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ABSTRACT

EFFECTIVE PROGRAM REASONING USING BAYESIAN INFERENCE

Sulekha Kulkarni

Mayur Naik

Program analysis tools that statically find bugs in software still report a deluge of

false alarms notwithstanding their widespread adoption. This is because they must

necessarily make approximations in order to scale to large and complex programs.

The focus of this dissertation is to make static program analyses more effective

by guiding them towards true bugs and away from false alarms. We do this by

augmenting logical program reasoning with probabilistic reasoning. We seek to

overcome the incompleteness of a static analysis by associating each alarm it produces

with a probability that it is a true alarm. We compute alarm probabilities by

performing Bayesian inference on a probabilistic model derived from the execution

of the analysis. Moreover, the probabilistic model allows us to recompute the

probabilities by conditioning them on new evidence, thereby allowing to tailor the

analysis to individual codebases and user needs. The alarms are ranked by the

computed probabilities to mitigate the burden of inspecting false alarms.

We demonstrate the effectiveness of our approach in two practical systems. In

one system, we leverage user feedback to iteratively improve the alarm ranking. The

system starts with an initial ranking of alarms reported by the static analysis. In

each iteration, the system seeks user feedback for the top-ranked alarm. Next, it

generalizes this feedback by recomputing the probabilities of all the alarms conditioned

on this feedback to produce an improved ranking for the next iteration. After a few

iterations, true alarms rise to the top of the ranking, thus alleviating the burden

of inspecting false alarms. In the second system, we leverage the completeness of

dynamic analysis that is capable of observing concrete program executions, to rank

the alarms reported by the static analysis. We hypothesize that a reported alarm is at
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most as complete as the analysis facts it is premised upon. For each analysis fact used

by the static analysis in deducing an alarm, the system seeks a probability estimate

for its completeness, from a dynamic analysis. The dynamic analysis estimates this

by counting the number of times it observes the analysis fact during concrete program

executions. The system then uses the estimated probabilities associated with the

analysis facts to infer probabilities for alarms, and ranks alarms by the inferred

probabilities.
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Chapter 1

Introduction

1.1 The Effectiveness of Program Reasoning

Program analysis tools, such as Facebook Infer [16], Clang Static Analyzer [2],

Coverity Static Analyzer [9], and many others [12, 8, 69], have been developed over

the last twenty years to statically find bugs in software. These tools rely on logical

modes of reasoning about programs, such as abstract interpretation and symbolic

execution, in order to find bugs. To be useful in realistic software development

environments, such tools need to be sound, scalable, and precise. The soundness of a

bug-finding program analysis tool ensures that no bug in the analyzed program is

missed by the tool. The scalability of the tool measures the size of the program that

it is able to reason about. The precision of the tool measures the fraction of the total

reported bugs that are indeed true bugs. It is extremely difficult for a static program

analysis tool to be simultaneously sound, scalable, as well as precise; optimizing for

any one of these requirements compromises the others. In order to scale to large

programs, a static program analysis tool must necessarily make approximations that

may cause it to be imprecise and possibly unsound.

In practice, static program analysis tools strive to be effective by achieving an

acceptable but delicate balance between the competing requirements of scalability,
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soundness, and precision. These tools achieve this balance by employing a mixture of

sound and unsound approximations. In addition, the tools also provide configurable

parameters that give tool users control over the tool’s scalability, soundness, and

precision. Tool users can fine-tune the values of the configurable parameters to

optimize the tool’s performance in specific software engineering environments. These

configurations are, at best, ad hoc methods to improve the effectiveness of a static

analysis tool. In sum, making static program analysis tools effective in practical

environments remains a challenge.

1.2 The Problem of False Alarms

One of the major impediments to the effectiveness of static program analysis tools

is the large number of false alarms they report. In other words, the static analyses

employed by these tools have low precision. A user has to triage all the reported

alarms in order to find the true alarms that are few and far apart. It is common for

tool users to tune a tool’s configurable parameters to report fewer false alarms in

order to reduce the burden of inspecting these alarms, but parameter tuning is an ad

hoc approach that may cause the tool to suppress alarms that are indeed critical bugs.

For example, the Coverity Static Analyzer employs sound approximations that make

it scalable, but these approximations cause the tool to report a large number of false

alarms. The tool suppresses many of these false alarms using other approximations

that are unsound. As a result, the Coverity Static Analyzer failed to detect a critical

security bug famously known as the Heartbleed bug [3]. Similarly, the Clang Static

Analyzer performs under-constrained symbolic execution in order to scale. While this

approach is sound, it causes the analyzer to be imprecise and report a large number

of false alarms. The tool provides certain configurable parameters to suppress false

alarms, like parameters that govern when copy/move constructors need to be inlined

for analysis, or when bug-paths that go through null returns need to be suppressed.
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While such ad hoc methods may improve the tool’s effectiveness in a given context,

they may potentially suppress critical bugs. Therefore, we need systematic ways to

distinguish true bugs from the false alarms.

In this dissertation, we focus on the problem of finding true bugs interspersed

among numerous false alarms. We present a principled and general approach to

rank the alarms reported by bug-finding static program analysis tools in order of

their decreasing likelihood of being true alarms. By ranking alarms, we mitigate the

burden of inspecting false alarms, thereby improving the effectiveness of such tools

in practical settings. In our approach, we use the well-known fact that alarms are

correlated: multiple true alarms often share root causes, and multiple false alarms

are often caused by the inability of the analysis to prove some shared intermediate

fact about the analyzed program. Indeed, a large body of previous research is aimed

at alarm clustering [46, 48], ranking [42, 41], and classification [55, 81, 34].

1.3 A Probabilistic Approach to Ranking Alarms

We propose and implement a general approach to ranking the alarms reported by a

static analysis by the alarms’ probability of being true. Our approach augments the

logical reasoning of a static analysis with probabilistic reasoning. This augmentation

enables us to quantitatively model the incompleteness in static analyses, which is the

primary source of false alarms. Our approach uses this model to infer a probability

for each alarm that quantifies how likely the alarm is to be true. Next, our approach

ranks alarms by their computed probabilities. Such a ranking has the potential to

greatly improve the practical effectiveness of static program reasoning tools because

it mitigates the burden of inspecting false alarms.

In our approach, we extract a probabilistic model of the execution of the static

analysis and perform inference on that model. The probabilistic model is a Bayesian

network, and it models both: (a) the analysis facts produced, and (b) the deduction

3



steps executed by the static analysis while analyzing a program. In addition, the

probabilistic model captures how each deduced analysis fact is conditionally dependent

on its premises. Performing Bayesian inference on this model gives us a way to

associate probabilities with all the analysis facts when we know the probabilities of

certain analysis facts like input facts, or when we are given zero or more observations.

Because an alarm is an analysis fact deduced by the static analysis, we can now

associate an alarm with a probability. Furthermore, our probabilistic model allows us

to recompute all the probabilities conditioned on new evidence that may be observed.

In this dissertation, we work with static program analyses that are specified as

logical rules in Datalog, although our approach is applicable to all static program

analyses that rely on reasoning techniques such as abstract interpretation. Datalog is

a logic programming language widely used to declaratively specify complex program

analyses [73, 79, 15, 6, 54, 5]. From the deductive steps applied by such analyses, we

observe that correlated alarms share significant portions of their derivation trees (the

sequence of analysis steps executed by the static analysis in deriving the alarm). The

union of all instantiated analysis steps occurring in these derivation trees induces a

derivation graph. The derivation graph serves as our starting point to capturing the

(transitive) dependence of an analysis fact on its premises and, as a consequence, it

enables us to capture alarm correlations as well.

We extract a Bayesian network from this derivation graph by representing each

instantiated deduction rule (i.e., a clause) and each analysis fact (i.e., a tuple) as

a node in the Bayesian network. The edges of the network represent conditional

dependencies. A clause node is conditionally dependent on its “antecedent” tuple

nodes, and a tuple node is conditionally dependent on the clause nodes that “derive”

it. Every node is associated with a conditional probability distribution that quantifies

the incompleteness of the clause or tuple that the node represents. Since a Bayesian

network is acyclic by definition, such a straightforward manner of extracting a

Bayesian network from a derivation graph is possible only if the derivation graph is
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acyclic. Therefore, we eliminate directed cycles from a derivation graph by deleting

clauses to break cycles, despite the fact that we may introduce more incompleteness

because of the loss of some derivation trees. But, cycle elimination is necessary for

us to get a handle on the problem.

In a Bayesian network constructed in this manner, alarm probabilities are the

posterior probabilities of the nodes representing the alarm tuples. Therefore, com-

puting alarm probabilities reduces to performing marginal inference on the Bayesian

network. If the evidence of the ground truth of some alarms becomes available in

the future, we can recompute the posterior probabilities of the remaining alarms

conditioned on this evidence. With this approach, we obtain a probability for each

reported alarm that measures how likely it is that the alarm represents a real bug.

We then rank alarms by their inferred probabilities, in decreasing order. This ranking

places likely true alarms at the top, thereby enabling users to prioritize the triaging

of likely true alarms over false ones.

Our approach performs approximate marginal inference, using the loopy belief

propagation algorithm. We choose approximate inference because exact inference

is infeasible on large Bayesian networks that result from static analyses applied

to large and complex practical programs. In fact, the large sizes of the Bayesian

networks in practical settings pose a scalability problem even to approximate inference

algorithms. For this reason, our approach employs optimizations to reduce the size

of a derivation graph. These optimizations cause a corresponding reduction in the

size of the Bayesian network.

While our approach specifies a general way to augment program reasoning with

probabilistic reasoning, a specific instantiation of our approach needs to choose the

parameters of the Bayesian network. An instantiation of our approach needs to:

1. Define the conditional probability distribution (CPD) table at each node of the

Bayesian network. The CPD table at a node models the incompleteness of the

clause or tuple represented by that node.
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2. Choose a cycle elimination algorithm and applicable optimizations. These

choices are made with a view to increasing the empirical effectiveness of alarm

ranking.

1.3.1 End-to-End Systems

We demonstrate the effectiveness and the generality of our approach by realizing it

in two practical end-to-end systems called Bingo [70] and Presto. Both Bingo

and Presto instantiate our general approach in different ways by making different

choices with respect to the following:

1. Defining the CPD tables of the Bayesian network in order to capture the sources

of incompleteness of the specific static analyses executed by the system.

2. Choosing the cycle elimination algorithm, and the optimizations applied to the

derivation graph to achieve empirical effectiveness of alarm ranking.

Bingo employs aggressive cycle elimination and two aggressive optimizations.

Bingo chooses aggressive cycle elimination in order to prune away large parts of

the extremely large derivation graphs produced by the static analyses executed by

Bingo, namely the datarace analysis and the taint analysis. One of the reasons

these analyses produce extremely large derivation graphs is because they perform

deductions at the granularity of individual program instructions. In addition, Bingo

employs aggressive optimizations to further reduce the size of the derivation graph.

Bingo defines the CPD tables associated with clause nodes to be probabilistic in

order to capture our hypothesis that incomplete analysis rules cause the datarace and

taint analyses to be incomplete. That is, for a clause node, Bingo specifies that its

consequent holds true with a probability that is strictly less than 1, even when all its

antecedents hold true. In addition, Bingo treats the analysis input facts as having a

probability of 1. The intuition underlying this hypothesis stems from the fact that

the datarace analysis is path-insensitive and the taint analysis is flow-insensitive.
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Furthermore, Bingo leverages user feedback to compute and iteratively improve

the alarm ranking. It first computes an initial ranking of alarms. In an interactive

loop involving a user, Bingo seeks feedback about the ground truth of the top-

ranked alarm. Next, it re-ranks alarms by recomputing the probabilities of all the

alarms conditioned on this feedback. In effect, this recomputation generalizes user

feedback, bringing correlated alarms closer to each other in the new ranking. Such

user interactions are repeated iteratively, causing true alarms to rise to the top of the

ranking. This process of iteratively improving the alarm ranking is a key factor in

the effectiveness of Bingo.

Presto employs a depth-first-search-based cycle elimination algorithm that

retains more derivation trees than the aggressive cycle elimination algorithm. Further,

Presto employs only one aggressive size-reducing optimization on the derivation

graph. Presto can afford to be less aggressive while eliminating cycles from the

derivation graph as compared to Bingo because the derivation graphs produced

by the static analysis executed by Presto, namely the exception flow analysis, are

much smaller as compared to, say, datarace derivation graphs. One of the reasons is

because the exception flow analysis, operates at the granularity of methods (performs

deductions on the nodes and edges of a call-graph). As a result of being less aggressive

during cycle elimination, Presto retains most of the derivation trees in a derivation

graph.

Presto defines the CPD tables associated with input tuples to be probabilistic,

and treats the deductive rules of the analysis as complete, in order to capture our

hypothesis that incomplete input tuples are the primary sources of false alarms in the

case of the exception flow analysis. A bug-finding static analysis, like the exception

flow analysis, is typically built atop one or more underlying analyses that produce

intermediate facts such as the call-graph and aliasing information. These intermediate

facts, which serve as inputs to the bug-finding analysis, are sometimes incomplete

because they are produced by analyses that make approximations. Therefore, Presto

7



models the incompleteness of such input facts, in the CPD tables associated with

them, by specifying that an input fact holds true with a probability that is strictly

less than one.

In addition, Presto leverages the completeness of dynamic analysis to rank

alarms reported by a static analysis. Presto seeks to quantify the incompleteness

of each input fact by a probability estimate: it seeks this estimate from a dynamic

analysis that computes it by observing concrete program executions. Next, Presto

constructs a Bayesian network as described earlier. Marginal inference on the Bayesian

network propagates these probability estimates, and infers the posterior probabilities

associated with all the nodes of the network. Presto then ranks alarms by their

inferred probabilities.

1.3.2 Cycle Elimination

Finally, we examine the problem of cycle elimination, which arises in the context of

extracting a Bayesian network from a derivation graph. Because a Bayesian network

is acyclic by definition, we need to remove directed cycles from a derivation graph in

order to convert it into a Bayesian network in a straightforward manner. Eliminating

cycles in a derivation graph introduces more incompleteness into it because we may

lose some derivations of some analysis facts. In this dissertation, we present three

algorithms for cycle elimination, each of which is more precise than the previous

algorithm in the number of derivation trees it retains for each analysis fact.

1.4 Contributions and Organization

In summary, our contributions in this dissertation are as follows:

1. A general approach to augmenting program reasoning with probabilistic rea-

soning.
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2. Two end-to-end systems that realize and illustrate our approach.

3. A study of three approaches to cycle elimination in derivation graphs, a key

step in extracting a probabilistic model from the derivation steps of a static

analysis.

The rest of the material in this dissertation is organized as follows. Chapter 2

covers background material, and Chapter 3 describes our approach to extending

program reasoning with probabilistic reasoning. Chapter 4 describes the two end-

to-end systems, Bingo and Presto, that rank alarms produced by client static

analyses: a datarace analysis, a taint analysis, and an exception flow analysis.

Chapter 5 explores different approaches to cycle elimination. Chapter 6 discusses

related work, Chapter 7 suggests directions in which this research can be continued,

and finally, Chapter 8 concludes.
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Chapter 2

Background

In this chapter, we cover the necessary background material on Datalog (Section 2.1)

and on Bayesian networks (Section 2.2).

2.1 Datalog Programs

In this section, we introduce the syntax and semantics of Datalog programs. A more

detailed treatment is in [4]. A Datalog program comprises a set of rules or constraints

of the form

Rh(uh) :− R1(u1), R2(u2), . . . , Rp(up).

Here, each Ri(ui) is a relation representing a set of tuples with name Ri. The

relation Ri(ui) has the form Ri(u1, u2, . . . , uk) and arity k where u1, u2, . . . , uk are

free variables. The tuple Ri(vi) = Ri(v1, v2, . . . , vk) instantiates relation Ri(ui) with

atoms v1, v2, . . . , vk drawn from appropriate domains whose union is the active domain

of constants. The set of all tuples Ri(vi) is the extent of the relation Ri(ui). A

relation whose extent is completely specified to us is called a relation of the extensional

database, or an EDB relation.

Each rule may be read as a universally quantified formula: “For all instantiations

v of the free variables from the active domain of constants, if R1(v1), and R2(v2),

10



. . . , and Rp(vp), then Rh(vh)”. Instantiating a Datalog rule yields the Horn clause

R1(v1) ∧R2(v2) ∧ · · · ∧Rp(vp) =⇒ Rh(vh). An instantiated rule is also referred to

as a grounded constraint, or as a clause. Only one relation can occur to the left of

the :− sign in a Datalog rule and this relation is called the head or goal of the rule.

Zero or more relations can occur to the right of the :− sign and they form the body or

subgoals of the rule. Thus a rule specifies how to compute tuples of the head relation

from the tuples of relations in the body. The relations whose extents are computed

by Datalog rules are called the relations of the intensional database, or IDB relations.

The EDB (IDB) relations along with their extents form the EDB (IDB). One or more

of the IDB relations are designated to be the output relations. A Datalog program,

is therefore, a function from the EDB to the IDB.

Solving a Datalog program, entails the following actions. Given the extent I of

all EDB relations, we initialize the set of tuples, T := I, and initialize the grounded

constraints to the set of constraints that derive the input tuples, GC := {True =⇒

t | t ∈ I}. We repeatedly apply each rule to update T and GC until no new tuple

is derived. That is, whenever R1(v1), R2(v2), . . . , Rp(vp) occur in T , we update

T := T ∪ {Rh(vh)}, and GC := GC ∪ {R1(v1) ∧R2(v2) ∧ · · · ∧Rp(vp) =⇒ Rh(vh)}.

The set of tuples T is said to be the solution to the Datalog program. This solution

is said to have reached a fixpoint when the Datalog program applied to T , yields T .

A Datalog program is a monotone function that has a least fixpoint.

2.2 Bayesian Networks

We define and briefly explain a Bayesian network. A more detailed treatment is

in [40]. Let V be a set of random variables. For our purpose, it suffices to consider

only boolean-valued random variables. Let G = (V,E) be a directed acyclic graph

with its vertices as the set of random variables V . Let E be a set of directed edges.

Edges represent conditional dependencies. If there is no directed path from one node
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to another, then those two nodes represent random variables that are conditionally

independent of one another. Each random variable is associated with a probability

function called a conditional probability distribution (CPD) that is defined below.

For any v ∈ V , let Pa(v) be the set of variables with edges leading to v. Formally,

Pa(v) = {u ∈ V | u→ v ∈ E}. The CPD of a random variable v is a function that

maps concrete valuations xPa(v) of Pa(v) to the conditional probability of the event

v = True, and we write this as p(v | xPa(v)). The complementary event v = False

has conditional probability p(¬v | xPa(v)) = 1− p(v | xPa(v)). The Bayesian network,

given by the triple BN = (V,G, p), is a compact representation of the following joint

probability distribution:

Pr(x) =
∏
v

p(xv | xPa(v)), (2.1)

where the joint assignment x is a valuation xv for each v ∈ V , and xPa(v) is the

valuation restricted to the parents of v. That is, a Bayesian network represents a family

of joint distributions that factorize as a product of local conditional probabilities.

From Equation 2.1, the following definitions can be derived: (a) the marginal

probability of a variable, Pr(v) =
∑
{x|xv=True} Pr(x), Pr(¬v) = 1−Pr(v), and (b) the

conditional probability of arbitrary events: Pr(v | e) = Pr(v ∧ e)/Pr(e).

12



Chapter 3

Augmenting Program Reasoning

with Probabilistic Reasoning

In this dissertation, we work with static analyses that make deductive steps explicit

by specifying them in Datalog. But our approach is applicable to all static analyses

that employ techniques like abstract interpretation. This is because all such static

analyses apply, in effect, a series of deductive steps: at every program point, they

draw a conclusion based on the premises that hold at that program point.

The set of all deductive steps that have been executed by a static analysis specified

in Datalog, is captured as a Datalog derivation graph. We first describe this process

in Section 3.1. Then we go on to describe how a Bayesian network is constructed from

a derivation graph (Section 3.2). Next, we discuss marginal inference on a Bayesian

network (Section 3.3), and illustrate how alarm probabilities are conditioned on

evidence (Section 3.4). We end this section by discussing the configurable parameters

of our Bayesian network (Section 3.5).

13



3.1 Static Analysis to Derivation Graph

In the scope of our study, a static analysis is a Datalog program. When a static

analysis specified in Datalog is applied to a program, the Datalog solver instantiates

the rules of the static analysis using EDB facts (i.e., tuples) that are extracted from

the program text. These rule instantiations produce new IDB facts (i.e., tuples) that

are used by the Datalog solver to instantiate more rules; this process continues until

no more new IDB facts are produced. At this point, we say that a fixpoint is reached.

