v′∈{v′1,...,v′n}\U

¬v′, otherwise.

Definition 18 (Summarizing unexplored clauses). Given two MAXSAT formulae ϕ and

ϕ′ such that ϕ′ ⊆ ϕ, and αϕ′ ∈ MaxSAT (ϕ′), we say ψ = APPROX(ϕ, ϕ′, αϕ′) summarizes

the effect of ϕ \ ϕ′ with respect to αϕ′ if and only if:

maxα eval(ϕ
′ ∪ ψ, α) ≥ maxα eval(ϕ, α) −

maxα eval((ϕ \ ϕ′)[αϕ′ ], α)

We state two useful facts about eval before proving soundness.

Proposition 19. Let ϕ and ϕ′ be two MAXSAT formulae such that ϕ ∩ ϕ′ = ∅. Then,

∀α.eval(ϕ ∪ ϕ′, α) = eval(ϕ, α) + eval(ϕ′, α).

Proposition 20. Let ϕ and ϕ′ be two MAXSAT formulae. Then,

maxα eval(ϕ, α) + maxα eval(ϕ′, α) ≥

maxα (eval(ϕ, α) + eval(ϕ′, α)).

The theorem below states the soundness of the optimality check performed in line 6 in

CHECK.
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Theorem 21 (Soundness of optimality check). Given a Q-MAXSAT instance (ϕ,Q), a

MAXSAT formula ϕ′ ⊆ ϕ s.t. Vars(ϕ′) ⊇ Q, a model αϕ′ ∈ MaxSAT (ϕ′), and ψ =

APPROX(ϕ, ϕ′, αϕ′) such that the following condition holds:

max
α

eval(ϕ′ ∪ ψ, α) = max
α

eval(ϕ′, α).

Then, λv.αϕ′(v),where v ∈ Q is a model of the Q-MAXSAT instance (ϕ,Q).

Proof. Let αQ = λv.αϕ′(v), where v ∈ Q. Let ϕ′′ = ϕ[αϕ′ ]. Construct a completion αϕ of

αQ as follows:

αϕ = αϕ′ ] αϕ′′ , where αϕ′′ ∈ MaxSAT (ϕ′′)

It suffices to show that αϕ ∈ MaxSAT (ϕ), that is, eval(ϕ, αϕ) = maxα eval(ϕ, α). We

have:

eval(ϕ, αϕ) = eval(ϕ, αϕ′ ] αϕ′′)

= eval(ϕ[αϕ′ ], αϕ′′)

= max
α

eval(ϕ[αϕ′ ], α)

[since ϕ′′ = ϕ[αϕ′ ] and αϕ′′ ∈ MaxSAT (ϕ′′)]

= max
α

eval(ϕ′[αϕ′ ] ∪ (ϕ \ ϕ′)[αϕ′ ], α)

= max
α

(eval(ϕ′[αϕ′ ], α) + eval((ϕ \ ϕ′)[αϕ′ ], α)) [from Prop. 19]

= max
α

(eval(ϕ′, αϕ′) + eval((ϕ \ ϕ′)[αϕ′ ], α))

[since αϕ′ ∈ MaxSAT (ϕ′)]

= eval(ϕ′, αϕ′) + max
α

eval((ϕ \ ϕ′)[αϕ′ ], α)

≥ eval(ϕ′, αϕ′) + max
α

eval(ϕ, α)−max
α

eval(ϕ′ ∪ ψ, α)

[since ψ = APPROX(ϕ, ϕ′, αϕ′), see Defn. 18]
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= max
α

eval(ϕ′, α) + max
α

eval(ϕ, α)−max
α

eval(ϕ′ ∪ ψ, α)

[since αϕ′ ∈ MaxSAT (ϕ′)]

= max
α

eval(ϕ′∪ψ, α)+ max
α

eval(ϕ, α)−max
α

eval(ϕ′∪ψ, α)

[from the condition defined in the theorem statement]

= max
α

eval(ϕ, α)

Discussion. There are number of possibilities for the APPROX function that satisfy the

specification in Definition 18. The quality of such an APPROX function can be measured

by two criteria: the efficiency and the precision of the optimality check (lines 3 and 6 in

Algorithm 9).

Given that eval can be efficiently computed, the cost of the optimality check primarily

depends on the cost of computing ψ via APPROX, and the cost of invoking the MAXSAT

solver on ϕ′∪ψ. Since MAXSAT is known to be a computationally hard problem, a simple

ψ returned by APPROX can significantly speedup the optimality check.

On the other hand, a precise optimality check can significantly reduce the number of

iterations of Algorithm 8. We define a partial order � on APPROX functions that compares

the precision of the optimality check via them. We say APPROX1 is more precise than

APPROX2 (denoted by APPROX2 � APPROX1), if for any given MAXSAT formulae ϕ, ϕ′ ⊆

ϕ, and αϕ′ ∈ MaxSAT (ϕ′), the optimum objective value of ϕ′∪APPROX1(ϕ, ϕ′, αϕ′) is no

larger than that of ϕ′ ∪ APPROX2(ϕ, ϕ′, αϕ′). More formally:

APPROX2 � APPROX1 ⇔ ∀ϕ, ϕ′ ⊆ ϕ, αϕ′ ∈ MaxSAT (ϕ′) :

maxα eval(ϕ
′ ∪ ψ1, α) ≤ maxα eval(ϕ

′ ∪ ψ2, α),

where ψ1 = APPROX1(ϕ, ϕ′, αϕ′), ψ2 = APPROX2(ϕ, ϕ′, αϕ′).

In Section 4.2.4.2 we introduce three different APPROX functions with increasing order

of precision. While the more precise APPROX operators reduce the number of iterations in
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our algorithm, they are more expensive to compute.

Expanding relevant clauses via REFINE. The REFINE function finds a new set of clauses

that are relevant to the queries, and adds them to the workset when the optimality check

fails. To guarantee the termination of our approach, when the optimality check fails,

REFINE should always return a nonempty set. We describe the details of various REFINE

functions in Section 4.2.4.2.

4.2.4.2 Efficient Optimality Check via Distinct APPROX Functions

We introduce three different APPROX functions and their corresponding REFINE functions

to construct efficient CHECK functions. These three functions are the ID-APPROX function,

the π-APPROX function, and the γ-APPROX function. Each function is constructed by

extending the previous one, and their precision order is:

ID-APPROX � π-APPROX � γ-APPROX.

The cost of executing each of these APPROX functions also increases with precision. After

defining each function and proving that it satisfies the specification of an APPROX function,

we discuss the efficiency and the precision of the optimality check using it.

I The ID-APPROX Function

The ID-APPROX function is based on the following observation: for a Q-MAXSAT in-

stance, the clauses not explored by Algorithm 8 can only affect the assignments to the

queries via the clauses sharing variables with the workset. We refer to such unexplored

clauses as frontier clauses. If all the frontier clauses are satisfied by the current partial

model, or they cannot further improve the objective value of the workset, we can construct

a model of the Q-MAXSAT instance from the current partial model. Based on these ob-

servations, the ID-APPROX function constructs the summarization set by adding all the
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frontier clauses that are not satisfied by the current partial model.

To define ID-APPROX, we first define what it means to say that a clause is satisfied by

a partial model. A clause is satisfied by a partial model over a set of variables U , if it is

satisfied by all completions under that partial model. In other words:

αU |=
∨n
i=1 vi ∨

∨m
j=1 ¬v′j ⇔ (∃i : (vi ∈ U) ∧ αU(vi) = 1)

or (∃j : (v′j ∈ U) ∧ αU(v′j) = 0).

Definition 22 (ID-APPROX). Given formulae ϕ, ϕ′ ⊆ ϕ, and a partial model αϕ′ ∈

MaxSAT (ϕ′), ID-APPROX is defined as follows:

ID-APPROX(ϕ, ϕ′, αϕ′) = {(w, c) | (w, c) ∈ (ϕ \ ϕ′) ∧

Var({(w, c)}) ∩ Var(ϕ′) 6= ∅ ∧ αϕ′ 6|= c)}.

The corresponding REFINE function is:

ID-REFINE(ϕs, ϕ, ϕ
′, αϕ′) = ϕs.

Example. Let (ϕ,Q) be a Q-MAXSAT instance, where ϕ = {(2, x), (5,¬x ∨ y), (5, y ∨

z), (1,¬y)} and Q = {x, y}. Assume that the workset is ϕ′ = {(2, x), (5,¬x ∨ y)}. By

invoking a MAXSAT solver on ϕ′, we get a model αQ = [x 7→ 1, y 7→ 1]. Both clauses in

ϕ \ ϕ′ contain y, where ϕ \ ϕ′ = {(5, y ∨ z), (1,¬y)}. Since (1,¬y) is not satisfied by αQ,

ID-APPROX(ϕ, ϕ′, αϕ′) produces ψ = {(1,¬y)}. As the optimum objective values of both

ϕ′ and ϕ′ ∪ ψ are 7, we conclude [x 7→ 1, y 7→ 1] is a model of the given Q-MAXSAT

instance. Indeed, its completion [x 7→ 1, y 7→ 1, z 7→ 0] is a model of the MAXSAT

formula ϕ.

Theorem 23 (Soundness of ID-APPROX). ID-APPROX(ϕ, ϕ′, αϕ′) summarizes the effect

of ϕ \ ϕ′ with respect to αϕ′ .

Proof. Let ψ=ID-APPROX(ϕ, ϕ′, αϕ′). We show that ID-APPROX satisfies the specifica-
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tion of an APPROX function in Definition 18 by proving the inequality below:

max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ \ ϕ′[αϕ′ ], α)≥max
α

eval(ϕ, α)

We use ϕ1 to represent the set of frontier clauses, and ϕ2 to represent the rest of the clauses

in ϕ \ ϕ′:

ϕ1 = {(w, c) ∈ (ϕ \ ϕ′) | V ar({(w, c)}) ∩ V ar(ϕ′) 6= ∅}

ϕ2 = {(w, c) ∈ (ϕ \ ϕ′) | V ar({(w, c)}) ∩ V ar(ϕ′) = ∅}

We further split the set of frontier clauses ϕ1 into two sets:

ϕ′1 = {(w, c) ∈ ϕ1 | αϕ′ 6|= c}, ϕ′′1 = {(w, c) ∈ ϕ1 | αϕ′ |= c}

ϕ′1 is effectively what is returned by ID-APPROX(ϕ, ϕ′, αϕ′). We first prove the following

claim:

∀α.eval(ϕ′′1[αϕ′ ] ∪ ϕ2, α) ≥ eval(ϕ′′1 ∪ ϕ2, α) (4.1)

We have:

eval(ϕ′′1[αϕ′ ] ∪ ϕ2, α)

= eval(ϕ′′1[αϕ′ ], α) + eval(ϕ2, α) [from Prop. 19]

= max
α

eval(ϕ′′1, α) + eval(ϕ2, α) [since ∀(w, c) ∈ ϕ′′1.αϕ′ |= c]

≥ eval(ϕ′′1, α) + eval(ϕ2, α)

= eval(ϕ′′1 ∪ ϕ2, α) [from Prop. 19]

Now we prove the theorem. We have:
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max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ \ ϕ′[αϕ′ ], α)

= max
α

eval(ϕ′ ∪ ϕ′1, α) + max
α

eval(ϕ \ ϕ′[αϕ′ ], α)

[since ψ = ID-APPROX(ϕ, ϕ′, αϕ′), see Defn. 22]

= max
α

eval(ϕ′ ∪ ϕ′1, α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ′′1[αϕ′ ] ∪ ϕ2[αϕ′ ], α)

≥ max
α

eval(ϕ′ ∪ ϕ′1, α) + max
α

eval(ϕ′′1[αϕ′ ] ∪ ϕ2[αϕ′ ], α)

[since ∀ϕ, ϕ′.max
α

eval(ϕ ∪ ϕ′) ≥ max
α

eval(ϕ)]

= max
α

eval(ϕ′ ∪ ϕ′1, α) + max
α

eval(ϕ′′1[αϕ′ ] ∪ ϕ2, α)

[since V ar(ϕ′) ∩ V ar(ϕ2) = ∅]

≥ max
α

eval(ϕ′ ∪ ϕ′1, α) + max
α

eval(ϕ′′1 ∪ ϕ2, α) [from (1)]

≥ max
α

(eval(ϕ′ ∪ ϕ′1, α) + eval(ϕ′′1 ∪ ϕ2, α)) [from Prop. 20]

= max
α

eval(ϕ′ ∪ ϕ′1 ∪ ϕ′′1 ∪ ϕ2, α) [from Prop. 19]

= max
α

eval(ϕ, α)

Discussion. The ID-APPROX function effectively exploits the observation that, in a poten-

tially very large Q-MAXSAT instance, the unexplored part of the formula can only impact

the assignments to the queries via the frontier clauses. In practice, the set of frontier clauses

is usually much smaller compared to the set of all unexplored clauses, resulting in an ef-

ficient invocation of the MAXSAT solver in the optimality check. Moreover, ID-APPROX

is cheap to compute as it can be implemented via a linear scan of the unexplored clauses.

