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ABSTRACT

INTEGRATING DECLARATIVE STATIC ANALYSIS

WITH NEURAL MODELS OF CODE

Pardis Pashakhanloo

Mayur Naik

In recent years, deep learning techniques have made remarkable strides in solving a variety of

program understanding challenges. The successful application of these techniques to a given

task depends heavily on how the source code is represented by the deep neural network.

Designing a suitable representation for a newly created task involves many challenges. It

is necessary, among other things, to understand the implementation of other functions or

modules in a project that may be spread out across a large lexical area. In addition,

determining which components and features to include in order to enrich the representation

is a challenge. In this dissertation, the challenges of code representation are addressed by

proposing to systematically represent programs as relational databases, introducing a graph

walk mechanism to remove unrelated context from large relational graphs, and describing a

language for specifying tasks and program analysis queries to tailor neural code-reasoning

models. A detailed analysis shows the presented techniques are superior to state-of-the-art

in a variety of aspects, such as performance, robustness, and interpretability.
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CHAPTER 1

Introduction

Deep learning techniques have made significant strides in solving a wide range of pro-

gram understanding tasks (Lu et al., 2021). They have been applied to code-reasoning

tasks, including bug detection (Pradel and Sen, 2018; Allamanis et al., 2021; Shi et al., 2021;

Dinella et al., 2020; Allamanis et al., 2018), type inference (Hellendoorn et al., 2018), code

summarization (Wang et al., 2020; Ahmad et al., 2020; Ma et al., 2022; Gao and Lyu, 2022),

program repair (Vasic et al., 2019; Allamanis et al., 2021; Li et al., 2020; Dinella et al., 2020),

and code generation (Li et al., 2022; Alon et al., 2019a; Ottens et al.; Svyatkovskiy et al.,

2020; Mukherjee et al., 2021), among many others.

The successful application of these techniques to a given task depends heavily on how the

source code is represented by the deep neural network. Designing a suitable representation

for a new task involves making many crucial choices. It is necessary, for instance, to un-

derstand the implementation of other functions and modules within a project in order to

make informed predictions about certain tasks. Thus, the desirable context for a model may

extend beyond the local lexical neighborhood, possibly requiring reasoning about a chain of

called functions.

Another crucial choice is deciding which program elements and features to include when

representing programs. Programs are usually represented as graphs such as abstract syntax

trees (Alon et al., 2018, 2019b), control flow graphs (Allamanis et al., 2018), or dataflow

graphs (Guo et al., 2020a). To achieve graphs that are richer in semantic information, others

have proposed custom, non-trivial graphs that include hand-engineered lexical, syntactic,

and semantic edges (Allamanis et al., 2018; Hellendoorn et al., 2020). It has been shown

that composite graphs can indeed yield promising results (Siow et al., 2022). Despite this,

existing approaches do not combine information in a systematic and extensible manner.

Richness of information and extended scope imply that the relevant context may be very
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broad. Models tackling such tasks are challenged to either reduce the scope of a task—e.g., a

single function, or a few contiguous lines of code text—or heuristically sample from a larger

scope to produce a small enough input to fit inside the memory of a GPU. For example,

Transformers (Vaswani et al., 2017) learn to reason about code from a sequence of tokens in

the program; and GNNs (Allamanis et al., 2018) with n layers—a hyperparameter which,

for message-passing architectures, determines how much of the graph is reachable from

some immediately adjacent context to the task instance—prune all nodes that are further

than n graph hops away. Despite being an important challenge, distance is not always the

determining factor in collecting relevant information. As an example, when deciding what

exception type is applicable to a particular part of the source code, following control flow

edges until they encounter a raised exception may be more critical than fetching all adjacent

statements that do not handle exceptions.

The use of token sequences to represent programs (Kanade et al., 2020; Feng et al., 2020;

Chen et al., 2021) bypasses the difficulties of hand-engineered program graphs, but hampers

the robustness and interpretability of these models (Xu et al., 2022). Despite the seemingly

intelligent predictions that these models make, their objective is usually to reduce the error

with respect to predicting a label or a masked token. Ultimately, developers are responsible

for making the final decisions. So, models should be able to provide useful information

in addition to the final prediction (Lipton, 2018)—however, these models do not provide

such information. In addition, representing programs using token sequences has shown to

be sensitive to noise and adversarial attacks (Zeng et al., 2022; Bielik and Vechev, 2020;

Henke et al., 2022; Wang et al., 2022).

Another possible shortcoming of representing programs as token sequences is that they find

it difficult to capture code syntax and semantics1 especially when a small amount of data is

available. According to Siow et al. (2022), token sequence representation of source code is

inferior to other methods such as tree- or graph-based approaches in detecting vulnerabilities
1This viewpoint is controversial and still undergoing research and investigation.
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Robustness of Predictions on

Out-of-Distribution Input

Interpretability of

Predictions

Systematic and Extensible

Representation of Code

Figure 1.1: Dissertation Goals.

and classifying programs.

To overcome the mentioned difficulties, I build upon recent advances in program analysis that

represent codebases as semantically rich relational databases. Throughout this dissertation,

I demonstrate how the knowledge locked up in decades of program analysis research can be

an invaluable resource for building models of code that are more accurate, more robust, and

inherently interpretable.

In this dissertation, I present approaches to achieve the goals that are represented in Fig-

ure 1.1. I achieve Systematic and Extensible Representation of Code through a

hybrid approach that combines the logical analysis done by a code query engine with the

statistical analysis done by machine learning. Especially since collecting labeled data for

code-understanding tasks is difficult, one must utilize the data effectively during the training

process (Le et al., 2020). My proposed approach, called CodeTrek, offloads the engineer-

ing cost of extracting semantic information from programs to a standard tool in a systematic

way. CodeTrek transforms the relational database of source code into a relational graph

using key-foreign-key relationships. The resulting semantically rich representation allows

the model to focus on solving more complicated tasks instead of struggling to learn the

information that is already computed by simple program analyses. CodeTrek also allows

developers to extend the representation by writing code queries in a code query language

called CodeQL (Avgustinov et al., 2016). CodeTrek samples guided random walks over

3



relational program graphs depending on the task and embeds them. This enables the Ro-

bustness of Predictions on Out-of-Distribution Input. I further introduce a technique

to learn to walk over large program graphs to obtain high accuracy on any new code un-

derstanding task. CodeTrek also allows Interpretability of Predictions. The walks

that contribute the most to the final predictions serve as a witness or explanations, making

CodeTrek intrinsically interpretable.

In summary, my dissertation contributes the following to the field.

Developing the Foundations for a Relational Representation of Code

I propose to represent programs as relational databases that make rich context readily

available for code-reasoning tasks using deep learning. I present an effective algorithm

to construct graphs from relational representations of code. Also, I present a graph-walk

mechanism that prunes unrelated context in a task-specific manner. To define new or existing

code-reasoning tasks, I propose a specification language. This specification language allows

us to effectively direct the generation of graphs and walks.

Introducing Techniques to Enhance Bug Finding using Neural Models

I present a technique to learn walk policies that prune large relational graphs by ranking the

relations based on their relevance in a task-specific manner. Using program analysis queries

and systematic test-program generation, I propose techniques to enable task designers to

stress-test their models. I identify two new challenging tasks for neural code reasoning, un-

used definition and variable shadowing ; although sophisticated, non-neural static-analysis

tools can solve them, these tasks pose a useful litmus test for neural code-reasoning frame-

works and demonstrate the ability of CodeTrek to generate challenging tasks that follow

real-world program distributions with modest effort. In my extensive evaluation, I demon-

strate that deeper relational information about code helps neural models outperform the

state-of-the-art.

4



Demonstrating the Superiority of Relational Representation of Code in

Robustness and Interpretability

I instantiate CodeTrek for code-to-text translation. Using an extensive evaluation, I

demonstrate CodeTrek’s superiority over the state-of-the-art in terms of accuracy and

robustness against semantic-preserving code transformations. In addition, I conduct a qual-

itative study of CodeTrek’s intrinsic interpretability.
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CHAPTER 2

Background

In this chapter, I describe neural network architectures (Section 2.1) including Graph Neural

Networks (Section 2.1.1), Transformers (Section 2.1.2), and Deep Sets (Section 2.1.3). Af-

terwards, I introduce existing methods for generating text (Section 2.2) and neural network

embeddings (Section 2.3). I conclude the chapter by reviewing code databases (Section 2.4).

2.1. Neural Network Architectures

Deep learning refers to a type of machine learning that allows learning from a hierarchy of

concepts. This approach avoids the need for domain experts to formally specify each feature

that the machine learning algorithm needs. It allows computers to learn complex concepts

on top of simpler ones (Goodfellow et al., 2016). Modern deep learning provides a powerful

framework for supervised learning (Goodfellow et al., 2016). Here, I provide an overview of

the deep neural network architectures discussed in this dissertation.

2.1.1. Graph Neural Networks

A graph is a flexible data structure that represents the relationships between a collection

of nodes. Graph Neural Network (GNN) is a framework for defining deep neural networks

over graphs. The key idea is to generate representations of nodes based on the structure of

the graph and its entities (Hamilton, 2020). The defining feature of a GNN is that it uses

neural message-passing in which vector messages are exchanged between nodes and updated

using neural networks. A GNN is composed of different iterations of message-passing, also

known as layers.

The basic intuition behind the GNN message-passing framework is that, each node contains

some information at the beginning. At every message-passing iteration, each node aggre-

gates the information from its local neighborhood with its current information to obtain

updated information. So, after every iteration, the information that each node carries is

updated (Geerts et al., 2021). The resulting node information is called node embedding.
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After the first iteration (k = 1), every node embedding contains information about its 1-hop

neighborhood, i.e., every node embedding contains information about the features of its

immediate graph neighbors, which can be reached by a path of length 1 in the graph; after

the second iteration (k = 2) every node embedding contains information about its 2-hop

neighborhood; and, after k iterations every node embedding contains information about its

k-hop neighborhood (Hamilton, 2020).

Node embeddings capture different types of graph information. The first kind is structural

information. This kind of information is useful when predictions depend on the overall shape

of the neighborhood of nodes. Another kind of information that the embedding captures is

the content, or features, of the nodes. GNN captures this kind of information based on local

graph neighborhoods (Hamilton, 2020).

Mathematically, the message-passing framework can be described in terms of update and

aggregate operations:

hk+1
u = updatek

(
hku, aggregate

k(hkv∈N (u))
)

(2.1)

In Equation 2.1, N (u) is the set of immediate neighbors of node u, hku is the embedding of

node u at iteration k, and aggregate and update are arbitrary differentiable functions. Some-

times, aggregatek(hkv∈N (u)) is called the message. After K iterations, the output of the final

layer produces the final embedding for each node. Varying update and aggregate functions re-

sults in different flavors of GNNs. Some of these variations are shown in Table 2.1. Prominent

examples include Graph Convolutional Networks (GCN) (Welling and Kipf, 2016), Graph-

SAGE (Hamilton et al., 2017), and Graph Attention Networks (GAT) (Veličković et al.,

2018). In GCN, the aggregate function is an average function, and the update function is

a non-linear activation function, like ReLU. GraphSAGE uses a fully connected neural net-

work for updates and an LSTM for aggregates. Finally, GAT computes a weighted average

of neighboring node features using an attention module, and updates the features using a

summation function and a non-linear activation function.
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Table 2.1: Variations of update and aggregate functions.

update aggregate
Average Average

Maximum Maximum
Summation Summation

Neural Network Neural Network

2.1.2. Transformers

Sequence-to-Sequence models are neural networks that transform input token sequences into

output token sequences. These models are often used for translating from one language to

another (e.g., Python to Java or English to French).

Overall Architecture. Transformers (Vaswani et al., 2017) are sequence-to-sequence neu-

ral networks that are effective at natural language processing. The Transformer architecture,

like some other sequence-to-sequence models, consists of two key components: an encoder

and a decoder. An encoder converts the input sequence into a continuous representation,

which is then passed along to a decoder. The decoder receives the output of the encoder in

conjunction with the output of the decoder for the previous timestep in order to generate

output tokens.

Positional Encoding. In some sequences, such as source code or text documents, the

order of the tokens is crucial for comprehension. So, an instrumental component of the

Transformer model is a positional encoding. Positional encoding adds relative position in-

formation to every token in a sequence. Suppose there is an input sequence of length L.

Equation 2.2 shows how the positional encoding of the kth element is computed using sine

and cosine functions. In this equation, k ∈ [0, L/2) is the position of the element in the

sequence, d is the dimension of the output embedding space, and n is a user-defined hyper-

parameter that is set to 10000 by Vaswani et al. (2017).

P (k, 2i) = sin(
k

n2i/d
), P (k, 2i+ 1) = cos(

k

n2i/d
), 0 ≤ i < d/2 (2.2)
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Attention Mechanisms. Attention computation (Bahdanau et al., 2014) is a mechanism

in neural networks that selectively focuses on certain parts of input data while processing it.

Attention mechanisms have become a popular tool in deep learning, particularly in natural

language processing and computer vision tasks. This is because they allow the model to

automatically learn which parts of the input data are most relevant for a given task.