3.1.1 Datalog Derivation Graph

The Datalog derivation graph G(T,GC) is induced by the set of tuples T and the

grounded constraints GC from the solution to a Datalog program, at fixpoint. The

set of vertices is T ∪GC. There is an edge from a tuple t ∈ T to a clause g ∈ GC

whenever t is an antecedent of g, and an edge from g to t whenever t is the consequent

of g. We explain the structure of a derivation graph with an example. We show a

snippet of Java code in Figure 3.1, and the execution of a highly simplified static

datarace analysis specified in Figure 3.2, on the code snippet.

Consider the Java code in Figure 3.1. Assume that the methods close() and

getRequest() may be simultaneously invoked by multiple threads on the same

object. The synchronized block on lines L1–L3 ensures that for each object instance,

lines L4–L7 are executed at most once. Therefore there is no datarace between the pair

of accesses to controlSocket on lines L4 and L5, and between accesses on lines L5

and L5. There is also no datarace between the accesses to request on lines L6 and

L7, and between accesses on lines L7 and L7 by different threads. However, there is a

potential datarace between accesses to request on lines L0 and L7.

Figure 3.2 shows an extremely simplified static datarace analysis in Datalog

for Java programs, minimized from the one present in the Chord program analysis

framework [64]. The analysis takes the relations N(p1, p2), U(p1, p2), and A(p1, p2) as
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1 class ReqHandler extends Thread {
2 private FtpRequest request;
3 private Socket controlSocket;
4 private boolean isConnectionClosed = false;
5
6 ...
7
8 public FtpRequest getRequest() {
9 return request; // L0

10 }
11
12 public void close() {
13 synchronized (this) { // L1
14 if (isConnectionClosed) return; // L2
15 isConnectionClosed = true; // L3
16 }
17 controlSocket.close(); // L4
18 controlSocket = null; // L5
19 request.clear(); // L6
20 request = null; // L7
21 }
22 }

Figure 3.1: Example code fragment in Java.

input, and produces the relations P(p1, p2) and race(p1, p2) as output. In all these

relations, variables p1, p2 and p3 range over the domain of program points. The input

relations contain tuples indicating some known facts about the program. For example,

for the program in Figure 3.1, N(p1, p2) may contain the tuples N(L1, L2), N(L2, L3),

etc. Some input relations such as N(p1, p2) are directly obtained by analyzing the

program text. Other input relations such as U(p1, p2) or A(p1, p2) are outputs of

earlier analyses (in this case, a lockset analysis and a pointer analysis, respectively).

The Datalog solver applies the analysis rules described in Figure 3.2, to the input

tuples until fixpoint.

The analysis rules should be understood as follows:

1. Rule r1 : For all program points p1, p2, p3, if p1 and p2 may execute in parallel

(P(p1, p2)), and p3 may execute immediately after p2 (N(p2, p3)), and p1 and p3

are not guarded by a common lock (U(p1, p3)), then p1 and p3 may themselves

execute in parallel.

2. Rule r2 : For all program points p1, p2, if p1 and p2 may execute in parallel
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Input relations
N(p1, p2) : Program point p2 may be executed immediately after program

point p1 by a thread.
U(p1, p2) : Program points p1 and p2 are not guarded by a common lock.
A(p1, p2) : Program points p1 and p2 may access the same memory location.

Output relations
P(p1, p2) : Program points p1 and p2 may be executed by different threads in

parallel.
race(p1, p2) : Program points p1 and p2 may have a datarace.

Analysis rules
r1 : P(p1, p3) :− P(p1, p2),N(p2, p3),U(p1, p3).

r2 : P(p2, p1) :− P(p1, p2).

r3 : race(p1, p2) :− P(p1, p2),A(p1, p2).

Figure 3.2: A toy static datarace analysis in Datalog. The base rule for relation
P(p1, p2) is elided for brevity.

(P(p1, p2)), then p2 and p1 may execute in parallel.

3. Rule r3 : For all program points p1, p2, if p1 and p2 may execute in parallel

(P(p1, p2)), and p1 and p2 may access the same memory location (A(p1, p2)),

then p1 and p2 may have a datarace.

A rule fires if and only if all its antecedent tuples are among the input tuples or have

been derived. On the other hand, a (consequent) tuple may be derived by more that

one rule. All instantiations of these rules together induce the derivation graph.

Figure 3.3 shows a snippet of the derivation graph when the rules above are applied

to the program snippet in Figure 3.1. A clause node is interpreted as conjunctive: a

clause is considered to have fired if and only if all its antecedent tuples have been

derived. Whereas, a tuple node is interpreted as disjunctive: a tuple is considered

derived if there is at least one clause deriving it. Also note that the two “alarm”

nodes race(L4, L5) and race(L6, L7) are correlated because they (transitively) depend

on the same analysis fact P(L4, L5). That is, the two alarms share the portion of the

derivation tree that derives fact P(L4, L5).
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P(L4,L2) N(L2,L3) U(L4,L3)

r1(L4,L2,L3)

P(L4,L3) N(L3,L4) U(L4,L4)

r1(L4,L3,L4)

P(L4,L4) N(L4,L5) U(L4,L5)

r1(L4,L4,L5)

P(L4,L5) N(L5,L6) U(L4,L6)

r1(L4,L5,L6)

P(L4,L6)

r2(L4,L6)

P(L6,L4)N(L4,L5)U(L6,L5)

r1(L6,L4,L5)

P(L6,L5)N(L5,L6)U(L6,L6)

r1(L6,L5,L6)

P(L6,L6)N(L6,L7)U(L6,L7)

r1(L6,L6,L7)

P(L6,L7)

A(L4,L5)

r3(L4,L5)

race(L4,L5)

A(L6,L7)

r3(L6,L7)

race(L6,L7)

Figure 3.3: A derivation graph snippet obtained by applying the datarace analysis in
Figure 3.2 to the program in Figure 3.1.
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3.1.2 Extracting the Derivation Graph

We extract the derivation graph by capturing all the rule instantiations at fixpoint.

To do this, we produce an instrumented Datalog program that contains the same

Datalog rules as the original program except that each rule is instrumented. The

goal of instrumenting each rule is to record all the variables that get projected out

while executing the rule. Executing the instrumented Datalog program will allow us

to reconstruct all rule instantiations at fixpoint. We illustrate this process with an

example rule. Consider rule r1. When this rule executes to produce tuple P(p1, p3),

the variable p2 is projected out. We record all the variables that have been projected

out by instrumenting the rules as follows:

ir1 : P_i1(p1, p3, p2) :− P(p1, p2),N(p2, p3),U(p1, p3).

ir2 : P_i2(p2, p1) :− P(p1, p2).

ir3 : race_i1(p1, p2) :− P(p1, p2),A(p1, p2).

When the instrumented analysis is executed, every tuple from the instrumented

relations P_i1(p1, p3, p2), P_i2(p2, p1) and race_i1(p1, p2) will give us the values of

the constants from which we can reconstruct a grounded constraint.

For example, assume we have the input tuples P(L6, L6), N(L6, L7), U(L6, L7) and

P(L7, L6). When the instrumented analysis executes, rule ir1 will fire and produce

tuple P_i1(L6, L7, L6). From this tuple, we can reconstruct the fact that rule r1 had

fired in the original analysis. Similarly, rule ir2 of the instrumented analysis will also

fire producing tuple P_i2(L6, L6). The presence of this tuple will tell us that rule r2 of

the original analysis had fired. Executing the instrumented analysis after the original

analysis has executed, will help extract the set of grounded constraints produced by

the execution of the original analysis. From this set of grounded constraints, we can

construct the derivation graph.
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3.2 Derivation Graph to Bayesian Network

The next step is to construct a Bayesian network from the derivation graph. We

have seen that a directed acyclic graph underlies a Bayesian network. The derivation

graph is a directed graph but it may contain cycles. The derivation graph needs to

be acyclic in order to extract a Bayesian network from it. Section 3.2.1 discusses

cycle elimination in derivation graphs, and Section 3.2.2 describes the construction

of the Bayesian network from the derivation graph. Finally, Section 3.2.3 discusses

two optimizations performed on the derivation graph in order to reduce the size of

the Bayesian network.

3.2.1 Cycle Elimination in Derivation Graphs

Figure 3.4 shows an example of a directed cycle in a derivation graph. We wish

to extract a Bayesian network from a derivation graph by representing every node

and edge in the derivation graph by a corresponding node and edge in the Bayesian

network. A Bayesian network is by definition acyclic. Therefore, in order to convert

a derivation graph into a Bayesian network in such a straightforward manner, we

need to eliminate directed cycles from the derivation graph. Cycle elimination will

introduce more incompleteness in the derivation of analysis facts, but it is a necessary

step for generating our probabilistic model.

P(L6,L7)

r2(L6,L7)

r2(L7,L6)

P(L7,L6)

r1(L6,L6,L7) r1(L7,L5,L6)

Figure 3.4: An example of a cycle in the
derivation graph.

The process of cycle elimination

chooses a subset of clauses GCc from the

set of all clauses GC, such that GCc in-

duces an acyclic derivation graph. Every

tuple that is derivable in GC should still

be derivable in GCc. Moreover, we want

to retain as many correlations between

alarms (shared part of their derivation
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trees) as possible. Finding the largest such GCc is an NP-complete problem (by

reduction from the maximum acyclic subgraph problem [27]). We therefore relax the

condition that GCc must be the largest possible, and explore different approaches

to finding an acyclic subset of clauses GCc ⊆ GC. This is described in detail in

Chapter 5 where we propose three algorithms for cycle elimination, which differ in

the number of derivation trees they retain for tuples that are derived.

3.2.2 Acyclic Derivation Graph to Bayesian Network

We now convert GCc, the acyclic subset of all clauses, to a Bayesian network, by

following the guidelines below:

1. We represent each tuple and each clause by a node in the Bayesian network.

For every edge in the derivation graph, there is a corresponding edge in the

Bayesian network.

2. We quantify the incompleteness of each clause with a probability that repre-

sents the belief that the clause has an invalid conclusion despite having valid

hypotheses.

3. We quantify the incompleteness of each input tuple with a probability that

represents the likelihood of an input tuple not holding true.

4. We treat clause nodes as conjunctive nodes: that is, a clause could fire only if

all its antecedent tuples are derived. We treat tuple nodes as disjunctive nodes:

that is, a tuple could be derived by one or more clauses.

We apply these guidelines to an example clause and tuples. Rule r1 in Figure 3.2

is incomplete. To see this, consider the following example. Even though the analysis

facts P(L4, L2), N(L2, L3) and U(L4, L3) are all true, we know that fact P(L4, L3) is

not true because if one thread executes line L4, other threads will return at line L2 as
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explained earlier. We quantify the incompleteness of rules by associating a probability

with clause nodes as follows:

Pr(r1(L4, L2, L3) | h1) = 0.95, and (3.1)

Pr(¬r1(L4, L2, L3) | h1) = 1− 0.95 = 0.05, (3.2)

where h1 = P(L4, L2) ∧ N(L2, L3) ∧ U(L4, L3) is the event indicating that all the

hypotheses of r1(L4, L2, L3) are true, and 0.95 is the probability of the clause “firing”.

By setting the probability to a value strictly less than 1, we make it possible for the

clause r1(L4, L2, L3) to have not “fired”, even though all the hypotheses indicated by

event h1 are true.

If any of the antecedents of r1(L4, L2, L3) is false, then it is itself definitely false:

Pr(r1(L4, L2, L3) | ¬h1) = 0, and (3.3)

Pr(¬r1(L4, L2, L3) | ¬h1) = 1. (3.4)

Input tuples can also be incomplete because input tuples like A(L6, L7) are

produced by other program analyses that are themselves incomplete. Therefore,

we associate a probability with input nodes as follows:

Pr(A(L6, L7)) = 0.95, and (3.5)

Pr(¬A(L6, L7)) = 1− 0.95 = 0.05. (3.6)

Certain input tuples, for example N(L6, L7), that are extracted directly from the

program text, may be treated as known with certainty. In this case, the probability

we associate with such input nodes is as follows:

Pr(N(L6, L7)) = 1.0, and (3.7)

Pr(¬N(L6, L7)) = 0.0. (3.8)
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We treat nodes representing derived tuples as disjunctions:

Pr(P(L6, L7) | r1(L6, L6, L7) ∨ r2(L7, L6)) = 1, and (3.9)

Pr(P(L6, L7) | ¬(r1(L6, L6, L7) ∨ r2(L7, L6))) = 0. (3.10)

The probability value of 0.95 that we have used above is only for illustration. In

general, the Bayesian network is parameterized by a vector of probabilities p that

maps (a) each rule r to its rule firing probability that quantifies completeness of the

rule, and/or (b) each instantiated input tuple t to a probability that quantifies its

completeness. We discuss how to get the initial rule probabilities in Section 4.1.1. For

an EDB relation that is treated probabilistically, Section 4.3 illustrates one approach

to get the probabilities for individual tuples of the EDB relation. We associate

conditional probability distributions (CPDs) with all nodes of the Bayesian network

that has been constructed from the derivation graph induced by GCc. Figure 3.5 shows

a small snippet of the derivation graph that contains EDB tuple nodes, clause nodes

that are interpreted as conjunctive nodes, and IDB tuple nodes that are interpreted

as disjunctive nodes. Figure 3.6 shows the Bayesian network that corresponds to this

snippet, with CPDs for representative nodes. Note that the size of the CPD for a

node is exponential in the number of nodes on which it is conditionally dependent.

P(L6,L6) N(L6,L7) U(L6,L7)

r1(L6,L6,L7)

P(L6,L7)

P(L7,L6)

r2(L7,L6)

Figure 3.5: A derivation graph snippet showing a conjunctive node (r1(L6, L6, L7))
and a disjunctive node (P(L6, L7)).
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P(L6,L6)

N(L6,L7) U(L6,L7)

P(L7,L6)

P(L6,L7)

!"(L6,L6,L7) !#(L7,L6)

N(L6,L7) Prob

0 0.0

1 1.0

U(L6,L7) Prob

0 0.0

1 1.0

P(L6,L6) N(L6,L7) U(L6,L7) $%(L6,L6,L7) Prob
0 0 0 0 1.0

0 0 0 1 0.0

0 0 1 0 1.0

0 0 1 1 0.0

0 1 0 0 1.0

0 1 0 1 0.0

0 1 1 0 1.0

0 1 1 1 0.0

1 0 0 0 1.0

1 0 0 1 0.0

1 0 1 0 1.0

1 0 1 1 0.0

1 1 0 0 1.0

1 1 0 1 0.0

1 1 1 0 0.05

1 1 1 1 0.95

$%(L6,L6,L7) $&(L7,L6) P(L6,L7) Prob

0 0 0 1.0

0 0 1 0.0

0 1 0 0.0

0 1 1 1.0

1 0 0 0.0

1 0 1 1.0

1 1 0 0.0

1 1 1 1.0

P(L7,L6) $&(L7,L6) Prob

0 0 1.0

0 1 0.0

1 0 0.05

1 1 0.95

Figure 3.6: The Bayesian network for the derivation graph snippet of Figure 3.5,
with CPDs for EDB tuple nodes N(L6, L7) and U(L6, L7), conjunctive clause nodes
r1(L6, L6, L7) and r2(L7, L6), and the disjunctive tuple node P(L6, L7).

3.2.3 Optimizations

The time taken for marginal inference on a Bayesian network depends on the size of

the Bayesian network and on the sizes of the CPDs at each node of the network. This

section discusses two optimizations that reduce the size of the Bayesian network.

Coreachability based constraint pruning. The derivation graph at fixpoint

contains all derivable tuples. Not all derivable tuples in the derivation graph partici-

pate in deriving the alarm tuples. Therefore, this optimization removes unnecessary

tuples and clauses by performing a backward pass over the set of clauses GC. We

initialize the set of useful tuples U := O, where O is the set of alarm tuples, and

repeatedly perform the following update until fixpoint:

U := U ∪ {t | ∃g ∈ GC s.t. t ∈ Ag and cg ∈ U}.
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Here, cg is the consequent of clause g, and Ag is the set of all antecedents of g.

Informally, a tuple is useful if it is either itself an alarm, or can be used to produce a

useful tuple. The final pruned set of clauses is defined as follows: GC ′ = {g ∈ GC |

cg ∈ U}.

Chain compression. This optimization compresses a chain of derivation steps to

a single derivation step. Consider the derivation graph shown in Figure 3.3, and

observe the sequence of tuples P(L4, L2)→ P(L4, L3)→ P(L4, L4)→ P(L4, L5). Both

intermediate tuples P(L4, L3) and P(L4, L4) are produced by exactly one grounded

constraint, and are consumed as an antecedent by exactly one clause. Furthermore,

we will never need the probabilities of these tuples for ranking as neither of them is

an alarm node. We may therefore rewrite the derivation graph to directly conclude

that P(L4, L2)→ P(L4, L5). We formally present this optimization in Algorithm 1.

3.3 Marginal Inference

There are several methods to perform marginal inference in Bayesian networks. Tech-

niques for exact inference are variable elimination, the junction tree algorithm [37],

and symbolic techniques [28]. All these algorithms have a complexity that is ex-

ponential in the Bayesian network’s tree width [49]. Techniques for approximate

inference are loopy belief propagation [44, 59], sampling methods such as Gibbs

sampling (a MCMC sampling algorithm), or variational methods. We choose loopy

belief propagation because we need a deterministic inference technique that scales to

large networks.

Belief propagation is a message-passing algorithm for performing inference on

graphical models like Bayesian networks and Markov random fields. It is an exact

inference algorithm on probabilistic models that have a tree structure. However, it

was found that the belief propagation could be used as an approximate inference

technique on general graphical models. When used as an approximate inference
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Algorithm 1 Compress(GC,C,O), where GC is the set of grounded constraints,
C is the set of derived tuples, and O is the set of alarms produced by the analysis. It
returns the modified set of clauses GC.

1. For each tuple t, define:

Srcs(t) := {g ∈ GC | t = cg},
Sinks(t) := {g ∈ GC | t ∈ Ag}.

2. Construct the following set:

E := {t ∈ C \O | |Srcs(t)| = 1 ∧ |Sinks(t)| = 1}.

3. While E is not empty:

(a) Pick an arbitrary tuple t ∈ E, and let Srcs(t) = {g1}, and Sinks(t) = {g2}.
(b) Since t = cg1 and t is an antecedent of g2, let

g1 = a1 ∧ a2 ∧ · · · ∧ ak =⇒ t, and
g2 = t ∧ b1 ∧ b2 ∧ . . . bp =⇒ t′.

(c) Define a new clause, g′ = a1 ∧ a2 ∧ · · · ∧ ak ∧ b1 ∧ b2 ∧ · · · ∧ bp =⇒ t′. Update
GC := GC ∪ {g′} \ {g1, g2}, E := E \ {t}, and recompute Srcs and Sinks.

(d) If g1 was associated with rule r1 with probability p1, and g2 was associated
with rule r2 with probability p2, then associate g′ with a new rule r′ with
probability p1p2.

4. Return GC.

technique, it is called loopy belief propagation. Empirical studies show that it often

converges to values that are very close to the true marginal probabilities [61]. In each

round of the inference algorithm, each random variable v passes a message to all its

neighbors u (both parents and children), indicating the updated belief in u given the

current belief in v. Each node then computes a new belief by combining the messages

received from all its neighbors. The algorithm terminates when the beliefs converge

to within a factor of ε across two subsequent iterations. In our experiments, we

use the loopy belief propagation algorithm implemented by LibDAI, an off-the-shelf
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inference engine [59]. In situations where loopy belief propagation sometimes does

not converge, we halt the loop by setting a limit on the number of iterations that it

can execute. In such cases, we return the average belief over the last 100 iterations

to suppress oscillatory behavior.

3.4 Conditioning on Evidence

In this section, we illustrate how alarm probability and hence alarm ranking changes

when the probabilities are conditioned on evidence. Consider the alarm probabilities

and ranking in Table 3.1a. This table is ranking the alarms reported for the example

code in Figure 3.1. Among the five reported alarms, alarm race(L0, L7) is a true alarm

and the rest are false alarms. But the true alarm is ranked the last. Suppose we

acquire evidence that the top-ranked alarm race(L4, L5) is a false alarm. We can now

recompute the alarm probabilities of all the alarms conditioned on this fact. This

results in the updated list of alarms shown in Table 3.1b. Observe that the belief

in the closely related alarm race(L6, L7) drops from 0.324 to 0.030. Similarly, the

belief in the other two closely related alarms, race(L5, L5) and race(L7, L7), also drop.

Whereas, the belief in the unrelated alarm race(L0, L7) remains unchanged at 0.279.

As a result, the entire family of false alarms drops in the ranking, so that the only

true alarm is now at the top.