However, the precision of ID-APPROX may not be satisfactory, causing the optimality

check to be overly conservative. One such scenario is that, if the clauses in the summariza-

tion set generated from ID-APPROX contain any variable that is not used in any clause in
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the workset, then the check will fail. To overcome this limitation, we next introduce the

π-APPROX function.

II The π-APPROX Function

π-APPROX improves the precision of ID-APPROX by exploiting the following observation:

if the frontier clauses violated by the current partial model have relatively low weights, even

though they may contain new variables, it is very likely the case that we can resolve the

queries with the workset. To overcome the limitation of ID-APPROX, π-APPROX generates

the summarization set by applying a strengthening function on the frontier clauses violated

by the current partial model.

We define the strengthening function retain below.

Definition 24 (retain). We define retain(c,V) as follows:

retain(1,V) = 1

retain(0,V) = 0

retain(
∨n
i=1 vi ∨

∨m
j=1 ¬v′j,V) =

let V1 = V ∩ {v1, .., vn} and V2 = V ∩ {v′1, ..., v′m}

in

 0 if V1 = V2 = ∅∨
u∈V1 u ∨

∨
u′∈V2 ¬u

′ otherwise


Definition 25 (π-APPROX). Given a formulaϕ, a formulaϕ′ ⊆ ϕ, and αϕ′ ∈ MaxSAT (ϕ′),

π-APPROX is defined as follows:

π-APPROX(ϕ, ϕ′, αϕ′) = { (w, retain(c,Var(ϕ′))) |

(w, c) ∈ ϕ \ ϕ′ ∧ Var({(w, c)}) ∩ Var(ϕ′) 6= ∅ ∧ αϕ′ 6|= c) }
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The corresponding REFINE function is:

π-REFINE(ϕs, ϕ, ϕ
′, αϕ′) = {(w, c) ∈ ϕ \ ϕ′ |

(w, retain(c,Var(ϕ′))) ∈ ϕs}

Example. Let (ϕ,Q) where ϕ = {(5, x), (5,¬x∨y), (1,¬y∨z), (5,¬z)} and Q = {x, y}

be a Q-MAXSAT instance. Assume that the workset is ϕ′ = {(5, x), (5,¬x ∨ y)}. By

invoking a MAXSAT solver on ϕ′, we get αQ = [x 7→ 1, y 7→ 1] with the objective value of

ϕ′ being 10. The only clause in ϕ \ ϕ′ that uses x or y is (1,¬y ∨ z), which is not satisfied

by αQ. By applying π-APPROX, we generate the summarization set ψ = {(1,¬y)}. By

invoking a MAXSAT solver on ϕ′ ∪ψ, we find its optimum objective value to be 10, which

is the same as that of ϕ′. Thus, we conclude that αQ is a solution of Q-MAXSAT instance

(ϕ, {x, y}). Indeed, model [x 7→ 1, y 7→ 1, z 7→ 0] which is a completion of αQ, is

a solution of the MAXSAT formula ϕ. On the other hand, the optimality check using

the ID-APPROX function will return ψ′ = {(1,¬y ∨ z)} as the summarization set. By

invoking the MAXSAT solver on φ′ ∪ ψ′, we get an optimum objective value of 11 with

[x 7→ 1, y 7→ 1, z 7→ 1]. As a result, the optimality check with ID-APPROX fails here

because of the presence of z in the summarization set.

To prove that π-APPROX satisfies the specification of APPROX in Definition 18, we first

introduce a decomposition function.

Definition 26 (π-DECOMP). Given a formula ϕ and set of variables V ⊆ Var(ϕ), let

V ′ = V ar(ϕ) \ V . Then, we define π-DECOMP(ϕ,V) = (ϕ1, ϕ2) such that:

ϕ1 ={ (w,retain(c,V)) | (w, c) ∈ ϕ ∧ Var({(w, c)}) ∩ V 6= ∅ }

ϕ2 ={ (w,retain(c,V ′)) | (w, c) ∈ ϕ ∧

(Var({(w, c)}) ∩ V ′ 6= ∅ ∨ c = 1 ∨ c = 0) }.
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Lemma 27. Let π-DECOMP(ϕ,V) = (ϕ1, ϕ2), where V ⊆ Var(ϕ). We have eval(ϕ1 ∪

ϕ2, α) ≥ eval(ϕ, α) for all α.

Proof. To simplify the proof, we first remove the clauses with no variables from both ϕ

and ϕ1 ∪ ϕ2. We use the following two sets to represent such clauses:

ϕ3 = {(w, c) ∈ ϕ | c = 1}, ϕ4 = {(w, c) ∈ ϕ | c = 0}.

We also define the following two sets:

ϕ′3 = {(w, c) ∈ ϕ2 | c = 1}, ϕ′4 = {(w, c) ∈ ϕ2 | c = 0}.

Based on the definition of ϕ2, we have ϕ3 = ϕ′3 and ϕ4 = ϕ′4. Therefore, the inequality in

the lemma can be rewritten as:

eval(ϕ1 ∪ ϕ2 \ (ϕ′3 ∪ ϕ′4), α) ≥ eval(ϕ \ (ϕ3 ∪ ϕ4), α).

From this point on, we assume ϕ = ϕ \ (ϕ3 ∪ ϕ4) and ϕ2 = ϕ2 \ (ϕ′3 ∪ ϕ′4). Let V ′ =

Var(ϕ) \ V . We prove the lemma by showing that for any s ∈ ϕ, where s = (w, c) and α,

eval({(w, retain(c,V))}, α) + eval({(w, retain(c,V ′))}, α)

≥ eval({(w, c}, α) (1)

Let S = {(w, c)}, S1 = {(w, retain(c,V))}, S2 = {(w, retain(c,V ′))}. We prove the above

claim with respect to the three different cases:

1. If Var(S)∩V = ∅, then we have S1 = {(w, 0)}, S2 = S. Since ∀w, α . eval({w, 0}, α) =

0, we have ∀α . eval(S1, α) + eval(S2, α) = eval(S, α).

2. If Var(S) ∩ V ′ = ∅, then we have S1 = S, S2 = {(w, 0)}. Similar to Case 1, we have

∀α . eval(S1, α) + eval(S2, α) = eval(S, α).

3. If Var(S) ∩ V 6= ∅ and Var(S) ∩ V ′ 6= ∅, we prove the case by converting S, S1 and
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S2 into their equivalent pseudo-Boolean functions. A pseudo-Boolean function f is a

multi-linear polynomial, which maps the assignment of a set of Boolean variables to a

real number:

f(v1, ..., vn) = a0 +
m∑
i=1

(ai

p∏
j=1

vj), where ai ∈ R+.

Any MAXSAT formula can be converted into a pseudo-Boolean function. The conver-

sion 〈·〉 is as follows:

〈{s1, ..., sn}〉 =
∑n

i=1(fst(si)− fst(si)〈snd(si)〉)

〈
∨n
i=1 vi ∨

∨m
j=1 ¬v′j〉 =

∏n
i=1 (1− vi) ∗

∏m
j=1 v

′
j

〈1〉 = 0

〈0〉 = 1

For example, the MAXSAT formula {(5,¬w ∨ x), (3, y ∨ z)} is converted into function

5 − 5w(1 − x) + 3 − 3(1 − y)(1 − z). We use eval(f, α) to denote the evaluation of

pseudo-Boolean function f under model α. From the conversion, we can conclude that

∀ϕ, α . eval(ϕ, α) = eval(〈ϕ〉, α).

We now prove the claim (1) under the third case above. We rewrite c =
∨n
i=1 vi ∨∨m

j=1 ¬v′j as below:

c =
∨
x∈V1 x ∨

∨
x′∈V2 ¬x

′ ∨
∨
y∈V3 y ∨

∨
y′∈V4 ¬y

′

where V1 = V ∩ {v1, .., vn}, V2 = V ∩ {v′1, .., v′m}, V3 = V ′ ∩ {v1, .., vn} and V4 =

V ′ ∩ {v′1, .., v′m}.

Let c1 =
∨
x∈V1 x ∨

∨
x′∈V2 ¬x

′ and c2 =
∨
y∈V3 y ∨

∨
y′∈V4 ¬y

′. Then, we have

S1={(w, c1)} and S2={(w, c2)}. It suffices to prove that 〈S1〉 + 〈S2〉 − 〈S〉 ≥ 0. We
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have:

〈S1〉+ 〈S2〉 − 〈S〉

= w − w
∏
x∈V1

(1− x)
∏

x′∈V2
x′ + w − w

∏
y∈V3

(1− y)
∏

y′∈V4
y′

−(w − w
∏
x∈V1

(1− x)
∏

x′∈V2
x′
∏
y∈V3

(1− y)
∏

y′∈V4
y′)

= w(1−
∏
x∈V1

(1− x)
∏

x′∈V2
x′)−

w
∏
y∈V3

(1− y)
∏

y′∈V4
y′(1−

∏
x∈V1

(1− x)
∏

x′∈V2
x′)

= w(1−
∏
x∈V1

(1− x)
∏

x′∈V2
x′)(1−

∏
y∈V3

(1− y)
∏

y′∈V4
y′)

Since all variables are Boolean variables, we have

1−
∏

x∈V1(1− x) ∗
∏

x′∈V2 x
′ ≥ 0 and

1−
∏

y∈V3(1− y) ∗
∏

y′∈V4 y
′ ≥ 0.

From Lemma 27, Propositions 19 and 20, we can also conclude that

maxα eval(ϕ1, α) + maxα eval(ϕ2, α)

≥ maxα eval(ϕ1 ∪ ϕ2, α) ≥ maxα eval(ϕ, α)

where π-DECOMP(ϕ,V) = (ϕ1, ϕ2).

We now use the lemma to prove that π-APPROX is a APPROX function as defined in

Definition 18.

Theorem 28 (Soundness of π-APPROX). π-APPROX(ϕ, ϕ′, αϕ′) summarizes the effect of

ϕ \ ϕ′ with respect to αϕ′ .

Proof. Let ψ = π-APPROX(ϕ, ϕ′, αϕ′). We show that π-APPROX satisfies the specification
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of an APPROX function in Definition 18 by proving the inequality below:

max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ \ ϕ′[αϕ′ ], α)≥max
α

eval(ϕ, α)

Without loss of generality, we assume that ϕ does not contain any clause (w, c) where c = 0

or c = 1. Otherwise, we can rewrite the inequality above by removing these clauses from

ϕ, ϕ′, and ϕ \ ϕ′.

As in the soundness proof for ID-APPROX, we define ϕ1,ϕ2, ϕ′1, and ϕ′′1 as follows:

ϕ1 = {(w, c) ∈ (ϕ \ ϕ′) | Var({(w, c)}) ∩ Var(ϕ′) 6=∅},

ϕ2 = {(w, c) ∈ (ϕ \ ϕ′) | Var({(w, c)}) ∩ Var(ϕ′)=∅},

ϕ′1 = {(w, c) ∈ ϕ1 | αϕ′ 6|= c},

ϕ′′1 = {(w, c) ∈ ϕ1 | αϕ′ |= c}.

We have: maxα eval(ϕ
′ ∪ ψ, α) + maxα eval((ϕ \ ϕ′)[αϕ′ ], α)

= max
α

eval(ϕ′ ∪ ψ, α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ′′1[αϕ′ ] ∪ ϕ2[αϕ′ ], α)

= max
α

eval(ϕ′ ∪ ψ, α) + max
α

(eval(ϕ′′1[αϕ′ ], α) +

eval(ϕ′1[αϕ′ ] ∪ ϕ2[αϕ′ ], α)) [from Prop. 19]

= max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ′′1, α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ2[αϕ′ ], α) [since ∀(w, c) ∈ ϕ′′1.αϕ′ |= c]

= max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ′′1, α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ2, α) [since Var(ϕ′) ∩ Var(ϕ2) = ∅]
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Next, we show that π-DECOMP(ϕ′ ∪ ϕ′1 ∪ ϕ2,Var(ϕ′)) = (ϕ′ ∪ ψ, ϕ′1[αϕ′ ] ∪ ϕ2). Let

V1 = Var(ϕ′) and V2 = Var(ϕ) \ V1. For a given clause (w, c) ∈ ϕ′ ∪ ϕ′1 ∪ ϕ2, we show

the result of (w, retain(c,V1)) and (w, retain(c,V2)) under the following cases:

1. When (w, c) ∈ ϕ′, retain(c,V) = c and retain(c,V ′) = 0. Hence we have ϕ′ =

{(w, retain(c,V)) | (w, c) ∈ ϕ′ ∧ retain(c,V) 6= 0}

2. When (w, c) ∈ ϕ2, retain(c,V) = 0 and retain(c,V ′) = c. Hence we have ϕ2 =

{(w, retain(c,V ′)) | (w, c) ∈ ϕ2 ∧ retain(c,V ′) 6= 0}

3. When (w, c) ∈ ϕ′1, based on the definition of ψ and ϕ′1, we have ψ = {(w, retain(c,V)) |

(w, c) ∈ ϕ′1 ∧ retain(c,V) 6= 0} and ϕ′1[αϕ′ ] = {(w, retain(c,V ′)) | (w, c) ∈ ϕ′1 ∧

retain(c,V ′) 6= 0}.