There are several different types of attention operators. A basic type of attention is additive

attention (Bahdanau et al., 2014), which computes a weighted sum of input values based

on learned weights. It is implemented by computing a dot-product between a query vector

and a set of key-value pairs, and then applying a softmax function to the dot-product

to obtain attention weights. The dot-product attention (Vaswani et al., 2017) mechanism

is similar to additive attention, but instead of computing the dot-product with learned

weights, it computes the dot-product between the query and key vectors, then applies the

softmax algorithm. To prevent the dot-product from becoming too large, scaled dot-product

attention (Vaswani et al., 2017) scales the dot product by the square root of the dimension of

the key and query vectors. Finally, self-attention mechanism (Vaswani et al., 2017) is used

to compute the attention between the elements of a single input sequence. It allows the

model to focus on different parts of the input sentence while processing it. I will elaborate

on the concept of self-attention since it is a key concept in the following chapters.

The self-attention mechanism is a critical concept that helps understand Transformers and

some of this dissertation’s contributions. As a result of this mechanism, Transformers are

able to focus on all past tokens they have generated. Self-attention SA is calculated us-

ing Equation 2.3. In this equation, Q ∈ Rdq×dq , K ∈ Rdk×dk , and V ∈ Rdv×dv .

SA(Q,K,V) = Softmax (
QKT

√
d

)V (2.3)

Matrices in Equation 2.3 are computed as Q = XWQ, K = XWK , and V = XWV , where

X = (x1, ..., xn) is the input and xi ∈ Rd. The parameter d is commonly referred to as the

dimension of the hidden state. All three weight matrices WQ ∈ Rd×dq , WK ∈ Rd×dk , and
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WV ∈ Rd×dv are learnable parameters (Vaswani et al., 2017).

2.1.3. Deep Set

The Deep Set (Zaheer et al., 2017) architecture is a neural network architecture that is

designed to process sets of variable-size inputs. The key idea behind this architecture is to use

a neural network to learn a function that maps a set of inputs to a fixed-size representation,

which can then be used for further processing or classification. The architecture typically

includes the following steps:

1. Input Encoding: The first step is to encode the input set into a fixed-size representation.

This is typically done by applying a permutation-invariant function, such as a sum or

mean, to aggregate the set of inputs into a fixed-size representation.

2. Fully Connected Layers: The fixed-size representation is then passed through one or

more fully connected layers to extract features from the representation. These layers use

weights and biases to learn the representations.

3. Readout Layer: The final step is to use a readout layer to make predictions based on

the learned representations. This layer can be a fully connected layer or a softmax layer

for classification tasks.

4. End-to-End Training: The model is trained end-to-end with back-propagation. The

goal of training is to learn the weights and biases of the fully connected layers. This will

ensure that the predictions made by the readout layer are as accurate as possible.

Deep Set architecture offers the advantage of handling variable-size inputs. This is useful in

applications where the number of elements in the set can vary, but the deep set architecture

can handle this by learning a fixed-size representation of the input set. Additionally, the

permutation-invariant function used in the first step ensures that the architecture is robust

to the order of the input elements.
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2.2. Text Generation Techniques

The final step of training a model for code summarization is to assign each token in the

vocabulary a value that indicates its probability of being the next token in the output. The

generation of the next token continues until an end-of-sentence token is generated. There

are two major techniques for generating the output: greedy decoding and beam search.

Greedy Decoding. In greedy decoding, the goal is to generate a sequence of words based

on a given input. The basic idea behind greedy decoding is to generate the most likely

next word at each step, based on the current input and the model’s predicted probabilities.

Greedy decoding starts with an empty sequence and initial input in the form of a starting

token or a prompt. Then, the probability distribution of the next word over the vocabulary

is computed given the current input. Afterwards, the word with the highest probability

is chosen as the next word in the sequence. These steps are repeated until a stopping

criterion—such as reaching a maximum length or generating an end-of-sequence token—is

met. The main advantage of greedy decoding is that it is computationally efficient, as it only

requires one prediction at each step. However, it can lead to repetitive and generic text, as

the model only chooses the most likely next word and does not consider other possibilities.

Beam Search. An alternative strategy for text generation is beam search. In this ap-

proach, multiple sequences are built iteratively, and at the end of the search, a list of most

likely output sequences is obtained. As opposed to the greedy approach, beam search ex-

pands all possible next steps and keeps the k most-likely results, where k is a parameter that

controls the number of parallel searches or beams through the sequence of probabilities. k

is also called the beam size of the beam width. Greedy search is a special case of the beam

search where k = 1 (Goodfellow et al., 2016).
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2.3. Neural Network Embeddings

In the context of neural networks, an embedding is a mapping from objects (discrete

data) to vectors of real numbers (continuous space). As a result of such a transforma-

tion, one can use source code tokens or other program elements as input to neural net-

works (Chen and Monperrus, 2019). Neural network embeddings (Church, 2017; Alon et al.,

2019b) allow the continuous vectors to preserve the similarities or dissimilarities of dis-

crete objects. This is critical because in many applications the relationships between

data points are often more relevant than the individual data points themselves. Source

code can be embedded as sequences of source tokens (Kanade et al., 2020; Feng et al.,

2020; Chen et al., 2021), by abstract syntax trees (Alon et al., 2018, 2019a; Dinella et al.,

2020; Alon et al., 2020; Kovalenko et al., 2019), or through extensions or combinations of

them (Allamanis et al., 2018; Hellendoorn et al., 2020; Guo et al., 2020a).

The reader might wonder why one-hot encoding is not used instead. A one-hot encoding

approach encodes discrete variables as a bit-vector where only one bit is one or hot. However,

this encoding has several disadvantages. First, if a variable can get many unique values, the

bit-vector used for one-hot encoding can become too large. For example, the word choice

in a vocabulary with 50K entries requires a bit-vector of size 50K. Second, one can lose

essential information about the relationships between different values. In other words, the

distance between two one-hot vectors does not convey any information about the distance

(or similarity) of two values in the embedding space. For example, the words choice and

selection, even though similar in meaning, might not be close in the one-hot encoding space.
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2.4. Code Databases

The idea of querying code repositories like relational databases is intriguing. In the past few

years, a number of unified frameworks for querying code have been proposed in order to assist

developers in program understanding, analysis, and reverse engineering. These frameworks

allow developers to make various kinds of queries. Paul and Prakash (1994) categorize code

queries into two classes. The first class of queries are those that pertain to the syntax of

code. Examples include fetching all the recursive functions in a codebase or retrieving classes

that lack docstrings. The second class pertains to program flow and may involve inter- or

intra-procedural analysis of code. Examples include computing the call graph of a codebase

or finding all the uses of a particular variable.

One of the most notable examples of a query language for source code analysis is Cod-

eQL (Avgustinov et al., 2016). It allows developers to query complex and potentially re-

cursive data structures encoded in a relational data model (De Moor et al., 2007). CodeQL

combines ideas from SQL—a declarative programming language for accessing and manip-

ulating databases—and Datalog—a form of logic programming that has an elegant least-

fixpoint semantics. The industrial-strength and optimized implementation of CodeQL—

called Semmle—make it distinct from other competitors (De Moor et al., 2007). By using

logic queries, Semmle helps find bugs in codebases2. This platform constructs databases

from source code and uses CodeQL to query them. To better understand CodeQL, I explain

its main components next.

CodeQL databases. A CodeQL database stores all the program information including

but not limited to AST, def-use, call graph, and more. Similar to any relational database,

CodeQL databases have key-foreign-key relationships, are optimized for program data, and

can be queried using a SQL-like query language. Since every programming language differs

in terms of its capabilities and paradigm, each requires its own extractor. For the same

reasons, each programming language has its own schema for the database. The Python
2Semmle is adopted by GitHub (https://github.blog/2019-09-18-securing-software-together/).
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schema, for instance, specifies control-flow information, dataflow-information, AST, and

some meta-information. In contrast, the evaluation engine that carries out the analyses is

language-agnostic.

CodeQL queries. Semmle provides a pool of pre-defined CodeQL queries for analyz-

ing programs. As a consequence, new semantic information can be computed, such as

function call graphs and point-to graphs. The fundamental approach presented in this

dissertation—CodeTrek—uses the relational schema defined for Python by Semmle to

construct a database for each program, and extract the tuples of each relation using Cod-

eQL queries. An example of a CodeQL query borrowed from the official CodeQL repository

is presented in Figure 2.1. This query finds functions that call themselves in Python3.

1 import python
2

3 from PythonFunctionValue f
4 where f.getACall().getScope() = f.getScope()
5 select f

Figure 2.1: A CodeQL query to find functions that call themselves in Python.

3https://github.com/github/codeql/blob/main/python/ql/examples/snippets/recursion.ql
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CHAPTER 3

Extensible Relational Representation of Code

In this chapter, I introduce CodeTrek (Pashakhanloo et al., 2022b), a deep learning ap-

proach that accomplishes the following key design goals. Programming languages have well-

defined semantics that enable deterministic analyses to extract relevant information (such

as module imports, class inheritance, inter-procedural control flow, dataflow, def-use chains,

object escape, etc.). Therefore, the model can be exposed directly to it instead of learning

it indirectly from labeled data. In this way, the model can focus on learning information

only discovered in rich contexts. In addition, even when rich information is easily acces-

sible, making well-informed predictions in code-reasoning tasks requires intelligent context

collection to fit the needs of the task.

ID Kind CID
s1 except c1
s2 assert c2
s4 assign c1

 stmt 
ID Scope
c1 test.py:130-138

c2 test.py:5-10   

scope
Base Relations

Derived Relations

SID Var
s4 o

 def 

project
module
dependency

Program Analysis Queries

(derived relations)


btorrent

pickle










class SyncTestCase:
  ...
  def call_chk():
    o = TestObject()
    try:
      ...
      o.check()
    except HoleException:     
      errs.append(...)

...

 1:

 2:

 5:

100:

defr.py

log.py

test.py

...

...

   TABLE            (

        ID         VARCHAR(5)     PRIMARY KEY,

        Scope  VARCHAR(128)  NOT NULL

   )


   TABLE            (

        ID         VARCHAR(5)    PRIMARY KEY,

        Kind     VARCHAR(20)   NOT NULL,

        CID      VARCHAR(5)     NOT NULL,

        FOREIGN KEY (CID) REFERENCES scope(ID)

   )


   VIEW          [ID, Caller, Callee] AS  ...

Semmle Compiler


   VIEW          [SID, Var] AS

       SELECT s, v

        FROM stmt s, var v

        WHERE exists(expr e | e.defines(v)

             and s.getSubEx() = e

130:

131:
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 def 

 call 

ID Caller Callee
a1 f2 f1
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Figure 3.1: Example showing how CodeTrek translates an exception-prediction sample in a
Python program into a feature-rich representation that consists of base relations that capture
the program’s syntax and derived relations that capture semantic information computed
by program analysis queries. Specifically, CodeTrek predicts the best exception type to
replace the placeholder exception type HoleException on line 137.

CodeTrek leverages (1) a declarative program analysis framework to produce a rich, easily

extensible representation of context as a relational database, and (2) a biased graph-walk

mechanism to prune that context in a task-specific way before presenting it to a model
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based on Transformers (Vaswani et al., 2017) and Deep Sets (Zaheer et al., 2017). When

implementing CodeTrek, I build it upon Semmle (Avgustinov et al., 2016), which converts

codebases in C, Java, Python, etc., into relational databases that capture the underlying

structure and semantics of code, as well as a query language, CodeQL, for specifying program

analyses to compute new semantic information. Relational databases of code are not readily

suitable for embedding into a continuous representation. I thereby introduce a novel and

efficient procedure to convert a relational database into a graph.

Figure 3.2: CodeTrek’s logo. This logo is a very close adaptation of StarTrek™ logo.