In general, if e is the observed evidence that takes the form of an event like “tuple

t′ = 1” or “tuple t′ = 0”, then, recomputing alarm probabilities entails replacing the

prior belief Pr(t) for each tuple t, with the posterior belief, Pr(t | e). It is possible

that the observed evidence could be a more complex event, for example, a conjunction

of more than one observed tuple bound to its observed value. LibDAI, the library

that we use to perform marginal inference allows us observe the values of nodes prior

to performing loopy belief propagation, thus conditioning the computed probabilities

on the observed evidence.
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Table 3.1: Alarm ranking by probabilities, (a) before, and (b) after the evidence
¬ race(L4, L5). The real datarace race(L0, L7) rises in the ranking after conditioning
on evidence.

(a) Pr(a).

Rank Belief Program points

1 0.398 ReqHandler : L4, ReqHandler : L5
2 0.378 ReqHandler : L5, ReqHandler : L5
3 0.324 ReqHandler : L6, ReqHandler : L7
4 0.308 ReqHandler : L7, ReqHandler : L7
5 0.279 ReqHandler : L0, ReqHandler : L7

(b) Pr(a | ¬ race(L4, L5)).

Rank Belief Program points

1 0.279 ReqHandler : L0, ReqHandler : L7
2 0.035 ReqHandler : L5, ReqHandler : L5
3 0.030 ReqHandler : L6, ReqHandler : L7
4 0.028 ReqHandler : L7, ReqHandler : L7
5 0 ReqHandler : L4, ReqHandler : L5

3.5 Configurations of the Bayesian Network

The Bayesian network that we extract from the derivation graph is a flexible proba-

bilistic model that encodes relationships between analysis facts. When we implement

an alarm ranking system with an underlying Bayesian network, there are several

design choices that we can make to customize the Bayesian network to be empirically

effective.

Choosing a cycle elimination algorithm. One configurable parameter is the

choice of a cycle elimination algorithm that eliminates cycles in a derivation graph

before it is converted to a Bayesian network. Chapter 5 discusses three approaches

for cycle elimination. The approaches differ in how aggressively they discard clauses

from the derivation graph, in order to eliminate cycles. While all tuples still remain

derivable in all the approaches, we may lose correlations between alarms to different

extents. This is because we may lose one or more derivation trees for a tuple when
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a clause is discarded. Therefore cycle elimination reduces the size of the derivation

graph, but increases incompleteness and may destroy some alarm correlations. The

size of the Bayesian network, which is directly proportional to that of the derivation

graph, greatly impacts the time taken for the convergence of approximate marginal

inference, and also how often there is convergence versus timeout. Therefore, we need

to employ a cycle elimination algorithm that discards the least number of clauses

while ensuring the scalability of inference over the resulting Bayesian network.

Choosing optimizations. Another configurable parameter is whether or not to

apply chain compression to derivation graphs. Chain compression is an optimization

(discussed in Section 3.2.3) to reduce the size of the derivation graph from which a

Bayesian network is constructed. Chain compression does not alter alarm probabilities

only when exact inference is performed on the resulting Bayesian network. That

is, exact marginal inference on Bayesian networks constructed from the compressed

and uncompressed derivation graphs will produce the same probability distribution

for alarms. But approximate marginal inference will not. In our setting, Bayesian

networks are large and exact inference is infeasible. While chain compression helps

to reduce the size of the Bayesian network, approximate inference on optimized

and unoptimized Bayesian networks converge to different probability distributions

for alarms. On an orthogonal note, chain compression may or may not effectively

reduce the size of the derivation graph, depending on the form of the instantiated

clauses. Chain compression is highly effective when there are long chains of derivation

sequences involving clauses with single antecedents. Therefore, the decision of whether

or not to apply chain compression is a configurable parameter.

Choosing causes of analysis incompleteness. As discussed in Section 3.2.2, we

can define the CPD at each node of the Bayesian network. While doing so, we can

treat each node as either complete by assigning a probability of 1.0, or as incomplete

by assigning a probability strictly less than 1.0. In our implementation of the system
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Bingo (Section 4.1), we have chosen to treat input tuples as complete and the

deduction rules as incomplete. This is because of our belief that the false alarms

stem primarily from the incompleteness of deduction rules, and not the input tuples,

of the client static analyses of Bingo. The reason for this belief is that the one of the

client static analyses of Bingo (datarace analysis) is path-insensitive, and the other

(taint analysis) is flow-insensitive. In the implementation of the system Presto

(Section 4.3), we treat (a) input tuples of the client analysis that are produced by

underlying static analyses as incomplete, (b) input tuples that are extracted from

program text as complete, and (c) deduction rules as complete. In the client static

analysis of Presto, incomplete input tuples are the primary sources of false alarms

and not the deduction rules. Presto’s client analysis is an exception flow analysis

that reports exception objects escaping via the main method, as alarms. One of

the input relations it uses to compute exception flows is the call-graph edge. The

call-graph edge is an output relation generated by a flow- and context-insensitive

interprocedural pointer analysis that is executed before the exception flow analysis.

If a call-graph edge is unrealizable, entire exception flows that involve this call-graph

edge are unrealizable. Thus, an incomplete input tuple (a call-graph edge) causes the

analysis to deduce an unrealizable exception flow and report a false alarm.
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Chapter 4

The Alarm Ranking System

The alarm ranking system is an end-to-end system that performs the following tasks

in order: (a) executes the static analysis on a program, (b) extracts the derivation

graph at fixpoint, (c) constructs a Bayesian network from the derivation graph,

(d) performs marginal inference on the Bayesian network, (e) produces a ranked list

of alarms, and (f) (optionally) improves the alarm ranking by conditioning it on

evidence. We have implemented two instances of the alarm ranking system: Bingo

and Presto. We describe Bingo in Section 4.1, and its evaluation in Section 4.2.

Next, we describe Presto in Section 4.3, and its evaluation in Section 4.4. Lastly,

in Section 4.5, we analyze the ranking methodology.

4.1 End-to-End System: Bingo

The system Bingo is an alarm ranking system as described above. Its effectiveness lies

in leveraging user feedback to iteratively improve the alarm ranking by conditioning

the alarm probabilities on the user feedback accrued thus far. In each iteration, Bingo

presents the alarm with highest probability for inspection by the user. The user then

indicates its ground truth, and Bingo incorporates this feedback as evidence for

subsequent iterations. We summarize this process in Figure 4.1.
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Figure 4.1: The Bingo workflow and interaction model.

In Bingo, we parameterize the Bayesian network with a vector of rule probabilities

p. We uniformly initialize each rule with a probability of 0.999. Ideally, we can learn

these initial probabilities from labelled data. Indeed, the Bingo workflow shows a

probability learning module that incorporates the learning of rule probabilities in the

workflow. If we had fully labelled data (i.e., if we knew whether the consequent tuple

produced by every instance of every rule, was complete or not), the rule probability

is simply the fraction of rule instances producing the complete consequent. However,

typical labelled data only comprises labelled alarms. That is, we will usually not

have labels for all consequent tuples produces by all rule instances: they are latent

or unobserved. In such situations, we could learn the rule probabilities as described

in Section 4.1.1. However, this technique requires a large corpus, and a proper

experimental evaluation involves partitioning the data into training and test sets. To

avoid this problem, Bingo opts to parameterize the Bayesian network by assigning a

uniform constant probability to each rule.

We formally describe the workflow of Bingo in Algorithm 2. For cycle elimination

in step 3, Bingo uses the aggressive algorithm in Section 5.2 because it needs to

scale to large programs (≈ 1–10 million grounded constraints). Step 4 performs both

the coreachability and the chain compression optimizations discussed in Section 3.2.3.
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Algorithm 2 Bingo(D,P,p), where D is the analysis expressed in Datalog, P is
the program to be analyzed, and p maps each analysis rule r to its firing probability
pr.

1. Let I = InputRelationsD(P ). Populate all input relations I using the program
text and prior analysis results.

2. Let (C,O,GC) = DatalogSolve(D, I). C is the set of derived tuples, O ⊆ C is
the set of alarms produced, and GC is the set of grounded constraints.

3. Compute GCc := CycleElimAggressive(I, C,GC). Eliminate cycles from the
grounded constraints.

4. (Optionally,) Update GCc := Optimize(I,GCc, O). Reduce the size of the set of
grounded constraints.

5. Construct Bayesian network BN from GCc and p, and let Pr be its joint probability
distribution.

6. Initialize the feedback set e := ∅.

7. While there exists an unlabelled alarm:

(a) Let Ou = O \ e be the set of all unlabelled alarms.

(b) Determine the top-ranked unlabelled alarm:

ot = arg max
o∈Ou

Pr(o | e).

(c) Present ot for inspection. If the user labels it a true alarm, update e := e∪{ot}.
Otherwise, update e := e ∪ {¬ot}.

Bingo uses an off-the-shelf solver [59] for the conditional probability queries in

step 7(b).

We have used Bingo to rank alarms reported by two static analyses: datarace

and taint analysis. We briefly describe these analyses in Section 4.1.2.
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4.1.1 Getting Initial Probabilities

We describe one approach to learning good initial probabilities that quantify the

incompleteness of analysis rules. Given a program and its associated ground truth

v, the learning problem is to determine the most likely probability vector p that

explains v. The likelihood, L(p;v) is the probability of v under the probability vector

p. That is, L(p;v) = Prp(v). We need to estimate the probability vector that will

maximize this likelihood.

p̃ = arg max
p

L(p;v). (4.1)

In our setting, this estimation may be performed by the Expectation Maximization

algorithm [40].

4.1.2 Client Analyses

The end-to-end system Bingo demonstrates our approach of augmenting program

reasoning with probabilistic reasoning on two bug-finding static analyses written in

Datalog: datarace analysis and taint analysis.

Datarace Analysis

The datarace analysis [64] finds pairs of program points that access a heap object

(read/write), and that could potentially be executed in parallel by two different

threads, with at least one of the accesses being a write access. The analysis is

implemented in the Chord framework [63] and is built on top of the following:

1. A flow- and context-sensitive may-happen-in-parallel analysis that tracks pro-

gram points that may be executed by pairs of threads potentially running in

parallel.

2. A context-sensitive thread-escape analysis that computes the set of program

33



points potentially reading or writing to heap objects that may not be thread-

local. A heap object in a multithreaded shared-memory program is thread-local

when it is reachable only from at most a single thread. Only program points

that access thread-escaping (non-thread-local) heap objects may potentially

make a racy access to a heap object. The thread-escape analysis is guided

by a technique [82] that efficiently searches a large family of abstractions to

prove a query of the form: Does a specific program point read from or write to

a heap object that is not thread-local? This technique either: (a) finds the

cheapest heap abstraction that proves such a query, or (b) shows that no such

abstraction exists. Therefore this technique helps the thread-escape analysis to

eliminate program points that may access (read/write) heap objects that are

definitely thread-local.

3. A pointer analysis [56] that is 3-context-and-object sensitive but flow-insensitive.

This analysis is soundy [53], i.e., sound except for some features of Java,

including exceptions and reflection (which is resolved by a dynamic analysis

[13] - unsound but complete). The datarace analysis, may-happen-in-parallel

analysis, and the thread-escape analysis use either or both the call-graph and

the points-to information computed by the pointer analysis.

Typically, static analyses make unsound choices [53] so that they are scalable and

practically useful. For example, the Chord [64] static analysis framework does not

model exceptions in Java. In addition, the datarace analysis provides three unsound

switches that introduce different degrees of unsoundness, in order to limit the number

of reported alarms:

1. A switch to turn on a lock-set analysis that determines the set of locks that

may guard each program point. The datarace analysis uses this as “must”

information and unsoundly excludes all pairs of accesses that may be guarded

by the same lock, from the set of pairs of potentially racing accesses.
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2. A switch to exclude dataraces between two accesses in the same abstract thread.

This exclusion is sound if one abstract thread corresponds to exactly one

concrete thread. But this may not always be the case. The datarace analysis

models each thread starting at a given program point as one abstract thread.

If a program point that starts a thread is in the body of a loop, each distinct

concrete thread that may be started in an iteration of the loop will be modeled

by the same abstract thread. In such a scenario, excluding dataraces between

accesses in the same abstract thread is unsound.

3. A switch to exclude dataraces in which at least one of the accesses is in a

constructor. It is sound to exclude dataraces on the “this” object in constructors.

But, it is unsound to exclude every datarace in which one of the racing accesses

may happen within the body of a constructor.

While turning on these unsound switches reduces the total number of reported alarms,

and the number of false positives, it does introduce false negatives.

The datarace analysis together with all its underlying analyses, comprises 102 rules

and 102 relations. Bingo executes the datarace analysis in its soundest configuration

by turning off the unsound switches, in order to avoid false negatives. It instruments

the rules of the datarace analysis, thread-escape analysis and the may-happen-in-

parallel analysis to extract the derivation graph that captures the reasoning steps

employed by these analyses while deducing a datarace bug.

Taint Analysis

The taint analysis [24] computes data flows in Android programs, whose sources are

Android framework methods that read sensitive data, and whose sinks are framework

methods that leak sensitive data outside the device. The analysis tracks the flow of

complex sensitive data captured in heap objects, and also tracks the flow of scalar

data (e.g. integer values) assigned to static/instance fields and local variables. It
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is implemented in the Soot framework [78]. The taint analysis is built on top of a

context-insensitive pointer analysis that is similar to the one used in the datarace

analysis [56] except for context-sensitivity. The call-graph and points-to information

generated by the pointer analysis is used by the taint analysis.

The sources of sensitive data and the points of leak (sinks) are marked by two

types of annotations called the source and the sink annotations. These annotations

are placed on program variables. The taint analysis in the Android framework comes

with built-in source and sink annotations that were written manually by the analysis

writer. The analysis propagates these annotations through the Android program

in order to determine the flow of sensitive data to points of leak. The propagation

rules associate each abstract heap object, scalar static/instance field, and scalar local

variable with a (a) source annotation if it could contain the sensitive data generated

at a source represented by the annotation, and, (b) sink annotation if the data it

contains could flow to the point of leak represented by the annotation. In addition

to these annotations, there are also transfer annotations for propagating the flow of

source and sink annotations through the methods of the Android framework, that

are used in lieu of analyzing the methods of the Android framework. This enables

the taint analysis to analyze the source code of only the Android application and

completely avoid analyzing the methods of the Android framework.

The taint analysis propagates source annotations on scalar variables by performing

a forward inter-procedural dataflow analysis, and on heap objects using points-to

sets. It propagates the sink annotations by performing a backward inter-procedural

method-escape analysis. While performing both these analyses, the taint analysis

uses the heap points-to information (pre-computed by pointer analysis) to transitively

annotate all objects nested within an already-annotated object. The taint analysis

concludes that there is a tainted data flow from an annotated source to an annotated

sink if there is some abstract heap object, or some local/static/instance scalar variable

that is associated with both the source annotation and the sink annotation.
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The taint analysis together with all its underlying analyses, comprise 62 rules

and 77 relations. Bingo instruments the rules of the taint analysis to extract the

derivation graph that captures the reasoning steps employed by the taint analysis

while deducing a tainted data flow.

4.2 Bingo: Experimental Evaluation

In this section, we describe the evaluation of Bingo. We start by giving details about

the benchmarks used for the evaluation ((Section 4.2.1) and the reference baselines

against which we perform the measurements ((Section 4.2.2).

For the evaluation, we primarily measured two things: (a) effectiveness: how

effective is Bingo in ranking alarms (Section 4.2.3), and (b) robustness: how robust

is the ranking produced by Bingo, to incorrect responses (Section 4.2.4). In addition

to the above, we investigated if Bingo helped in discovering new bugs missed by

existing precise analysis tools (Section 4.2.5), and to what extent the optimizations

of Bingo helped to scale its applicability to large programs (Section 4.2.6).

4.2.1 Benchmarks

We evaluated Bingo on the suite of 16 benchmarks shown in Table 4.1. Eight of

these are benchmarks to which we applied the datarace analysis, and the remaining

eight are benchmarks to which we applied the taint analysis. The first four datarace

benchmarks are commonly used in previous work [23, 81]. The remaining four are

from the DaCapo benchmark suite [10]. We obtained the ground truth by manual

inspection. The eight taint analysis benchmarks were chosen from the STAMP [24]

repository, and are a combination of apps provided by a major security company,

and challenge problems used in past research. Table 4.2 gives various metrics that

indicate the size of the benchmarks.
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Table 4.1: Benchmark description.
Program Description

D
at
ar
ac
e
an

al
ys
is

hedc Web crawler from ETH
ftp Apache FTP server
weblech Website download/mirror tool
jspider Web spider engine
avrora AVR microcontroller simulator
luindex Document indexing tool
sunflow Photo-realistic image rendering system
xalan XML to HTML transforming tool

T
ai
nt

an
al
ys
is

app-324 Unendorsed Adobe Flash player (leaks phone number and SMS content)
nsounds Music player (leaks location information)
app-ca7 Simulation game (leaks phone number)
app-kQm Puzzle game (leaks phone number)
tmazes Puzzle game (packages the Mobishooter malware)
atrail RPG game (contains malicious behaviors: SD-card overwrite and delete SMS)
gmaster Image processing tool (packages the gingermaster malware on Android 2.3)
app-018 Arcade game (leaks IMEI and IMSI information)

Table 4.2: Benchmark characteristics. ‘Total’ and ‘App’ columns are numbers using
0-CFA call graph construction, with and without the JDK for datarace analysis
benchmarks, and with and without the Android framework for taint analysis bench-
marks.

Program # Classes # Methods Bytecode (KLOC)
Total App Total App Total App

D
at
ar
ac
e
an

al
ys
is

hedc 357 44 2,154 230 141 11
ftp 499 119 2,754 608 152 23
weblech 579 56 3,344 303 167 12
jspider 362 113 1,584 426 95 13
avrora 2,080 1,119 10,095 3,875 369 113
luindex 1,168 169 7,494 1,030 317 47
sunflow 1,857 127 12,934 967 616 53
xalan 1,727 390 12,214 3,007 520 120

T
ai
nt

an
al
ys
is

app-324 1,788 81 6,518 167 40 10
nsounds 1,418 119 4,323 500 52 11
app-ca7 1,470 142 4,928 889 55 23
app-kQm 1,332 105 4,114 517 68 31
tmazes 2,462 547 7,034 2,815 77 35
atrail 1,623 339 5,016 1,523 81 44
gmaster 1,474 159 4,500 738 82 39
app-018 1,840 275 5,397 1,389 98 50
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4.2.2 Baselines

We compare Bingo to two baseline algorithms, BaseR and BaseC. In each iteration,

BaseR chooses an alarm for inspection uniformly at random from the pool of

unlabelled alarms. The algorithm BaseC is based on the alarm classifier Eugene [55].

Eugene classifies alarms as true or false based on available feedback on a subset

of alarms. In each iteration, (a) we invoke Eugene to classify the current set of

unlabelled alarms, and (b) we pick a true alarm (as classified by Eugene) at random,

for inspection and labelling by a user. When BaseC exhausts all alarms classified as

true by Eugene, it picks an alarm classified as false, at random, and proposes it for

inspection.

A more formal description of algorithm BaseC is given below: Let A be the set

of alarms produced by the analysis. Eugene generalizes feedback on some disjoint

subsets of alarms, Lp, Ln ⊆ A, and classifies all a ∈ A as likely true and likely

false: Ap, An, such that Ap ∪ An = A, Lp ⊆ Ap, and Ln ⊆ An. We constructed the

user-guided alarm-ranking algorithm BaseC, from Eugene, as follows:

1. Initialize Lp and Ln to ∅.

2. While there exists an unlabelled alarm:

(a) Invoke the classifier: (Ap, An) = Classify(Lp, Ln).

(b) Pick an unlabelled alarm a uniformly at random from Ap. If no such alarm

exists, choose it uniformly at random from An.

(c) Present a for inspection by the user, and insert it into Lp or Ln as

appropriate.

4.2.3 Measuring Effectiveness

We measure the effectiveness of Bingo by the following three metrics explained

below:
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1. The rank at which the last true alarm is discovered (Rank-100%-T).

2. The rank at which 90% of the true alarms are discovered (Rank-90%-T). We

measure this because the last true alarm to be discovered may be an outlier

and therefore, may not be a conclusive indicator of the effectiveness of Bingo.

3. The area under the ROC curve (AUC). The ROC curve for a benchmark

captures the dynamical behavior of the interaction process. In other words, it

captures how early on in the interactive process, all true alarms are discovered.

The ROC curve for a benchmark, is a graph that represents the number of false

alarms on the x-axis and the number of true alarms on the y-axis, as observed

at any point in the interaction process. Each point (x, y) on the ROC curve

indicates a step in the interaction process where the user has inspected x false

alarms and y true alarms. At each step, if the next inspected alarm is true,

the next point on the ROC curve is (x, y + 1). If the next inspected alarm is

false, the next point on the ROC curve is (x+ 1, y). AUC is the (normalized)

area under the ROC curve. Intuitively, the farther away the curve is above the

diagonal, earlier the true alarms seen in the interaction process. That is, larger

the AUC, earlier the true alarms seen in the interaction process. Therefore the

AUC is a succinct metric that measures the goodness of a ranking.