Therefore, π-DECOMP(ϕ′ ∪ ϕ′1 ∪ ϕ2,Var(ϕ′)) = (ϕ′ ∪ ψ, ϕ′1[αϕ′ ] ∪ ϕ2).

By applying Lemma 27, we can derive

max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ1[αϕ′ ] ∪ ϕ2, α)

≥ max
α

eval(ϕ′ ∪ ϕ′1 ∪ ϕ2, α).

(4.1)

Thus, we can prove the theorem as follows:

maxα eval(ϕ
′ ∪ ψ, α) + maxα eval(ϕ \ ϕ′[αϕ′ ], α)

= max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ′′1, α) +

max
α

eval(ϕ′1[αϕ′ ] ∪ ϕ2, α)

≥ max
α

eval(ϕ′ ∪ ϕ′1 ∪ ϕ2, α) + max
α

eval(ϕ′′1, α) [from (1)]

≥ max
α

[eval(ϕ′ ∪ ϕ′1 ∪ ϕ2, α) + eval(ϕ′′1, α)] [from Prop. 20]

≥ max
α

eval(ϕ′ ∪ ϕ′1 ∪ ϕ′′1 ∪ ϕ2, α) [from Prop. 19]

= max
α

eval(ϕ, α)
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Discussion. Similar to ID-APPROX, π-APPROX generates the summarization set from the

frontier clauses that are not satisfied by the current solution. Consequently, the perfor-

mance of the MAXSAT invocation in the optimality check is similar for both π-APPROX

and ID-APPROX. π-APPROX further improves the precision of the check by applying the

retain operator to strengthen the clauses generated. The retain operator does incur modest

overheads when computing π-APPROX. In practice, however, we find that the additional

precision provided by π-APPROX function improves the overall performance of the algo-

rithm by terminating the iterative process earlier.

III The γ-APPROX Function

While both the ID-APPROX function and the π-APPROX function only consider informa-

tion on the frontier clauses, γ-APPROX further improves precision by considering infor-

mation from non-frontier clauses. Similar to the π-APPROX function, γ-APPROX also

generates the summarization set by applying the retain function on the frontier clauses vio-

lated by the current partial model. The key improvement is that γ-APPROX tries to reduce

the weights of generated clauses by exploiting information from the non-frontier clauses.

Before defining the γ-APPROX function, we first introduce some definitions:

PV (
∨n
i=1 vi ∨

∨m
i=1 ¬v′i)={v1, ..., vn}, PV (0)=PV (1)=∅

NV (
∨n
i=1 vi ∨

∨m
i=1 ¬v′i)={v′1, ..., v′m}, NV (0)=NV (1)=∅

link(v, u, ϕ)⇔ ∃(w, c) ∈ ϕ : v ∈ NV (c) ∧ u ∈ PV (c)

tReachable(v, ϕ) = {v} ∪ {u | (v, u) ∈ R+},where R = {(v, u) | link(v, u, ϕ)}

fReachable(v, ϕ) = {v} ∪ {u | v ∈ tReachable(u, ϕ)}

tPenalty(v, ϕ) =
∑
{w | (w,

∨m
i=1 ¬v′i) ∈ ϕ ∧ {v′1, ..., v′m} ∩ tReachable(v, ϕ) 6= ∅}

fPenalty(v, ϕ) =
∑
{w | (w,

∨n
i=1 vi) ∈ ϕ ∧ {v1, ..., vn} ∩ fReachable(v, ϕ) 6= ∅}

Intuitively, tPenalty(v, ϕ) overestimates the penalty incurred on the objective value of
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ϕ by setting variable v to true, while fPenalty(v, ϕ) overestimates the penalty incurred

on the objective value of ϕ by setting variable v to false.

We next introduce the γ-APPROX approximation function.

Definition 29 (γ-APPROX). Given ϕ, ϕ′ ⊆ ϕ, and a partial model αϕ′ ∈ MaxSAT (ϕ′),

γ-APPROX is defined as below:

γ-APPROX(ϕ, ϕ′, αϕ′) = {(w′, c′) | (w, c) ∈ ϕ \ ϕ′∧

Var({(w, c)}) ∩ Var(ϕ′) 6= ∅ ∧ αϕ′ 6|= c ∧ c′ =

retain(c,Var(ϕ′)) ∧ w′ = reduce(w, c, ϕ, ϕ′, αϕ′).}

We next define the reduce function. Let c′′ = retain(c,Var(ϕ) \Var(ϕ′)). Then, function

reduce is defined as follows:

1. If c′′ = 0, reduce(w, c, ϕ, ϕ′, αϕ′) = w.

2. If PV (c′′) 6= ∅ and NV (c′′) = ∅, reduce(w, c, ϕ, ϕ′, αϕ′) =

min(w, minv∈PV (c′′)tPenalty(v, (ϕ \ ϕ′)[αϕ′ ])).

3. If PV (c′′) = ∅ and NV (c′′) 6= ∅, reduce(w, c, ϕ, ϕ′, αϕ′) =

min(w, minv∈NV (c′′)fPenalty(v, (ϕ \ ϕ′)[αϕ′ ])).

4. If PV (c′′) 6= ∅ and NV (c′′) 6= ∅, reduce(w, c, ϕ, ϕ′, αϕ′) =

min(min(w, minv∈PV (c′′)tPenalty(v, (ϕ \ ϕ′)[αϕ′ ])),minv∈NV (c′′)fPenalty(v, (ϕ \

ϕ′)[αϕ′ ])).

The corresponding REFINE function is:

γ-REFINE(ϕs, ϕ, ϕ
′, αϕ′) = {(w, c) | (w, c) ∈ ϕ \ ϕ′∧

(reduce(w, c, ϕ, ϕ′, αϕ′), retain(c,Var(ϕ′))) ∈ ϕs}

Example. Let (ϕ,Q) where ϕ = {(5, x), (5,¬x ∨ y), (100,¬y ∨ z), (1,¬z)} and Q =

{x, y} be a Q-MAXSAT instance. Suppose that the workset is ϕ′ = {(5, x), (5,¬x ∨ y)}.
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By invoking a MAXSAT solver on ϕ′, we get αQ = [x 7→ 1, y 7→ 1] with the objective

value of ϕ′ being 10. The only clause in ϕ \ ϕ′ that uses x or y is (100,¬y ∨ z), which is

not satisfied by αQ. By applying the retain operator, γ-APPROX strengthens (100,¬y ∨ z)

into (100,¬y). It further transforms it into (1,¬y) via reduce. By comparing the optimum

objective value of ϕ′ and ϕ′ ∪ {(1,¬y)}, CHECK concludes that ϕQ is a solution of the

Q-MAXSAT instance. Indeed, [x 7→ 1, y 7→ 1, z 7→ 1] which is a completion of αϕ′ is a

solution of the MAXSAT formula ϕ. On the other hand, applying π-APPROX will fail the

check due to the high weight of the clause generated via retain.

We explain how reduce works on this example. We first generate c′′ = retain(¬y ∨

z, {x, y, z}\{x, y}) = z. Then, we compute (ϕ\ϕ′)[αQ] = {(100,¬y∨ z), (1,¬z)}[[x 7→

1, y 7→ 1]] = {(100, z), (1,¬z)}. As evident, setting z to 1 only violates (1,¬z), incurring

a penalty of 1 on the objective value of (ϕ\ϕ′)[αQ]. As a result, tPenalty(z, (ϕ\ϕ′)[αQ])

= 1, which is lower than the weight of the summarization clause (100,¬y). Hence, reduce

returns 1 as the new weight for the summarization clause.

To prove that γ-APPROX satisfies the specification of APPROX in Definition 18, we first

prove two lemmas.

Lemma 30. Given (w, c) ∈ ϕ, v ∈ PV (c), and tPenalty(v, ϕ) < w, we construct ϕ′ as

follows:

ϕ′ = ϕ \ {(w, c)} ∪ {(w′, c)},where w′ = tPenalty(v, ϕ).

Then we have

max
α

eval(ϕ, α) = max
α′

eval(ϕ′, α′) + w − w′.

Proof. We first prove a claim:

∃α : (eval(ϕ, α) = max
α′

eval(ϕ, α′)) ∧ α |= c.

We prove this by contradiction. Suppose we can only find a model α that maximizes the
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objective value of ϕ, such that α 6|= c. We can construct a model α1 in the following way:

α1(u) =

 α(u) if u /∈ tReachable(v, ϕ),

1 otherwise.

Based on the definition of tPenalty, we have

eval(ϕ, α1) ≥ eval(ϕ, α)− tPenalty(v, ϕ) + w.

Since w ≥ tPenalty(v, ϕ), α1 yields no worse objective value than α. Since α1 |= c as

v ∈ PV (c) and α1(v) = 1, we proved the claim.

Similarly, we can show

∃α′ : (eval(ϕ′, α′) = max
α′′

eval(ϕ′, α′′)) ∧ α′ |= c.

Based on the two claims, we can find α |= c and α′ |= c such that

max
α1

eval(ϕ, α1) = eval(ϕ, α) = w + eval(ϕ \ {(w, c)}, α),

max
α2

eval(ϕ′, α2) = eval(ϕ′, α′) = w′ + eval(ϕ′ \ {(w′, c)}, α′).

We next show eval(ϕ \ {(w, c)}, α) = eval(ϕ′ \ {(w′, c)}, α′) by contradiction. Assuming

eval(ϕ \ {(w, c)}, α) > eval(ϕ′ \ {(w′, c)}, α′), we will have eval(ϕ′, α) > eval(ϕ′, α′).

This is because eval(ϕ′, α) = eval(ϕ′ \ {(w′, c)}, α) + w′ and eval(ϕ′ \ {(w′, c)}, α) =

eval(ϕ\{(w, c)}, α). This contradicts with the fact that maxα2 eval(ϕ′, α2) = eval(ϕ′, α′).

Thus, we conclude eval(ϕ\{(w, c)}, α) ≤ eval(ϕ′ \{(w′, c)}, α′). Similarly,we can show

eval(ϕ \ {(w, c)}, α) ≥ eval(ϕ′ \ {(w′, c)}, α′).
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Given eval(ϕ \ {(w, c)}, α) = eval(ϕ′ \ {(w′, c)}, α′), we have:

max
α1

eval(ϕ, α1) = eval(ϕ, α) = w + eval(ϕ \ {(w, c)}, α)

= w + eval(ϕ′ \ {(w′, c)}, α′) = eval(ϕ′, α′) + w − w′

= max
α2

eval(ϕ′, α2) + w − w′.

Lemma 31. Given (w, c) ∈ ϕ, v ∈ NV (c) and fPenalty(v, ϕ)

< w, we construct ϕ′ as follows:

ϕ′ = ϕ \ {(w, c)} ∪ {(w′, c)},where w′ = fPenalty(v, ϕ).

Then we have

max
α

eval(ϕ, α) = max
α′

eval(ϕ′, α′) + w − w′.

Proof. Analogous to the proof to Lemma 30; we omit the details.

We now prove that γ-APPROX satisfies the specification of APPROX in Definition 18.

Theorem 32 (γ-APPROX). γ-APPROX(ϕ, ϕ′, αϕ′) summarizes the effect of ϕ \ ϕ′ with

respect to αϕ′ .

Proof. Let ψ = γ-APPROX(ϕ, ϕ′, αϕ′). We show that γ-APPROX satisfies the specification

of an APPROX function in Definition 18 by proving the inequality below:

max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ \ ϕ′[αϕ′ ], α)≥max
α

eval(ϕ, α)

We define ϕ1 and ϕ2 as follows:

ϕ1 = {(w, c) ∈ (ϕ \ ϕ′) | Var({(w, c)}) ∩ Var(ϕ′) 6=∅},

ϕ2 = {(w, c) ∈ (ϕ \ ϕ′) | Var({(w, c)}) ∩ Var(ϕ′)=∅}.
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ϕ1 is the set of frontier clauses and ϕ2 contains rest of the clauses in ϕ\ϕ′. We further split

ϕ1 into the following disjoint sets:

ϕ1
1 = {(w, c) ∈ ϕ1 | αϕ′ |= c},

ϕ2
1 = {(w, c) ∈ ϕ1 | αϕ′ 6|= c ∧ reduce(w, c, ϕ, ϕ′, αϕ′) = w},

ϕ3
1 = {(w, c) ∈ ϕ1 | αϕ′ 6|= c ∧ w′ < w ∧

∃v ∈ PV (c) : w′ = tPenalty(v, ϕ \ ϕ′[αϕ′ ]) ∧

reduce(w, c, ϕ, ϕ′, αϕ′) = w′},

ϕ4
1 = ϕ1 \ ( ϕ1

1 ∪ ϕ2
1 ∪ ϕ3

1).

Effectively, ϕ2
1, ϕ3

1, and ϕ4
1 contain all the clauses being strengthened in γ-APPROX: ϕ2

1

contains all the clauses whose weights are not reduced; ϕ3
1 contains all the clauses whose

weights are reduced through positive literals in them; ϕ4
1 contains all the clauses whose

weights are reduced through negative literals in them.