I evaluate CodeTrek on four diverse tasks on real-world Python programs. They in-

clude two existing tasks, variable misuse and exception prediction, as well as two newer

ones, unused definition and variable shadowing. The newer tasks are sophisticated CodeQL

queries, written by program analysis experts, and enable testing the power of neural mod-

els: they both involve complex logical reasoning, and only 1.6% of the unused definition

samples contain bugs, which is more in line with real-world settings. CodeTrek achieves

an accuracy of 91%, 63%, 98%, and 94% on these tasks respectively, which is 2-19% points

higher than state-of-the-art neural models CuBERT, GREAT, GGNN, and Code2Seq. I also

demonstrate the robustness of CodeTrek in two out-of-distribution scenarios: real-world

variable misuse samples from GitHub and unused definition samples involving subtle code

perturbations introduced using a systematic test-generation framework, Skeletal Program

Enumeration (Zhang et al., 2017). CodeTrek achieves an accuracy of 57% and ROC-AUC

of 78%, respectively in these scenarios, which is 6–11% points and 14–36% points higher

than the baselines4.
4CodeTrek is available at https://github.com/ppashakhanloo/CodeTrek.
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Chapter Organization. I present an overview of CodeTrek in Section 3.1, elaborate on

each component of CodeTrek in Section 3.2, and introduce a task specification language

in Section 3.3. Then, I empirically and qualitatively evaluate CodeTrek in Section 3.4 and

Section 3.5. Finally, I discuss limitations and improvements in Section 3.6.
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3.1. Overview

Inspired by the idea of storing codebases as databases, CodeTrek represents a program as

a relational database. Specifically, CodeTrek leverages the per-language schema defined

by Semmle to uniformly store lexical, syntactic, and semantic program information as base

relations in the database—I focus on Python in this chapter, but the approach is language-

agnostic, as long as Semmle supports the language. Each relation contains information—

in the form of tuples—about a particular kind of program element, such as expressions,

statements, and so on. The columns of a relation specify its attributes. For instance, in

Figure 3.1, tuple (s1, except, c1) in the stmt relation specifies that s1 is an except

statement contained in a scope with identifier c1, and tuple (s4, o) in the def relation

specifies that variable o is defined in some statement with identifier s4. The schema also

defines referential integrity constraints of the form R.A → S.B where A is called a foreign

key of referencing relation R, and B is a unique attribute (e.g. a primary key) of referenced

relation S. For example, in Figure 3.1, one such constraint is stmt.CID→ scope.ID.

Facilitated by CodeTrek’s uniform representation of programs, task developers can easily

obtain new semantic information by writing program-analysis queries in CodeQL, an SQL-

like language. The newly derived information is also in the form of derived relations, which

maintains the uniformity of the relational representation. For example, in Figure 3.1, the

derived information is stored in def, which, together with call, can bias the prediction of

the most appropriate variable to replace a placeholder. A task developer need not be a

machine-learning expert to bring in more semantic information about programs: All they

need to do is write a CodeQL query, and the resulting derived information will be added to

the existing richness of the program’s available features in CodeTrek.

CodeTrek translates a relational database to a graph whose nodes correspond to tuples,

and whose edges follow referential integrity constraints. An example of such a graph is

illustrated in Figure 3.3 where each node is depicted as a circle along with its type (e.g.,

func) in white font. Orange and green nodes correspond to tuples of base and derived
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Figure 3.3: A partial illustration of a graph generated by CodeTrek.

relations, respectively. The attributes (e.g., name, kind, etc.) of the node are shown in

a box at the corner of the node. For each referential integrity constraint R.A → S.B, an

edge type R.A_S.B is defined, connecting the tuples of the two relations with the same

value on the edge attributes R.A and S.B. For brevity of presentation in Figure 3.3, when

there is a single such constraint between a pair of relations R and S, I omit the attributes

from the edge type. But I do not omit them when there are multiple such constraints,

such as in the case between relations func and call, namely, call.caller→ func.id and

call.callee → func.id. This graph view of program semantics helps extract succinct

context as input to a model. Context extraction from the resulting CodeTrek graph is

done via biased random walks of the graph, in a fashion specified by a walk specification.

The starting node—which I call an anchor node—may be example-specific (e.g., the node

containing the placeholder) or task-specific (e.g., all nodes holding a variable declaration).

In Figure 3.3, the node that represents tuple stmt(s1, except, c1)—which corresponds to

the statement on line 137 in Figure 3.1 (left)—is the anchor because the goal of the task is

to predict a suitable exception type in the except statement. The walk generator traverses

the graph by biasing traversal of edges according to each neighbor’s node type. If no bias

is specified, walks are simply fair random walks. Different probability mixes for different

node types encourage the model to sample walks more relevant to a task. An example of

such a walk is shown in Figure 3.3 using circles with thicker borders. This walk reaches the

“assert” node which in fact determines the exception type that should be used in the except

statement. For instance, to spend more time traversing longer-range dependencies in other
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Figure 3.4: Embedding of the walk highlighted in Figure 3.3.

functions, the developer can assign a higher value to call nodes. For evaluation, I assign

higher probabilities to nodes of types stmt and expr. I could achieve improved accuracy

for the tasks compared to baselines by only modifying the probabilities of up to 4 types of

nodes. Learning the probabilities in the walk specification is discussed in Chapter 4.

Finally, to convert random walks to a distributed representation, CodeTrek embeds each

walk—including the types and attributes of each node and edge in the walk—using a Trans-

former encoder (Section 2.1.2), and then produces an order-invariant representation of the

set of walks using the Deep Set architecture (Section 2.1.3). Using the Deep Set architecture

rather than potential alternatives is driven by the following reasons: (1) CodeTrek needs

to handle a different number of walks. The alternative approach of concatenating the walks

would not allow that as it would change the size of the neural network. (2) The collected

walks should be considered a set, not a sequence; so the order of the collected walks should

not matter to the neural network. The resulting hidden representation can then be used by

a decoder of choice to make predictions for the particular code-reasoning task.

Random walks to embed a graph are perhaps a regressive choice, compared to more modern

solutions such as GNNs or relational Transformers. For instance, DeepWalk (Perozzi et al.,

2014) uses random walks for distributed-representation learning in an online setting, and

Code2Seq (Alon et al., 2018) uses shortest paths between pairs of AST leaf nodes. I chose
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biased random walks for several reasons. First, this enables CodeTrek to choose task-

specific strategies to heuristically fetch relevant context for a task, rather than choosing to

embed all tokens of a function or class in lexical order. Second, in contrast to GNNs, this

enables CodeTrek to potentially follow much longer chains through the semantic graph

than what would be possible in a message-passing GNN of a tractable number of layers—this

was, in fact, the motivation behind the model architectures in Hellendoorn et al. (2020). Fi-

nally, in contrast to other walk-based approaches such as Code2Seq (Alon et al., 2018) and

AnyCodeGen (Alon et al., 2020), which share some of my motivations, my proposed graph

structure has much richer connectivity and is larger. Code2Seq and AnyCodeGen only con-

sider paths ending at token-bearing leaf nodes, with only AST interior nodes in between,

whereas CodeTrek admits arbitrary paths through the graph. For instance, paths with

more than two token nodes that are not at the end-points, e.g., the walk illustrated in Fig-

ure 3.3 using circles with thicker borders is admissible for CodeTrek; not for Code2Seq.

CodeTrek builds upon the above techniques and extends to relational graphs, with differ-

ent sampling strategies and neural architectures better suited for database representation.

3.2. Building Blocks

In this section, I describe the building blocks of CodeTrek. Preprocessing consists of two

steps: (a) turning the codebase into a relational database (Code2Rel) using a pre-existing

set of analyses and the developer’s own analyses, and (b) mapping the relational database

to a graph (Rel2Graph). Then, a graph is processed into sets of graph walks to present to

a model. Finally, I train the models using a cross-entropy loss to implement a particular

task. In the rest of this section, I describe the algorithms that CodeTrek uses for modeling

source code.

3.2.1. Translating Source Code to Relational Database

Code2Rel applies to the codebase the system’s base program analysis queries, which make

up the base relations, as well as those provided by the developer, which form the derived

relations. The result is a database comprising a number of named tuples for each relation
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Base Relations Derived Relations
Python 95 277
Java 90 462
C++ 182 553

Table 3.1: Universe size of the base and derived relations that are defined by Semmle.

type. For Python, I collected 95 base relations and 277 derived relations, although adding

more derived relations is simply a matter of writing a few lines of CodeQL. Algorithm 1

formally describes how source code is transformed into tuples.

CodeTrek views program information as relations. Table 3.1 shows the tentative number

of relations in three common programming languages. For example, FPython represents the

dependencies between 95 base relations plus 277 derived relations.

Note 1: Base and derived relations are both represented in the same way, so there is no

fundamental difference between them. It was merely a choice to distinguish between them

in the text so that it is easier to understand which relations are cheap to compute (i.e., base

relations) and which ones are more costly (i.e., derived relations).

Note 2: In Algorithm 1, the topological ordering is independent of the program P but

depends on the programming language in which P is written.

Algorithm 1 (Code2Rel) Given a program P , a set of base relation names RB, and a
set of derived relation names RQ, construct and return database D. Note that the term
node in this algorithm refers to nodes in the relation dependency graph, not to nodes in the
program graph (e.g., in Algorithm 2) that the model will see.

1. Initialize D to the set of all base relations in RB by translating program P .
2. Let RS be the set of relation names reachable from RQ in relation dependency graph F:

(a) RQ ⊆ RS

(b) if r ∈ RS and r → r′ ∈ Edges(F) then r′ ∈ RS

3. Let F be the sub-graph of F induced by set of nodes RS :
(a) Nodes(F ) = RS

(b) Edges(F ) = { r → r′ ∈ Edges(F) | r, r′ ∈ Nodes(F ) }
4. Compute a topological ordering L = [r1, ..., r|Nodes(F )|] of F .
5. For each r in L in order:

Evaluate the query for computing relation r on set D and add the result to D.
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1 class TestObject:
2 ...
3 def aMethod(self):
4 ...
5 assert self.z == 0
6 ...
7 class SyncTestCase:
8 ...
9 def testSync(self):

10 o = TestObject()
11 ...
12 def callMethod():
13 try:
14 o.aMethod()
15 ...
16 except HoleException:
17 errors.append(...)

Figure 3.5: Sample Python program.

3.2.2. Translating Relations to Program Graph

Rel2Graph interprets the relations produced by Code2Rel (Section 3.2.1) as a graph. In this

graph, each named tuple is represented by a node with the values of the tuple attributes

as its features. Edges are added between these nodes such that the edge type R.A_S.B

is defined for each referential integrity constraint R.A → S.B between nodes representing

tuples of relations R and S. Algorithm 2 formally describes how relations are translated into

program graphs.

Algorithm 2 (Rel2Graph) Given a database D, construct a program graph G.

Construct an undirected and labeled graph G as follows:
(a) Nodes(G) = D
(b) Add to Edges(G) each (t1, t2, l) that satisfies the following conditions:

i. l : R.[a1, ...ak] → S.[b1, ..., bk] is a referential integrity constraint in the schema
of database D

ii. t1 is a tuple of relation named R in D
iii. t2 is a tuple of relation named S in D
iv. for all i ∈ [1..k] : t1.ai = t2.bi
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Example 3.2.1. Algorithm 2 takes the relational database—i.e., the set of named tuples—

that corresponds to the example program in Figure 3.5, and generates a program graph.

In this graph, nodes are named tuples such as n1=func(f1,aMethod,s2), n3=call(f2,f1),

and n2=func(f2,callMethod,s3). Tuples are connected to each other through referential

integrity constraints. The type of the edge between two nodes is determined by a tuple of

relation names and the common attributes, which is ⟨Functions.ID,Calls.Callee⟩ in this

case.

3.2.3. Translating Graph to Walks

Given a code database that is converted to graph G via Rel2Graph (Section 3.2.2), I propose

to represent it by the embedding of a set of walks W , via the procedure Graph2Walks.

Graph2Walks projects a code graph as produced by Rel2Graph to a set of walks. These walks

are generated according to a walk specification which defines the anchor node predicate,

traversal bias, and target walk length. I will describe this specification language in more

detail in Section 3.3. Graph2Walks samples from the distribution of such random walks, by

repeatedly picking a node satisfying the anchor predicate, and traversing up to a maximum

number of neighbors, following the transition probabilities specified.

Algorithm 3 (Graph2Walks) Given a program graph G, walk specification S =
⟨C, B,min,max⟩, and the number of walks w, sample a set of walks W .

1. Initialize the set of walks W = ∅.
2. Compute the set of anchors A = {t|t ∈ Nodes(G) ∧ t conforms to S.C}.
3. While |W | ≤ w:

(a) Pick a random tuple tcurr from A.
(b) Construct walk by repeating the following steps between S.min and S.max times:

i. Set tprev := tcurr.
ii. Set tcurr to a t ∈ Neighbors(G, tprev) with prob. proportionate to S.B[type(t)].
iii. Let ecurr = (tprev, tcurr, l) ∈ Edges(G)
iv. If ecurr /∈ walk then extend walk by ecurr. Otherwise set tcurr := tprev.

(c) If walk /∈W then add it to W .

The resulting walks are collected as token sequences of relation types of nodes, their attribute

values, and the edge types traversed, in the order of traversal. The first row in Figure 3.4

shows such a walk representation corresponding to the walk highlighted in Figure 3.3. Al-
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gorithm 3 formally describes how a set of walks is sampled from a program graph.

Example 3.2.2. The sequence of edges that are numbered 1 through 7 in Figure 3.3, is an

example of a walk sampled from program graphs. The anchor of this walk is stmt(s1, except, c1),

and the length of this walk is 7—the number of nodes along the walk.

3.2.4. Integrating all the Components

The algorithms described in Section 3.2.1, Section 3.2.2, and Section 3.2.3 are pieced together

to generate walks from raw source code as shown in Algorithm 4.

Algorithm 4 (Code2Walks) Given a program P and a task specification T =
⟨RB, RQ, S, n⟩, generate a set of walks W .