We present our measurements of all the three metrics for Bingo and the two

baselines, in Tables 4.3 and 4.4. For instance, the datarace analysis produces 522

alarms on ftp, of which 75 are real dataraces. Bingo presents all true alarms for

inspection within just 103 rounds of interaction, compared to 368 for BaseC, and

520 for BaseR. Another notable example is luindex from the DaCapo suite, on

which the analysis produces 940 alarms. Of these alarms, only 2 are real dataraces,

and Bingo reports both bugs within just 14 rounds of interaction, compared to 101

for BaseC and 587 for BaseR. Over all benchmarks, on average, a user needs to

inspect 44.2% and 58.5% fewer alarms than BaseC and BaseR respectively.
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Table 4.3: Summary of metrics for the effectiveness of Bingo. Rank-100%-T and
Rank-90%-T are the ranks at which all and 90% of the true alarms have been
inspected, respectively. For the baselines, we show the median measurement across
five runs. TO stands for timeout.

Program #Alarms Rank-100%-T Rank-90%-T
Total Bugs %TP Bingo BaseC BaseR Bingo BaseC BaseR

D
at
ar
ac
e
an

al
ys
is

hedc 152 12 7.89% 67 121 143 65 115 135
ftp 522 75 14.37% 103 368 520 80 290 476
weblech 30 6 20.00% 11 16 29 10 15 25
jspider 257 9 3.50% 20 128 247 19 101 201
avrora 978 29 2.97% 410 971 960 365 798 835
luindex 940 2 0.21% 14 101 587 14 101 587
sunflow 958 171 17.85% 838 TO 952 483 TO 872
xalan 1,870 75 4.01% 273 TO 1844 266 TO 1,706

T
ai
nt

an
al
ys
is

app-324 110 15 13.64% 51 104 106 44 89 97
nsounds 212 52 24.53% 135 159 207 79 132 190
app-ca7 393 157 39.95% 206 277 391 172 212 350
app-kQm 817 160 19.58% 255 386 815 200 297 717
tmazes 352 150 42.61% 221 305 351 155 205 318
atrail 156 7 4.49% 14 48 117 13 44 92
gmaster 437 87 19.91% 267 303 436 150 214 401
app-018 420 46 10.95% 288 311 412 146 186 369

Table 4.4: Summary of metrics for the effectiveness of Bingo - continued. For the
baselines, we show the median measurement across five runs. TO stands for timeout.

Program #Alarms Area under the curve (AUC)
Total Bugs %TP Bingo BaseC BaseR

D
at
ar
ac
e
an

al
ys
is

hedc 152 12 7.89% 0.81 0.76 0.50
ftp 522 75 14.37% 0.98 0.78 0.49
weblech 30 6 20.00% 0.84 0.78 0.48
jspider 257 9 3.50% 0.97 0.81 0.59
avrora 978 29 2.97% 0.75 0.70 0.51
luindex 940 2 0.21% 0.99 0.89 0.61
sunflow 958 171 17.85% 0.79 TO 0.50
xalan 1,870 75 4.01% 0.91 TO 0.50

T
ai
nt

an
al
ys
is

app-324 110 15 13.64% 0.83 0.58 0.50
nsounds 212 52 24.53% 0.89 0.69 0.50
app-ca7 393 157 39.95% 0.96 0.81 0.51
app-kQm 817 160 19.58% 0.93 0.86 0.51
tmazes 352 150 42.61% 0.95 0.79 0.50
atrail 156 7 4.49% 0.98 0.81 0.60
gmaster 437 87 19.91% 0.84 0.77 0.47
app-018 420 46 10.95% 0.85 0.77 0.51
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The case of sunflow illustrates the need for the metric Rank-90%-T. For

sunflow, a user needs to inspect 838 of the 958 alarms produced to discover all

bugs. However, the user discovers 90% of the true alarms within just 483 iterations.

The more detailed comparison between Bingo and BaseC presented in Figures 4.2

and 4.3, demonstrates that Bingo has a consistently higher yield of true alarms than

BaseC.
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Figure 4.2: Comparing the interaction runs produced by Bingo and BaseC for the
datarace benchmarks. The y-axis shows the number of alarms inspected by the user,
the “•” and “×” indicate the rounds in which the first and last true alarms were
discovered, and the boxes indicate the rounds in which 25%, 50%, and 75% of the
true alarms were discovered. Each measurement for BaseC is itself the median of
5 independent runs.

While we provided the succinct AUC metric for all the benchmarks in the earlier

tables, we show a representative and a detailed ROC plot for the ftp benchmark

in Figure 4.4. The solid line is the ROC curve for Bingo, while the dotted lines

are the ranking runs for each of the runs of BaseC, and the diagonal line is the

expected behavior of BaseR. Observe that Bingo outperforms BaseC not just in

the aggregate, but across each of the individual runs.

On a scale ranging from 0 to 1, on average, the AUC for Bingo exceeds that of

BaseC by 0.13 and of BaseR by 0.37. In summary, we conclude that Bingo is

42



BINGO BASE-C
0

50

100

150

200

250

# 
Al

ar
m

s

app-ca7 (total = 393)

BINGO BASE-C
0

100

200

300

# 
Al

ar
m

s

app-kQm (total = 817)

BINGO BASE-C
0

100

200

300

# 
Al

ar
m

s

ginger-master (total = 437)

BINGO BASE-C
0

100

200

300

# 
Al

ar
m

s

app-018 (total = 420)

BINGO BASE-C
0

20

40

60

80

100

# 
Al

ar
m

s

app-324 (total = 110)

BINGO BASE-C
0

50

100

150

# 
Al

ar
m

s

noisy-sounds (total = 212)

BINGO BASE-C
0

100

200

300

# 
Al

ar
m

s

tilt-mazes (total = 352)

BINGO BASE-C
0

10

20

30

40

# 
Al

ar
m

s

andors-trail (total = 156)

Figure 4.3: Comparing the interaction runs produced by Bingo and BaseC for the
taint benchmarks. The y-axis shows the number of alarms inspected by the user,
the “•” and “×” indicate the rounds in which the first and last true alarms were
discovered, and the boxes indicate the rounds in which 25%, 50%, and 75% of the
true alarms were discovered. Each measurement for BaseC is itself the median of
5 independent runs.
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Figure 4.4: The ROC curves for ftp. The solid line is the curve for Bingo, while
the dotted lines are the curves for each of the runs of the BaseC.
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indeed effective at ranking alarms, and can significantly reduce the number of false

alarms that a user needs to triage.

4.2.4 Measuring Robustness

To evaluate the robustness of Bingo, we measure the deterioration in the ranking

of Bingo when it is provided with small amounts of erroneous feedback. Such

a deterioration in Bingo’s performance is possible because the alarm ranking it

produces depends on the labelling of alarms by a human user: incorrect labelling will

adversely affect ranking. First we performed a user study to estimate the approximate

number of alarms that typical programmers incorrectly label, as a percentage of the

total number of alarms they label.

We placed an advertisement on upwork.com, an online portal for freelance pro-

grammers. We presented respondents with a tutorial on dataraces, and gave them a

5-question test based on a small test program. Based on their performance in the

test, we chose 21 of the 27 respondents, and assigned each of these developers to one

of the benchmarks, hedc, ftp, weblech, and jspider. We gave them 20 alarms for

labelling with an 8–10 hour time limit, such that each alarm was inspected by at

least 5 independent programmers. To encourage thoughtful answers, we also asked

them to provide simple explanations with their responses. We found that, for 90% of

the questions, the majority vote among the responses resulted in the correct label.

Equivalently, when a group of professional programmers are made to vote on the

ground truth of an alarm, they incorrectly label 10% of the alarms.

We extrapolated the results of this study and simulated the runs of Bingo on

ftp where the feedback labels had been corrupted with noise. In Table 4.5, we

measure the ranks at which 90% and 100% of the alarms labelled true appear, when

we corrupted feedback labels with 1%, 5% and 10% noise respectively. As is expected

of an outlier, the rank of the last true alarm degrades from 103 in the original setting

to 203 in the presence of noise, but the rank at which 90% of the true alarms have
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been inspected increases more gracefully, from 80 originally to 98 in the presence of

10% noise. In all cases, Bingo outperforms the original BaseC. We conclude that

Bingo can robustly tolerate reasonable amounts of user error.

Table 4.5: Robustness of Bingo with varying amounts of user error in labelling
alarms for the ftp benchmark. Each value is the median of three measurements.

Tool Rank-100%-T Rank-90%-T AUC

E
xa

ct Bingo 103 80 0.98
BaseC 368 290 0.78

N
oi
sy

Bingo (1% noise) 111 85 0.97
Bingo (5% noise) 128 88 0.93
Bingo (10% noise) 203 98 0.86

4.2.5 Discovering New Bugs

Here we primarily investigate if Bingo helps to discover new bugs that are actually

bugs missed by precise static and dynamic analysis tools (i.e., the false negatives of

these tools). This would establish Bingo as a viable alternative to programmers

who prefer to use precise program analysis tools that promise low false positive

rates [30], despite the fact that such precise tools miss detecting many true bugs.

To investigate this, we ran two state-of-the-art precise datarace detectors: (a) a

static datarace detector in the Chord [64] framework with unsound flags turned on

to increase precision, and (b) FastTrack [26], a dynamic datarace detector based on

the happens-before relation. We ran FastTrack with the inputs that were supplied

with the benchmarks.

We present the number of alarms produced and the number of bugs missed by

each analyzer in Table 4.6. For example, by turning on the unsound options, we

reduce the number of alarms produced by Chord from 522 to 211, but end up missing

39 real dataraces. Using Bingo, however, a user discovers all true alarms within just
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Table 4.6: The number of real dataraces missed by Chord’s datarace analysis with
unsound settings, and the FastTrack dynamic datarace detector, for 8 Java bench-
marks. New bugs are the real dataraces proposed by Bingo but missed by both.
LTR is the rank at which Bingo discovers all true alarms.

Program Chord, soundy Chord, unsound Missed by Bingo
Total Bugs Total Bugs Missed FastTrack New bugs LTR

hedc 152 12 55 6 6 5 3 67
ftp 522 75 211 36 39 29 14 103
weblech 30 6 7 4 2 0 0 11
jspider 257 9 52 5 4 2 0 20
avrora 978 29 9 4 25 7 6 410
luindex 940 2 494 2 0 1 0 14
sunflow 958 171 506 94 77 151 69 838
xalan 1,870 75 80 52 23 8 8 273
Total 5,707 379 1,414 203 176 203 100 1,736

103 iterations, thereby discovering 108% more dataraces while inspecting 51% fewer

alarms.

Aggregating across all our benchmarks, there are 379 real dataraces, of which

the unsound Chord analysis reports only 203 and produces 1,414 alarms. Bingo

discovers all 379 dataraces within a total of just 1,736 iterations. The user therefore

discovers 87% more dataraces by just inspecting 23% more alarms. In all, using

Bingo allows the user to inspect 100 new bugs which were not reported either by

FastTrack, or by Chord in its unsound setting.

Furthermore, the analysis flags determine the number of alarms produced in an

unpredictable way: reducing it from 958 alarms to 506 alarms for sunflow, but from

1,870 alarms to 80 alarms for xalan. In contrast, Bingo provides the user with much

more control over how much effort they would like to spend to find bugs.

4.2.6 Impact of Optimizations on Scalability

The optimizations performed on the derivation graph as explained in section 3.2.3

reduce its size greatly. This makes Bingo scale to large programs. In this section we

perform measurements to quantify this reduction. We present measurements of the

running time of one iteration of Bingo and of BaseC in Tables 4.7 and 4.8, with

46



Table 4.7: Sizes of the Bayesian networks processed by Bingo, and of the MaxSAT
problems processed by BaseC, and their effect on iteration time, for the datarace
benchmarks. The column heading #Tup is the number of tuples, #Cl is the number
of clauses, and #Var is the number of variables, all measured in kilos (K). The
heading IterT is the iteration time in seconds.

Program Bingo, optimized Bingo, unoptimized BaseC
#Tup #Cl IterT #Tup #Cl IterT #Vars #Cl IterT

hedc 2.2 3.1 46 753 789 12,689 1,298 1,468 194
ftp 25 40 1,341 2,067 2,182 37,447 2,859 3,470 559
weblech 0.31 0.38 3 497 524 7,950 1,498 1,718 290
jspider 9 15 570 1,126 1,188 12,982 1,507 1,858 240
avrora 11 22 649 1,552 1,824 47,552 2,305 3,007 1,094
luindex 5.3 6.5 41 488 522 9,334 1,584 1,834 379
sunflow 59 96 3,636 9,632 11,098 timeout 26,025 34,218 timeout
xalan 19 32 489 2,452 2,917 51,812 6,418 8,660 timeout

Table 4.8: Sizes of the Bayesian networks processed by Bingo, and of the MaxSAT
problems processed by BaseC, and their effect on iteration time, for the taint
benchmarks. The column heading #Tup is the number of tuples, #Cl is the number
of clauses, and #Var is the number of variables, all measured in kilos (K). The
heading IterT is the iteration time in seconds.

Program Bingo, optimized Bingo, unoptimized BaseC
#Tup #Cl IterT #Tup #Cl IterT #Vars #Cl IterT

app-324 0.39 1.6 83 29 1,033 14,710 129 1,178 86
nsounds 0.73 1.9 41 36 277 1,204 78 407 39
app-ca7 1.6 4.9 72 90 1,367 1,966 161 1,528 123
app-kQm 2.9 10 234 186 3,978 7,742 316 4,495 311
tmazes 1.3 3.6 57 69 1,047 2,843 153 1,198 84
atrail 0.42 1.3 1 13 72 183 74 145 17
gmaster 1.6 7.8 418 158 3,274 7,335 315 3,857 303
app-018 2.3 9.9 302 223 4,950 20,622 486 6,803 426

and without optimizations. The iteration time corresponds to one run of the belief

propagation algorithm, and is directly dependent on the size of the Bayesian network.

We indicate this size by the columns labelled #Tup and #Cl. In contrast, BaseC

invokes a MaxSAT solver in each iteration, and the columns labelled #Vars and #Cl

indicate the size of the formula presented to the solver. Observe the massive gains in

performance—on average, an improvement of 265×—as a result of the co-reachability

based pruning and chain compression, because of which Bingo can handle even large

benchmark programs such as xalan and sunflow, on which BaseC times out.
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4.3 End-to-End System: Presto

The system Presto is another implementation of the alarm ranking system. We

instantiate Presto to rank the alarms reported by an exception flow analysis, which

is described in detail in Section 4.3.1. In order to compute the probability of alarms

reported by the exception flow analysis, Presto leverages the completeness of

dynamic analysis.

The exception flow analysis finds the exception objects that may escape from the

main method of an analyzed program, and reports them as alarms. In order to compute

this, the exception flow analysis relies on the facts deduced by three other underlying

analyses applied to the analyzed program. Presto applies probabilistic reasoning

only to the derivations of the exception flow analysis and does not (probabilistically)

analyze the other underlying analyses. Instead, Presto treats the outputs of

the underlying analyses as input relations of the exception flow analysis. While

constructing the probabilistic model of the exception flow analysis, Presto views the

tuples of each relation input to the exception flow analysis as either complete (known

with certainty), or incomplete (probabilistic). Tuples of input relations that are read

off the program text are treated as complete. Tuples of input relations that have

been produced by underlying analyses are treated as incomplete. This is because the

underlying analyses producing these relations may be potentially incomplete. The

specific input relations that are treated as incomplete is described in Section 4.3.2.

Presto hypothesizes that an alarm is at least as incomplete as the analysis facts

it is premised upon. In order to compute the probability of an alarm, Presto

seeks probability estimates from a dynamic analysis, for the incomplete input tuples

on which the alarm depends. More on how the dynamic analysis estimates these

probabilities is described in Section 4.3.3. To compute alarm probabilities, Presto

propagates the probabilities of input tuples by performing marginal inference on a

Bayesian network extracted from the derivation graph of the exception flow analysis.

We show the workflow of Presto in Figure 4.5. The following subsections
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Figure 4.5: The Presto workflow.

elaborate each of the above aspects further. The present implementation does not

recompute alarm probabilities conditioned on user feedback - it produces a one-time

ranked list of alarms, and the interaction loop involving the user is not present.

Moreover, seeking probability estimates for input tuples, from a dynamic analysis

places its own requirements and challenges which are discussed in Section 4.3.4.

We formally describe the workflow of Presto in Algorithm 3. Presto is

parameterized by a Datalog analysis D, a program P , and a set of input relation

names pI that are potentially incomplete. Certain steps of the algorithm executed

by Presto bear similarity to the steps executed by Bingo while others differ. The

execution of the Datalog analysis D on program P , in steps 1 and 2 is similar in both

systems.

Steps 3 and 4 are executed differently by Presto and Bingo. These differences

are not inherent to Presto or Bingo. Rather, the differences are driven primarily

by the characteristics of the client static analyses. The derivation graphs of the client

analysis in Presto track deductive steps at the granularity of methods, whereas

the derivation graphs of the client analyses in Bingo track deductive steps at the
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Algorithm 3 Presto(D,P, pI), where D is the analysis expressed in Datalog, P is
the program to be analyzed, and pI is the set of input relations treated probabilistically.
It returns a ranked list of alarms RO.

1. Let I = InputRelationsD(P ). Populate all input relations I using the program
text and prior analysis results.

2. Let (C,O,GC) = DatalogSolve(D, I). C is the set of derived tuples, O ⊆ C is
the set of alarms produced, and GC is the set of grounded constraints.

3. Compute GCc := CycleElimDfs(I, C,GC). Eliminate cycles from the grounded
constraints.

4. (Optionally,) Update GCc := Optimize(I,GCc, O). Reduce the size of the set of
grounded constraints.

5. Compute pi = DynamicAnalysis(P,GCc, pI). pi is the probability vector for
input tuples of the relations in set pI, that occur in some clause of GCc.

6. Construct Bayesian network BN from GCc and pi, and let Pr be its joint proba-
bility distribution.

7. RO = Sort(O,Pr). Produce a ranked list of alarms RO by sorting on Pr(o) for
o ∈ O, by decreasing probability.

8. Return RO.

granularity of program points. This makes the derivation graphs processed by Bingo

extremely large (≈ 1–10 million grounded constraints) in comparison. Therefore,

Bingo uses aggressive cycle elimination to help reduce the size of the derivation

graph in addition to eliminating cycles. Whereas, it is feasible for Presto to use the

more precise dfs-based algorithm of Section 5.3 for cycle elimination in step 3. Step 4

in Presto performs only the coreachability optimization, and not chain compression

(Section 3.2.3). Bingo performs both the optimizations. This is because derivation

graphs processed by Bingo have chains of deductive steps that are amenable to

effective chain compression, unlike the derivation graphs processed by Presto.

In step 5 of Algorithm 3, Presto seeks probabilities for incomplete input tuples

that participate in the derivation of alarms, from a dynamic analysis. Section 4.3.3
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describes how the dynamic analysis computes these probabilities. Step 6 uses an

off-the-shelf solver [59] to compute the joint probability distribution.

4.3.1 Client Analysis

Exception Flow Analysis

The client analysis for Presto is a static exception flow analysis that is performed

on .NET executables containing MSIL (Microsoft Intermediate Language) bytecode.

Programs raise exceptions (i.e., create and throw exception objects) to flag error

conditions encountered during execution. These exception objects propagate through

the program and are programmatically handled in different ways. For example, they

may be: (a) stored in a field of an object for later retrieval, (b) encapsulated in

other exception objects, (c) caught in a catch block, (d) caught and rethrown, or

(e) propagated up the method call chain. The exception flow analysis tracks the flow

of exception objects through all these operations, and reports the exception objects

escaping from the executable, as alarms.

The exception flow analysis is built on top of:

1. A path-sensitive intraprocedural exception analysis that computes the set of

program points in a method that can throw an exception that may escape the

method (i.e., may not be caught within the method).

2. A soundy context- and flow-insensitive pointer-cum-exception analysis [14] that

computes the call-graph, the points-to sets, and also the set of all exception

objects that may escape from an executable. It uses the intraprocedural

exception analysis to compute points-to sets involving exception objects. It is

implemented in the DAFFODIL [45] framework. This analysis is sound modulo

the treatment of Windows library methods: (a) some methods are soundly

analyzed, (b) some methods are modeled as approximations of their original

counterparts, sound w.r.t. the tracked heap objects, and (c) some methods are
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modeled as no-ops. The analysis also ignores reflection and calls to Windows

runtime. Additionally, it treats asynchronous method calls as synchronous.

This is a sound approximation because the analysis is flow-insensitive.