Further, we define ϕ̂3
1 and ϕ̂4

1 as below:

ϕ̂3
1 = {(w′, c) | (w, c) ∈ ϕ3

1 ∧ ∃v ∈ PV (c) : w′ =

tPenalty(v, ϕ \ ϕ′[αϕ′ ]) ∧ reduce(w, c, ϕ, ϕ′, αϕ′) = w′},

ϕ̂4
1 = {(w′, c) | (w, c) ∈ ϕ4

1 ∧ ∃v ∈ NV (c) : w′ =

fPenalty(v, ϕ \ ϕ′[αϕ′ ]) ∧ reduce(w, c, ϕ, ϕ′, αϕ′) = w′}.

Using Lemmas 30 and 31, we prove the following claim (1):

max
α

eval(ϕ \ ϕ′[αϕ′ ], α)

= max
α

eval(ϕ1
1[αϕ′ ]∪ϕ2

1[αϕ′ ]∪ϕ3
1[αϕ′ ]∪ϕ4

1[αϕ′ ]∪ϕ2[αϕ′ ], α)

≥ max
α

eval(ϕ1
1[αϕ′ ]∪ϕ2

1[αϕ′ ]∪ϕ̂3
1[αϕ′ ]∪ ˆϕ4

1[αϕ′ ]∪ϕ2[αϕ′ ], α)

+
∑
{w | (w, c) ∈ ϕ3

1 ∪ ϕ4
1} −

∑
{w′ | (w′, c) ∈ ϕ̂3

1 ∪ ϕ̂4
1}
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Similar to the soundness proof for π-APPROX, we show:

π-DECOMP(ϕ′ ∪ ϕ2
1 ∪ ϕ̂3

1 ∪ ϕ̂4
1 ∪ ϕ2,Var(ϕ′)) =

(ϕ′ ∪ ψ, ϕ2
1[αϕ′ ] ∪ ϕ̂3

1[αϕ′ ] ∪ ϕ̂4
1[αϕ′ ] ∪ ϕ2[αϕ′ ]).

Following Lemma 27, we can derive the following claim (2):

max
α

eval(ϕ′ ∪ ψ, α)+

max
α

eval(ϕ2
1[αϕ′ ] ∪ ϕ̂3

1[αϕ′ ] ∪ ϕ̂4
1[αϕ′ ] ∪ ϕ2[αϕ′ ], α)

≥ max
α

eval(ϕ′ ∪ ϕ2
1 ∪ ϕ̂3

1 ∪ ϕ̂4
1 ∪ ϕ2, α).

By contradiction we can show the following claim (3) holds:

∀ϕ, (w, c) ∈ ϕ,w′ ≤ w.maxα eval(ϕ, α) ≤

maxα eval(ϕ \ {(w, c)} ∪ {(w′, c)}, α) + w − w′.

Combining Claim (1), (2), and (3), we have

max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ \ ϕ′[αϕ′ ], α)

≥ max
α

eval(ϕ′ ∪ ψ, α) + max
α

eval(ϕ1
1[αϕ′ ]∪ϕ2

1[αϕ′ ]∪ϕ̂3
1[αϕ′ ]∪ ˆϕ4

1[αϕ′ ]∪ϕ2[αϕ′ ], α)

+
∑
{w | (w, c) ∈ ϕ3

1 ∪ ϕ4
1} −

∑
{w′ | (w′, c) ∈ ϕ̂3

1 ∪ ϕ̂4
1}

≥ max
α

eval(ϕ′ ∪ ϕ2
1 ∪ ϕ̂3

1 ∪ ϕ̂4
1 ∪ ϕ2, α) + max

α
eval(ϕ1

1, α)

+
∑
{w | (w, c) ∈ ϕ3

1 ∪ ϕ4
1} −

∑
{w′ | (w′, c) ∈ ϕ̂3

1 ∪ ϕ̂4
1}

≥ max
α

eval(ϕ′ ∪ ϕ1
1 ∪ ϕ2

1 ∪ ϕ̂3
1 ∪ ϕ̂4

1 ∪ ϕ2, α)

+
∑
{w | (w, c) ∈ ϕ3

1 ∪ ϕ4
1} −

∑
{w′ | (w′, c) ∈ ϕ̂3

1 ∪ ϕ̂4
1}

≥ maxα eval(ϕ, α).
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Discussion. γ-APPROX is the most precise among the three functions as it is the only one

that considers the effects of non-frontier clauses. This improved precision comes at the

cost of computing additional information from the non-frontier clauses. Such information

can be computed in polynomial time via graph reachability algorithms. In practice, we find

this overhead to be negligible compared to the performance boost for the overall approach.

Therefore, in the empirical evaluation, we use γ-APPROX and its related REFINE function

in our implementation.

4.2.5 Empirical Evaluation

This section evaluates our approach on Q-MAXSAT instances generated from several real-

world problems in program analysis and information retrieval.

4.2.5.1 Evaluation Setup

We implemented our algorithm for Q-MAXSAT in a tool PILOT. In all our experiments,

we used the MiFuMaX solver [125] as the underlying MAXSAT solver, although PILOT

allows using any off-the-shelf MAXSAT solver. We also study the effect of different such

solvers on the overall performance of PILOT.

All our experiments were performed on a Linux machine with 8 GB RAM and a 3.0

GHz processor. We limited each invocation of the MAXSAT solver to 3 GB RAM and

one hour of CPU time. Next, we describe the details of the Q-MAXSAT instances that we

considered for our evaluation.

Instances from program analysis. These are instances generated from the aforemen-

tioned static bug detection application on two fundamental static analyses for sequential

and concurrent programs: a pointer analysis and a datarace analysis. Both analyses are

expressed in a framework that combines conventional rules specified by analysis writers

with feedback on false alarms provided by analysis users [9]. The framework produces
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Table 4.4: Characteristics of the benchmark programs . Columns “total” and “app” are with
and without counting JDK library code, respectively.

benchmark brief description # classes # methods bytecode (KB) source (KLOC)
app total app total app total app total

ftp Apache FTP server 93 414 471 2,206 29 118 13 130
hedc web crawler from ETH 44 353 230 2,134 16 140 6 153
weblech website download/mirror tool 11 576 78 3,326 6 208 12 194
antlr generates parsers and lexical analyzers 111 350 1,150 2,370 128 186 29 131
avrora AVR microcontroller simulator 1,158 1,544 4,234 6,247 222 325 64 193
chart plots graphs and render them as PDF 192 750 1,516 4,661 102 306 54 268
luindex document indexing tool 206 619 1,390 3,732 102 235 39 190
lusearch text searching tool 219 640 1,399 3,923 94 250 40 198
xalan XML to HTML transforming tool 423 897 3,247 6,044 188 352 129 285

MAXSAT instances whose hard clauses express soundness conditions of the analysis, while

soft clauses specify false alarms identified by users. The goal is to automatically generalize

user feedback to other false alarms produced by the analysis on the same input program.

The pointer analysis is a flow-insensitive, context-insensitive, and field-sensitive pointer

analysis with allocation site heap abstraction [73]. Each query for this analysis is a Boolean

variable that represents whether an unsafe downcast identified by the analysis prior to feed-

back is a true positive or not.

The datarace analysis is a combination of four analyses described in [43]: call-graph,

may-alias, thread-escape, and lockset analyses. A query for this analysis is a Boolean

variable that represents whether a datarace reported by the analysis prior to feedback is a

true positive or not.

We generated Q-MAXSAT instances by running these two analyses on nine Java bench-

mark programs. Table 4.4 shows the characteristics of these programs. Except for the first

three smaller programs in the table, all the other programs are from the DaCapo suite [77].

Table 4.5 shows the numbers of queries, variables, and clauses for the Q-MAXSAT in-

stances corresponding to the above two analyses on these benchmark programs.

Instances from information retrieval. These are instances generated from problems in

information retrieval. In particular, we consider problems in relational learning where the

goal is to infer new relationships that are likely present in the data based on certain rules.

Relational solvers such as Alchemy [81] and Tuffy [80] solve such problems by solving
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Table 4.5: Number of queries, variables, and clauses in the MAXSAT instances generated
by running the datarace analysis and the pointer analysis on each benchmark program. The
datarace analysis has no queries on antlrand chart as they are sequential programs.

datarace analysis pointer analysis
# queries # variables # clauses # queries # variables # clauses

ftp 338 1.2M 1.4M 55 2.3M 3M
hedc 203 0.8M 0.9M 36 3.8M 4.8M
weblech 7 0.5M 0.9M 25 5.8M 8.4M
antlr 0 - - 113 8.7M 13M
avrora 803 0.7M 1.5M 151 11.7M 16.3M
chart 0 - - 94 16M 22.3M
luindex 3,444 0.6M 1.1M 109 8.5M 11.9M
lusearch 206 0.5M 1M 248 7.8M 10.9M
xalan 11,410 2.6M 4.9M 754 12.4M 18.7M

a system of weighted constraints generated from the data and the rules. The weight of

each clause represents the confidence in each inference rule. We consider Q-MAXSAT

instances generated from three standard relational learning applications, described next,

whose datasets are publicly available [126, 127, 95].

The first application is an advisor recommendation system (AR), which recommends

advisors for first year graduate students. The dataset for this application is generated from

the AI genealogy project [126] and DBLP [127]. The query specifies whether a professor is

a suitable advisor for a student. The Q-MAXSAT instance generated consists of 10 queries,

0.3 million variables, and 7.9 million clauses.

The second application is Entity Resolution (ER), which identifies duplicate entities in a

database. The dataset is generated from the Cora bibliographic dataset [95]. The queries in

this application specify whether two entities in the dataset are the same. The Q-MAXSAT

instance generated consists of 25 queries, 3 thousand variables, and 0.1 million clauses.

The third application is Information Extraction (IE), which extracts information from

text or semi-structured sources. The dataset is also generated from the Cora dataset. The

queries in this application specify extractions of the author, title, and venue of a publication

record. The Q-MAXSAT instance generated consists of 6 queries, 47 thousand variables,

and 0.9 million clauses.
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Table 4.6: Performance of our PILOT and the baseline approach (BASELINE). In all exper-
iments, we used a memory limit of 3 GB and a time limit of one hour for each invocation
of the MAXSAT solver in both approaches. Experiments that timed out exceeded either of
these limits.

application benchmark
running time peak memory problem size final

iterations(in seconds) (in MB) (in thousands) solver time
PILOT BASELINE PILOT BASELINE final max (in seconds)

datarace
analysis

ftp 53 5 387 589 892 1,400 3 7
hedc 45 4 260 387 586 925 2 6
weblech 2 1 199 340 561 937 1 1
avrora 55 5 416 576 991 1,521 2 6
luindex 72 4 278 441 657 1,120 2 6
lusearch 45 3 223 388 575 994 2 8
xalan 145 21 1,328 1,781 3,649 4,937 15 5

pointer
analysis

ftp 16 11 16 1,262 29 2,982 0.1 9
hedc 23 21 181 1,918 400 4,821 3 7
weblech 4 timeout 363 timeout 922 8,353 4 1
antlr 190 timeout 1,405 timeout 3,304 12,993 14 9
avrora 178 timeout 1,095 timeout 2,649 16,344 13 8
chart 253 timeout 721 timeout 1,770 22,325 8 6
luindex 169 timeout 944 timeout 2,175 11,882 12 8
lusearch 115 timeout 659 timeout 1,545 10,917 8 9
xalan 646 timeout 1,312 timeout 3,350 18,713 19 8

AR - 4 timeout 4 timeout 2 7,968 0.3 7
ER - 13 2 6 44 9 104 0.2 19
IE - 2 2,760 13 335 27 944 0.05 7

4.2.5.2 Evaluation Result

To evaluate the benefits of being query-guided, we measured the running time and mem-

ory consumption of PILOT. We used MiFuMaX as the baseline by running it on MAXSAT

instances generated from our Q-MAXSAT instances by removing queries. To better un-

derstand the benefits of being query-guided, we also study the size of clauses posed to the

underlying MAXSAT solver in the last iteration of PILOT, and the corresponding solver

running time.

Further, to understand the cost of resolving each query, we pick one Q-MAXSAT in-

stance from both domains and evaluate the performance of PILOT by resolving each query

separately.

Finally, we study the sensitivity of PILOT’s performance to the underlying MAXSAT

solver by running PILOT using three different solvers besides MiFuMaX.
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Performance of our approach vs. baseline approach. Table 4.6 summarizes our evalu-

ation results on Q-MAXSAT instances generated from both domains.

Our approach successfully terminated on all instances and significantly outperformed

the baseline approach in memory consumption on all instances, while the baseline only

finished on twelve of the twenty instances in total. On the eight largest instances, the

baseline approach either ran out of memory (exceeded 3 GB), or timed out (exceeded one

hour).

Column ‘peak memory’ shows the peak memory consumption of our approach and the

baseline approach on all instances. For the instances on which both approaches terminated,

our approach consumed 55.7% less memory compared to the baseline. Moreover, for large

instances containing more than two million clauses, this number further improves to 71.6%.