1. D = Code2Rel(P, T.RB, T.RQ)
2. G = Rel2Graph(D)
3. W = Graph2Walks(G,T.S, T.n)

3.2.5. Embedding Sampled Walks

Given a walk w = [n0, e0, n1, e1, . . . , nN−1] of length N steps consisting of N nodes and

N − 1 edges, CodeTrek produces an initial embedding Xw ∈ R(3N−1)×d, where d is the

embedding dimension. It consists of three segments. The first N rows of the embedding ten-

sor represent the N node types (relation names), using an embedding lookup in En ∈ RR×d,

where R is the number of relations. The next N rows represent the attribute values of

the N nodes; I subtokenize attribute values (using a V -sized WordPiece vocabulary for

attribute values), embed each subtoken using Ev ∈ RV×d, and mean-pool the subtoken em-

beddings into each node’s attribute embedding. The last segment represents the N −1 edge

types (recall that an edge type is a tuple of two relation names and primary-key/foreign-key

attributes), using an embedding lookup in Ee ∈ RI×d, where I is the number of referential-

integrity constraints in the database. All three embedding matrices En, Ev, Ee are learnable

parameters. Each individual part of the embedding tensor gets its own sinusoidal posi-

tional encoding (Section 2.1.2) denoted as Pw ∈ R(3N−1)×d. I use a Transformer encoder to
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represent the embedding of walk w as

ew = pooling
(
Transformer(Xw + Pw)

)
: R(3N−1)×d 7→ Rd, (3.1)

where after the last layer of Transformer I perform mean-pooling over all 3N − 1 elements

of the walk, to obtain a d-dimensional vector ew. The steps for embedding a walk sampled

from the graph in Figure 3.3 are illustrated in Figure 3.4.

3.2.6. Training and Inference

An example consists of a set of walks and a ground-truth label, (W, ŷ). Given an unordered

set of walk embeddings {ew}w∈W , I build a classifier by using the construction

y = MLP
(
DeepSet({ew}w∈W )

)
, (3.2)

where y denotes the predicted label, and optimize for cross entropy loss. For binary classi-

fication tasks, I use a more interpretable model via

y =
∑
w∈W

αwσ(MLP(ew)), (3.3)

where σ(·) is the sigmoid function, and

αw =
expMLP(ew)∑

w′ ∈W expMLP(ew′)
. (3.4)

This way, one can inspect the individual walks that contributed the most (i.e., the highest

αw) to the positive or negative predictions, and see how that aligns with human reasoning.

I refer to αw as the walk score. I train the models using the Adam optimizer with 8 GPUs.

3.3. Task Specification Language

In this section, I present a specification language to define new and existing code-reasoning

tasks. CodeTrek builds graphs and generates walks during task-specific training based on

the specifications written in this language.
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Task specifications describe base relation names, derived relation names, a number that

specifies the maximum number of walks to generate when training a model for a specific

code-understanding task, and a walk specification. A walk specification defines the length,

anchors, and relation weights for a set of walks. More precise definitions of task specification

and walk specification can be found in Definition 3.3.1 and Definition 3.3.2, respectively.

Definition 3.3.1 (Walk specification). A walk specification S = ⟨C, B,min,max⟩ is a tuple

in which C is a conditional expression that filters walk anchors from the set of nodes in graph

G, B is a map of bias values that correspond to each relation name, and min,max ∈ N+

specify the minimum and maximum length of the walks generated by the specification.

Definition 3.3.2 (Task Specification). A task specification T = ⟨RB, RQ, S, n⟩ is a tuple in

which RB is a set of base relation names, RQ is a set of derived relation names, S is a walk

specification as described in Definition 3.3.1, and n is the number of walks to be generated.

3.3.1. Grammar of Task Specification Language

The syntax of the task specification language is shown in Table 3.2. For the full language

specifications please refer to Appendix B. The semantics of formula, predicate, etc. follows

the semantics that QL language reference5 defines. The set of nodes (i.e., tuples) that satisfy

the predicate are the anchors (i.e., the starting points) of the walks.

Note 1: Distinguishing between the base and the derived relation is not fundamental to

CodeTrek. This distinction allows us to easily distinguish between cheap (i.e., base) and

costly (i.e., derived) relations.

Note 2: Since the optimal number of walks for achieving high performance depends on

tasks, the number of sampled walks (N in Table 3.2) is included in the task specification.

Note 3: The target of a task is specified using a conditional expression which is a part

of the walk specification and filters the walk anchors from the set of all graph nodes (i.e.,

expression C in Table 3.2).
5https://codeql.github.com/docs/ql-language-reference/ql-language-specification/.
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walk_spec ::= { task_spec ::= {
C = predicate , RB = relations ,
B = scores , RQ = relations ,
min = INT , S = walk_spec ,
max = INT N = INT
} }

scores ::= { score_tuples } relations ::= { rels }
score_tuples ::= score | score_tuples rels ::= rel | rels
score ::= rel : INT ; rel ::= relationName

predicate::= { x : formula } | random
formula ::= fparen | disjunction | conjunction | negation

Table 3.2: Task Specification Syntax (Short Version). Tokens in bold font are language
keywords and tokens in italic are non-terminals. The keyword x refers to any node, and
the formula that comes after the colon (:) in front of it is used to filter specific nodes. INT
is an integer literal. If no score is specified for a relation name, then its score is initialized
to 1. Moreover, random is a keyword that can be used when no particular conditions are
defined on anchors and they should be sampled randomly. “relationName” is any available
relation name. For a full list of available Python relation names refer to Appendix C. For
the full Task Specification Syntax refer to Appendix B.

3.3.2. Specifications for Evaluated Tasks

Using the grammar defined in Section 3.3.1, we describe the specifications of multiple tasks.

In these example specifications, ellipsis (...) indicates the rest of the universe of base relations

as designed in the Semmle framework. The specification language does not include it; it is

used merely to simplify the text.
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VarMisuse-Fun

1 {
2 RB = { "stmt"; "var"; "expr"; "ssa -defn"; ... },
3 RQ = { },
4 S = {
5 C = { x : (x instanceof "expr") and (x.kind is "name") },
6 B = { "stmt": 5; "expr": 5; "var": 5; },
7 min = 4,
8 max = 16
9 },

10 N = 500
11 }

Exception-Fun

1 {
2 RB = { "stmt"; "var"; "expr"; "ssa -defn"; ... },
3 RQ = { } ,
4 S = {
5 C = { x : (x instanceof "stmt")
6 and (x.kind is "except ")
7 and (x.type is "HoleException ") },
8 B = { "stmt": 5; "expr": 5; "var": 5; },
9 min = 4,

10 max = 16
11 },
12 N = 100
13 }
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Exception

1 {
2 RB = { "stmt"; "var"; "expr"; "ssa -defn"; ... },
3 RQ = { "call" },
4 S = {
5 C = { x : (x instanceof "stmt")
6 and (x.kind is "except ")
7 and (x.type is "HoleException ") },
8 B = { "stmt": 5; "expr": 5; "module ": 0; },
9 min = 10,

10 max = 24
11 },
12 N = 100
13 }

DefUse-Fun

1 {
2 RB = { "stmt"; "var"; "expr"; "ssa -defn"; ... },
3 RQ = { },
4 S = {
5 C = { x : (x instanceof "expr")
6 and (x.kind is "name")
7 and ((x.context is "write ")
8 or (x.context is "param")) },
9 B = { "stmt": 5; "expr": 5; "var": 5; },

10 min = 4,
11 max = 16
12 },
13 N = 100
14 }
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VarShadow

1 {
2 RB = { "stmt"; "var"; "expr"; "ssa -defn"; ... },
3 RQ = { "call" },
4 S = {
5 C = { x : (x instanceof "var") and x.isGlobal () },
6 B = { "stmt": 5; "expr": 5; "var": 5; },
7 min = 4,
8 max = 16
9 },

10 N = 100
11 }

3.4. Evaluation

3.4.1. Experimental Setup

Task Selection

I consider two main criteria in selecting tasks. The first is locality, which is determined by

whether reasoning within a function typically suffices, or whether inter-procedural reasoning

is required. The second is whether the task can be stated as a logic problem that can be

solved using declarative queries that rely on a set of base relations. For creating datasets

for such tasks, I use Semmle CodeQL queries; for the tasks that cannot be solved using

declarative queries, I rely on available datasets. Tasks are listed next.

1. VarMisuse. Given a function and a variable accessed in it, predict whether the variable

is misused. I also consider a variation of this task, VarMisuse-Fun (Kanade et al.,

2020), that takes only a function and predicts whether all variables are used correctly in

the function. Note that neither variation can be solved using declarative queries: given

a well-formed program, no logic query can deterministically decide that a variable is

misused, since that decision depends on the intended semantics.

2. Exception. Given a module containing a masked exception type in an except clause,

predict the most appropriate built-in exception type out of 20 choices. I also consider a
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variation of this task, Exception-Fun (Kanade et al., 2020), that is similar to Excep-

tion but takes a single function. Although Exception needs inter-procedural reasoning,

neither variation can be solved using declarative queries, since the choice of the most ap-

propriate exception type is subjective in Python.

3. DefUse. Given a function and a local variable definition, predict whether the definition

is used. I also consider a variation of this task, DefUse-Fun, that takes a function as its

input and predicts whether any definitions are unused. This task is especially interesting

because the real-world distribution of programs that contain unused definitions is skewed.

What makes this choice even more important is that “...there is a fundamental mismatch

between the real bug distribution found in public code repositories and the synthetic bug

distribution used to train and evaluate existing detectors...” and “...correct programs

outnumber buggy ones in practice...” (He et al., 2022). So the results one obtains from

this new dataset is potentially closer to what engineers encounter when using neural

models in real-world scenarios. Both variations can be computed using logic queries and

require only intra-procedural reasoning.

4. VarShadow. Given a module, predict whether any variable defined within a certain

scope has the same name as a variable defined in an enclosing outer scope, thereby

shadowing that latter variable. To understand the importance of this task, one needs to

know more about scopes in Python. Python statements can access variables in both the

local and global scopes. A local variable which has the same name as a global variable

shadows or hides the global variable. Unless the developer explicitly references a global

variable with the global6 statement, the local variable is used. It can lead to confusion

since a programmer may think the variable refers to a global78. Similar to Exception,

the VarShadow task requires inter-procedural analysis to reason over both local as well
6https://docs.python.org/3/reference/simple_stmts.html#the-global-statement
7https://github.com/github/codeql/blob/main/python/ql/src/Variables/ShadowGlobal.qhelp
8One might wonder why I chose the task of detecting global shadowing over local shadowing. In Python,

local shadowing is generally considered less important because it only affects the code within a specific scope
and does not propagate to other scopes.
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as global variables. Also, this task can be computed using a logic query.

Benchmark Suite

I use the ETH Py150 Open corpus consisting of 125K Python modules9. It is a de-duplicated

and redistributable subset of ETH Py15010. Specifically, for the non-declarative tasks, I use

the datasets released by Kanade et al. (2020). Since these are function-level samples but

the Exception task is module-level, I augment the function in each sample with the entire

containing module for this task. For the declarative tasks, I use the analyses written in

CodeQL to annotate all functions (or modules, as applicable) in ETH Py150 Open. The

analysis queries can be found in Appendix D. All datasets consist of real examples, except

for VarMisuse-Fun and VarMisuse where variable misuses are synthetically introduced

into real code. I use a number of apparent variable misuses from GitHub commits to test

the models and baselines on a realistic dataset.

Baselines

To compare CodeTrek’s performance with state-of-the-art techniques, I select four base-

lines: I use GGNN by Allamanis et al. (2018) and Code2Seq by Alon et al. (2018), build

classifiers on top of the GREAT encoder by Hellendoorn et al. (2020), and fine-tune the

pre-trained Python model for CuBERT by Kanade et al. (2020), which is essentially the

Transformer-based classifier implementation of BERT. For Code2Seq, I use ASTs as base

program structures as described by Alon et al. (2018). I sample leaf-to-leaf paths from these

ASTs. The number of paths I sample is the same as the number of walks I sample for train-

ing CodeTrek models. For GGNN and GREAT, I compute the dataflow, control flow,

and lexical information described by Allamanis et al. (2018) and Hellendoorn et al. (2020),

respectively, using Semmle CodeQL and augment program ASTs with those edges.

Hyperparameters

The following section discusses the parameters and hyperparameters I used for training

CodeTrek and the baselines.
9https://github.com/google-research-datasets/eth_py150_open

10https://www.sri.inf.ethz.ch/py150
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Task CodeTrek GGNN Code2Seq GREAT CuBERT
VarMisuse 0.91 ± 0.003 0.72 ± 0.004 – 0.84 ± 0.002 0.89 ± 0.003
VarMisuse-Fun 0.70 ± 0.004 0.58 ± 0.004 0.52 ± 0.005 0.86 ± 0.003 0.84 ± 0.003
Exception 0.63 ± 0.003 0.30 ± 0.02 0.30 ± 0.01 0.45 ± 0.008 0.42 ± 0.008
Exception-Fun 0.65 ± 0.01 0.53 ± 0.02 0.51 ± 0.008 0.68 ± 0.007 0.69 ± 0.007
DefUse ∗ 0.98 ± 0.002 0.78 ± 0.07 – 0.87 ± 0.05 0.76 ± 0.01
DefUse-Fun ∗ 0.91 ± 0.005 0.77 ± 0.07 0.66 ± 0.01 0.84 ± 0.007 0.71 ± 0.01
VarShadow 0.94 ± 0.007 0.74 ± 0.01 0.70 ± 0.01 0.94 ± 0.008 0.91 ± 0.008

Table 3.3: Accuracy results of CodeTrek. Rows that are marked by ∗ are measured by
ROC-AUC, and the rest are measured by accuracy. The best performance in each row is
denoted in boldface.