3. A context-insensitive exception link analysis that computes all possible “linked”

pairs, where a linked pair comprises an exception catch block and a throw

statement such that an exception caught by the catch block might be rethrown by

the throw statement. The exception link analysis uses the points-to information

produced by the pointer-cum-exception analysis.

The exception flow analysis that is based on the above underlying analyses, is a

precise but unsound computation of exception propagation paths through the call-

graph. It computes all feasible paths in the call-graph through which an exception

object may propagate from the method where it is created, to either: (a) methods

from which it does not escape, or (b) the main method from which it may escape. To

find these paths, the exception flow analysis recognizes that:

1. Methods that may “catch and rethrow”, “catch, wrap and throw” or “catch,

unwrap and throw” an exception object, may be intermediate nodes in its

propagation path. Here, by “wrap and throw” we mean the encapsulation of

an exception object within another exception object that is then thrown. By

“unwrap and throw” we mean the inverse operation in which an encapsulated

exception object is extracted and thrown.

2. In case of asynchronous programs, methods that may “catch and store (into

a field of a heap object)” an exception object may be intermediate nodes in

its propagation path because the exception object may propagate further if

another method retrieves it from the field and throws it.

Therefore the exception flow analysis makes the following two unsound assumptions

(corresponding to the two observations made above) while finding the exception

propagation paths:
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1. The analysis assumes that if an exception object is rethrown, then the rethrow

happens within the lexical scope of some catch block where the exception object

may be caught.

2. The analysis assumes that a field store/load of an exception object happens

only because of asynchrony: An exception object is stored into a field of a

Task [1] object only by an asynchronous method, and it is retrieved from that

field and rethrown only by the method that awaits the completion of execution

of the asynchronous method.

While finding exception propagation paths in both the above scenarios, the exception

flow analysis accounts for the fact that an exception object may get wrapped, or

unwrapped along a propagation path.

The only impact of the above unsound assumptions is that the propagation

path of an exception object may be broken up into two or more disjoint segments,

which the exception flow analysis is unable to link together. We elaborate with an

example. Suppose an exception object is thrown at a program point labelled A. It

propagates up the program call graph and is caught at some catch block labelled

B. This catch block has a method to process exceptions, so the exception object is

passed to this method. This method now throws the exception object at a program

point labelled C. The exception object propagates further and escapes through the

Main method. The complete propagation path for the exception object is therefore:

A → ... → B → C → ... → Main. Note that as the program point C is not

within the lexical scope of the catch block B, the exception flow analysis loses the

link B → C. This results in two disjoint propagation paths for the exception object:

A → ... → B and C → ... →Main.

The exception flow analysis together with all its underlying analyses, comprises

164 rules and 151 relations. In order to rank the alarms reported by the exception flow

analysis, Presto needs to associate with each exception object a probability with

which it may escape from the executable. We hypothesize that this is the probability
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that there exists a likely feasible path in the call-graph through which the exception

object may propagate from the method where it is created, to the main method from

which it may escape. In order to compute this probability, Presto instruments the

rules of the exception flow analysis, and treats the outputs of the analyses underlying

it as incomplete input relations.

4.3.2 Incomplete EDB Tuples

While constructing the Bayesian network from a derivation graph of the exception

flow analysis, Presto treats tuples of EDB relations extracted from program text

as complete (i.e., known to be true with certainty). Whereas, Presto treats the

tuples of intermediate relations that are inputs to the exception flow analysis, but

are outputs of the analyses underlying it, as incomplete and seeks probabilities for

such tuples from a dynamic analysis.

These relations, pictorially illustrated in Figure 4.6, are:

1. The relation CallAt that is produced by the interprocedural pointer-cum-

exception analysis. It contains tuples (meth, P1, calleeM) indicating that

method calleeM may be called by the method meth at the program point P1.

2. The relation EscapeExc that is produced by the intraprocedural exception

analysis. It contains tuples (meth, excType, P2) indicating that an exception

of type excType, thrown at the program point P2, may escape from method

meth. Note that the analysis producing this relation is intraprocedural, and

hence it follows that the method meth contains the program point P2.

3. The relation LinkedExc that is produced by the exception link analysis. It

contains tuples (CB, P3, excType) indicating that a catch block CB may catch

an exception of type excType that may be rethrown at the program point P3.

Note that while it is possible for CB and P3 to belong to different methods,
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meth()
{

...
call calleeM // P1
...

}

meth()
{

try
{
...
throw e  // P2
...

}
catch { ... }

}

meth()
{

try
{  ... }
catch (e)   // CB
{
...
throw e   // P3
...

}
}

1

Figure 4.6: The tuples of the EDB relations that Presto treats as incomplete. The
relation CallAt says that method meth may call method calleeM at program point
P1, the relation EscapeExc says that the statement at program point P2 may throw
an exception of type excType that may escape from method meth, and finally the
relation LinkedExc says that an exception of type excType that may be thrown by
the statement at program point P3 is related to the exception that may be caught
by the catch block CB.

such a programming style is uncommon among programmers and therefore

Presto does not handle this case, as explained in Section 4.3.1.

In addition to the above relations, there are three other important relations

that are produced by the pointer-cum-exception analysis, that are used in the

exception link analysis and also the exception flow analysis. These are the points-

to relations: variable points-to, static field points-to and instance field points-to.

Presto conservatively treats the tuples of these relations as complete even though

they are, arguably, incomplete. This is because these relations involve abstract heap

objects each of which may correspond to multiple concrete heap objects. Therefore

trying to estimate probabilities for such tuples will make the dynamic analysis
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extremely complex, and practically infeasible.

4.3.3 EDB Tuple Probabilities from Dynamic Analysis

Inspired by the approach taken in previous work [71, 7], we proceed to define a way

of estimating the probability of an input tuple. We associate each input relation with

two “states” of program execution that are observable by a dynamic analysis. We

shall refer to these two states as the “pre-state” and the “post-state”. For example,

for the input tuple CallAt(meth, P1, calleeM):

1. the pre-state is “program execution reaches P1 in method meth”, and

2. the post-state is “method calleeM is called at P1”.

Note that the pre-state and the post-state are associated with an input relation,

but are parameterized by the arguments of the tuples in that relation. We interpret

Pr(t) for an input tuple t, as the probability that the program execution reaches the

post-state, assuming that program execution is in the pre-state. This interpretation

is justified in [71] in which it is an essential assumption that the probability of the

program execution following a particular branch is independent of the execution

history. However, such an assumption is necessary to get a handle on the problem

being tackled.

We now specify the pre-state and post-state for the other two input relations

treated probabilistically by Presto, namely, EscapeExc and LinkedExc.

1. For a tuple t of the form EscapeExc(meth, excType, P2):

(a) the pre-state is “an exception of type excType is raised at program point

P2 of method meth”, and

(b) the post-state is "an exception of type excType escapes from method

meth".
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2. For a tuple t with form LinkedExc(CB, P3, excType):

(a) the pre-state is “the catch block CB catches an exception of type excType”,

and

(b) the post-state is “the program point P3 throws an exception of type

excType”.

One immediate concern arises: it is very difficult to realize the above pre-states during

program execution because it is hard to find program inputs that trigger exceptions

at specific program points. The dynamic analysis that Presto works with, needs to

have the capability to inject exceptions. With this capability, a dynamic analysis

will be able to observe the above pre- and post-states.

For each incomplete input tuple t, the dynamic analysis counts the number of

times it observes the pre-state and post-state over all the program executions that it

is able to observe, and records the following:

1. freqtpre : the number of times the dynamic analysis observed the program

execution reaching the pre-state, and

2. freqtpost : the number of times the dynamic analysis observed the program

execution reaching post-state, given that the program execution was already in

the pre-state.

We then estimate the probability of a tuple t as follows:

Pr(t) = Pmin + (Pmax − Pmin) ∗
(freqtpost
freqtpre

)1/K
where Pmin and Pmax are the minimum and maximum probabilities that an input

tuple can have, and K is a tunable parameter. We explain further below.

The parameter K has the effect of increasing the impact of freqtpost . Alternatively,

K has the effect of decreasing the impact of freqtpre - freqtpost . This is the number
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of times a post-state was not observed in spite of the execution being in a valid

pre-state. We may need to tune the value of K in order to control this “impact” in

certain situations as described next. It is generally difficult to trigger error conditions

during test runs of the program, such that the post-states representing error handling

code, are observed by the dynamic analysis. As a result, the dynamic analysis may

observe a high number of instances in which the post-states were not observed in spite

of the pre-states being observed. In the context of Presto, a post-state examines

exception handling in a situation when an error may occur. Such missed observations

of a post-state will decrease the probability of an exception escaping the executable.

Under the assumption that an error occurs, we want this probability to be high if the

exception indeed escapes the executable. Therefore, we need to increase the “impact”

of the post-states that have been observed, as compared to the post-states that have

not been observed. We call the parameter K as the impact factor because it helps to

produce this effect.

The values Pmin and Pmax are required because a dynamic analysis is not sound -

in general, it is not possible for a dynamic analysis to observe every possible path

during program execution. Therefore, Pmin > 0 and Pmax < 1. All of Pmin, Pmax and

K are tunable parameters that will impact the ranking of alarms and they need to

be configured to be empirically effective.

4.3.4 Dynamic Analysis: Requirements and Challenges

This section discusses the requirements placed on a dynamic analysis by Presto,

and the challenges faced by the dynamic analysis in satisfying these requirements.

This discussion applies to any dynamic analysis that may interface with Presto.

To evaluate Presto, we used a proprietary dynamic analysis provided by Microsoft

Research, Redmond, that had the necessary capabilities to interface with Presto.
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Requirements

For each kind of observation that a dynamic analysis has to make, instrumentation

customized to the observation needs to be inserted into the program executable. For

example, to track method calls, a dynamic analysis needs to insert instrumentation

to log at all program points where method calls are made. A more complex example

is when a dynamic analysis has to inject a fault (in the context of Presto, an

exception) and observe its effects. Typical fault injection requirements placed by

Presto have two forms:

1. When a program statement S in method A throws an exception of type T , a

dynamic analysis needs to observe if this exception escapes from method A.

Here, the program statement S is either a throw statement or a method call.

2. When a catch block CB catches an exception of type T , a dynamic analysis

needs to observe if a throw statement A within the lexical scope of the catch

block CB, throws this exception. Here, in order to ensure that the catch block

CB catches an exception of type T , there is an implicit requirement for some

statement in the try block associated with the catch block CB, to throw an

exception of type T .

In order to realize such scenarios during program execution, and make the corre-

sponding observations, a dynamic analysis needs to insert instrumentation both in

the caller, and in the callee methods involved in a scenario.

Challenges

A dynamic analysis faces two primary challenges in order to satisfy the above

requirements:

1. The challenge of instrumenting large libraries. The programs that Presto

analyzes link with a large number of massive framework libraries. In order
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to log all method calls, nearly every method except the leaf methods, in all

the linked libraries needs to be instrumented. This entails huge costs in terms

of instrumentation time, memory footprint of the instrumented assemblies,

and a potentially unacceptable degradation in the instrumented program’s

performance. To resolve this issue, dynamic analyses typically find a tradeoff

point that entails instrumenting only specified assemblies. The impact of this

for Presto is that the dynamic analysis will not be able to provide probability

estimates for tuples that refer to uninstrumented code.

2. The challenge of constructing an exception object to inject. In order to provide

probability estimates for certain kinds of tuples, the dynamic analysis needs

to insert instrumentation that throws an exception object. Such an exception

object may potentially be a complex object with nested exceptions and many

other reference fields. It is non-trivial to construct such an object. To resolve

this issue, dynamic analyses may construct exception objects using default

constructors or rely on the user to provide all the necessary information. The

impact of this for Presto is that if the dynamic analysis is allowed to construct

exception objects using default constructors, then the observations it makes

may not match actual concrete program executions. If Presto has to provide

all necessary information, then it needs more sophisticated program analyses to

automatically gather the relevant information.

Apart from the challenges above that are faced by a dynamic analysis, Presto

faces a challenge in using such dynamic analyses to get probability estimates for

tuples. It is the challenge of scalability: Presto needs to execute the dynamic

analysis several times. For tracking method calls, one execution of the dynamic

analysis for each available program input, suffices. The probability estimates for all

call-graph tuples can be extracted from this set of executions. Whereas, one such

set of executions of the dynamic analysis is required for each tuple of the relations

EscapeExc and LinkedExc, each of which represents a fault injection scenario. This
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is because a fault injection scenario corresponds to exactly one tuple. That is, for

each single fault injection scenario, if we execute the dynamic analysis on all available

inputs, we obtain a probability estimate for one tuple.

Two possible approaches to alleviate this problem may be:

1. Presto should not seek probability estimates from the dynamic analysis for

all tuples of the relations EscapeExc and LinkedExc. It should selectively

choose relevant or impacting tuples. But determining relevant or impacting

tuples is non-trivial, and can be a direction for future research. A simpler

alternative is to take a heuristic approach that limits the total number of tuples

that represent fault injection scenarios, for which Presto seeks probability

estimates, to some constant N . These tuples could be the N most frequently

occurring tuples in the derivation graph.

2. Presto can adopt engineering approaches like executing various instances of

the dynamic analysis in parallel on multiple machines or processors. Another

option is to execute the dynamic analysis on only a subset of the available

inputs. But choosing an appropriate subset of inputs is a problem in its own

right.

The approach that the current implementation of Presto takes during evaluation

is to manually limit program inputs to small subsets of the available inputs. This

approach suffices for the current set of benchmarks as they are not stressing Presto

beyond its scalability limits.

4.4 Presto: Experimental Evaluation

In this section, we describe the evaluation of Presto. We start by giving details

about the benchmarks used for the evaluation ((Section 4.4.1). Unfortunately, we

were unable to find any static analysis tools that found exception flow bugs for .NET
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executables. Hence we do not have any reference baseline against which we can

calibrate the performance of Presto.

For the evaluation, we primarily did two things: (a) measured effectiveness: how

effective is Presto in ranking alarms (Section 4.4.2), and (b) performed parame-

ter tuning: what parameter values make Presto produce an empirically optimal

ranking (Section 4.4.3). In addition to the above, we investigated to what extent the

optimization employed by Presto helped to scale its applicability (Section 4.4.4).

4.4.1 Benchmarks

We evaluated Presto on the suite of 6 benchmarks shown in Table 4.9. These

benchmarks are mid-sized C# programs got from public repositories like github.com

and codeproject.com. For these benchmarks, the static analysis of many of the

system classes of the .NET framework has been suppressed. This approach is

commonly adopted for framework-based applications (Ex.: applications in the Android

framework). In the context of Presto, two specific reasons are:

1. The Rapid Type Analysis (RTA) implementation does not scale when the

analysis of many of the .NET framework classes is not suppressed.

2. Scalar types (like int, short) are represented in the .NET framework as struct

types (like Int32, Int16). While in general, struct types are modeled as objects

on the heap and tracked during pointer analysis, scalar types that are internally

represented as struct types are not tracked. Therefore the analysis of such

struct types can be suppressed.

Table 4.10 gives various metrics that indicate the size of the benchmarks. We obtained

the ground truth for the alarms reported by the exception flow analysis applied to

these benchmarks, by manual inspection.
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Table 4.9: Benchmark description.
Program Description
AsyncJobDispatcher Asynchronous master-worker based job dispatcher using an FSM
AsyncWebCrawler Asynchronous web crawler
FilePkgUtil File packaging utility
HtmlSanitizer White list rule-based HTML sanitizer
ScrambledSquares Game solver with a backtracking algorithm
AsyncWaveformGenerator Asynchronous generator of waveforms from MP4 audio file

Table 4.10: Benchmark characteristics. ‘Total’ and ‘App’ columns are numbers after
RTA (Rapid Type Analysis) was performed for scope construction. The numbers
specified under the ‘Total’ columns include both application code and the unsuppressed
system libraries of the .NET framework. The numbers specified under the ‘App’
columns include only application code.

Program # Classes # Methods Bytecode (KLOC)
Total App Total App Total App

AsyncJobDispatcher 285 21 923 117 16.7 1.8
AsyncWebCrawler 217 19 637 59 14.3 1.6
FilePkgUtil 323 5 1526 19 34.4 0.5
HtmlSanitizer 237 29 1019 263 35.8 2.0
ScrambledSquares 171 8 601 73 13.2 1.3
AsyncWaveformGenerator 258 10 813 87 18.5 3.1

4.4.2 Measuring Effectiveness

We measure the effectiveness of Presto using the following two metrics:

1. The rank at which the last true alarm is discovered (Last true rank).

2. The area under the ROC curve (AUC). As explained in detail in Section 4.2.3,

the AUC is a succinct metric that measures the goodness of a ranking. Larger

the AUC, better is the ranking.

We present our measurements of both the metrics for Presto in Table 4.11. The

expected value of the AUC for random ranking is 0.5. Observe that the AUC of the

ranking produced by Presto for each of the benchmarks is well above 0.5. Over all

benchmarks, on average, a user needs to inspect 64% fewer alarms as compared to

inspecting all alarms.

Figure 4.7 shows the ROC plots for two representative benchmarks. The dotted

red line in these plots is the expected behavior of random ranking. Intuitively, the
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Table 4.11: Summary of metrics for the effectiveness of Presto. Last true rank
indicates the rank at which all of the true alarms have been inspected.

Program Total True % True Last true AUCalarms alarms alarms rank
AsyncJobDispatcher 28 2 7.14% 4 0.94
AsyncWebCrawler 24 3 12.5% 15 0.78
FilePkgUtil 18 4 22.22% 7 0.89
HtmlSanitizer 40 7 17.5% 19 0.82
ScrambledSquares 15 1 6.67% 2 0.93
AsyncWaveformGenerator 22 4 18.18% 6 0.89
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(b) HtmlSanitizer.

Figure 4.7: The ROC plots for two benchmarks. The diagonal dotted line in red is
the expected behavior of random ranking (with expected AUC = 0.5). The AUC for
AsyncJobDispatcher is 0.94 and the AUC for HtmlSanitizer is 0.82.

farther away the curve is above the diagonal, better is the ranking. Therefore, the

area under this curve indicates how high up true alarms are in the ranking.

Figure 4.8 shows a snippet of the HTML reports generated by Presto that

shows the probabilities assigned to individual tuples and derivation steps. This report

snapshot shows how a tuple ThrowMH(0, 60) was derived by the exception flow

analysis. Tuple ThrowMH(0, 60) represents the fact that an exception object that

is identified by the number 60, is thrown by method Main that is identified by the

number 0. The report shows the two ways in which tuple ThrowMH(0, 60) can be

derived, in the two bottom rows. Each of these rows represents a disjunction: the body
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Figure 4.8: Snapshot of an HTML report page generated by Presto that shows the
probabilities assigned to individual tuples and derivation steps.

of an instantiated Datalog rule that was applied to derive tuple ThrowMH(0, 60).

Within each row, are the conjuncts: the tuples that comprise the body of the

instantiated Datalog rule. Notice that every tuple and every disjunct is assigned a

probability by Presto.

Delving further into this report, we observe that it indicates that the exception

object identified by the number 60 may be thrown by the Main method if either:

1. it is thrown by the method GeneratePackage called by Main at line 30, or

2. it is thrown by the method GetF ilenameFileContentDictionary called by

Main at line 33.

Observe further that Presto assigns a low probability of 0.21253 to the path

represented by (1) above, and a much higher probability of 0.842372 to the path

represented by (2) above. Studying the reports generated by Presto and examining

the probabilities it assigns to individual facts and rules, will help a user in finding

highly likely paths along which an exception might escape the program executable.

4.4.3 Tuning Parameter Values

As we saw in Section 4.3.3, the computation performed by a dynamic analysis to

estimate the probability of a tuple, is parameterized by three entities:
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1. the maximum probability that a tuple can have, Pmax,

2. the minimum probability that a tuple can have, Pmin, and

3. the impact factor, K.

In this section we discuss the experiments performed to find optimal values for these

parameters. We computed the AUCs for all benchmarks for all combinations of:

1. K = {1, 4}

2. Pmax = {0.999, 0.985}

3. Pmin = {0.5, 0.4, 0.1, 0.05}

Table 4.12 shows the results of our experiments. Based on these experiments, the

optimal values of the above parameters are: K = 4, Pmax = 0.985 and Pmin = 0.05.

Table 4.12: AUC computations for all benchmarks, with different parameter values.
The tunable parameters of Presto are: the impact factor K, the maximum and
minimum probability an alarm can have, Pmax and Pmin respectively.