We next compare the running time of both approaches under the ‘running time’ column.

For most instances on which both approaches terminated, our approach does not outperform

the baseline in running time. One exception is IE where our approach terminated in 2

seconds while the baseline approach spent 2,760 seconds, yielding a 1,380X speedup. Due

to the iterative nature of PILOT, on simple instances where the baseline approach runs

efficiently, the overall running time of PILOT can exceed that of the baseline approach.

As column ‘iteration’ shows, PILOT takes multiple iterations on most instances. However,

for challenging instances like IE and other instances where the baseline approach failed to

finish, PILOT yields significant improvement in running time.

To better understand the gains of being query-guided, we study the number of clauses

PILOT explored under the ‘problem size’ column. Column ‘final’ shows the number of

clauses PILOT posed to the underlying solver in the last iteration, while column ‘max’

shows the total number of clauses in the Q-MAXSAT instances. On average, PILOT only

explored 35.2% clauses in each instance. Moreover, for large instances containing over two

million clauses, this number improves to 19.4%. Being query-guided allows our approach

to lazily explore the problem and only solve the clauses that are relevant to the queries. As
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Figure 4.6: The memory consumption of PILOT when it resolves each query separately on
instances generated from (a) pointer analysis and (b) AR. The dotted line represents the
memory consumption of PILOT when it resolves all queries together.

a result, our approach significantly outperforms the baseline approach.

The benefit of being query-guided is also reflected by the running time of the underlying

MAXSAT solver in our approach. Column ‘final solver time’ shows the running time of the

underlying solver in the last iteration of PILOT. Despite the fact that the baseline approach

outperforms PILOT in overall running time for some instances, the running time of the

underlying solver is consistently lower than that of the baseline approach. On average, this

time is only 42.1% of the time for solving the whole instance.

Effect of resolving queries separately. We studied the cost of resolving each query by

evaluating the memory consumption of PILOT when applying it to each query separately.
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Table 4.7: Performance of our approach and the baseline approach with different underly-
ing MAXSAT solvers.

instance solver
running time (in sec.) peak memory (in MB)

PILOT BASELINE PILOT BASELINE

pointer
analysis

CCLS2akms timeout timeout timeout timeout
Eva500 2,267 timeout 1,379 timeout
MaxHS 555 timeout 1,296 timeout
WPM-2014.co 609 timeout 1,127 timeout
MiFuMaX 178 timeout 1,095 timeout

AR

CCLS2akms 148 timeout 13 timeout
Eva500 21 timeout 2 timeout
MaxHS 4 timeout 9 timeout
WPM-2014.co 6 timeout 2 timeout
MiFuMaX 4 timeout 4 timeout

Figure 4.6 shows the result on one instance generated from the pointer analysis and the

instance generated from AR. The program used in the pointer analysis is avrora. For

comparison, the dotted line in the figure shows the memory consumed by PILOT when

resolving all queries together. The other instances yield similar trends and we omit showing

them for brevity.

For instances generated from the pointer analysis, when each query is resolved sep-

arately, except for one outlier, PILOT uses less than 30% of the memory it needs when

all queries are resolved together. The result shows that each query is decided by different

clauses in the program analysis instances. By resolving them separately, we further im-

prove the performance of PILOT. This is in line with locality in program analysis, which is

exploited by various query-driven approaches in program analysis.

For the instance generated from AR, we observed different results for each query. For

eight queries, PILOT uses over 85% of the memory it needs when all queries are resolved

together. For the other two queries, however, it uses less than 37% of that memory. After

further inspection, we found that PILOT uses a similar set of clauses to produce the solution

to the former eight queries. This indicates that for queries correlated with each other,

batching them together in PILOT can improve the performance compared to the cumulative

performance of resolving them separately.
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Effect of different underlying solvers. To study the effect of the underlying MAXSAT

solver, we evaluated the performance of PILOT using CCLS2akms, Eva500, MaxHS, and

wpm-2014.co as the underlying solver. CCLS2akms and Eva500 were the winners in the

MaxSAT’14 competition for random instances and industrial instances, respectively, while

MaxHS ranked third for crafted instances (neither of the solvers performing better than

MaxHS is publicly available). We used each solver itself as the baseline for comparison. In

the evaluation, we used two instances from different domains, one generated from running

the pointer analysis on avrora, and the other generated from AR.

Table 4.7 shows the running time and memory consumption of PILOT and the baseline

approach under each setting. For convenience, we also include the result with MiFuMaX as

the underlying solver in the table. As the table shows, except for the run with CCLS2akms

on the pointer analysis instance, PILOT terminated under all the other settings, while none

of the baseline approaches finished on any instance. This shows that our approach consis-

tently gives improved performance regardless of the underlying MAXSAT solver it invokes.

4.2.6 Related Work

The MAXSAT problem is one of the optimization extensions of the SAT problem. The

original form of the MAXSAT problem does not allow any hard clauses, and requires each

soft clause to have a unit weight. A model of this problem is a complete assignment to

the variables that maximizes the number of satisfied clauses. Two important variations of

this problem are the weighted MAXSAT problem and the partial MAXSAT problem. The

weighted MAXSAT problem allows each soft clause to have an arbitrary positive weight in-

stead of limiting it to a unit weight; a model of this problem is a complete assignment that

maximizes the sum of the weights of satisfied soft clauses. The partial MAXSAT problem

allows hard clauses mixed with soft clauses; a model of this problem is a complete assign-

ment that satisfies all hard clauses and maximizes the number of satisfied soft clauses. The

combination of both these variations yields the weighted partial MAXSAT problem, which
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is commonly referred to simply as the MAXSAT problem, and is the problem addressed in

our work.

MAXSAT solvers are broadly classified into approximate and exact. Approximate

solvers are efficient but do not guarantee optimality (i.e., may not maximize the objec-

tive value) [128] or even soundness (i.e., may falsify a hard clause) [129], although it is

common to provide error bounds on optimality [130]. Our solver, on the other hand, is

exact as it guarantees optimality and soundness.

There are a number of different approaches for exact MAXSAT solving, including

branch-and-bound based, satisfiability-based, unsatisfiability-based, and their combina-

tions [115, 116, 117, 118, 119, 120, 121, 122, 123]. The most successful of these on

real-world instances, as witnessed in annual Max-SAT evaluations [131], perform iterative

solving using a SAT solver as an oracle in each iteration [117, 118]. Such solvers differ

primarily in how they estimate the optimal cost (e.g., linear or binary search), and the kind

of information that they use to estimate the cost (e.g. cores, the structure of cores, or sat-

isfying assignments). Many algorithms have been proposed that perform search on either

upper bound or lower bound of the optimal cost [118, 117, 121, 116], Some algorithms ef-

ficiently perform a combined search over two bounds [123, 122]. A drawback of the most

sophisticated combined search algorithms is that they modify the formula using expensive

Pseudo Boolean (PB) constraints that increase the size of the formula and, potentially, slow

down the solver. A recent promising approach [115] avoids this problem by using succinct

formula transformations that do not use PB constraints and can be applied incrementally.

Our approach is similar in spirit to the above exact approaches in aspects such as itera-

tive solving and optimal cost estimation. But we solve a new and fundamentally different

optimization problem Q-MAXSAT, which enables our approach to be demand-driven, un-

like existing approaches. In particular, it enables our approach to entirely avoid exploring

vast parts of a given, very large MAXSAT formula that are irrelevant to deciding the values

of a (small set of) queries in some model of the original MAXSAT formula. For this pur-
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pose, our approach invokes an off-the-shelf exact MAXSAT solver on small sub-formulae

of a much larger MAXSAT formula. Our approach is thus also capable of leveraging ad-

vances in solvers for the MAXSAT problem. Conversely, it would be interesting to explore

how to integrate our query-guided approach into search algorithms of existing MAXSAT

solvers.

The MAXSAT problem has also been addressed in the context of probabilistic logics

for information retrieval [132], such as PSLs (Probabilistic Soft Logics) [133] and MLNs

(Markov Logic Networks) [105]. These logics seek to reason efficiently with very large

knowledge bases (KBs) of imperfect information. Examples of such KBs are the AR,

ER, and IE applications in our empirical evaluation (Chapter 4.2.5). In particular, a fully

grounded formula in these logics is a MaxSAT formula, and finding a model of this formula

corresponds to solving the Maximum-a-Posteriori (MAP) inference problem in those log-

ics [80, 81, 82, 83, 84]. A query-guided approach has been proposed for this problem [134]

with the same motivation as ours, namely, to reason about very large MAXSAT formulae.

However, this approach as well as all other (non-query-guided) approaches in the literature

on these probabilistic logics sacrifice optimality as well as soundness.

In contrast, query-guided approaches have witnessed tremendous success in the domain

of program reasoning. For instances, program slicing [135] is a popular technique to scale

program analyses by pruning away the program statements which do not affect an assertion

(query) of interest. Likewise, counter-example guided abstraction refinement (CEGAR)

based model checkers [4, 1, 136] and refinement-based pointer analyses [137, 138, 75, 34]

compute a cheap abstraction which is precise enough to answer a given query. However,

the vast majority of these approaches target constraint satisfaction problems (i.e., problems

with only hard constraints) as opposed to constraint optimization problems (i.e., problems

with mixed hard and soft constraints). To our knowledge, our approach is the first to realize

the benefits of query-guided reasoning for constraint optimization problems—problems

that are becoming increasingly common in domains such as program reasoning [139, 140,
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8, 141, 142].

4.2.7 Conclusion

We introduced a new optimization problem Q-MAXSAT that extends the well-known MAXSAT

problem with queries. The Q-MAXSAT problem is motivated by the fact that many real-

world MAXSAT problems pose scalability challenges to MAXSAT solvers, and the obser-

vation that many such problems are naturally equipped with queries. We proposed efficient

exact algorithms for solving Q-MAXSAT instances. The algorithms lazily construct small

MAXSAT sub-problems that are relevant to answering the given queries in a much larger

MAXSAT problem. We implemented our Q-MAXSAT solver in a tool PILOT that uses off-

the-shelf MAXSAT solvers to efficiently solve such sub-problems. We demonstrated the

effectiveness of PILOT in practice on a diverse set of 19 real-world Q-MAXSAT instances

ranging in size from 100 thousand to 22 million clauses. On these instances, PILOT used

only 285 MB of memory on average and terminated in 107 seconds on average, whereas

conventional MAXSAT solvers timed out for eight of the instances.
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CHAPTER 5

FUTURE DIRECTIONS

So far, we have demonstrated three important applications that leverage combined logical

and probabilistic reasoning and new algorithms to enable these applications. In this section,

we identify a few fundamental challenges in the language, theory, and algorithms that are

crucial for this new paradigm to be adopted more broadly.

Languages. Besides Markov Logic Networks, there are many competing languages that

combine logic and probability. We chose Markov Logic Networks as their logical fragment

is the closest to logical languages such as Datalog that are applied widely in conventional

program analyses. However, it possess a few limitations. First, a more fine-grained way to

integrate probabilities into logical formulae stands to further improve the performance of

these applications and enable new applications. Specifically, in a Markov Logic Network,

given a soft constraint (ch, w), all instances in the grounding of the logical formula ch are

assigned the same weight w. However, in practice, one can envision scenarios for assign-

ing separate weights to individual instances. For instance, whether a given analysis rule

holds is closely related to the context of the code fragment that it is applied to. Secondly,

Markov Logic Networks lack built-in support for the least fixed point operator, which is

used prevalently in abstract-interpretation-based program analyses. In the static bug detec-

tion application which needs such support, we mitigate the issue by adding additional soft

constraints to enforce the least fixed point semantics. However, a more fundamental and

elegant solution may be conceivable by refining the language design.

Guarantees. The correctness of conventional logical analyses is enforced by rigorous

safety guarantees, most notably soundness. We can continue to enforce such guarantees
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in our combined analysis thanks to the logical part. This is an advantage of our approach

compared to a pure probabilistic approach, as enforcing safety in the latter is much more

challenging and has only been studied recently [143, 144, 145]. However, such logical

guarantees alone are often not expressive enough to characterize the quality of results pro-

duced by the combined approach. One possible solution to address this challenge is to

incorporate statistical guarantees. For instance, our static bug detection application can in-

troduce false negatives after incorporating user feedback, and no longer guarantees sound-

ness. By applying statistical guarantees such as precision and recall, we can effectively

quantify the false positive and false negative rates. To enforce such guarantees, we plan to

investigate how to leverage the literature of probably approximately correct learning (PAC

learning) [146].

Explainability. One benefit of the conventional logical approaches is that their results

come with explanations such as provenance information. In our combined approach, while

one can inspect the ground constraints related to result tuples to get intuitive explanations,

there are no systematic approaches to extract explanatory information such as provenance

from these constraints. To address this challenge, we plan to investigate provenance of

weighted constraints.