CodeTrek I train CodeTrek models with a learning rate of 10−4, 4 transformer encoder

layers, an embedding size of 256, 8 attention heads, and 512 hidden units. I sample 100

walks with lengths of up to 24 in each graph for every task, except for the VarMisuse-Fun

task for which I sample 500 such walks per graph. The reason is that the anchors I select for

VarMisuse-Fun task are all the variables in the given program which can be well over 100

variables. So, I increase the total number of walks to include more random walks starting

from each variable.

CuBERT I fine-tune the CuBERT pre-trained model that is provided by Kanade et al.

(2020) with a learning rate of 10−4, 4 transformer encoder layers, and 512 hidden units. I

use the checkpoint11 that is pre-trained on examples of size 512 tokens.

GREAT I train GREAT models with a learning rate of 10−4, 10 transformer layers, 8

attention heads and 512 hidden units. The example size in 512 tokens.

Code2Seq I train Code2Seq models with a learning rate of 10−3, 4 layers, 512 hidden

units, and embedding size of 256. I sample 100 paths in each AST.

GGNN I train GGNN models with a learning rate of 10−4, 10 layers, a latent dimension

of size 128, and a message dimension of size 128.
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1 def get_month(self , t):
2 month , _, _ = t
3 def validate(month):
4 return is_valid(month)
5 return self.month

Figure 3.6: Example DefUse-Fun task.

3.4.2. Accuracy

I evaluate the performance of CodeTrek and the baseline techniques on all the tasks

described in Section 3.4.1, all presented as classification tasks. I report the average of the

metric that I use to measure the performance of each task. I use ROC-AUC as the metric

for DefUse and DefUse-Fun tasks due to their unbalanced datasets, and accuracy for

the remaining tasks. In theory, ROC-AUC could be used in all cases. The reason I chose

accuracy over ROC-AUC unless absolutely necessary is that accuracy can be computed,

understood, and interpreted more easily compared to ROC-AUC. The results are reported

in Table 3.3. In 5 out of 7 tasks, CodeTrek outperforms GGNN, Code2Seq, GREAT, and

CuBERT by 2–19% points.

There are various reasons why CodeTrek performs better than these approaches. First,

declarative tasks such as DefUse-Fun (or DefUse) require complex reasoning about the

interactions between program variables. For instance, one needs to reason about the uses

and definitions of variables in a flow-sensitive manner to determine whether any unused

definitions exist in a program. Consider the code snippet in Figure 3.6. The definition of

the variable month on line 2 is unused but that at line 3 is used in line 4. CodeTrek gives

a majority of the walks sampled using the definition at line 3 a high score (around 0.99

out of 1), indicating the existence of a use of that definition. However, most of the walks

sampled from the definition of month at line 2 were given a lower score, and so CodeTrek

determines that this definition is unused. I observe that both CuBERT and GREAT fail to

distinguish between the definitions on lines 2 and 3, and so they predict both to be used.
11gs://cubert/20210711_Python/pre_trained_model_epochs_2__length_512
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Additionally, some tasks such as Exception require reasoning beyond the boundaries of

a single function to make informed predictions. Functions in the chain of function calls

can be lexically far from each other, thus rendering the limited context size of CuBERT and

GREAT insufficient. I observe that GGNN fails in the presence of such long call chains on par

with findings of Alon and Yahav (2020). CodeTrek addresses this kind of mispredictions

by readily using a call graph relation to connect the chain of function calls. This enables

CodeTrek to traverse a long distance without the need to consider other statements in the

program that have no effect in raising an exception.

However, CodeTrek performs worse than CuBERT in Exception-Fun. This could be

attributed to the fact that CuBERT is pre-trained on around 7 million Python programs,

and therefore is able to memorize tokens from several instances of try-except blocks. An

example of a heuristic that it learns is that in presence of tokens such as request or response

in the context, it suggests catching HTTPError, which is usually the correct choice. However,

its prediction is not robust against changes in the variable names. For instance, changing

the names of a few nearby variables to request or response forces CuBERT to predict

HTTPError regardless of the semantics. CodeTrek on the other hand, does not rely on

memorizing the tokens, but learns to assign high probabilities to walks that correctly traverse

a chain of function calls starting from the try blocks to locations in programs (or their

libraries) where the exception is originally raised.

CodeTrek also performs worse than GREAT in VarMisuse-Fun. This is because every

node that corresponds to a variable is selected to be an anchor for this task. The total

number of walks (500 in this task) is divided among these variables. However, there can be

hundreds of variables in some programs, resulting in few walks generated for each variable

in such cases, diminishing the ability of CodeTrek to learn sufficient information about

each variable.

In summary, CodeTrek outperforms state-of-the-art in complex code-reasoning tasks that

cannot merely rely on memorizing source code tokens.
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Task CodeTrek GGNN Code2Seq GREAT CuBERT
VarMisuse-Real 0.57 0.51 0.50 0.49 0.46
DefUse-SPE 0.78 0.53 0.63 0.41 0.47

Table 3.4: Robustness results of CodeTrek.

3.4.3. Robustness

I evaluate the robustness of CodeTrek on additional test data that does not follow the

distribution of the training data. This data includes two new datasets: one representing

real-world bugs for the VarMisuse-Fun task and the other consisting of programs mutated

using a systematic test-generation framework for the DefUse-Fun task. The results are

reported in Table 3.4.

Real-world bugs. I manually collect 199 real-world instances containing a VarMisuse-

Fun bug and their corrected counterparts (a total of 398 samples) from commits on GitHub

and use them as testing data for the VarMisuse-Fun task. I define a VarMisuse-Fun

bug as the occurrence of a misused variable that is changed to another in-scope variable in

the commit. This dataset provides a set of examples that reflect the types of errors that

can occur in actual software development. I evaluate the baselines using this real-world

set of bugs. CodeTrek outperforms baselines in detecting real-world variable misuse bugs

(VarMisuse-Real) by achieving an accuracy of 57% which is 6% points better than the

second best result obtained by GGNN.

Mutated programs. There are several approaches to mutating existing datasets, in-

cluding transforming existing data (Yang et al., 1992), generating synthetic programs, and

fuzzing. A representative approach that has been used to systematically evaluate the ro-

bustness of compilers is Skeletal Program Enumeration (SPE), proposed by Zhang et al.

(2017). SPE parameterizes each program by a set of its variables, and replaces each variable

name exhaustively with other in-scope variable names. I generate variations of the DefUse-

Fun testing data using this technique, and evaluate the baselines on this mutated dataset

(DefUse-SPE). CodeTrek outperforms all baselines in classifying these perturbed pro-
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grams by achieving the ROC-AUC score of 78% which is 15% points better than the second

best result obtained by Code2Seq.

The poor performance of the baselines can be explained by the the fact that the code

generated by SPE is out-of-distribution. For example, the assignment a = a + a is unusual

in real code, but occurs frequently in SPE-generated samples. Despite this, the inductive

bias borne by rich relational information during training remains applicable and prevails

over the unusual-looking token sequences, thus explaining CodeTrek’s performance.

These results suggest that sampling walks can be a promising strategy for robustness. Inter-

estingly, the runner-up in this study is Code2Seq—another walk-based approach. I inspected

the paths in both approaches to understand the reason behind the difference in performance

of Code2Seq and CodeTrek despite their similarities. I identified two possible reasons: 1)

the kinds of program information that can be captured from an AST are limited compared

to the program graph I propose, and 2) several walks that CodeTrek prioritizes for this

task cannot be embedded by Code2Seq.

3.4.4. Effectiveness on Long-range Tasks

I evaluate the effectiveness of CodeTrek on tasks that require reasoning beyond function

boundaries. CodeTrek achieves this ability by readily incorporating relations that capture

inter-procedural or inter-modular dependencies such as call graphs. To demonstrate this, I

compare CodeTrek’s performance on Exception with vs. without incorporating the call

graph information at training time. CodeTrek achieves an accuracy of 52% when call

graph information is not provided, which increases to 63% after providing the call graph

information between functions within a module.

Consider the representative example in Figure 3.7, snipped and simplified from the zipfile

package12, to illustrate the types of mistakes that baselines (and also CodeTrek without

call graph information) make. In this example, the model predicts the exception type that

should be caught on line 11. However, to make an informed prediction, the model must
12https://github.com/python/cpython/blob/3.9/Lib/zipfile.py
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1 class ZipFile:
2 def __init__(...):
3 self.__check_compression(...)
4 def __check_compression(...):
5 raise NotImplementedError
6 # ...2000 lines of code...
7 class TestZipFile:
8 def test(path):
9 try:

10 zf = ZipFile(path)
11 except HoleException:
12 log.warning()

Figure 3.7: Example Exception task.

consider the exceptions that may be raised when calling the ZipFile constructor (line 10).

Hence, the definition of the constructor (line 2) must be taken into consideration. This

constructor calls another function __check_compression in which a NotImplementedError

is raised on line 5. This chain of function dependence can be easily represented using a call

graph. Therefore, CodeTrek, once provided with a call graph, will eventually traverse the

path that reaches this raise statement from the except statement through call graph edges.

3.4.5. Sensitivity Analysis

Number of Walks

I evaluate the sensitivity of CodeTrek at test time to the number of walks that are sampled

from program graphs. Almost all the models for the considered tasks are trained on 100

sampled walks per program. Only VarMisuse-Fun is trained on 500 walks due to the

large number of anchor points this task requires. The results are reported in Figure 3.8. I

observe that the accuracies of the models increase with the number of sampled walks. In

some tasks, such as DefUse and VarMisuse that involve local reasoning about one point

in the program, reducing the number of walks from 100 to 50 reduces the accuracies of

the models by a very small amount. On the other hand, for tasks that require reasoning

about numerous points in the program (e.g., DefUse-Fun) or reasoning globally (e.g.,

Exception) decreasing the number of sampled walks has a bigger impact on the accuracy.
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Figure 3.8: Sensitivity to the number of walks.

# Steps 4 6 12 18 24 30
Accuracy 0.41 0.49 0.60 0.63 0.64 0.65

Table 3.5: Sensitivity to the length of walks.

For instance, reducing the number of walks for the DefUse-Fun task from 100 to 75 reduces

the accuracy of that model by around 26%.

Length of Walks

To measure the sensitivity of CodeTrek to the length (i.e., number of steps) of walks, I

train a number of models for the Exception task with walks of length 4–30 steps. I report

accuracy changes in Table 3.5. Longer walks tend to improve accuracy. Walks that are too

short (4 or 6 hops) result in models with low accuracy (42% and 51%, respectively) because

they are not able to capture enough information to make predictions. There is, however, a

point when enough context is captured (e.g., 24 hop walks) and longer walks do not improve

performance significantly.

3.4.6. Representation Impact

To evaluate the impact of different code representations, I train two models for each task

using CodeTrek’s architecture: for one set of models, the walks are sampled from rela-
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Task Relational AST
VarMisuse 0.91 0.63
VarMisuse-Fun 0.70 0.55
Exception 0.63 0.37
Exception-Fun 0.65 0.62
DefUse 0.98 0.63
DefUse-Fun 0.91 0.67
VarShadow 0.94 0.73

Table 3.6: The impact of intermediate code representation on performance.

tional graphs whereas for the other set of models, the walks are sampled from ASTs. The

performance results are reported in Table 3.6. Notably, the models trained on walks sampled

from relational graphs are about 3–35% points more accurate than models trained on walks

sampled from ASTs.

3.4.7. Importance of Bias in Random Walks

I evaluate the usefulness of the ability to bias random walks in CodeTrek. The accuracy

results that are reported in Table 3.3 are all trained on biased random walks.

Specifically, in all of the tasks, nodes with types stmt, expr, and variable are biased such

that they are 5 times more likely to be traversed compared to other kinds of neighboring

nodes. In addition, in the Exception task, I decrease the bias assigned to nodes of type

module to 0 to avoid traveling from one function to another through the module node they

have in common. This forces the walks to only go to other functions by taking call graph

edges between them. I select one of the tasks, Exception-Fun, to measure the accuracy in

the absence of said biases. I re-train Exception-Fun using uniformly sampled walks and

observe that the accuracy reduces from 65% to 58% as a result.