Program Impact factor K = 4
Pmax = 0.999 Pmax = 0.985

Pmin → 0.50 0.40 0.10 0.05 0.50 0.40 0.10 0.05

AsyncJobDispatcher 0.77 0.88 0.92 0.92 0.75 0.75 0.94 0.94
AsyncWebCrawler 0.59 0.60 0.78 0.78 0.52 0.59 0.70 0.78
FilePkgUtil 0.54 0.54 0.89 0.89 0.54 0.57 0.89 0.89
HtmlSanitizer 0.77 0.79 0.84 0.84 0.75 0.78 0.82 0.82
ScrambledSquares 0.79 0.86 0.93 0.93 0.79 0.86 0.93 0.93
AsyncWaveformGenerator 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Program Impact factor K = 1
Pmax = 0.999 Pmax = 0.985

Pmin → 0.50 0.40 0.10 0.05 0.50 0.40 0.10 0.05

AsyncJobDispatcher 0.77 0.88 0.92 0.92 0.75 0.75 0.94 0.94
AsyncWebCrawler 0.59 0.60 0.78 0.78 0.52 0.59 0.70 0.78
FilePkgUtil 0.50 0.50 0.54 0.71 0.50 0.50 0.61 0.71
HtmlSanitizer 0.70 0.72 0.78 0.78 0.68 0.69 0.78 0.78
ScrambledSquares 0.79 0.86 0.93 0.93 0.79 0.86 0.93 0.93
AsyncWaveformGenerator 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Note that on closer inspection of the measurements, we observe very interesting

behaviors like:
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1. Benchmarks FilePkgUtil and to a lesser extent, HtmlSanitizer are sensitive

to the impact factor K. As anticipated in the discussion in Section 4.3.3, it is

indeed the case that Benchmark FilePkgUtil has two executions to exercise

error handling paths in the program, and one execution of the dynamic analysis

for a typical input. In spite of this, it is necessary to increase the impact of the

observations made by the dynamic analysis during the “error handling” runs of

the benchmark, to get a good ranking of alarms.

2. Benchmarks AsyncJobDispatcher, AsyncWebCrawler, FilePkgUtil,

ScrambledSquares and HtmlSanitizer are all sensitive to the value of the

minimum tuple probability, Pmin. The reason is quite interesting but concerns

the nature of the exception flow analysis. The exception flow analysis has two

Datalog rules whose head tuples (i.e., the consequent tuples) may potentially

have a large number of disjuncts when the rules are instantiated. Consider

an instantiation where all the disjuncts of a particular (head) tuple, have the

minimum probability Pmin. In spite of all disjuncts having the minimum prob-

ability Pmin, the sheer number of disjuncts will cause the probability of the

head tuple to be fairly high (intuitively, if a tuple t can be derived either by an

instantiated rule r1 or by an instantiated rule r2, then the probability that tuple

t is derivable will be greater than or equal to the larger of: (a) the probability

that rule r1 is applicable, and (b) the probability that rule r2 is applicable).

The high probability of the head tuple gets propagated along an exception

flow path and may eventually result in a false alarm getting assigned a high

probability, which in turn adversely affects ranking. This effect is exacerbated

when the value of Pmin itself is high (like 0.5 or 0.4). These two rules of the

exception flow analysis cause the benchmarks to be particularly sensitive to the

value of Pmin.

3. Benchmarks AsyncJobDispatcher and HtmlSanitizer are slightly sensitive to
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the maximum tuple probability Pmax. The AUC of benchmark HtmlSanitizer

worsens a little, and the AUC of benchmark AsyncJobDispatcher improves

a little, when Pmax changes from 0.999 to 0.985. But, on the whole, the

benchmarks are not sensitive to the value of Pmax. For a range of values of

Pmax going from 0.995 down to 0.975, the AUCs remained steady when Pmax

was decremented in steps of 0.005.

4.4.4 Impact of Optimization on Scalability

In this section, we examine the impact optimization has on Presto’s ability to scale

to larger programs. Tables 4.13 and 4.14 give the measurements.

With optimization turned on, there is a tremendous reduction in the size of the

Bayesian network, and a corresponding reduction in the time required to construct

the Bayesian network and perform marginal inference. Similarly, there is also great

reduction in the number of runs of the dynamic analysis required, and correspondingly

in the dynamic analysis time. Therefore optimizations to reduce the size of the

Bayesian network are critical for the scalability of Presto.

However, observe that the dynamic analysis time dominates the overall end-to-end

time taken by Presto for any benchmark. Section 4.3.4 discusses some options for

alleviating this bottleneck.

Table 4.13: Scalability metrics for ranking with and without optimizations. #Clauses
and #Tuples specify the size of the Bayesian network. Ranking time includes the
time for constructing the Bayesian network from a derivation graph, and the time for
performing marginal inference.

Program With optimization Without optimization
#Clauses #Tuples Ranking #Clauses #Tuples Ranking

(K) (K) time(s) (K) (K) time(s)
AsyncJobDispatcher 1.1 1.5 2.5 54.8 108.6 157
AsyncWebCrawler 0.7 0.9 1.5 42.6 84.6 122
FilePkgUtil 1.8 2.5 4.0 168.5 335.7 472
HtmlSanitizer 2.5 2.4 6.0 65.6 128.4 185
ScrambledSquares 1.0 1.3 2.0 45.5 90.2 130
AsyncWaveformGenerator 0.7 1.1 2.0 74.6 148.8 211
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Table 4.14: Scalability metrics for dynamic analysis with and without optimizations.
Dynamic analysis time includes the time for generating dynamic analysis configura-
tions, executing the dynamic analysis, and extracting probabilities from the dynamic
analysis logs. Dynamic analysis runs gives the number times the dynamic analysis
was run (each time with a different configuration).

Program With optimization Without optimization
Dyn analysis Dyn analysis Dyn analysis Dyn analysis

runs time(m) runs time(m)
AsyncJobDispatcher 100 8.0 1107 95.5
AsyncWebCrawler 72 6.0 821 71.5
FilePkgUtil 135 3.5 1299 33.5
HtmlSanitizer 86 7.0 1937 178.5
ScrambledSquares 34 2.5 2725 200.0
AsyncWaveformGenerator 59 5.5 1142 121.5

4.5 Analysis of Alarm Ranking

Stopping criterion. Given a ranking of alarms by their probability of being true

bugs, it is not clear how many of the top-ranked alarms we should inspect. One

alternative is to stop inspecting alarms when the probability of an alarm drops below

some threshold value. Another alternative is to stop when the budget for alarm

inspection is exhausted, which could happen in practical scenarios. To guarantee

soundness, all the alarms still need to be inspected. In spite of this, our tool will be

valuable in practice.

Quality of ranking. As we have seen in the earlier sections, the ranking produced

in each interaction of Bingo, and by Presto, ranks alarms from the most highly

probable to the least. We enquire into the quality of ranking with the following

question: How good is an ordering of alarms, w = a1, a2, . . . , an, in light of their

associated ground truths, v1, v2, . . . , vn?

We use the number of inversions as a measure of ranking quality. A pair of alarms

(ai, aj) from w forms an inversion if ai appears before aj , but ai is false and aj is true,

i.e., i < j ∧ ¬vi ∧ vj. The ranker incurs a penalty for each inversion, because it has

presented a false alarm before a real bug. Well ordered sequences of alarms usually
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have fewer inversions than poorly ordered sequences. We write χ(w) for the number

of inversions in w.

Assume now that Pr(·) describes the joint probability distribution of alarms. We

seek the ordering of alarms with lowest expected inversion count. The following

theorem states that the ranking produced by Bingo and Presto is optimal for

alarm ranking given a fixed set of observations e.

Theorem 4.5.1. For each set of observations e, the sequence w = a1, a2, . . . , an

of alarms, arranged according to decreasing Pr(ai | e), has the minimum expected

inversion count over all potential orderings w′.

Let w = a1, a2, . . . , an be a sequence of alarms. If nt and nf are the number of

true and false alarms in w, then observe that for a perfect ranking wg, with all true

alarms before all false positives, χ(wg) = 0, whereas an ordering wb with all false

positives before all true alarms, has χ(wb) = nfnt.

Next, if Pr(·) describes the joint probability distribution of alarms, observe that

the expected inversion count of w = a1, a2, . . . , an of alarms is given by:

E(χ(w) | e) =
∑
i

∑
j>i

Pr(¬ai ∧ aj | e). (4.2)

We can now prove the above theorem.

Proof. We will first prove the theorem for the case with n = 2 alarms, and then

generalize to larger values of n.

Case 1 (n = 2). There are exactly two ways of arranging a pair of alarms: w =

a1, a2, and w′ = a2, a1, with expected inversion counts

E(χ(w) | e) = Pr(¬a1 ∧ a2 | e), and

E(χ(w′) | e) = Pr(a1 ∧ ¬a2 | e)
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respectively. Our hypothesis states that

Pr(a1 | e) ≥ Pr(a2 | e).

Rewriting each of these events as the union of a pair of mutually exclusive events, we

have:

Pr(a1 ∧ a2 | e) + Pr(a1 ∧ ¬a2 | e)

≥ Pr(a1 ∧ a2 | e) + Pr(¬a1 ∧ a2 | e),

so that E(χ(w′ | e)) ≥ E(χ(w | e)), thus establishing our result for the case when

n = 2.

Case 2 (n > 2). We will now prove the result for larger values of n by piggy-backing

on bubble sort. For the sake of contradiction, let us assume that some other sequence

w′ = a′1, a
′
2, . . . , a

′
n has lower expected inversion count,

E(χ(w′ | e)) < E(χ(w) | e). (4.3)

Associate each alarm a′i with its index j in the reference ordering w, so that a′i = aj,

and run bubble sort on w′ according to the newly associated keys. For each k, let

w(k) be the state of the sequence after the sorting algorithm has swapped k elements,

so that we end up with a sequence of orderings, w(0), w(1), w(2), . . . , w(m), such that

w′ = w(0) and w(m) = w.

Now consider each pair of consecutive sequences, w(k) and w(k+1). Except for a

pair of adjacent elements, a(k)i , a(k)i+1, the two sequence have the same alarms at all

other locations. Because they were swapped, it follows that a(k)i+1 appears before a(k)i
in w(m) = w, so that

Pr(a
(k)
i+1 | e) ≥ Pr(a

(k)
i | e).
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From Equation 4.2 and by an argument similar to that used in the n = 2 case, we

conclude that E(χ(w(k)) | e) ≥ E(χ(w(k+1)) | e), and transitively that E(χ(w(0)) |

e) ≥ E(χ(w(m)) | e). Since w′ = w(0) and w(m) = w, this immediately conflicts with

our assumption that E(χ(w′ | e)) < E(χ(w) | e), and completes the proof.

Another version of this problem which is relevant for Bingo is the alarm ranking

in the interactive setting, where e grows with each iteration. This is referring to a

“dynamic” ranking of alarms i.e., the sequence of alarms proposed by the interaction

model of Bingo to the user. Each alarm in this sequence is the top-ranked one in

the alarm ranking produced in each interaction. By choosing a top-ranked alarm

during each interaction, Bingo is employing a greedy heuristic. A different strategy

for choosing an alarm for inspection during each interaction may potentially yield

a better “dynamic” ranking. But finding an optimal strategy in such a setting is a

significantly harder problem and one that we do not explore here.
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Chapter 5

A Study of Cycle Elimination

In this chapter, we discuss three approaches to eliminate cycles from the derivation

graph. Let GC be the set of instantiated constraints comprising the derivation graph.

We wish to capture as many probabilistic dependencies of the alarm tuples as possible.

One heuristic approach to do this is to construct the Bayesian network from the

largest set of clauses GCc ⊆ GC that induces an acyclic derivation graph. By largest,

we mean that the cardinality of GCc should be as high as possible. Finding the largest

subset of acyclic clauses GCc can be shown to be NP-complete by reduction from

the maximum acyclic subgraph problem [27]. Therefore, we propose three approaches

that relax the “maximum” condition to different extents. We still require every tuple

that was derivable in GC to be derivable in GCc.

The first approach (Section 5.2) constructs GCc by aggressively removing every

clause from GC that derives a tuple that has already been derived “earlier”. The

second approach (Section 5.3) tries to put each clause discarded by the aggressive

algorithm, back into GCc as long as GCc induces an acyclic graph. The order in which

the discarded clauses are put back into GCc affects the cardinality of GCc. Section 5.3

discusses this issue in more detail. The third approach(Section 5.4) transforms GC

into a set of clauses GCdtcov that induces an acyclic graph, while retaining more

derivation trees for each tuple than the previous two approaches. Intuitively, for each
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clause discarded by the second approach, it inserts one or more new clauses to retain

the derivation trees that comprise the discarded clause, while maintaining acyclicity.

5.1 Notation and Definitions

This section recapitulates all the notation we have used thus far, and states a few

definitions. We will use this notation in the following sections.

I : The set of all input tuples.

C : The set of all derived tuples.

T : The set of all tuples. T = I ∪ C.

GC : The set of all grounded constraints.

cg : The consequent tuple of the grounded constraint g ∈ GC.

Ag : The set of all antecedent tuples of the grounded constraint g ∈ GC.

G(T,GC) : The derivation graph induced by the set of tuples T and the set of

grounded constraintsGC.

Definition 5.1.1 (Tuples of a set of clauses). tuples(g) = Ag ∪ {cg} where g is a

grounded constraint. tuples(GC ′) = ∪g∈GC′tuples(g) where GC ′ is a set of grounded

constraints.

Definition 5.1.2 (Cycle in a set of clauses). A sequence of grounded constraints

g1, g2, . . . , gn,∀gi ∈ GC ′ where 1 ≤ i ≤ n and GC ′ is any set of clauses, forms a cycle

if (a) cgi ∈ Agi+1
where 1 ≤ i < n, and (b) cgn ∈ Ag1 .

5.2 Aggressive Cycle Elimination

The aggressive cycle elimination algorithm shown in Algorithm 4 is a modified version

of the naive Datalog evaluator. For each tuple, it assigns an integer time stamp

that captures the number of derivation steps required to derive it, starting from the
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input tuples. The input tuples are assigned a time stamp of zero. All derived tuples

derivable from only input tuples, get a time stamp of one, and so on. A clause in

GC that derives a tuple that has already been derived, is not included in GCc. Note

that it is possible for more than one clause to derive a tuple not derived earlier. This

property ensures the acyclicity of the derivation graph induced by GCc.

Algorithm 4 CycleElimAggressive(I, C,GC), where I is the set of all input
tuples, C is the set of all derived tuples, and GC is a set of grounded constraints. It
returns GCc ⊆ GC, where the set of clauses GCc induces an acyclic derivation graph.

1. Initialize the timestamp map TS where TS : (I ∪ C) → N∞, such that for each
tuple t, if t ∈ I, TS(t) = 0, and otherwise, TS(t) =∞.

2. While there exists a clause g such that

TS(cg) > max
a∈Ag

(TS(a)) + 1, update:

TS(cg) := max
a∈Ag

(TS(a)) + 1. (5.1)

3. Define GCc = {g ∈ GC | TS(cg) > maxa∈Ag(TS(a))}. GCc ⊆ GC is the set of all
those clauses in GC whose consequent has a timestamp strictly greater than all of
its antecedents.

4. Return GCc.

Theorem 5.2.1. For all I, C and GC, if GCc = CycleElimAggressive(I, C,GC),

then (a) GCc ⊆ GC, (b) every tuple derivable using GC is also derivable using GCc,

and (c) GCc is acyclic.

Proof. The first part of the claim is immediate because of the definition of GCc in

Algorithm 4.

We will now prove the second part of the claim. If t is an input tuple, then the

result is immediate, because of the presence of the clause True =⇒ t in GCc. We

now consider the derivability of tuple t, which is not an input tuple. At the fixpoint

of step 2 of the algorithm, every derivable tuple t has a finite-valued timestamp,
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TS(t) � ∞. We prove the derivability of t in GCc by induction on its timestamp

TS(t). We already know the result for the case of TS(t) = 0, as t is then an input

tuple. If TS(t) = n + 1, and assuming the result for all tuples t′ with TS(t′) ≤ n,

consider the deriving clause gt, and observe that each of its antecedents t′′ ∈ Agt
has a timestamp, TS(t′′) ≤ n. By the induction hypothesis, all these tuples t′′ are

derivable, and it follows that t is itself derivable within GCc.

Finally, observe that for every clause g ∈ GCc, the timestamp of the consequent

TS(cg) is strictly greater than the timestamp of each of its antecedents, TS(a), for

a ∈ Ag. This rules out the possibility of a cycle in GCc.

5.3 DFS-based Cycle Elimination

In this section we propose a DFS-based approach as shown in Algorithm 5, to

eliminate cycles from GC, the set of all grounded constraints. The algorithm initially

executes steps 1 to 3 in the same manner as Algorithm 4 to compute the set of

“forward” clauses GCfwd, and the set of “backward” clauses GCbkwd. Next, it initializes

the acyclic set of clauses GCc to the set of forward clauses. Then, in steps 6 and 7,

it tries to add each clause from the set of backward clauses to GCc, if the addition

of the clause maintains the acyclicity of GCc. The acyclicity check in step 7(b)

executes the standard DFS-based cycle detection algorithm[19] for directed graphs.

The correctness of algorithm 5 immediately follows from the theorem below.

Theorem 5.3.1. A set of clauses GC ′ contains a cycle iff the directed graph G =

(V,E) constructed from GC ′ with V = tuples(GC ′) and E = {(v1, v2) | v1 ∈ Ag∧v2 =

cg where g ∈ GC ′}, contains a cycle.

Proof. Let GC ′ be some set of clauses containing a cycle. Then by definition, there is

a sequence of clauses g1, . . . , gn such that cgi ∈ Agi+1
where 1 ≤ i < n, and cgn ∈ Ag1 .

By the rules of construction for the directed graph G = (V,E), there is a directed
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edge from cgn to cg1 , cg1 to cg2 , and so on up to cgn−1 to cgn . These edges form a cycle

in G = (V,E).

If there is a directed cycle in graph G = (V,E), then we know that there is a

path with directed edges (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1) where 1 < n < |V |.

By the rules of construction for graph G = (V,E), for every directed edge (vi, vj) in

this path, there is at least one grounded constraint gi ∈ GC ′ where tuple vi ∈ Agi
and tuple vj = cgi . The sequence of grounded constraints g1, g2, . . . , gn form a cycle

in GC ′.

However, it is possible that |GCc | might vary depending on the order in which

the clauses in GCbkwd are processed in steps 6 and 7. We can have variants of this

algorithm, each with a different heuristic to compute the order in which the clauses in

GCbkwd are processed. But our focus will be to explore ways to retain the derivation

trees that affect the computation of the probability of a tuple in the resulting Bayesian

network (discussed in Section 5.4).

5.4 DT-covering Cycle Elimination

The problem with the previous two approaches is that we lose derivation trees when

we discard clauses to make the set of all clauses GC acyclic. If we lose a derivation

tree for tuple t ∈ T (the set of all tuples), then the computation of Pr(t) (that is,

the probability that tuple t is derivable) is more approximate than if we did not lose

it. Intuitively, the reason is that a tuple t is not derivable by the analysis only if

none of the derivation trees for t derive it. This means that we need to track all the

derivation trees for a tuple t in order to determine the probability of tuple t being

derivable. We first formally define the probability Pr(t) of a tuple t being derivable,

as the probability of an event that contains all possible outcomes in a probability

space, in which the tuple t is derivable. Next, we express Pr(t) for a tuple t in terms

of the derivation trees that derive it.
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Algorithm 5 CycleElimDfs(I, C,GC), where I is the set of all input tuples, C
is the set of all derived tuples, and GC is a set of grounded constraints. It returns
GCc ⊆ GC, where the set of clauses GCc induces an acyclic derivation graph.

1. Initialize the timestamp map TS where TS : (I ∪ C) → N∞, such that for each
tuple t, if t ∈ I, TS(t) = 0, and otherwise, TS(t) =∞.

2. While there exists a clause g such that

TS(cg) > max
a∈Ag

(TS(a)) + 1, update:

TS(cg) := max
a∈Ag

(TS(a)) + 1. (5.2)

3. Define GCfwd = {g ∈ GC | TS(cg) > maxa∈Ag(TS(a))}. GCfwd ⊆ GC is the set
of all those clauses in GC whose consequent has a timestamp strictly greater than
all of its antecedents.

4. Define GCbkwd = {g ∈ GC | TS(cg) ≤ TS(a), for some a ∈ Ag}. GCbkwd ⊆ GC is
the set of all those clauses in GC whose consequent has a timestamp less than or
equal to that of at least one of its antecedents.

5. Initialize GCc = GCfwd.

6. Construct a directed graph G = (V,E) from GCfwd with

V = tuples(GCfwd), and
E = {(v1, v2) | v1 ∈ Ag ∧ v2 = cgwhere g ∈ GCfwd}.

7. For each clause g ∈ GCbkwd:

(a) Construct a directed graph G′ = (V ′, E ′) where V ′ = V ∪ tuples(g) and
E ′ = E ∪ {(a, cg) | a ∈ Ag}.

(b) If IsAcyclic(G′):

i. Update G = G′.
ii. Update GCc = GCc ∪ {g}.