Learning. Until now, we have assumed that the logical formulae come from existing log-

ical analyses and the weights are the only learnt parameters. However, there are cases that

could benefit from learning the logical formulae as well. For instance, we may lack spec-

ifications for certain program properties (e.g., security vulnerabilities). In this case, both

the logical and the probabilistic parts of the analysis specification could be learned from la-

beled data. There are also cases where the specification may exist but is too imprecise such

that simply making the rules probabilistic does not suffice to improve the performance un-

less new rules are introduced. One possible direction to enable such learning is to leverage

the literature of inductive logic programming [147] and program synthesis [148].
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Inference. The inference engine is the key component that affects the scalability and

accuracy of our approach as even the learning problem is solved by solving a series of

inference problems. However, the inference problem is a combinatorial optimization prob-

lem, which is known for its intractability. While the general problem is computationally

challenging in theory, it is feasible to build an inference engine that is scalable and accurate

in practice by exploiting various domain insights. More concretely, we plan to investigate

the following techniques to further improve the effectiveness of the inference engine:

Magic Sets Transformation. Locality is almost universal to program analysis and is the

key to the effectiveness of query-driven and demand-driven program analysis. NICHROME

has currently only exploited locality in the solving phase. Ideally, we want to exploit it in

the overall ground-solve framework. One promising idea is to leverage Magic Set trans-

formation [149] from the Datalog evaluation literature. The idea is to apply the current

framework but rewrite the constraint formulation so that both grounding and solving are

driven by the demand of queries. In this way, we are able to only consider the constraints

that are related to the queries while leveraging existing efficient algorithms that are agnostic

to queries.

Lifted Inference. While our current ground-solve framework effectively leverages ad-

vances in MaxSAT solvers, it loses the high-level information while translating problems in

our constraint language into low-level propositional formulae. Lifted inference [150, 151,

152, 153, 154] is a technique that aims to solve the constraint problem symbolically with-

out grounding. While lifted inference can effectively avoid grounding large propositional

formulae for certain problems, it fails to leverage existing efficient propositional solvers.

One promising direction is to combine lifted inference with our ground-solve approach in

a systematic way.

Compositional Solving. By exploiting modularity of programs, we envision compo-

sitional solving as an effective approach to improve the solver efficiency. The idea is to

break a constraint problem into more tractable subproblems and solve them independently.
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It is motivated by the success of compositional and summary-based analysis techniques in

scaling to large programs.

Approximate Solving. Despite all the domain insights we exploit, MAP inference is

a combinatorial optimization problem, which is known for its intractability. As a result,

there will be pathological cases where none of the aforementioned techniques are effective.

One idea to address this challenge is to investigate approximate solving, which trades pre-

cision for efficiency. Moreover, to trade precision for efficiency is a controlled manner, it

is desirable to design an algorithm with tunable precision.
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CHAPTER 6

CONCLUSION

This thesis presents a new paradigm to program analysis that combines logical and proba-

bilistic reasoning. While preserving the benefits of conventional logic-based program anal-

yses, the proposed paradigm provides analyses additional abilities to handle uncertainties,

learn, and adapt. To support this paradigm, we described an end-to-end constraint-based

system to automatically incorporate probabilities in an existing logical program analysis

and demonstrated its effectiveness on three important program analysis applications.

The frontend of our system, PETABLOX (Chapter 3), takes a conventional analysis spec-

ified in Datalog as input and incorporate probabilities in it by converting it into a novel

analysis specified in Markov Logic Networks, a language from the Artificial Intelligence

community for unifying logic and probability. We showed that such treatment allows us

to address fundamental challenges in prominent applications, including abstraction selec-

tion in automated program verification (Chapter 3.1), user effort reduction in interactive

verification (Chapter 3.2), and alarm classification in static bug detection (Chapter 3.3).

To support the above applications, the backend of our system, NICHROME (Chapter 4)

serves as a sound, optimal, and scalable inference and learning engine for Markov Logic

Networks. To support effective inference and learning, it leverages domain insights to im-

prove two key procedures: grounding and solving. By exploiting the observation that most

solutions are sparse and the constraints came from logical analysis, it applies an iterative

lazy-eager grounding algorithm (Chapter 4.1); by exploiting the observation that we are of-

ten only interested in a few tuples in the solver outputs that are related to analysis results, it

applies a query-guided solving algorithm (Chapter 4.2). We demonstrated the effectiveness

of NICHROME not only on constraint problems generated from aforementioned program

analysis applications, but also problems generated from information retrieval applications.
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We believe such a combined paradigm will help address long-standing problems in

program analysis as well as enable new applications. This thesis aims to serve as a starting

point of this exciting new body of research by showcasing important applications as well as

describing a general receipt for enabling this paradigm. We envision wide adoption of the

proposed paradigm and further research development in applications, languages, theory,

and algorithms.
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APPENDIX A

PROOFS

A.1 Proofs for Results of Chapter 2

Lemma 33. Let L be a complete lattice and f, g ∈ L→ L two monotone functions. Then

lfp preserves order, in the sense that

(∀x : f(x) ≤ g(x)) =⇒ lfpf ≤ lfpg

Proof. By the well-known Tarski’s theorem, f(x) ≤ x implies lfpf ≤ x. We have

f(lfpg) ≤ g(lfpg) = lfpg. Thus, lfpf ≤ lfpg.

Proposition 1 (Monotonicity). If C1 ⊆ C2, then JC1K ⊆ JC2K.

Proof. The result holds because P(T) is a complete lattice, the functions FC1 , FC2 ∈

P(T)→ P(T) are pointwise ordered with respect to each-other, and each of them is mono-

tone:

FC1(T ) ⊆ FC2(T )

T1 ⊆ T2 =⇒ FCk
(T1) ⊆ FCk

(T2) for k ∈ {1, 2}

These properties can be readily verified from the definitions given in Figure 2.2, and from

the assumption C1 ⊆ C2. By Lemma 33, lfpFC1 ⊆ lfpFC2 , which is the desired result.
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A.2 Proofs of Results of Chapter 3.1

A.2.1 Proofs of Theorems 4 and 5

Recall that for each Datalog constraint c, we have the function JcK : P(T) → P(T) in

Figure 2.2, which determines the meaning of the constraint. We first prove a lemma that

connects this function with a Markov Logic Network {c}. Note while the domain of con-

stants of Markov Logic Network constraints varies, the domain of constants of Datalog

constraints is always the set of all constants N.

Lemma 34. For every constraint c and all T, T ′ ⊆ T such that JcK(T ) ⊆ T and T ′ ⊆ T ,

J{c}KP (T ′) > 0 ⇐⇒ JcK(T ′) ⊆ T ′,

where the domain of constants of Markov Logic Network {c} is constants(T ).

Proof. We prove the theorem by proving it separately under two cases: (1) when c has an

empty boy, and (2) otherwise.

When c has an empty body, we have ∀T ′′ ⊆ T.JcK(T ′′) = JcK(∅). Its grounding is a set

of tuples. Moreover, it is JcK(∅). To see why it is the case, first notice that grounding(c) =

JcK(∅) when the domain of constants of c in grounding is N. Secondly, JcK(∅) = JcK(T ) ⊆

T , which in turn indicates that T contains all the constants in JcK(∅). Thus, we conclude

grounding(c) = JcK(∅), when the domain of constants of c in grounding is constants({c} ∪

T ). Hence J{c}KP (T ′) > 0 is equivalent to JcK(∅) ⊆ T ′. Moreover, we can rewrite

JcK(T ′) ⊆ T ′ as JcK(∅) ⊆ T ′. Hence, the theorem holds when c has an empty body.

Next, we prove the theorem under the case where c has a nonempty body.

Consider c, T ′, T such that JcK(T ) ⊆ T and T ′ ⊆ T .

First, we show the only-if direction of the equivalence. Assume

J{c}KP (T ′) > 0.
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Assuming JcK(T ′) 6= ∅, pick t ∈ JcK(T ′). Otherwise, the formula on the right-hand side

trivially holds. By the definitions of JcK and grounding(c), there exist t1, . . . , tn such that

1. t1, . . . , tn ∈ T ′ ∧ t ∈ JcK({t1, . . . , tn}); and

2. when we overload t, t1, . . . , tn and make them refer to variables corresponding to

these tuples.

φ = (t1 ∧ . . . ∧ tn → t)

is a conjunct in grounding(c) where the domain of constants is constants(T ′∪JcK(T ′)).

Since T ′ ⊆ T , we have JcK(T ′) ⊆ JcK(T ). This, together with JcK(T ) ⊆ T , we have

T ′ ∪ JcK(T ′) ⊆ T . Since grounding(c) monotonically grows as the domain of constants

grows, the formula φ is also a conjunct in grounding(c) where the domain of constants is

constants(T ). By assumption, J{c}KP (T ′) > 0, so T ′ |= φ. But all of t1, . . . , tn are in T ′.

Thus, this satisfaction relationship implies that t ∈ T ′.

Next, we prove the if direction. Suppose that JcK(T ′) ⊆ T ′. Pick one conjunct φ

in grounding(c) where the domain of constants is constants(T ). We have to prove that

T ′ |= φ. By the definition of grounding(c) and JcK(T ) ⊆ T , there are tuples t1, . . . , tn ∈ T

and a tuple t ∈ T such that when we use t, t1, . . . , tn to refer to variables corresponding to

these tuples,

φ = (t1 ∧ . . . tn → t)

and t ∈ JcK({t1, . . . , tn}). If some of t1, . . . , tn is missing in T ′, we have T ′ |= φ, as

desired. Otherwise,

t ∈ JcK({t1, . . . , tn}) ⊆ JcK(T ′) ⊆ T ′,

where we use the monotonicity of JcK with respect to ⊆. From t ∈ T ′ that we have just

proved follows the desired T ′ |= φ.

Next, we prove a similar result for Datalog programs C which is broken into two lem-

mas. We introduce an auxiliary function Fc : P(T)→ P(T) such that Fc(T ) =
⋃
c∈C

JcK(T ).
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We prove that this function is closely connected with the Markov Logic Network C.

Lemma 35. For all T, T ′ such that FC(T ) = T ,

JCKP (T ′) > 0 =⇒ JC ∪ (T ′ ∩ T )K ⊆ T ′,

where the domain of constants for Markov Logic Network C is constants(T ).

Proof. Consider T ′, T such that FC(T ) = T . Let T ′′ = T ′ ∩ T .

Suppose that

JCKP (T ′) > 0,

where the domain of constants is constants(T ). Let

F (T0) = T0 ∪
⋃

c∈C∪T ′′

JcK(T0).

Then, JC ∪ T ′′K =
⋃
i≥0 F

i(∅). Furthermore, T ′′ ⊆ T ′. Hence, to prove JC ∪ T ′′K ⊆ T ′, it

is sufficient to show that

∀n ≥ 0. F n(∅) ⊆ T ′′.

We prove this sufficient condition by induction on n.

1. Base case n = 0. Since F 0(∅) = ∅, this case is immediate.

2. Inductive case n > 0. In this case,

F n(∅) = F n−1(∅) ∪
⋃

c∈C∪T ′′

JcK(F n−1(∅)).

Pick t ∈ F n(∅). If t belongs to the LHS F n−1(∅) of the above union, we have the

desired t ∈ T ′′ by the induction hypothesis. Otherwise, there is c ∈ C ∪T ′′ such that

t ∈ JcK(F n−1(∅)). If c ∈ T ′′, c must be a tuple and be the same as t. Hence, t ∈ T ′′,
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as desired. Otherwise, there exist c ∈ C and tuples

t1, . . . , tk ∈ F n−1(∅)

such that t ∈ JcK({t1, . . . , tk}). By the induction hypothesis, t1, . . . , tk ∈ T ′′. Hence,

our proof obligation t ∈ T ′′ can be discharged if we show that

JcK(T ′′) ⊆ T ′′.

We show this subset relationship using Lemma 34. Specifically, we show the follow-

ing three properties:

T ′′ ⊆ T, JcK(T ) ⊆ T, and JcKP (T ′′) > 0,

where the domain of constants is constants(T ). The first property holds because

T ′′ = T ′ ∩ T , and the second is true because T is a fixed point of FC and c is a

constraint in C. We now show the third property. By assumption, JCKP (T ′) > 0,

where the domain of constant is constants(T ). Hence,

JcKP (T ′) > 0,

where the domain of constants is constants(T ). We further have JcKP (T ′) > 0 when

the domain of constants reduces to constants(T ). Since JcK(T ) ⊆ T , for every

constraint instance t1 ∧ . . . ∧ tn =⇒ t in grounding(c), we have either t ∈ T or

∃ti.ti /∈ T . We can derive the same results for T ′ since JcKP (T ′) > 0. Based on these

two results, we can also derive the same result for T ′∩T . The reasoning is as follows:

for a given constraint instance t1 ∧ . . . ∧ tn =⇒ t in grounding(c), it is either the

case that there exists ti such that ti /∈ T ∨ ti /∈ T ′, or the case that t ∈ T ∧ t ∈ T ′.
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Such result implies

JcKP (T ′ ∩ T ) > 0.

That is, JcKP (T ′′) > 0, the very property that we want to prove.