3.4.8. Ablations

I measure the contribution of the positional encoding which is used in embedding walks, the

impact of derived relations in improving the accuracy, and the effect of the biases assigned

to node types. I report the results in Table 3.7. Every row in this table shows a different

configuration indicated by 1-4.
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Config # Positional Encoding Biases Derived Relations Accuracy (%)
1 ✓ ✓ ✓ 63.83
2 × ✓ ✓ 62.06
3 × × ✓ 55.76
4 × × × 45.19

Table 3.7: Contribution of different factors to accuracy of Exception task.

I train a model for the Exception task while using the positional encoding in embedding

the components of each walk, the call relation that shows the relationships between func-

tions and their callers, and the biases which are assigned to nodes of type stmt, expr, and

variable (Config 1). This setting is similar to that of Table 3.3 in Section 3.4.2. With this

setting, CodeTrek achieves an accuracy of 63.83% on the Exception task. If I remove

the Positional Encoding (Config 2), I note a small drop of 1.77% points in the accuracy.

The effect of further removing the biases (Config 3) is much higher: CodeTrek ’s accuracy

drops 6.3% points from 62.06% to 55.76% points. This aligns with the intuition that adding

biases to the aforementioned node types results in generating walks that are more relevant to

the task. Finally, I obtain the largest drop in the accuracy by further removing the derived

call relation (Config 4). This component contributes a significant amount of 10.57% points

to the accuracy of the task, and it obtains a low accuracy of 45.19% points in absence of all

three components.

Different Pooling Mechanisms

I examine the effect of mean pooling versus attention pooling on the performance of Code-

Trek models. Attention pooling increases the accuracy of the Exception task from 63.83%

to 66.43%.

Different Positional Encoding Techniques

I also explore different positional encoding alternatives. The current setting of CodeTrek

gives an accuracy of 63.83% in the Exception task. Substituting the sinusoidal positional

encoding with a learned one improves the accuracy less than 1% points. This result is in

line with findings of Vaswani et al. (2017), which report nearly identical results using both
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1 def write_random_to_file():
2 no = random.randint(1, 10)
3 with open("random.txt", "w") as file:
4 file.write(str(no))
5 return no
6

7 def write_random():
8 random_no = write_random_to_file()
9 print "A random number was written to random.txt"

Figure 3.9: A simple code snippet for DefUse.

var


id: 4249
name: no
parent: 5320

access_var ssa-var
 ssa-use
access


ex: 5051
var: 4249
ctx: write

ssa-var_var ssa-use_var-var

id: 4326
var: 4249

id: 3420
svar: 4326

expr expr_access

id: 5051
kind: name
parent: 4217

Figure 3.10: The most important walk in a simple instance of DefUse.

positional encoding techniques.

3.5. Qualitative Study

I discuss a few examples in this section. My focus is on describing walks that contribute

most to predictions that CodeTrek models make. It will clarify how the relations and

the semantic edges between them contribute to accurate predictions in CodeTrek. These

examples showcase CodeTrek’s intrinsic interpretability which is defined as the ability to

explain or to present in understandable terms to a human (Hall et al., 2017). In Chapter 5,

and more specifically in Section 5.4, I discuss CodeTrek’s interpretability in greater detail.

3.5.1. Example: Detecting Unused Definitions

To understand how CodeTrek uses semantic relations to determine whether a defined

var


id: 4252
name: file
parent: 5520

access_var ssa-var
 ssa-use
access


ex: 4380
var: 4252
ctx: write

ssa-var_var ssa-use_var-var

id: 4318
var: 4252

id: 4309
svar: 4318

expr expr_access

id: 4254
kind: name
parent: 4380

Figure 3.11: The most important walk in a challenging instance of DefUse.
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1 def construct_file_handle():
2 file = Handler.initialize()
3 def check_handle(file):
4 if file.id < MIN_H:
5 return False
6 return True
7 file = Handler.initialize()
8 return Handler.default()

Figure 3.12: A challenging code snippet for DefUse.

variable is used, consider the code snippet listed in Figure 3.9. In this snippet, the local

variable file is defined on line 3, and then accessed on line 4. A programmer would start

with the variable definition and then follow the code to find an access to it to prove that

it is indeed a used variable. More specifically, a programmer starts with the expression on

line 3 in which the variable file is declared. She then tries to find another access to this

variable that reads it, such as on line 4.

CodeTrek determines that the walk illustrated in Figure 3.10 has the highest score among

a set of randomly generated walks. Interestingly, this walk shows a similar behavior to

that of a programmer: it starts at the anchor node (an expr node corresponding to the

variable definition) which corresponds to the expression that defines file. Then, it tra-

verses the graph towards a node that corresponds to a use of this variable (a ssa-use node

corresponding to the variable use).

Even the models that do not embed semantic edges (e.g., CuBERT) are able to correctly

predict that file is used, in such simple cases. However, in more complicated cases, such as

the code snippet listed in Figure 3.12, semantic edges are needed to be able to distinguish

between different definitions of variable file and to not confuse various uses of them. In

this snippet, file is defined on line 2, and then on line 7. The file defined on lines 2 and

7 are never used. To make matters more complicated, there is a function check_handle

that is defined inside the top-level function construct_file_handle. This function takes

an argument which is named file and uses it on line 4.
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In the absence of edges that make the relationship between uses and definitions of variable

explicit, it is challenging for a model to determine that the variable named file on line 2 is

different from the variable of the same name on line 4. As a result, GREAT and CuBERT

fail to label the variable definition on line 2 correctly. CodeTrek, however, takes advantage

of the relationship between the variable definition and its use (an ssa-use node) and makes

a robust prediction. Among the set of randomly generated walks starting from the definition

on line 2 (expr node with id 4244) there are no walks with the following pattern which only

occurs when a variable is used after being defined: “expr → access → var → ssa-var

→ ssa-use”. Therefore, CodeTrek predicts that this variable is never used. On the other

hand, as illustrated in Figure 3.11, a walk with the mentioned pattern exists between the

definition on line 3 (expr node with id 4254) to its use on line 4 (ssa-use node with id

4309). So, CodeTrek predicts that this variable is used. It is worth emphasizing that the

walks illustrated in Figure 3.10 and Figure 3.11 are very similar although they correspond

to completely different code snippets.

3.5.2. Example: Predicting Appropriate Exceptions

For the Exception task, I choose a code snippet from the test dataset, which is listed

in Figure 3.13. In this code snippet, CodeTrek must predict the exception to be caught

by the except statement at line 34 (represented by HoleException). The correct exception

type is ValidationError. Due to the fact that admit_car is called within the corresponding

try block, I inspect the body of admit_car and notice that it may raise ValidationError.

Out of the walks sampled by CodeTrek for predicting the correct exception, I illustrate

the most important (highest scoring) walk in Figure 3.14. This walk represents the afore-

mentioned intuitive reasoning for predicting the exception. It starts at the anchor node,

which is the node of type stmt with id 4506, corresponding to the except statement on

line 34. It traverses to the function definition of admit_car by first traversing to the call

node for admit_car with id 5253, representing the call on line 32, and then following the

corresponding call graph edge to the definition of admit_car. These call graph edges al-
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1 class Admission:
2 ...
3 def admit_car(self , car):
4 if not str(car.get_id()).isdecimal():
5 raise ValidationError("Index is not valid")
6 name = car.get_number()
7 if name.upper() != name:
8 raise ValidationError("Number not in capslock")
9 if name.count(" ") < 2:

10 raise ValidationError("Number needs 3 parts")
11 check_name = name.split(" ")
12 if not check_name[0].isalpha():
13 raise ValidationError("First part is not alpha")
14 if not check_name[1].isdecimal():
15 raise ValidationError("Second part not decimal")
16 if not check_name[2].isalpha():
17 raise ValidationError("Third part is not alpha")
18 owner = car.get_owner().replace("-", " ")
19 if not owner.isalpha() or not owner.istitle():
20 raise ValidationError("Owner’s name not correct")
21 if len(owner) > 40:
22 raise ValidationError("Name too long")
23

24 # a number of unit test functions removed here
25 # only for presentation purposes ...
26

27 def test_car_admit():
28 admit = Admission.get_instance()
29 car1 = Car(1, "ag 12 BOB", "Dan")
30 car4 = Car(4, "A", "Ian")
31 try:
32 admit.admit_car(car1)
33 assert False
34 except HoleException:
35 assert True

Figure 3.13: A sample code snippet for Exception.
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scope_stmt call.caller_func.idfunc_scope call.callee_func.id

func_scope


scope_stmt

scope

stmt

stmt

id: 4506
kind: except
scope: 3801

id: 3801
scope:
src.py:93-102

access


ex: 4264
var: 4265
ctx: read

var


id: 4265
name: ValidationError
parent: 4226

access_var

func call func

scope

 id: 4452
 name: test_car_admit
 scope: 3801

 id: 5253
 caller: 4452
 callee: 4236

 id: 4436
 name: admit_car
 scope: 3923

id: 3923
scope:
src.py:20-44

id: 4262
kind: raise
scope: 3923

expraccess_expr expr_stmt

id: 4264
kind: name
parent: 4262

Figure 3.14: The most important walk in an instance of Exception.

low for such inter-procedural reasoning. The walk then traverses to the stmt node for the

raise statement, then to its expression, and reaches the ValidationError exception via its

corresponding access node.

3.5.3. Example: Detecting Shadowed Global Variables

VarShadow is an example of a long-range task in which the model is expected to distinguish

between the global and the local scopes in order to predict whether a global variable is

shadowed by another variable with the same name that is defined in a local scope. I use the

code snippet in Figure 3.15 to explain how semantic relations help in such tasks.

To determine whether a global variable is shadowed by a local variable, a programmer would

look for variables that are defined in local scopes and have the same name as the global

variable. The walk which is illustrated in Figure 3.16 captures the relationship between the

global variable definition (expr node with id 5051) and a local re-definition with the same

name (access node with id 4346) by visiting a local scope (scope node with id 8456) of

the module (the module node) along the way. Interestingly, CodeTrek assigns the highest

importance to this walk among a number of randomly generated walks, and can therefore

correctly predict that env_vars is a shadowed global variable.
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1 env_vars = env.vars
2

3 class SystemReq:
4 ...
5 ...
6 class Utils:
7 @staticmethod
8 def rev(s):
9 for i in range(len(s) // 2):

10 tmp = s[i]
11 s[i] = s[-(i+1)]
12 s[-(i+1)] = tmp
13

14 @staticmethod
15 def env_check():
16 env_vars = environ.vars
17 return env_vars

Figure 3.15: A sample code snippet for VarShadow.

access


ex: 5051
var: 4238
ctx: write

var


id: 4238
name: env_vars
parent: 4226

expr module



 id: 4226




scope-
loc

id: 1937
scope: 8456
parent: 4226

funcvar


id: 4347
name: env_vars
parent: 4337

access


ex: 4346
var: 4347
ctx: write

id: 5051
kind: name
parent: 6327

 id: 4337
 name: env_check
 scope: 8456

scope
id: 8456
scope:
src.py:93-95

access_expr access_var module_var

module_scope-loc

scope_scope-loc

func_scopefunc_varaccess_var

Figure 3.16: The most important walk in an instance of VarShadow.
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3.6. Discussion

Despite its effectiveness, CodeTrek has some limitations which I discuss next.

Human Intervention. Writing the task specifications is manual in CodeTrek. The

most difficult part is assigning weights to different relations. In Chapter 4, I introduce walk

policies and present a technique to learn these weights.

Evaluated Architectures. CodeTrek’s walk embedding uses a standard Transformer.

Expanding to more recent variants or a different neural architecture might better serve

CodeTrek. Also, I did not delve into other machine learning architectures for embedding

the proposed relational graphs or walks.

Evaluated Tasks. I have only explored binary and multi-class classification tasks in this

chapter. Later in Chapter 5, I implement a code-to-text application for evaluating the

robustness and interpretability of the generated text when the representation learning is

done via CodeTrek.

Pretraining. Another area for improvement is to pretrain models using objectives tar-

geting all CodeTrek relational features, perhaps as an expansion of an approach such as

GraphCodeBERT (Guo et al., 2020a), to explore the power of CodeTrek towards unsu-

pervised transfer learning.

Computed Tasks. Even though CodeTrek is able to generate new labelled datasets for

a large set of code-reasoning tasks, it is limited to labelling those that can be described via

logic. Generating datasets for non-declarative tasks is an exciting direction but is beyond

the scope of this dissertation.

Importance of Deep Sets. I explained in Section 3.1 that using Deep Set as a part of

CodeTrek offers many advantages. It would be interesting to see whether it is considered

indispensable in a future study.

Adversarial Experiments. I have only compared CodeTrek’s robustness with a num-

ber of widely-known state-of-the-art models. However, a fairer and more interesting future
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exploration is comparing CodeTrek with models that are specifically designed to withstand

robustness-related attacks.