8. Return GCc.
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As we have seen before, the computation model to compute Pr(t) for a tuple

t is a Bayesian network extracted from the derivation graph induced by the set of

clauses GC. To be able to extract a Bayesian network, we need to eliminate cycles

from GC. We consider the problem of not losing derivation trees for a tuple t ∈ T .

In general, a tuple might have infinite derivation trees. So we define for each tuple

t ∈ T , the notion of a finite set of contributing derivation trees that is equal to or a

subset of all possible derivation trees for tuple t. We show that the contributing set

of derivation trees for tuple t is sufficient to compute the probability Pr(t) as defined

in Section 5.4.1. Based on this theory, we derive a technique to eliminate cycles while

preserving at least the contributing derivation trees, for a tuple t ∈ T .

This approach entails a transformation of the set of clauses GC to another set of

clauses GCdtcov. This transformation should ensure that (a) all the tuples derivable

in GC are derivable in GCdtcov (b) GCdtcov induces an acyclic derivation graph, and

(c) for each tuple t ∈ T , at least a contributing set of derivation trees in GC, is

retained in GCdtcov.

Section 5.4.1 builds up the necessary theory and Section 5.4.2 presents the

algorithm that achieves the transformation of GC to GCdtcov as specified above.

5.4.1 Underlying Theory

When an analysis is applied to a program, the analysis conclusions are incomplete:

not all conclusions hold true in the ground truth. Since we have no way of knowing

the ground truth, we consider a probabilistic model associated with the analysis such

that given probabilistic assumptions about the input to the analysis and the rules of

the analysis, we can infer corresponding probabilities for the analysis conclusions.

Our approach is inspired by probabilistic databases [76]. We postulate that the

presence of input tuples and of the grounded instances of the constraints is associated

with a probability and that these events are mutually independent. In particular,

for each constraint r there is a number wr where 0 ≤ wr ≤ 1, such that the use in
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execution of every grounded instance of the constraint has the probability wr. If

there are n grounded constraints (including input tuples) in GC, then our probability

space has 2n possible worlds or outcomes. In each world, each grounded constraint

g ∈ GC is either in (in other words, it “fires”) or out. Therefore, the probability of

each world W is
∏

g∈W wr .
∏

g 6∈W (1−wr) where r is the constraint corresponding to

the grounded constraint g.

Definition 5.4.1 (Probability Space). Our probability space is the pair (Ω, P ) where

the sample space Ω is the set of all possible outcomes. It is the set of subsets of GC

where each subset represents the grounded constraints reached by the execution of

the Datalog analysis. If n is the number of grounded constraints, then | Ω |= 2n. The

function P : Ω→ [0, 1] assigns probabilities to each outcome.

Definition 5.4.2 (Derivation Tree). A derivation tree τ for a tuple t in T is a labelled

tree in which: (a) each vertex of the tree is labelled by one tuple, (b) the root is

labelled by t, (c) the leaves are labelled by tuples in I, (d) each internal vertex is

labelled by tuple th and its children are respectively labelled by tuples t1, t2, . . . , tn if

the grounded constraint t1 ∧ t2 ∧ . . . ∧ tn =⇒ th ∈ GC. We say that a node of a

derivation tree represents a grounded constraint g if it is labelled by the consequent

tuple of g, and its children are labelled by the antecedent tuples of g. We define

nodes(τ) to be the set of nodes of the derivation tree τ .

Definition 5.4.3 (Clauses of a Derivation Tree). Let τ be a derivation tree. Define

gc(τ) = {g | g ∈ GC, g is of the form t1 ∧ t2 ∧ . . .∧ tn =⇒ th, and τ has an internal

node labelled th with its children labelled t1 through tn}. Thus, gc(τ) is the set of all

grounded constraints used in the derivation tree τ .

We are interested in the following kinds of events over the sample space Ω:

1. kg: The event that comprises all outcomes from the sample space Ω in which

the grounded constraint g fires. We define P (kg) = wr.
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2. kτ : The event that comprises all outcomes from the sample space Ω in which

the derivation tree τ “fires”. For the derivation tree τ to fire, all the grounded

constraints from gc(τ) must fire. Therefore, kτ =
⋂
g ∈ gc(τ) kg and P (kτ ) =∏

g ∈ gc(τ) P (kg).

3. kt: The event that comprises all outcomes from the sample space Ω in which

tuple t is derivable. A tuple t is derivable if at least one derivation tree deriving

it, fires. Therefore, kt =
⋃
τ derives t

⋂
g ∈ gc(τ) kg. We need to compute P (kt).

With each of the above events, we associate a boolean random variable. Let the

random variable Xg represent the event kg, the random variable Xτ represent the

event kτ , and the random variable Xt represent the event kt. Then:

Xg : Ω→ {true, false} where ∀o,Xg(o) = true if o ∈ kg, false otherwise.

Xτ : Ω→ {true, false} where ∀o,Xτ (o) = true if o ∈ kτ , false otherwise.

Xt : Ω→ {true, false} where ∀o,Xt(o) = true if o ∈ kt, false otherwise.

The shorthand notation for P ({o | Xt(o) = true}) is Pr(t). We similarly define Pr(g)

and Pr(τ).

Next, we define the contributing set of derivation trees that we have motivated

earlier.

Definition 5.4.4 (Contributing Set of Derivation Trees). A set of derivation trees

R = {τ1, τ2, . . . , τn} for a tuple t ∈ T is said to be a contributing set if

(Incomparability) ∀τ, τ ′ ∈ R, gc(τ) * gc(τ ′),

(Exhaustivity) ∀τ s.t. τ derives t, τ 6∈ R =⇒ ∃τ ′ ∈ R s.t. gc(τ ′) ⊆ gc(τ), and

(Minimality) ∀τ s.t. τ derives t, τ 6∈ R =⇒ ∃τ ′ ∈ R s.t. gc(τ ′) = gc(τ) =⇒

|nodes(τ ′) | ≤ |nodes(τ) | .

Lemma 5.4.1. A contributing set of derivation trees for a tuple t is finite.
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Proof. It is clear from the definition of the contributing set of derivation trees that for

any pair of trees τ and τ ′ belonging to it, gc(τ) 6= gc(τ ′). Since the set of grounded

constraints GC is finite, the number of distinct subsets of GC is finite and equal to

2|GC|. The size of a contributing set is at most 2|GC|.

The lemma below states that the set of outcomes from the sample space Ω,

represented by the contributing derivation trees for a tuple t, contains all outcomes

from Ω in which tuple t is derivable. Therefore, retaining at least the contributing

derivation trees from the set of clauses GC, in the transformed set of clauses GCdtcov

is sufficient to compute Pr(t).

Lemma 5.4.2. For any tuple t, let R be its contributing set of derivation trees. Then,⋃
τ derives t kτ =

⋃
τ∈R kτ .

Proof. Let R = {τ1, τ2, . . . , τn} be a contributing set of derivation trees for tuple t.

Let τ be a derivation tree for tuple t s.t. τ 6∈ R. Then by definition of the contributing

set, ∃τ ′ ∈ R s.t. gc(τ ′) ⊆ gc(τ). Now, kτ ′ is the set of all outcomes from the sample

space Ω in which the grounded constraints in gc(τ ′) have fired. Since gc(τ) contains

all the grounded constraints of τ ′ and maybe more, the outcomes in which all of gc(τ)

fire will be a subset of kτ ′ . That is, kτ ′ ⊇ kτ . Therefore, kτ ′ ∪ kτ = kτ ′ . Since this

holds for any derivation tree τ for tuple t that is not in R, the lemma follows.

The lemma below formally states and proves the following statement: if a deriva-

tion tree for tuple t uses all the clauses forming a cycle along one of its paths, then it

cannot be a contributing derivation tree for t.

Lemma 5.4.3. Let g1, g2, . . . , gm be a sequence of clauses that forms a cycle, where

each gi, 1 ≤ i ≤ m belongs to the set of grounded constraints GC. A derivation

tree τ for tuple t, that has a path p with a sequence of nodes that successively rep-

resent gi, gi−1, gi−2, . . . , g1, gm, gm−1, . . . , gi+1 where 1 ≤ i ≤ m, is not a contributing

derivation tree for tuple t.
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Proof. Let the sequence of nodes on path p that represent clauses gi, gi−1, gi−2, . . . , g1,

gm, gm−1, . . . , gi+1, be ni, ni−1, ni−2, . . . , n1, nm, nm−1, . . . , ni+1. As clauses gi, . . . gi+1

form a cycle, one of the antecedent tuples of the clause gi+1 is tuple cgi . Let n be the

node representing this tuple, with s as the subtree rooted at n. We construct a deriva-

tion tree τ ′ from derivation tree τ by deleting the nodes ni−1, ni−2, . . . , n1, nm, nm−1,

. . . , ni+1, and the node n on path p. Next, we make the children of the root of subtree

s as the children of node ni in derivation tree τ ′. Note that the root of subtree s

and node ni are labelled by the same tuple. Thus, gc(τ ′) ⊆ gc(τ). Both τ and τ ′ are

derivation trees for tuple t. Moreover, we will delete at least one node from derivation

tree τ to form derivation tree τ ′ because at least one clause is required to form a cycle

that will result in at least two nodes on path p. Therefore, by the incomparability and

minimality conditions, the derivation tree τ can never be a contributing derivation

tree for tuple t.

Next, we develop a succinct representation for all the derivation trees of a tuple

in the set of grounded constraints GC. Our representation is motivated by the study

of provenance polynomials in databases [31]. This representation is used by the

algorithm given in the next section to keep track of all the derivation trees for a

tuple. In order to treat input and derived tuples uniformly, we augment GC with

one constraint for each input tuple: ge : true =⇒ e where e ∈ I.

Let (K,+, ., 0K , 1K) be a commutative semiring where each element of K is a

set of sets of grounded constraints. Therefore, | K |= 22|GC| . Let k1 and k2 be two

elements of K. We define the operations of + and . as follows:

Operator + is the global union, therefore, k1 + k2 = k1 ∪ k2.

Operator . is pairwise union, therefore, k1.k2 = {e1 ∪ e2 | e1 ∈ k1 ∧ e2 ∈ k2}

The additive and multiplicative identities are: 0K = {} and 1K = {{}}. We denote an

element of K as a sum of terms. For example, an element {{g1, g2}, {g3, g4}, {g5}} of

K is denoted as g1g2 + g3g4 + g5.
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We use the elements of the commutative semiring K to succinctly represent

derivation trees of a tuple, as a sum of terms. Each term represents a derivation

tree τ by the set gc(τ). For example, let a tuple have three derivation trees τ1, τ2,

and τ3, where gc(τ1) = {g1, g2}, gc(τ2) = {g3, g4}, and gc(τ3) = {g5}. Then the

element of K that represents all the above three derivation trees, is g1g2 + g3g4 + g5.

This representation is succinct because the operations of the semiring K fuse the

representations of two distinct derivation trees into one, if they comprise the same

set of clauses.

Next, we define the notion of a polynomial over the semiring K. We need this to

represent the derivation tree of a tuple in terms of derivation trees of other tuples. A

polynomial in our setting, is an expression over a set of variables X = {xt1 , xt2 , . . .}.

Each variable xti that may occur in a polynomial, is associated with the tuple ti ∈ T ,

and represents all the derivation trees for the tuple ti. Therefore, there are | T |

variables, one for each tuple in T , where T is the set of all tuples. Now, we can

express a derivation tree for a tuple t as a polynomial over the variables corresponding

to the antecedent tuples of t, in that derivation tree. We illustrate with an example.

Let g1: t1 ∧ t2 =⇒ t and g2: t3 =⇒ t be two ways in which we can derive tuple

t. Here, clauses g1, g2 ∈ GC, tuple t ∈ C, and tuples t1, t2, t3 ∈ T . We represent

the derivation trees for tuple t by the variable xt, for tuple t1 by variable xt1 and

so on. The polynomial for xt is expressed in terms of variables xt1 , xt2 and xt3

as follows: xt = g1xt1xt2 + g2xt3 . We say that the term g1xt1xt2 represents the

grounded constraint g1, the term g2xt3 represents the grounded constraint g2, and

the polynomial expression g1xt1xt2 + g2xt3 represents the grounded constraints that

derive tuple t. Note that if a term in a polynomial expression has variables, then it

represents multiple derivation trees each comprising a distinct set of clauses.

Definition 5.4.5 (Terms of a Polynomial Expression). Let expr be a polynomial

expression over the semiring K. Define terms(expr) = {trm | trm is a term in the

polynomial expression expr}.
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Definition 5.4.6 (Substitution in a Polynomial Expression). For any tuple t ∈ T ,

let exprt denote the polynomial expression that represents the grounded constraints

that derive tuple t. Let pp be any polynomial expression, one of whose terms refers

to the variable xt for some tuple t. Let newpp be the polynomial expression got by

substituting exprt for variable xt in pp. We denote this action of substituting for

all occurrences of one variable in pp, as pp⇒ newpp. The action of substituting for

zero or more variables, one after the other in sequence, is denoted by pp⇒∗ newpp′,

where newpp′ is a polynomial expression.

Thus, performing one or more substitutions on a polynomial expression that

represents all the derivation trees of a tuple t, will yield us a different polynomial

expression that still represents all the derivation trees of tuple t. Therefore, the

general form of a term is: g1 . . . gnxt1 . . . xtm . Just as we illustrated how a term

of a polynomial can be constructed from a clause, we define the inverse operation

of extracting a clause from a term of a polynomial expression that represents the

derivation trees of a tuple.

Definition 5.4.7 (Clause Corresponding to a Term in a Polynomial Expression). Let

trm be a term in the polynomial expression that represents the grounded constraints

that derive tuple t, for any tuple t ∈ T . Define get_clause(trm) = t1∧ . . .∧tm =⇒ t

where trm = g1 . . . gnxt1 . . . xtm .

Lemma 5.4.4. For any tuple t ∈ T , let exprt denote the polynomial expression that

represents the grounded constraints that derive tuple t. If exprt ⇒∗ expr′t, and there is

a term in expr′t that refers to the variable xt, then that term represents the derivation

trees for tuple t that have a cycle in one of their paths.

Proof. Let exprt denote the polynomial that represents the grounded constraints that

derive tuple t.

Case 1. Let exprt ⇒∗ expr′t with zero substitutions, so exprt = expr′t. Let exprt

contain the term g. . . . .xt. . . ., where the grounded constraint g ∈ GC. Then, clause
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g has the form . . . ∧ t ∧ . . . =⇒ t. This term represents derivation trees for tuple

t whose root node is labelled by tuple t. The child nodes of the root node will be

labelled by tuples in Ag, one of which is tuple t. The path from the root node to the

child node labelled by tuple t, in each of these derivation trees, represents the cycle

formed by the clause g.

Case 2. Let exprt ⇒∗ expr′t with one or more substitutions. Let the sequence

expr1t , . . . , expr
n
t be the polynomial expressions after each substitution, with exprt =

expr1t and exprnt = expr′t. By definition of the substitution operation, for each

1 ≤ i < n, expri+1
t is got by substituting for some variable xti occurring in a term of

exprit. Again, by definition, variable xti is substituted by the polynomial expression

that represents the grounded constraints that derive tuple ti. We know that exprnt
contains some term that refers to variable xt. So, there must be a sequence of clauses

g1, . . . , gn such that tuple ti = cgi and tuple ti+1 ∈ Agi , for 1 ≤ i < n, and where tuple

tn = t = cgn . Also, there must be some clause g ∈ GC where tuple t = cg and tuple

t1 ∈ Ag because expr1t is the polynomial expression that represents the grounded

constraints that derive tuple t. Therefore, the sequence of clauses g, g1, . . . , gn form

a cycle. Let termg be the term in expr1t that represents the grounded constraint g.

Since the derivation tree has an edge from a node representing a consequent tuple to

a node representing an antecedent tuple, the derivation trees represented by termg

have a path that represents the cycle caused by clauses g, g1, . . . , gn.

Definition 5.4.8 (DFS Descendants). Let the set of clauses GC induce the directed

graph G = (V,E) where V = tuples(GC) and E = {(v1, v2) | v1 ∈ Ag ∧ v2 =

cg where g ∈ GC}. Further, let ds be the set of trees resulting from a depth first

traversal of graph G. For any tuple t ∈ tuples(GC), define dfs_descendants(t) =

{t′ | t′ is a vertex in the subtree rooted at t, within some tree in ds}.

We note that the depth first traversal of a graph, initiated at different sets of root

nodes, may yield different sets of depth first trees. We have elided this level of detail

in order to keep the notation simple. The above definition of dfs_descendants is
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with respect to a given depth first traversal.

Note that if a sequence of grounded constraints g1, g2, . . . , gn ∈ GC form a cycle,

and if some tuple t is the earliest tuple among tuples({g1, . . . , gn}) to be visited by a

depth first traversal of graph G induced by GC, then by the property of depth first

traversal, tuples({g1, . . . , gn}) \ {t} ⊆ dfs_descendants(t). Moreover, if a different

tuple t′ ∈ tuples({g1, . . . , gn}) happens to be the earliest tuple visited by a different

depth first traversal, then all the remaining tuples (tuples({g1, . . . , gn})\{t′}) will still

belong to dfs_descendants(t′) as determined by the different depth first traversal.

Lemma 5.4.5. For each tuple t ∈ T , let exprt denote the polynomial expression

that represents the derivation trees of tuple t. Let dfs_descendants(t) be the DFS

descendants in a depth first traversal of the graph G induced by the set of clauses

GC. For each tuple t ∈ T , let exprt ⇒∗ expr′t s.t. all the terms in expr′t do not refer

to a variable that corresponds to any tuple ∈ dfs_descendants(t). Define GC ′ =

{g | g = get_clause(trm) where trm ∈ terms(expr′t) ∧ trm does not refer to xt,

∀t ∈ T}. Then, GC ′ is acyclic.

Proof. To see this, consider any term trm, which contributes a clause to GC ′, and

which occurs in the polynomial expression expr′t for some tuple t. Let xt′ be a

variable referred to in trm. By the conditions stated in the Lemma, t′ 6= t and

t′ /∈ dfs_descendants(t). It is evident from the rules of construction of a polynomial

expression for a tuple, and from the definition of ⇒∗ that tuple t′ derives tuple t in

GC ′. We show that GC ′ is acyclic by showing that tuple t cannot derive tuple t′ in

GC ′. We prove this by contradiction.

Assume that tuple t derives tuple t′. We know that t′ /∈ dfs_descendants(t).

This implies that t′ must have been visited earlier than t in the depth first traversal.

Putting this fact together with the fact that t′ derives t, we conclude that t′ must be

an ancestor of t in the depth first traversal. In other words, t ∈ dfs_descendants(t′).

By the pre-conditions of the lemma, there will be no term in the polynomial expression

for tuple t′ in which variable xt will occur. A similar argument as above leads us to
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conclude that t must be an ancestor of t′, which leads to a contradiction. Therefore,

it is not possible that tuple t derives tuple t′, which implies that there is no cycle

involving tuples t and t′.

Algorithm 6 CycleElimDTCovering(GC,W, I, C), where GC is the set of
clauses and W is a function that associates each clause to its probability. I and C
are the sets of input and derived tuples. It returns GCdtcov, the new set of clauses
got by transforming GC, and the probabilities Wdtcov for clauses in GCdtcov.

1. Initialize PP (t) = 0K , ∀t ∈ (I ∪ C) where PP : C → polynomials overK.

2. For each grounded constraint g : t1 ∧ . . . ∧ tn =⇒ th ∈ GC, update:

PP (th) = PP (th) + g.xt1 .xt2 . . . . .xtn . (5.3)

3. Initialize roots = {cg|Ag ⊆ I ∧ g ∈ GC}. The set roots contains the tuples that
are directly derivable from input tuples.

4. Initialize visited(t) = false, ∀t ∈ C where visited : C → {true, false}.

5. While there is a tuple t ∈ roots such that visited(t) = false, call UpdatePP(t).

6. Initialize GCdtcov = {}. GCdtcov is the new set of grounded constraints that is
populated in the next step.

7. For each tuple t ∈ C, do:

For each term g1.g2. . . . .gn.xt1 . . . . .xtk in PP (t), execute the following steps.

a. Update GCdtcov = GCdtcov ∪ g′ where g′ : t1 ∧ . . .∧ tk =⇒ t. In effect,
g′ is the constraint got by merging constraints g1, g2, . . . , gn.

b. Update Wdtcov(g
′) = W (g1).W (g2). . . . .W (gn) where Wdtcov :

GCdtcov → [0, 1]. The probability of g′ is the product of the probabili-
ties of g1, . . . , gn.