Lemma 36. For all T, T ′ such that FC(T ) = T , T ′ ⊆ T

JC ∪ (T ′ ∩ T )K ⊆ T ′ =⇒ JCKP (T ′) > 0,

where the domain of constants for Markov Logic Network C is constants(T ).

Proof. Suppose T ′′ = T ′ ∩ T . Following the assumption, we have

JC ∪ T ′′K ⊆ T ′.

We should show that JCKP (T ′) > 0. Suppose not. Then, there exist c ∈ C and tuples

t1, . . . , tn ∈ T and t such that

1. t1, . . . , tn ∈ T ′ but t 6∈ T ′; and

2. when t1, . . . , tn, t are used as variables corresponding to these tuples,

φ = (t1 ∧ . . . ∧ tn → t)

is in grounding(c) where the domain of constants is constants(T ).

Then, t ∈ JcK({t1, . . . , tn}). Since T ′′ = T ′ ∩ T ,

t1, . . . , tn ∈ T ′′.

Hence,

t ∈ J{c} ∪ {t1, . . . , tn}K ⊆ JC ∪ T ′′K.
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But JC ∪ T ′′K ⊆ T ′. Thus, t ∈ T ′. But this contradicts the fact that t 6∈ T ′.

Theorem 4. Given a set of Datalog constraintsC and a set of tuplesA, letA′ be a subset of

A. Then the Datalog run result JC ∪A′K is fully determined by the Markov Logic Network

C where the domain of constants is constants(JC ∪ AK), as follows:

t ∈ JC ∪ A′K ⇐⇒ ∀T.(T = MAP(C ∪ A′)) =⇒ t ∈ T,

where constants(JC ∪ AK) is the domain of constants of Markov Logic Network C ∪ A′.

Proof. Consider tuple sets T,A′ such thatA′ ⊆ A and T = JC∪AK. Throughout the proof,

we assume the domains of constants for all Markov Logic Networks are N(JC ∪ AK).

First, we prove the only-if direction. Pick t ∈ JC ∪ A′K. Consider T ′′ such that JC ∪

A′KP (T ′′) > 0. In other words, T ′′ is a solution to the MAP problem C ∪ A′. This means

that

A′ ⊆ T ′′ and JCKP (T ′′) > 0. (A.1)

Using these facts, we will prove that

t ∈ T ′′. (A.2)

The key step of our proof is to show that

JC ∪ (T ′′ ∩ T )K ⊆ T ′′. (A.3)

This gives the set membership in (A.2), as shown in the following reasoning:

t ∈ JC ∪ A′K ⊆ JC ∪ (T ′′ ∩ T )K ⊆ T ′′.

The first subset relationship here holds because A′ is a subset of both T (by the choice of

A′ and T ) and T ′′ (by the first conjunct in (A.1)), and J−K is monotone. Now it remains
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to discharge the subset relationship in (A.3). This is easy, because it is an immediate

consequence of Lemma 35 and the fact that JCKP (T ′′) > 0, the second conjunct in (A.1).

Second, we show the if direction. Consider t ∈ T such that

∀T ′′ ⊆ T.(T ′′ = MAP(C ∪ A′)) =⇒ t ∈ T ′′. (A.4)

Let T ′′ = JC ∪ A′K. Then,

T ′′ |=
∧
t′∈A′

t′ and T ′′ ⊆ JC ∪ AK = T and JC ∪ (T ′′ ∩ T )K ⊆ T ′′. (A.5)

The first conjunct holds because A′ ⊆ T ′′. The second conjunct holds because the mono-

tonicity of Datalog. The third conjunct holds because

JC ∪ (T ′′ ∩ T )K ⊆ JC ∪ T ′′K = T ′′.

Here the subset relationship follows from the monotonicity of J−K with respect to ⊆, and

the equality holds because T ′′ includes A′, it is a fixed point of FC∪A′ , and every fixed point

T0 of FC∪A′ equals JC ∪ A′ ∪ T0K. By Lemma 36, the second conjunct in (A.5) implies

JCKP (T ′′) > 0.

This, together with T ′′ |=
∧
t′∈A′

t′, we have

JC ∪ A′KP (T ′′) > 0.

In other words, T ′′ = MAP(C ∪ A′). What we have proved so far and our choice of t in

(A.4) imply that T ′′ |= t. That is, t ∈ T ′′. If we unroll the definition of T ′′, we get the

desired set membership:

t ∈ JC ∪ A′K.
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Theorem 5. Let A1, . . . , An be sets of tuples. For all A′ ⊆
⋃

i∈[1,n]

Ai,

∀T.(T = MAP(C ∪ A′)) =⇒ t ∈ T =⇒ t ∈ JC ∪ A′K,

where
⋃

i∈[1,n]

constants(JC ∪ AiK) is the domain of constants of Markov Logic Network

C ∪ A′.

Proof. Consider t and T ′ such that

t ∈ T ′, T ′ = {t′ | t′ ∈ JC ∪A′K∧ constants({t′}) ⊆
⋃

i∈[1,n]

constants(JC ∪AiK)}. (A.6)

It suffices to show

T ′ = MAP(C ∪ A′).

Suppose it does not hold, then there exists t1 ∧ . . . ∧ tn → t ∈ grounding(C ∪ A′)

where the domain of constants is
⋃

i∈[1,n]

constants(JC ∪ AiK)}, such that

{t1, . . . , tn} ⊆ T ′ and t /∈ T ′.

We can show that t ∈ JC ∪ A′K given {t1, . . . , tn} ⊆ T ′ ⊆ JC ∪ A′K. Based on the

construction of T ′, we further conclude t ∈ T ′, which contradicts the assumption.

A.2.2 Proof of Theorem 6

Theorem 6. If choose(T,C,Q′) evaluates to an element of the set A\γ(T,C,Q′) whenever

such an element exists, and to impossible otherwise, then Algorithm 1 is partially correct:

it returns (R, I) such that R = R(A, Q) and I = Q \ R. In addition, if A is finite, then

Algorithm 1 terminates.
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Proof. The key part of our proof is to show that Algorithm 1 has the following loop invari-

ant: letting I = Q \R,

1. R ⊆ R(A, Q);

2. T = ∅ or T = T1 ∪ . . . ∪ Tn where T1, . . . , Tn are some fixed points of FC ; and

3. R(A \ γ(T,C, I), I) = R(A, I).

Let us start by proving that the invariant holds initially. When the loop of Algorithm 6

is entered for the first time,

R = ∅ ∧ T = ∅ ∧ I = Q.

Hence, the first and second conditions of our invariant hold in this case. For the third

condition, we notice that

γ(T,C, I) = γ(∅, C, I) =
{
A ∈ A

∣∣ ∀T ′.(T ′ = MAP(C ∪ (A ∩ ∅))) =⇒ I ⊆ T ′,

where the domain of constants is ∅
}

=
{
A ∈ A

∣∣ ∀T ′.T ′ ⊆ T =⇒ I ⊆ T ′}

=
{
A ∈ A

∣∣ false} = ∅.

The second step holds as grounding(C ∪ (A ∩ ∅)) = ∅ with ∅ as the domain of constants

and any set of tuples satisfies an empty set of constraints. Hence, the third condition holds.

Next, we prove that our invariant is preserved by the loop of Algorithm 1. Assume that

the invariant holds for R, T , and I . Also, assume that the result A of choose(T,C, I) is not

impossible. Let

R′ = R ∪ (Q \ JC ∪ AK), T ′ = T ∪ JC ∪ AK, I ′ = Q \R′.

We should show that the three conditions of our invariant hold for R′, T ′, and I ′. The first
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condition is

R′ ⊆ R(A, Q),

which holds because R ⊆ R(A, Q) and (Q \ JC ∪AK) ⊆ R(A, Q). The second condition

also holds because JC ∪ AK is a fixed point of FC . It remains to prove the third condition:

R(A \ γ(T ′, C, I ′), I ′) = R(A, I ′).

For this, we will show the following sufficient condition:

∀A′ ∈ γ(T ′, C, I ′). I ′ \ JC ∪ A′K = ∅.

Pick A′ ∈ γ(T ′, C, I ′). Then,

∀T ′′.(T ′′ = MAP(C ∪ (A ∩ T ′))) =⇒ I ′ ⊆ T ′′,

where the domain of constants is constants(T ′). Since T ′ is the union of some fixed points

of FC , by Theorem 5, the above formula implies that

∀t ∈ I ′. t ∈ JC ∪ A′K.

Hence, I ′ \ JC ∪ A′K = ∅, as desired.

We now use our invariant to show the partial correctness of Algorithm 1. Assume that

the invariant holds for T , R, and I . Suppose that

choose(T,C,Q \R) = impossible.

Then, A \ γ(T,C, I) = ∅ by our assumption on choose. Because T , R, and I satisfy our

197



loop invariant,

R(A, Q \R) = R(A, I) = R(A \ γ(T,C, I), I) = R(∅, I) = ∅,

where the last equality uses the definition of R. But R ⊆ R(A, Q) by the loop invariant.

Hence, by the definition ofR,

R(A, Q) = R.

This means that when Algorithm 1 returns, its result (R, I) satisfies R = R(A, Q) and

I = Q \R, as claimed in the theorem.

Finally, we show that if A is finite, Algorithm 1 terminates. Our proof is based on the

fact that the set

γ(T,C,Q \R) ⊆ A

is strictly increasing. Consider T,R, I satisfying the loop invariant. Assume that the result

A of choose(T,C, I) is not impossible. Let

R′ = R ∪ (Q \ JC ∪ AK), T ′ = T ∪ JC ∪ AK, I ′ = Q \R′.

Since T is a subset of T ′, for any A ∈ A, T ′′ ⊆ T we have

T ′′ = MAP(C ∪ (A ∩ T ′)) where the domain of constants is constants(T ′) =⇒

T ′′ = MAP(C ∪ (A ∩ T )) where the domain of constants is constants(T ).
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Since I ⊂ I ′, for any T ′′, we have T ′′ ⊆ I implies T ′′ ⊆ I ′′. These two together imply

{
A ∈ A

∣∣∀T ′′.(T ′′ = MAP(C ∪ (A ∩ T ))) =⇒ I ⊆ T ′′,

where the domain of constants is T
}
⊆{

A ∈ A
∣∣∀T ′′.(T ′′ = MAP(C ∪ (A ∩ T ′))) =⇒ I ⊆ T ′′,

where the domain of constants is T ′
}
.

Hence,

γ(C, T, I) ⊆ γ(C, T ′, I ′).

It remains to show that this subset relationship is strict. This is the case because A 6∈

γ(T,C, I) by the assumption on choose, but it is in γ(T ′, C, I ′). To see whyA ∈ γ(T ′, C, I ′),

notice I ′ ⊆ JC ∪ AK and A ⊆ JC ∪ AK. Hence, by Theorem 4,

∀T ′′.(T ′′ = MAP(C ∪ A)) =⇒ I ′ ⊆ T ′′,

where the domain of constants is constants(C ∪ A). This together with A ⊆ T ′ and

JC ∪ AK ⊆ T ′ implies

∀T ′′.(T ′′ = MAP(C ∪ (A ∩ T ′))) =⇒ I ′ ⊆ T ′′,

where the domain of constants is constants(T ′). This is equivalent to A ∈ γ(φ′, I ′).

A.3 Proofs of Results of Chapter 3.2

Lemma 10. A sound analysis C can derive the ground truth; that is, True = JCKFalse.

Proof. By (3.2), we have JCKFalse ⊇ True. By the augmented semantics (Figure 3.11(b)),

we also know that JCKFalse and False are disjoint. The result follows.
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Lemma 11. In Algorithm 2, suppose that Heuristic returns all tuples T. Also, assume (3.1),

(3.2), and (3.3). Then, Algorithm 2 returns the true alarms A ∩ True.

Proof. The key invariant is that

F ⊆ False ⊆ Q (3.4)

The invariant is established by setting F := ∅ and Q := T. By (3.1), we know that

Y ⊆ True and N ⊆ False, on line 5. It follows that the invariant is preserved by removing

Y from Q, on line 6. It also follows that F∪N ⊆ False and, by (3.2), that JCKF∪N ⊇ True.

So, the invariant is also maintained by line 7. We conclude that (3.4) is indeed an invariant.

For termination, let us start by showing that |Q \ F| is nonincreasing. According to

lines 6 and 7, the values of Q and F in the next iteration will be Q′ := Q \ Y and F′ :=

(Q \ Y ) \ JCKF∪N . We now show that F ⊆ F′ and Q′ ⊆ Q. Consider an arbitrary f ∈ F.

By (3.4), f ∈ Q. Using Y ⊆ True and (3.4), we conclude that Y and F are disjoint; using

the augmented semantics in Figure 3.11(b), we conclude that JCKF∪N and F are disjoint.

Thus, f ∈ F′, and, since f was arbitrary, we conclude F ⊆ F′. For Q′ \Q, it suffices to

notice that Y ⊆ True.

Now let us show that |Q \F| is not only nonincreasing but in fact decreasing. By (3.3),

we know that R is non-empty, and thus at least one of Y or N is non-empty. If Y is

non-empty, then Q′ ⊂ Q. If N is non-empty, then F ⊂ F′. We can now conclude that 2

terminates.