Coverage. Generally, the coverage of the graph increases as the number of sampled ran-

dom walks and the walk length increase. However, exploring the correlation between the

number of walks and code coverage is a topic for future work. A further open question

concerns whether more walks improve the model’s performance if they do not change the

coverage.
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3.7. Summary

In this chapter, I presented CodeTrek, a technique that represents programs as rela-

tional databases to make rich semantic information available to deep learning models for

code-reasoning tasks. I also introduced a flexible walk-based mechanism to sample rele-

vant contexts from large graphs which are constructed from relational databases. Finally,

I evaluated CodeTrek on a variety of real-world tasks and datasets, and showed that it

outperforms state-of-the-art neural models.
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CHAPTER 4

Learning to Walk over Relational Graphs

Program representation is crucial to the effectiveness of deep learning techniques for pro-

gram understanding. It is essential to understand the structural and semantic information

contained in source code in order to represent programs effectively (Allamanis et al., 2018;

Hellendoorn et al., 2020; Pashakhanloo et al., 2022b). While the abundance of information

greatly benefits program representation techniques, it also poses a fundamental challenge.

It is difficult to determine which kinds of program information are most relevant for a given

task. There have been efforts in crafting features for programs. These approaches, however,

require a lot of engineering and domain knowledge. AST-based (Alon et al., 2018, 2020) or

control flow-based models (Hellendoorn et al., 2020; Allamanis et al., 2018) require domain

experts to select what information to include and how to incorporate it.

CodeTrek (Chapter 3), alleviates this issue by modeling programs as relational graphs that

uniformly store all available structural and semantic information. CodeTrek outperforms

the state-of-the-art by representing programs as biased walks over rich relational graphs,

thereby selecting some of the available information via the walk policy. This technique,

however, does not provide an automated approach to discovering bias; a domain expert

must determine which kinds of information (e.g., statements, successors) are more relevant

for a given task. As I pointed out in Section 3.6, CodeTrek is limited by its reliance on

domain knowledge for tackling new tasks. Also, using uniform random walks (Perozzi et al.,

2014) does not help because, given a limited budget, as the space of possible random walks

increases, the selection of suitable random walks for a given task becomes more difficult.

In this chapter, I present a deep learning approach to learn walk policies (Pashakhanloo et al.,

2022a) to address challenges that stem from the abundance of available program informa-

tion in relational graphs. The proposed policy-learning mechanism selects relevant relations

in a task-specific manner by sampling a set of graph walks over the relations. It uses the
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properties of relational graphs (relation names, tuples, and key-foreign-key relationships)

to learn policies that guide the random-walk generation. In particular, it aggregates the

attention weights that are computed while the model learns to embed each walk, to rank

relations by their relevance to the task. Higher-ranking relations have a higher relevance,

and are more likely to be visited during the guided random traversal. The mapping between

relation names and their scores defines a walk policy.

I evaluate the proposed walk policy learning mechanism on various program-understanding

tasks, and observe that the policies learned in this manner yield superior accuracy to even

those hand-picked by a human expert13.

Chapter Organization. I introduce and define the walk policy in Section 4.1, and elabo-

rate on the training process in Section 4.2. Then, I evaluate the effectiveness of walk learning

in Section 4.3. I discuss the interpretability of learned walks in Section 4.4, and conclude

by pointing out limitations and potential improvements in Section 4.5.

13Implementation of walk learning is available at https://github.com/ppashakhanloo/CodeTrek.
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4.1. Walk Policy

Representing programs by walks over relational graphs of code is challenging because the

space of possible walks is combinatorially large. Random sampling will result in many

unrelated walks among the sampled ones that not only do not contribute to improving the

program representation, but also make it noisy. On the other hand, if walks are guided by

a domain expert, the exploration space and noise decreases for the given task at the cost of

significant engineering effort; nevertheless, some signals in large graphs may not be obvious

to a human expert, preventing discovery of relevant and powerful relationships. Training a

neural model to guide the walks can alleviate the undesirable consequences which are caused

by human intervention.

An easy way to automate walk learning is to use a neural network policy that relies on walk

history to recommend the next node to visit. This, however, poses a different challenge.

The space of walks is discrete and combinatorial, thus no direct gradient update to the

walk policy is available. Even after hypothetically addressing this challenge, it may still be

difficult to interpret a learned walk-policy that is fully neural.

4.1.1. Learning Challenges

The challenges of walk learning arise from the fact that walks are latent—they are unobserved

and lack supervision. However, a learned policy has the potential to improve the overall

predictive performance of the model, and thus walk learning can be viewed as an expectation-

maximization or E-M algorithm (Dempster et al., 1977). The E-step is to estimate the walk

policy based on the current model, and the M-step is to improve the current model based

on the estimated walk policy. The walk policy must now be designed in such a way that it

can be estimated by using the Transformer (Vaswani et al., 2017).

4.1.2. Designing a Walk Policy

To design a walk policy, one can use some properties of relational graphs such as relation

names, tuples, and key-foreign-key relationships to learn walk policies. The policy gives
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each relation name a score (between 0 and 1) which is proportionate to the relevance of

the relation to a specific task. These scores specify the next step in a random walk. For

example, when the score of the stmt relation is 0.04 and the score of the expr relation is

0.02, it is twice as likely to step to a node of type stmt than a node of type expr, when

there is a choice between the two as the next step of a walk. The policy is learned before

training the actual model that solves the task. The policy learner updates the policy based

on the aggregated relevance of relations in previous iterations of training.

Note that, although I present this work on learning walk policies in the context of relational

graphs, there is nothing in the approach that makes it inapplicable to other graphs such

as dataflow and control flow graphs constructed out of syntax trees, such as those used

by Allamanis et al. (2018), or even basic-block graphs such as those used by Vasudevan et al.

(2021). This approach works under the following conditions:

• A walk policy can be expressed in terms of bias over node types.

• The architecture of the program representation model that uses walks computes some

notion of node importance such as attention scores. This notion can be used to learn

an aggregate measure of importance about node types.

I present the results in the context of CodeTrek, but it would be applicable to other archi-

tectures such as Transformer-based systems (Hellendoorn et al., 2020) or graph-attention

networks (Veličković et al., 2018).

4.1.3. Definition of Walk Policy

I define a walk policy over a relational graph as a mapping from every relation name to

a score, indicating the relevance of each relation to the task for which the neural network

is being trained. The score is a real number between 0 and 1. The scores are computed

prior to training a model for the task. During the task training, they are used as guides for

sampling walks over relational graphs.
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4.1.4. Learning a Walk Policy

I revisit CodeTrek’s model architecture (Pashakhanloo et al., 2022b) which is described

in detail in Chapter 3. Consider a sequence of node type embeddings ē(n) = [e
(n)
1 , ..., e

(n)
N ],

edge type embeddings ē(e) = [e
(e)
1 , ..., e

(e)
N−1], and node value embeddings ē(v) = [e

(v)
1 , ..., e

(v)
N ]

that correspond to a walk w with a maximum of N nodes and N − 1 edges, sampled from

a relational graph G. The walk embedding xw is computed as follows:

ew = ē(n) ∥ ē(e) ∥ ē(v) ∈ R(3N−1)×d (4.1)

where ∥ is the concatenation operator. I elaborate on the details of the embedding in

Section 4.1.5. I compute the self-attention weights for ew as follows (Vaswani et al., 2017):

Self-Attention(ew) = Attention(ewWQ, ewW
K , ewW

V ) (4.2)

where WQ, WK , and W V are learned matrices, and

Attention(Q,K, V ) = Softmax
(
QKT /

√
d
)
V. (4.3)

Intuitively, these weights are the results of comparing each element (node type, edge type,

or value) in the walk to all the other elements in it. For more details about the attention

mechanism refer to Section 2.1.

I compute the scores for relation names as follows. I discard all but the first N rows of

Self-Attention(ew) that correspond to the node types in walk w. I refer to this tensor as

A
(n)
w ∈ RN×d. I then expand each A

(n)
w to a tensor with dimension R (the total number of

relation names) so that the weights that correspond to each relation name have their own

column, by aggregating the attention weights of all nodes with the same relation name. I
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then compute a raw score vector S:

S = Softmax
( ∑
w∈W

A(n)
w

)
∈ RR (4.4)

Each row in S corresponds to a relation name. At each training step, I update the scores:

S ← γS + (1− γ)Sprevious (4.5)

where γ ∈ [0, 1] is a hyperparameter. Updates are repeated until the node types reach a

fixed relative ranking. S is the list of scores that I use for guiding the random walks during

the training process of a model for a given task. For example, if S[’stmt’] is 0.06 and

S[’expr’] is 0.03, the learned walk policy enforces that the neighbors with node type stmt

are 2x more likely to be visited by the random walk generator than neighbors with node

type expr.

Stability of Ranking. I empirically observe that the relative rankings converge to a fixed

point for all the tasks. Also, the rankings do not change across different training instances

of the same task.

4.1.5. Embedding Graphs

To represent program graphs, I follow the neural representation I introduced in CodeTrek

(Chapter 3) which outperforms GGNN, CuBERT, GREAT, and Code2Seq on bug-finding

tasks. CodeTrek embeds each walk by treating it as a token sequence of relation names

of its nodes, the edge types traversed, and their attribute values, in the order of traversal.

Given each walk w = [n0, e0, e1, . . . , nN−1] consisting of N nodes and N −1 edges, an initial

embedding Xw is produced:

Xw = X(n)
w ∥X(e)

w ∥X(v)
w ∈ R(3N−1)×d (4.6)

where d is the embedding dimension and ∥ represents concatenation, using three corre-

sponding learnable embedding matrices En, Ee, Ev. The first segment, X(n)
w , represents the
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N node types (relation names), using an embedding lookup in En ∈ RR×d, where R is the

number of relations. The second segment, X
(e)
w , represents the N − 1 edge types, using

an embedding lookup in Ee ∈ RI×d, where I is the number of KFK relationships in the

database. Finally, the last segment, X(v)
w , represents the attribute values of the N nodes;

attribute values (using a V -sized WordPiece vocabulary for attribute values) are subtok-

enized, each subtoken is embedded using Ev ∈ RV×d, and the subtoken embeddings are

pooled into each node’s attribute embedding. A sinusoidal positional encoding is computed

for every segment of Xw. All encodings are concatenated to create the positional encoding

of walk w:

Pw = P(n)
w ∥ P(e)

w ∥ P(v)
w ∈ R(3N−1)×d (4.7)

Similar to CodeTrek, I use a Transformer encoder (Vaswani et al., 2017) to encode walk

w as follows:

Zw = Transformer(Xw + Pw) (4.8)

Over all the 3N−1 elements of the walk on the last layer of Transformer, I perform attention

pooling f : R(3N−1)×d 7→ Rd to obtain a d-dimensional walk embedding tensor ew.

4.2. Training

To use the introduced walk-policy learning technique, I train two models for each task. The

first model takes a set of labeled graphs, each of which are represented as a set of uniform

random walks and a label, (W, y). It learns a walk policy while optimizing for a specific

task. The second model takes a set of labeled graph, each of which are represented as a set

of walks that are sampled using the learned walk policy, and a label. In the current work,

the hidden layers of the second model are similar to the first model, with an additional

fully-connected network to train for predicting labels. Both models also embed each graph

as a set of walk embeddings {ew}w∈W using a permutation-invariant operation. CodeTrek

uses Deep Set architecture (Zaheer et al., 2017) for permutation invariance. I use the same

cross-entropy loss function for both models and optimize them with Adam optimizer.
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Task Input Description Type

VarMisuse Function and a Variable Access Is the variable used correctly in the function? Binary

VarMisuse-Fun Function Are all the variables used correctly? Binary

VarShadow Module
Is any of the global variables shadowed

by any of local variables?
Binary

DefUse Function and a Variable Definition Is the variable definition used in the function? Binary

DefUse-Fun Function
Are all the variables defined in the

function used after their definitions?
Binary

Exception Module and a Masked Exception Type
What is the exception that the except statement

should catch?
Multiclass

Exception-Fun Function and a Masked Exception Type
What is the exception that the except statement

should catch?
Multiclass

OpMisuse Function Are all the binary operators used correctly? Binary

Table 4.1: Bug-finding Task Descriptions.

Task # Training # Validation # Testing
VarMisuse 700,683 75,468 378,401
VarMisuse-Fun 700,683 75,468 378,401
VarShadow 70,183 21,794 39,845
DefUse 217,591 52,598 104,111
DefUse-Fun 33,182 8,149 16,296
Exception 18,456 2,086 10,334
Exception-Fun 18,456 2,086 10,334
OpMisuse 457,400 49,800 251,531

Table 4.2: The number of samples used for training, validation, and testing.

4.3. Evaluation

4.3.1. Experimental Setup

I evaluate the proposed approach to learn walk policies using five bug-finding tasks and their

variants: VarMisuse, VarShadow, DefUse, Exception, and OpMisuse. I use the re-

lational program graphs generated in Chapter 3 for training the first four tasks. The number

of programs that are utilized to train, validate, and test these tasks is reported in Table 4.2.

The description of the tasks and their variants is summarized in Table 4.1. These tasks are

described in more detail in Chapter 3. I include a summary in this chapter for convenience.