8. Return GCdtcov and Wdtcov.
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Algorithm 7 UpdatePP(t) where t is the tuple being processed. It returns
descendants, the set of all tuples that are DFS descendants of tuple t. Variables GC
(the set of all grounded constraints), I (the set of input tuples), C (the set of derived
tuples), PP (a function from each tuple to its polynomial), and visited (a function
that maps each tuple to whether it is processed or not) are assumed to be available
globally.

1. Update visited(t) = true.

2. Initialize descendants = {}. The set descendants collects all tuples that are DFS
descendants of tuple t.

3. Let neighbours = {cg | t ∈ Ag ∧ g ∈ GC}. This is the set of all tuples derivable
from tuple t in one step.

4. For each tuple t′ ∈ neighbours and visited(t′) = false, do:

(a) Let descendants′ = UpdatePP (t′). The recursive call updates the polyno-
mial for tuple t′. The set descendants′ contains the tuples that are DFS
descendants of tuple t′.

(b) Update descendants = descendants ∪ {t′} ∪ descendants′.

5. Let expr = PP (t). At this point, the polynomials of all tuples transitively derivable
from tuple t are updated to their final form.

6. Remove from expr all terms in which variable xt occurs. A term in which variable
xt occurs represents derivation trees of tuple t that have a cycle.

7. While there is a tuple t′′ ∈ descendants such that variable xt′′ occurs in a term of
expr, do:

(a) Substitute every occurrence of variable xt′′ with polynomial PP (t′′), in expr.

(b) Remove from expr all terms in which xt occurs.

8. Update PP (t) = expr. At this point, the polynomial for tuple t is updated to its
final form. It now refers to only those variables corresponding to tuples that are
not derivable from tuple t.

9. Return descendants.

89



5.4.2 Algorithm

This section gives the algorithm (specified in two parts as Algorithms 6 and 7) to

transform the set of grounded constraints GC to another set of grounded constraints

GCdtcov. At a high level, the algorithm does the following:

1. For each derived tuple, the algorithm records all the derivation trees in the

form of a polynomial expression representing the grounded constraints deriving

that tuple.

2. It simulates a depth first search on an underlying directed graph G = (V,E)

where the set of vertices V represents derived tuples, and there is a directed

edge between two vertices v1 and v2 if the tuple represented by v1 derives the

tuple represented by v2 in one step.

3. The key idea of the algorithm is that it recognizes the presence of a cyclic set of

grounded constraints when it observes that the polynomial expression of tuple

t refers to a variable that corresponds to a DFS descendant of tuple t.

4. It ensures acyclicity of the transformed set of clauses GCdtcov, and preserves

the contributing derivation trees by performing the following actions on the

polynomial expression of each tuple t.

(a) It deletes terms that refer to variable xt (xt succinctly represents all the

derivation trees for tuple t). By Lemmas 5.4.3 and 5.4.4 such terms do

not represent contributing derivation trees.

(b) It transforms the remaining terms until they no longer refer to variables

that represent DFS descendants of tuple t. By Lemma 5.4.5, once this

transformation is performed on the terms of the polynomial expressions of

all the derived tuples, the resulting derivation graph GCdtcov is acyclic.
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GCdtcov retains all contributing derivation trees from GC for any tuple t. Lemma 5.4.2

shows that retaining all contributing derivation trees is a sufficient condition to

compute Pr(t) for a tuple t.

Here is a step-by-step description of the algorithm. Algorithm 6 first records the

polynomial for each derived tuple t, in PP (t), in step 2. The polynomial for tuple

t is in terms of the variables representing its immediate antecedent tuples. Next,

it initializes the book-keeping variables of the algorithm: roots and visited. The

variable visited is global and is visible to Algorithm 7. In step 5, Algorithm 7 is

invoked on a tuple that is derived only from input tuples.

Algorithm 7 recursively visits every tuple that is transitively derivable from its

argument, in a depth-first manner. During this depth first visit, Algorithm 7 updates

the polynomial PP (t) of its argument tuple t after it has completed the recursive

calls on all its depth-first descendants. Therefore, when Algorithm 7 updates the

polynomial for a tuple t, the polynomials for all tuples that tuple t transitively derives,

are already updated. The update step for tuple t entails repeatedly substituting for

every occurrence of variable xt′ by the polynomial PP (t′), in the polynomial for tuple

t, where tuple t′ is a DFS descendant of tuple t. This substitution continues as long

as the polynomial for tuple t refers to variables corresponding to DFS descendants of

tuple t, and stops when it refers only to the variables corresponding to the DFS non-

descendants of tuple t. At every step of the substitution, if a term in the polynomial

PP (t) refers to xt, that term is discarded as it represents derivation trees for tuple t

that have a cycle in one of their paths. After every derived tuple has been visited,

Algorithm 6 reads off the new grounded constraints and their probabilities from the

updated polynomials for each derived tuple, in steps 6 and 7.

91



5.5 Illustrative Example

In this section we illustrate the effect of the three cycle elimination algorithms on a

small example, and show how they are increasingly more precise. Figure 5.1(a) shows

a toy derivation graph that has four clauses g1, g2, g3, g4.
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Figure 5.1: An example to illustrate the effect of the three cycle elimination algorithms.
(a) is an example graph, (b) is after Aggressive cycle elimination, (c) is after DFS-
based cycle elimination, and (d) is after DT-covering cycle elimination. Observe the
increasing precision of these algorithms.

Aggressive cycle elimination removes the clauses g3 and g4 from the derivation

graph to make it cycle-free. A contributing derivation for tuple u ({g2, g4}) is lost.

Similarly, a contributing derivation for tuple v ({g1, g3}) is also lost. Figure 5.1(b)
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shows the derivation graph after aggressive cycle elimination is applied to it.

DFS-based cycle elimination puts the clause g3 back into the cycle-free derivation

graph produced by the aggressive cycle elimination algorithm, because it confirms

that adding clause g3 will maintain the acyclicity of the resulting graph. Therefore,

the DFS-based algorithm retains all contributing derivations for tuple v but still loses

a contributing derivation for tuple u. Figure 5.1(c) shows the derivation graph after

DFS-based cycle elimination is applied to it.

The DT-covering cycle elimination algorithm retains clauses g1, g2 and g3 but

recognizes that it cannot retain clause g4 because it will introduce a cycle. Instead,

it introduces a “new” clause g5. Observe that clause g5 is actually a compression

of clauses g2 and g4. Accordingly, the probability associated with clause g5 is the

product of the probabilities associated with clauses g2 and g4. Now, a contributing

derivation tree {g2, g4} for tuple u that was previously lost, is substituted by the

derivation tree {g5}. In this way, the DT-covering cycle elimination algorithm retains

all contributing derivations for all tuples of a derivation graph. Figure 5.1(d) shows

the derivation graph after DT-covering cycle elimination is applied to it.
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Chapter 6

Related Work

There is a large body of research on techniques to overcome the incompleteness of

static program analysis tools. Muske et al [62] give a detailed survey of different

techniques used by static analyses for alarm handling, their merits and shortcomings.

We broadly classify this research into techniques based purely on static reasoning,

techniques that interact with users, techniques that interact with dynamic analyses,

and techniques that take a statistical approach. We elaborate below on each of these

categories.

Techniques based purely on static program reasoning. Lee et al [48] cluster

correlated alarms by discovering sound dependencies between them such that if the

dominant alarms of a cluster turns out to be false, all the other alarms in the same

cluster are guaranteed to be false. Le and Soffa [46], and also Zhang et al [80] define

two alarms to be correlated if one alarm causes the other alarm to occur. Le and

Soffa [46] first statically detect alarms and determine their error states. Next, they

propagate the effects of error states along paths, to automatically detect correlated

pairs of alarms. From this, they construct a correlation graph showing correlations

among multiple alarms along different paths. Using the correlation graph, they

minimize the number of reported alarms required to find the root cause of an alarm.
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Kahlon et al [35] statically detect datarace alarms, and track lock acquisition patterns

to detect alarms that may potentially be false. Since their technique is unsound, they

use it to rank alarms rather than filter them. Sherriff et al [75] also use unsound

methods that leverage historical field failure records to group static analysis alarms

that are predictive of a field failure. However, all such techniques are constrained by

the limits of logical reasoning, and cannot extract fine correlations between alarms

(such as, “If a is false, then b is also likely to be false.”).

Techniques that interact with users. These techniques interact with a user in

order to reduce false positives in alarm reports. They either take some specifications

provided by a user, or they pose queries to a user, which they identify by reasoning

about the logical structure of the analysis and the program in question. Dillig et al [22]

formulate a search for missing facts to discharge an alarm as an abductive inference

problem. Ivy [66] graphically displays succinct counterexamples to the user to help

identify inductive invariants. URSA [81] formulates the search for the root causes

of false alarms in Datalog derivation graphs as an information gain maximization

problem. While all these systems pose queries to a user, some of these systems pose

queries about program facts that are related to an alarm, and not about the alarm

itself. For example, URSA poses queries on the root cause of an alarm. Depending on

the complexity of the static analysis, such queries may place an undue burden on a

user. Some techniques classify alarms with a single round of user feedback [55]. But,

unlike Bingo, all these techniques do not iteratively maximize the return on a user’s

effort expended on providing correct feedback. Le and Soffa [47] propose a framework

that requires as input a user-provided specification in order to automatically generate

scalable, interprocedural, path-sensitive analyses to detect user-specified alarms. This

specification needs to express alarms and information needed for their detection, a

scalable, path-sensitive algorithm, and a generator that unifies the two. The analysis

produced from this specification identifies alarms and also the path segments where
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the root causes of an alarm are located. Other techniques leverage analysis-derived

features, e.g., to assign confidence values to alarms [51], but they rely on expert users

to assign weights to analysis rules.

Techniques that interact with dynamic analysis. The goal of such techniques

is to reap the benefits of the soundness of static analysis, while offsetting its incom-

pleteness with the completeness of dynamic analysis, or testing. Csallner et al [20]

present an automatic error-detection technique that combines static checking and

concrete test-case generation. Their approach is to produce concrete test cases by

deriving specific error conditions from the abstract error conditions inferred by a

static analysis. These test cases are then executed to determine whether an error

truly exists. In a later work, Csallner et al [21] propose a 3-step approach to bug-

finding. The first step is dynamic invariant detection to capture a program’s intended

behavior, the second step is to statically analyze the program within the restricted

input domain allowed by the detected invariants, and the third step is automatically

generate test cases directed by the predictions of the static analysis. They claim

higher precision over tools that lack a dynamic step and higher efficiency over tools

that lack a static step. In yet another work, Li et al [50] enlist the support of a

dynamic technique that automatically validates and categorizes the numerous, but

potentially false, memory-leak warnings reported by a static memory-leak detector.

Kiss et al [38] also combine static and dynamic analysis techniques to detect vulnera-

bilities, and illustrate how their tool finds a simplified version of the Heartbleed [3]

bug. They further illustrate the complexities involved in detecting this bug in its

original manifestation. In an early work, Ramalingam et al [71] develop a precise

formulation of the problem of determining the likelihood of an analysis fact holding

true during execution. This formulation associates a probability with each edge of

a control flow graph, which they suggest can be estimated by dynamic techniques.

This paper motivated the instantiation of our approach in Presto.
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Techniques that take a statistical approach. Such techniques leverage various

kinds of program features to statistically determine which alarms are likely bugs.

The z-ranking algorithm [42, 41] uses the observation that alarms within physical

proximity of each other (e.g., within the same function or file) are correlated in their

ground truth and applies a statistical technique called the z-test to rank alarms.

More recently, other kinds of program features have been used to statistically classify

analysis alarms [39, 11, 34, 77]. Further out, there is a large body of work on using

statistical techniques for mining likely specifications and reporting anomalies as

bugs (e.g., [60, 52, 43, 72]) and for improving the performance of static analyzers

(e.g., [32, 33, 17]). In particular, Banerjee et al [52] propose a new algorithm for

automatically inferring explicit information flow specification from program code.

In order to infer this, they model information flow paths in a propagation graph

constructed from program code, using probabilistic constraints. They solve the system

of probabilistic constraints using probabilistic inference on factor graphs.

There has also been extensive research to combine logical and probabilistic

reasoning in AI. It starts with Pearl [67, 68], and other examples include Bayesian

networks and Markov networks. Koller and Friedman’s comprehensive textbook [40]

gives a thorough treatment of these techniques. A more recent challenge involves

extending these models to capture richer logical formalisms such as Horn clauses

and first-order logic. This has resulted in frameworks such as probabilistic relational

models [29], Markov logic networks [74, 65], Bayesian logic programs [36], and

probabilistic languages such as Blog [57], ProbLog [25], and Infer.NET [58].

There are several methods to perform marginal inference in Bayesian networks.

Examples include exact methods, such as variable elimination, the junction tree

algorithm [37], and symbolic techniques [28], approximate methods based on belief

propagation [44, 59], and those based on sampling, such as Gibbs sampling or MCMC

search. Recent advances on the random generation of SAT witnesses [18] also fall in

this area. In our work, we use the loopy belief propagation algorithm for discrete
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approximate inference. Murphy et al [61] describe an empirical study performed to

evaluate the loopy belief propagation algorithm as an approximate inference algorithm

in a general setting. They found that the algorithm often converges, and when it

does, it does converge to a good approximation of the correct marginal as computed

by exact inference. They also perform some initial investigation into the cause of

oscillations, when the algorithm oscillated without convergence on one probabilistic

network. They conclude that simple methods of preventing such oscillations do not

allow the algorithm to converge to (approximately) correct marginals.

98



Chapter 7

Future Directions

While this work demonstrates how probabilistic reasoning can complement program

reasoning to improve the effectiveness of automated reasoning tools, it also raises

many intriguing research questions. In addition, the generality of this approach opens

up many avenues to harness probabilistic reasoning in innovative ways to augment

logical reasoning. We discuss below some interesting ways in which this research can

be taken forward.

Incorporating extra-analytic features. Our probabilistic model, as defined in

this dissertation, only captures the program features recognized by the underlying

static program analysis. For example, the datarace analysis executed by Bingo does

not recognize or poorly recognizes program features like (a) program control flow

paths, (b) access of the fields of the this object in a constructor, (c) programmatic

constructs like flags and conditionals to avoid racy accesses or (d) intersecting locksets

guarding two memory accesses that may potentially race with each other. Failure to

capture such program features makes the deductive steps of a static program analysis

incomplete, eventually leading the static analysis to report false alarms. While the

incomplete deductive steps are modeled by our probabilistic model, the cause of

incompleteness, such as the above program features, are not modeled. Therefore,

99



when our probabilistic model recomputes alarm probabilities by conditioning them

on evidence of the ground truth obtained by, say, a user, the generalization is

sometimes poor and sometimes even erratic. Simply put, when our probabilistic

model recomputes alarm probabilities by conditioning them on user feedback, it is

possible that it lowers the probability of a true bug, or increases the probability

of a false alarm. It is well-known that incorporating such program features into a

static program analysis will make the analysis unscalable and practically unusable.

Therefore, an interesting research direction will be to explore ways in which extra-

analytic program features can be represented in the probabilistic model with a goal

to maximize the generalization from user feedback (or, in other words, maximize the

generalization from observations). This has the potential to improve alarm ranking.

Improving inference time. Static program analyses that execute at industry scale

analyze large and complex programs. As a result, they produce very large derivation

graphs, which in turn convert to extremely large Bayesian networks. Inference over

such large networks is very time consuming. The size of the network also negatively

impacts the convergence of inference algorithms to stable probability distributions.

Moreover, in the context of Bingo, marginal inference is performed several times

in an iterative manner. The speed of inference is the main reason why Bingo does

not qualify as an interactive tool. Therefore, in its current form, it is impractical to

incorporate Bingo as part of an integrated software development environment. In

this context, substantially improving inference time is a useful direction for research.

Improving inference time can be tackled in two ways. One way is to work on the

inference engine. In this dissertation, we have used a general off-the-shelf engine to

perform discrete approximate inference. We could investigate ways to customize the

inference algorithm to the context of program analysis in order to improve inference

time. Another way is to optimize the derivation graph or the Bayesian network: to

reduce its size until inference time over the resulting network is within acceptable
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limits. For this, one could investigate principled ways to elide or coalesce parts of

the derivation graph that may be determined to be irrelevant to the root cause of

a reported alarm. We could also examine if a large monolithic derivation graph

could be divided into modular components on which inference could be independently

performed, summarized, and later composed.

Learning rule probabilities. In the Bayesian network constructed by our end-to-

end system Bingo, we quantify the incompleteness of every deductive step executed

by the static analysis, by a fixed number 0.999. That is, we say that if all the

antecedent facts of a deductive step hold true, then the consequent, or the conclusion

of the deductive step, holds true with a likelihood of 0.999. We make this simplistic

initialization to seed the alarm probabilities, and rely on iteratively improving the

inferred alarm probabilities by conditioning on evidence. As the deductive rules of a

static analysis are not all uniformly incomplete, an interesting research direction is to

explore the possibility of learning rule probabilities from training data. If perfectly

labelled training data were available, then the rule probability (that captures its

incompleteness) will be the fraction of times the rule produced a true conclusion

when all its premises held true. Since it is very unlikely that fully labelled data is

available, we could use techniques like Expectation Maximization on training data to

learn maximum likelihood estimates for rule probabilities.

Incorporating richer inputs from a user or from a dynamic analysis. In

our end-to-end system Bingo, we iteratively improve the alarm ranking by seeking

feedback from a user. In each iteration, Bingo produces an alarm ranking, seeks

feedback from a user for the top-ranked alarm, and recomputes the probabilities of

all alarms conditioned on this evidence to produce an improved ranking. In our work,

we have taken the greedy approach of seeking user feedback for a single alarm, which

is the top-ranked alarm in each iteration. Besides, our implementation seeks only a

boolean true/false feedback for each proposed alarm. We could make the interactive
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loop in Bingo potentially more effective by:

1. Casting the problem of choosing one or more alarms for seeking feedback in

each iteration as a problem of finding an optimal strategy in a Markov decision

process.

2. Seeking more fine-grained feedback from a user (likely false, likely true, a

probability estimate), or a likely explanation in some form (an alarm is false

because some other analysis fact is false), in each iteration. In addition to

improving alarm ranking, richer feedback may also help mitigate the impact of

erroneous feedback.

In our end-to-end system Presto, we seek probability estimates for input analysis

facts from a dynamic analysis. We could investigate how to get more precise prob-

ability estimates from the dynamic analysis by providing it with more context for

each analysis fact. For example, instead of asking the dynamic analysis to estimate

how often an analysis fact, say x, holds true, we could ask the dynamic analysis to

estimate how often the analysis fact x holds true in the context of a different analysis

fact y holding true.
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Chapter 8

Concluding Remarks

In this dissertation, we tackle the problem of improving the effectiveness of bug-

finding static program analysis tools in practical settings. Specifically, we propose a

principled and general approach to augment program reasoning with probabilistic

reasoning in order to rank alarms reported by these tools, where the alarms are

ranked by their likelihood of being true alarms. This enables tool users to focus their

efforts on triaging alarms at the top of the ranking, which are more likely to be true

than the alarms lower in the ranking, thereby mitigating the burden of inspecting

false alarms.

The approach developed in this dissertation constructs a probabilistic model,

which is a Bayesian network, from the deductive steps applied by a static program

analysis. The probabilistic model models (a) the dependence of these deductive

steps on the analysis facts that they are premised upon, and (b) the dependence

of the analysis facts on the deductive steps that derive them. In this manner, the

model captures the transitive dependence of analysis facts on other analysis facts,

thereby elegantly capturing correlations, or shared dependencies between alarms.

Furthermore, the model quantifies the incompleteness of each analysis fact and

deductive step. Marginal inference on this probabilistic model associates a posterior

probability with each alarm indicating how complete (or, how true) the alarm may
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be.

We further demonstrate the generality and the empirical effectiveness of this

approach by instantiating it in two practical end-to-end systems. The first end-to-end

system called Bingo instantiates this approach to rank the alarms reported by two

static analyses: the datarace analysis and the taint analysis. Bingo also demonstrates

how alarm ranking based on the inferred probabilities iteratively improves when the

probabilities are conditioned on evidence gathered by interacting with a human user.

The second system called Presto instantiates this approach to rank the alarms

reported by an exception flow analysis. Further, Presto demonstrates the feasibility

of producing an effective alarm ranking by seeking probability estimates from a

dynamic analysis, for incomplete input facts that the analysis is premised upon.

In the last part of the dissertation, we explore the important problem of eliminating

directed cycles from derivation graphs that capture the deductive steps applied by a

static analysis. We give three algorithms for cycle elimination that are increasingly

precise in the number of derivation trees they retain.

In conclusion, the approach of augmenting logical program reasoning with proba-

bilistic reasoning is a very general approach to associate richer information with the

conclusions drawn by a static analysis. Moreover, this approach gives us a principled

way to tailor static analyses to individual codebases and user needs. As demonstrated

in the dissertation, this approach can be harnessed to make static program analyses

more effective in practical environments.
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