When the main loop terminates, we have F = Q. Together with the invariant (3.4), we

obtain that F = False. By Lemma 10, it follows that Algorithm 2 returns A ∩ True.

A.4 Proofs of Results of Chapter 4.1

Theorem 15 (Optimal initial grounding for Horn constraints). If a Markov Logic Net-

work comprises a set of hard constraintsCh, each of which is a Horn constraint
∧n
i=1 li =⇒
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l0, whose least solution is desired:

T = lfp λT ′. T ′ ∪ { Jl0K(σ) | (
∧n
i=1 li =⇒ l0) ∈ Ch

∧ ∀i ∈ [1, n].JliK(σ) ∈ T ′ ∧ σ ∈ Σ },

then for such a system, (a) Lazy(Ch, ∅) grounds at least |T | constraints, and (b) CEGAR(Ch, ∅)

with the initial grounding φ does not ground any more constraints where

φ =
⋃
{

n∨
i=1

¬JliK(σ) ∨ Jl0K(σ) | (
n∧
i=1

li =⇒ l0) ∈ Ch ∧ ∀i ∈ [0, n].JliK(σ) ∈ T ∧ σ ∈ Σ }.

Proof. To prove (a), we will show that for each t ∈ T , Lazy(H, ∅) must ground some con-

straint with t on the r.h.s. Let the sequence of sets of constraints grounded in the iterations

of this procedure be C1, ..., Cn. Then, we have:

Proposition (1): each ground constraint
∧m
i=1 ti =⇒ t′ in any Cj was added because the

previous solution set all ti to true and t′ to false. This follows from the assumption that

all rules in H are Horn rules. Let x ∈ [1..n] be the earliest iteration in whose solution t

was set to true. Then, we claim that t must be on the r.h.s. of some ground constraint

ρ in Cx. Suppose for the sake of contradiction that no clause in Cx has t on the r.h.s.

Then, it must be the case that there is some ground constraint ρ′ in Cx where t is on the

l.h.s. (the MAXSAT procedure will not set variables to true that do not even appear in any

clause in Cx). Suppose ground constraint ρ′ was added in some iteration y < x. Applying

proposition (1) above to ρ′ and j = x, it must be that t was true in the solution to iteration

y, contradicting the assumption above that x was the earliest iteration in whose solution t

was set to true.

To prove (b), suppose CEGAR(H, ∅) grounds an additional constraint, that is, there exists

a (
∧n
i=1 li =⇒ l0) ∈ H and a σ such that T 6|=

∨n
i=1 ¬JliK(σ) ∨ Jl0K(σ). The only way by

which this can hold is if ∀i ∈ [1..n] : JliK(σ) ∈ T and Jl0K(σ) /∈ T , but this contradicts the

definition of T .
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Theorem 16 (Soundness and Optimality of IPR). For any Markov Logic NetworkCh∪Cs

where hard constraintsCh is satisfiable, CEGAR(C) produces a sound and optimal solution.

Proof. We extend the function WEIGHT (Chapter 4.1.2) to hard clauses, yielding −∞ if

any such clause is violated:

W = λ(T, φ ∪ ψ). if (∃ρ ∈ φ : T 6|= ρ) then −∞

else WEIGHT(T, ψ).

It suffices to show that the solution produced by CEGAR(H,S) has the same weight as

the solution produced by the eager approach. The eager approach (denoted by Eager)

generates the solution by posing clauses generated from full grounding to a WPMS solver.

First, observe that CEGAR(H,S) terminates: in each iteration of the loop in line 6 of

Algorithm 7, it must be the case that at least one new ground hard constraints is added to

φ or at least one new ground soft constraint is added to ψ, because otherwise the condition

on line 12 will hold and the loop will be exited.

Now, suppose that in last iteration of the loop in line 6 for computing CEGAR(H,S), we

have:

(1) gc1 = hgc1 ∪ sgc1 is the set of ground hard and soft constraints accumulated in (φ, ψ)

so far (line 9);

(2) T1 = ∅ and w1 = 0 (line 5), or T1 = MAXSAT(hgc1, sgc1) and its weight is w1 (lines

10 and 11);

(3) gc2 = hgc2 ∪ sgc2 is the set of all ground hard and soft constraints that are violated by

T1 (lines 7 and 8);

(4) T2 = MAXSAT(hgc1 ∪ hgc2, sgc1 ∪ sgc2) and its weight is w2 (lines 10 and 11);

and the condition on line 12 holds as this is the last iteration:

(5) w1 = w2 and hgc2 = ∅.

Then, the result of CEGAR(H,S) is T1. On the other hand, the result of Eager(H,S) is:

(6) Tf = MAXSAT(hgcf , sgcf ) where:
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(7) gcf = hgcf ∪ sgcf is the set of fully grounded hard and soft constraints (Figure 2.4).

Thus, it suffices to show that T1 and Tf are equivalent.

Define gcm = gc2 \ gc1.

(8) For any T , we have:

W(T, gc1 ∪ gc2) = W(T, gc1) + W(T, gcm)

= W(T, gc1) + W(T, hgc2 \ hgc1)+

W(T, sgc2 \ sgc1)

= W(T, gc1) + W(T, sgc2 \ sgc1) [a]

≥ W(T, gc1) [b]

where [a] follows from (5), and [b] from W(T, sgc2) >= 0 (i.e., soft constraints do not have

negative weights). Instantiating (8) with T1, we have: (9): W(T1, gc1 ∪ gc2) ≥ W(T1, gc1).

Combining (2), (4), and (5), we have: (10): W(T1, gc1) = W(T2, gc1 ∪ gc2). Combining

(9) and (10), we have: (11)W(T1, gc1 ∪ gc2) ≥ W(T2, gc1 ∪ gc2). This means T1 is a better

solution than T2 on gc1 ∪ gc2. But from (4), we have that T2 is an optimum solution to

gc1 ∪ gc2, so we have: (12): T1 is also an optimum solution to gc1 ∪ gc2.

It remains to show that T1 is also an optimum solution to the set of fully grounded hard

and soft constraints gcf , from which it will follow that T1 and Tf are equivalent. Define

gcr = gcf \ (gc1 ∪ gc2). For any T , we have:

W(T, gcf ) = W(T, gc1 ∪ gc2 ∪ gcr)

= W(T, gc1 ∪ gc2) + W(T, gcr)

≤ W(T1, gc1 ∪ gc2) + W(T, gcr) [c]

≤ W(T1, gc1 ∪ gc2) + W(T1, gcr) [d]

= W(T1, gc1 ∪ gc2 ∪ gcr)

= W(T1, gcf )

i.e. ∀T, W(T, gcf ) ≤ W(T1, gcf ), proving that T1 is an optimum solution to gcf . Inequality

203



[c] follows from (11), that is, T1 is an optimum solution to gc1 ∪ gc2. Inequality [d] holds

because from (3), all clauses that T1 possibly violates are in gc2, whence T1 satisfies all

constraints in gcr, whence W(T, gcr) ≤ W(T1, gcr).
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APPENDIX B

ALTERNATE USE CASE OF URSA: COMBINING TWO STATIC ANALYSES

Another use case of our approach to interactive verification is to combine a fast yet impre-

cise analysis and a slow yet precise analysis, in order to balance the overall precision and

scalability. We can enable this use case by instantiating Decide with a precise yet expensive

analysis instead of a human user. Such iterative combination of the two analyses are ben-

eficial as it may take a significant amount of time to apply the precise analysis to resolve

all potential causes in the imprecise analysis. On the other hand, URSA allows the precise

analysis to resolve only the causes that are relevant to the alarms, and focus on causes with

high payoffs. We next demonstrate this use case by combining two a pointer analyses as

an example. We first describe the base analysis, its notions of alarms and causes, and our

implementation of the procedure Heuristic. Then we describe the oracle analysis. Finally,

we empirically evaluate our approach.

Base Analysis. Our base pointer analysis is a flow/context-insensitive, field-sensitive,

Anderson-style analysis with on-the-fly call-graph construction [73]. It uses allocation sites

as the heap abstraction. It comprises 46 rules, 29 input relations, and 18 output relations.

We treat points-to facts (denoted by relation pointsTo) and call-graph edges (denoted

by callEdge) as the alarms as they are directly consumed by client analyses built atop the

pointer analysis. Given the large number of tuples in these two relations, we further limit

the alarms to tuples in the application code. We treat the same set of tuples as the universe

of potential causes since the tuples in these two relations are used to derive each other in a

recursive manner.

We are not aware of effective static heuristics for pointer analysis alarms that are client-

agnostic. Therefore, we only provide a Heuristic instantiation that leverages a dynamic
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Table B.1: Numbers of alarms (denoted by |A|) and tuples in the universe of potential
causes (denoted by |QU |) of the pointer analysis, where k stands for thousands.

|A| |QU |
false total false%

raytracer 56 950 5.9% 950
montecarlo 5 867 0.6% 867

sor 0 159 0 159
elevator 3 369 0.8% 369
jspider 925 5.1k 18.1% 5.1k

hedc 1.2k 3.9k 29.8% 3.9k
ftp 5.7k 12.5k 45.5% 12.5k

weblech 440 3.9k 11.2% 3.9k

analysis:

dynamic() = {pointsTo(v, o) | variable v is accessed in the runs and never points to object o} ∪

{callEdge(p,m) | invocation site p is reached and never invokes method m in the runs }

Oracle Analysis. The oracle analysis is a query-driven k-object-sensitive pointer analy-

sis [8]. This analysis improves upon the precision of the pointer analysis by being simul-

taneously context- and object-sensitive, but it achieves this higher precision by targeting

queries of interest, which in our setting are individual alarms and potential causes.

Empirical Evaluation. We use a setting that is similar to the one described in Chap-

ter 3.2.6.1. In particular, to evaluate the effectiveness of our approach in reducing false

alarm rates, we obtained answers to all the alarms and potential causes offline using the

oracle analysis. Table B.1 shows the statistics of alarms and tuples in the universal of po-

tential causes. We next describe the generalization results and prioritization results of our

approach.

Figure B.1 shows the generalization results of URSA with dynamic, the only available

Heuristic instantiation for the pointer analysis. To evaluate the effectiveness of dynamic,

we also show the results of the ideal case where the oracle answers are used to implement
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Figure B.1: Number of questions asked over total number of false alarms (denoted by the
lower dark part of each bar) and percentage of false alarms resolved (denoted by the upper
light part of each bar) by URSA for the pointer analysis.

Heuristic.

URSA is able to eliminate 44.8% of the false alarms with an average payoff of 8× per

question. Excluding the three small benchmarks with under five false alarms each, the gain

rises to 63.2% and the average payoff increases to 11×. These results show that, most of

the false alarms can indeed be eliminated by inspecting only a few common root causes.

And by applying the expensive oracle analysis only to these few root causes, URSA can

effectively improve the precision of the base analysis without significantly increasing the

overall runtime.

In the ideal case, URSA eliminates an additional 15.5% of false alarms. While the

improvement is modest for most benchmarks, an additional 39% false alarms are eliminated

on weblech in the ideal case. The reason for this anomaly is that the input set used in

dynamic does not yield sufficient code coverage to produce accurate predictions for the

desired root causes. We thus conclude that overall, the dynamic instantiation is effective

in identifying common root causes of false alarms.

Figure B.2 shows the prioritization results of URSA. Every point in the plots represents

the number of false alarms eliminated (y-axis) and the number of questions (x-axis) asked
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Figure B.2: Number of questions asked and number of false alarms resolved by URSA in
each iteration for the pointer analysis ( k = thousands ).

up to the current iteration. As before, we compare the results of URSA to the ideal case.

We observe that a few causes often yield most of the benefits. For instance, four causes

can resolve 1,133 out of 5,685 false alarms on ftp, yielding a payoff of 283×. URSA

successfully identifies these causes with high payoffs and poses them to the oracle analysis

in the earliest few iterations. In fact, for the first three iterations on most benchmarks, URSA

asks exactly the same set of questions as the ideal setting. The results of these two settings

only differ in later iterations, where the payoff becomes relatively low. We also notice

that there can be multiple causes in the set that gives the highest benefit (for instance,

the aforementioned ftp results). The reason is that there can be multiple derivations to

each alarm. If we naively search the potential causes by fixing the number of questions in

advance, we can miss such causes. URSA, on the other hand, successfully finds them by

solving the optimal root set problem iteratively.

The fact that URSA is able to prioritize causes with high payoffs allows us to stop

the interaction of the two analyses after a few iterations and still get most of the benefits.

URSA terminates either when the expected payoff drops to one or when there are no more

questions to ask. But in practice, we might choose to stop the interaction even earlier. For
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instance, we might be satisfied with the current result, or we may find limited payoffs in

running the oracle analysis, which can take a long time comparing to inspecting the rest

alarms manually.

We study these causes with high payoffs more closely. the main causes are the points-to

facts and call-graph edges that lead to one or multiple spurious call-graph edges, which in

turn lead to many false tuples. Such spurious tuples are produced due to context insensitiv-

ity of the analysis.
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