I use accuracy to measure the performance of all the tasks other than DefUse. I measure

the performance of DefUse using ROC-AUC to account for its imbalanced dataset.
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4.3.2. Effect on Accuracy

I compare the effectiveness of learned walk policy on performance by training three models

with the same neural architecture but a different approach to scoring relations. In the first

scenario, all relations are equally likely to be visited. In the second scenario, a human expert

identifies a few relations as the most relevant ones for the task. Particularly, nodes with

types stmt, expr, and variable are biased to be visited five times more often than others.

In addition, in the Exception task, the score assigned to type module is 0 to avoid travel-

ing from one function to another through their common module node. Thus, the walks will

only lead to other functions using the call graph edges between them. In the final scenario,

I employ the proposed policy learning mechanism to determine the relevance of relations

without prior knowledge. The results of the models trained under these scenarios are re-

ported in Figure 4.2. Models with learned policies consistently outperform models without

policies by 6%–36% points. Interestingly, in all the tasks, models that use learned policies

outperform the models for which a human expert scored the relations by 0.2–3.5% points.

The improved performance of models can be explained by examining the space of possible

walks in each scenario. Choosing scores for walks reduces the space by prioritizing relations

that are more relevant to solving a specific task, thus reducing the noise caused by irrele-

vant relations. To illustrate the usefulness of learning walk policies, consider the example

in Figure 4.1. In this example, the model predicts the type of exception to catch on line

19. It must consider the exceptions raised by the summarize method on an instance of class

DiskQueue. Hence, the definition of summarize (line 2) must be analyzed. In line 3, it calls

get_disk_cap which raises an exception. This chain of function calls can be made explicit

via a call graph, making it possible to walk along them.

Despite this, the walk space is still too large to be traversed at random. For instance,

in Figure 3.7, there are millions of walks that start from the node that corresponds to the

except statement. It is difficult to find walks that connect the except node to the raise

node under a purely random scenario. One can reduce the exploration space by limiting the
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exploration to walks that connect the two nodes through the body of the try block since

the statements before and after that do not affect the caught exception. The challenge,

however, is that only a domain expert can tune relation scores for a new task. Learning

such scores eliminates the need for a domain expert for tuning. In Figure 3.7, the learned

policy guides the walk generator to use the except_successor relation that connects the

statements in a try block (e.g., line 16) to their corresponding except statement (e.g., line

19) more frequently. Having the walks visit except_successor during the traversal, reduces

the number of 16-hop walks by over 95% compared to the unbiased case. Interestingly, this

relation was overlooked by the human expert who scored the relations for the Exception

task, justifying why learning the policy results in performing 2% points better than that of

the human expert.

1 class DiskQueue:
2 def summarize(self):
3 dc = self.get_disk_cap()
4 ...
5

6 def get_disk_cap(self):
7 raise NotImplementedError
8

9 # many lines ...
10

11 class DiskQueueTest(QueueTest):
12 chunksize = 100000
13 self.q = DiskQueue()
14

15 def test(self):
16 try:
17 self.queue.summarize()
18 self.q.push(’a’)
19 except HoleException:
20 ...

Figure 4.1: Example Exception task.
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Figure 4.2: The effect of scoring relations on performance.

γ 0.0 0.2 0.4 0.5 0.6 0.8 1.0
Accuracy 0.52 0.60 0.61 0.65 0.57 0.56 0.36

Table 4.3: Sensitivity to γ variations.

4.3.3. Effect of Score Update Parameter

I examine the effect of changing γ during walk learning on the accuracy of the models

that are trained to understand code. As described in section 4.1, this value represents the

influence of the newly computed versus the previously computed scores during walk learning.

The models learn the walk policy for the Exception task using varying values of γ and

use them to train different models for the same task. As Table 4.3 shows, with γ set to

1, the model achieves the same accuracy as with uniform random walks. This outcome is

expected because γ = 1 results in completely discarding the score values computed in the

previous training iteration. At the other extreme, γ = 0 assigns an initially random but

fixed score vector to relations throughout the policy learning. Regardless, it performs better

than uniform random walks. Based on the empirical results, 0.5 is a reasonable value for γ

in the selected tasks.

4.4. Interpreting Learned Policies

In this section, I take a closer look at the relations that have high scores. I qualitatively

analyze some of the relations that are found relevant during the walk policy learning. The
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Task Most Relevant Relations
VarMisuse,
VarMisuse-Fun

stmt, scope, expr_context, expr

VarShadow location, scope, variable, class
DefUse,
DefUse-Fun

flow_bb_node, ssa_use, successor, scope

Exception,
Exception-Fun

stmt, expr, variable, except_successor

OpMisuse expr, cmpop_list, unnary_op, str

Table 4.4: Relations with the highest learned scores.

top-4 relations with the highest scores are summarized in Table 4.4 for each task.

4.4.1. Example: Detecting Unused Definitions

For DefUse, I compare the relations with the highest learned scores with a CodeQL query

crafted for the same purpose. flow_bb_node, successor, and ssa_use are the highest-

ranking relations for this task, and all three are crucial for the CodeQL query. The first two

relations establish control flow relationships between basic-blocks and statements, and the

third relation computes dataflow information.

4.4.2. Example: Detecting Shadowed Global Variables

VarShadow is another example—a global task which requires inspecting inner scopes (pos-

sibly multiple classes) for variables that shadow global variables. Interestingly, the learned

policy detects that class is one of the relations with the highest scores.

4.5. Discussion

While the proposed policy learning mechanism is effective, it has limitations and can be

improved. Some of the shortcomings are highlighted in this section.

Scope of the Policy. One could argue that a walk policy that only scores relations might

not be sufficient for some tasks. Consider the following example. In a code database schema,

there are key-foreign-key relationships between func and both of flow_bb_node and call

relations. This means that there is an edge between a node of type func and a node of
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type flow_bb_node. There is also an edge between a node of type func and a node of type

call. Traversing the call-func edges can be interpreted as visiting other functions that a

function calls. The flow_bb_node-func edges, on the other hand, connect function nodes

to the root nodes of control-flow graphs of functions’ bodies. Depending on whether the

task requires inter-procedural (global) or intra-procedural (local) analysis, the relevance of

the func relation varies. For such scenarios, I conjecture that scores for edge types should be

learned rather than relations types. An interesting future exploration is incorporating other

factors such as edge types, values, and the length of walks into the learned walk policy.

Memory. The current mechanism for learning walk policies also lacks memory, which

might hinder its ability to capture complex patterns.

Anchors. Another piece of information that should be specified by an expert is the anchor

node. In a practical approach, every walk could start from the root (i.e., the top-level node

in the program graph such as a module node) and learn better anchor nodes from there.

There are also open questions regarding anchors; how many nodes should be selected as

anchors? Should all the anchor nodes for a particular task have the same relation name?

4.6. Summary

In this chapter, I presented a deep learning approach for learning walk policies over relational

graphs. I showed that sampling walks using a learned walk policy can result in models with

better performance than that of a policy designed by a human expert. Among the opportu-

nities for future research are: (1) incorporating edge types, values, and other characteristics

of walks into the learning of walk policies, (2) expanding the application of the proposed

policy learning mechanism beyond code understanding, and (3) providing walk policies with

memory (state) to capture more complex patterns.
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CHAPTER 5

Robust and Interpretable Code-to-Text Translation

High-quality source code documentation is essential for understanding a program and main-

taining it (Roy et al., 2021). Despite the importance of documentation, developers may

fail to document their code because writing clearly and concisely is difficult. A lack of a

step-by-step process to follow for drafting code descriptions may contribute to this difficulty.

Documenting code is also challenging because best practices are unclear, making it one of

the most challenging tasks developers encounter.

The difficulty of writing source code descriptions has motivated researchers to train deep

neural networks to automate this task. These networks consume source code and produce

a description in text format. As a result, they are often called code-to-text neural models.

Code-to-text neural models have made remarkable advances since their inception. While

machine learning algorithms exhibit promise and power in code comprehension tasks, they

have limitations. In particular, there is a lack of robustness and a lack of interpretabil-

ity (Du et al., 2019). Often, the user is not aware of the internal logic or inner workings

of these models. It prevents humans from interpreting or understanding how particular

decisions are made by the system (Montavon et al., 2017).

Robustness is a model’s ability to not change its predictions when it undergoes semantic-

preserving code transformations such as renaming variables, adding or removing deadcode,

or exchanging for loops with while loops. Recent findings show that deep neural net-

works are brittle to data changes (Gao et al., 2020; Ko et al., 2019; Garg and Ramakrishnan,

2020; Carlini and Wagner, 2017). For instance, they are vulnerable to small input pertur-

bations (Henke et al., 2022).

An interpretable model is one which can be used to explain to humans—of course, in under-

standable terms—why a particular prediction was made given specific inputs (Hall et al.,
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2017). An interpretable model is transparent and thus easier to trust (Thampi, 2022). For

AI to succeed as a reliable tool for decision support, it must not only provide the final

predictions; it must also communicate in a way that allows a human to use intuition and

reasoning to their fullest extent (Gilpin et al., 2018; O’neil, 2016). In contrast to accuracy,

interpretability is a qualitative factor, making it harder to evaluate. Perhaps this explains

why it is often overlooked.

To build an effective code-to-text model to perform a task such as code summarization

task—where a short natural language description is generated for the input source code—

the code representation must capture program semantics comprehensively (Ma et al., 2022).

The existing models rely on Abstract Syntax Tree (Alon et al., 2018) or source token se-

quences (Guo et al., 2020b; Hu et al., 2018b; Wei et al., 2020; Xie et al., 2021b; Lu et al.,

2021; Feng et al., 2020) to embed programs for code summarization tasks. However, these

approaches fail to capture the semantics of programs completely.

In this chapter, I elaborate how CodeTrek can be used to train robust and interpretable

models for automating source code summarization. According to my findings in Chap-

ter 3 and Chapter 4, CodeTrek can address the robustness and interpretability challenges

in code-to-text tasks by relying on learned sampled walks over semantically-rich relational

program graphs. I show the effectiveness of CodeTrek over two well-known baseline ap-

proaches, namely, CodeBERT and Code2Seq.

Chapter Organization. I define the key terms, namely robustness and interpretability, in

Section 5.1, and elaborate on the implementation and training process in Section 5.2. Then,

I evaluate the effectiveness of CodeTrek in terms of performance and robustness for code

summarization in Section 5.3. Additionally, I discuss the interpretability of CodeTrek

through case studies in Section 5.4. In the end, I discuss limitations and improvements that

can be made in the future (Section 5.5).
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5.1. Key Definitions

5.1.1. Robustness

Robustness is a model’s ability to not change its predictions when it undergoes small input

perturbations. The definition of input perturbations in the context of source code differs from

that found in natural language processing or computer vision; it is imperative to guarantee

that changes made to source code follow syntax rules. Also, one must ensure that the code-

text pairs remain valid after perturbing the code. The field of program analysis introduces

source code perturbations that follow syntax rules and are guaranteed to preserve semantics.

As a result, input perturbations in the context of source code are semantic-preserving code

transformations such as renaming variables, adding or removing dead code, or exchanging

for loops with while loops. Recent findings show that deep neural networks are vulnerable

to these semantic-preserving code transformations (Henke et al., 2022).

5.1.2. Interpretability

An interpretable model is one which can be used to explain to humans why a particular

prediction was made given specific inputs (Hall et al., 2017). It is difficult to formalize in-

terpretability because it is subjective. Moreover, interpretability is domain-specific, so it

cannot be defined universally. Depending on the context, different types of explanation

might be useful (Carvalho et al., 2019). For more details on these definitions please refer

to Section 7.9. This need for interpretability arises because for some problems or prediction

tasks, it is not sufficient to know what has been predicted (Doshi-Velez and Kim, 2017).

Because a correct prediction only partially solves the original problem, the model must

also explain how it reached the prediction. For the purpose of this work, I employ the

definition suggested by Zhang et al. (2021): “Interpretability is the ability to provide ex-

planations in understandable terms to a human”. In this definition, understandable term

refers to the domain knowledge related to the task. For example, Linux operating system

source code is interpretable under this definition, although it might be overwhelming for a

developer (Zhang et al., 2021).
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summary: list redundant modules.

  def f():
    modules = {}
    for name, mod in sys.mods.items():
        if not hasattr(mod, 'file'):
            continue
        m = os.path.abspath(mod.file)
        if m[-1] == 'c':
            m = m[:-1]
        if m in modules:
            print(m, name, modules[m])
        else:
            modules[m] = name

Beam Search

Figure 5.1: Code summarization with CodeTrek.

Intrinsic Interpretability. A model that is intrinsically interpretable is one that can be

interpreted on its own. Constraints derived from domain knowledge can be applied to a

model to achieve this property. For example, CodeTrek models can only traverse nodes

in the relational graph that are linked through referential integrity constraints. Intrin-

sic interpretability is also called transparency and answers the question of how the model

works (Lipton, 2018).

5.2. Implementation

I implement an instance of abstractive source code summarization using CodeTrek. In

this method of summarization, words are chosen according to the semantics of the code

snippet. The summary may include words not found in the source.

Since CodeTrek is just an encoder, I put a standard Transformer decoder on top of it

to enable code summarization. The decoder stack consists of 6 layers. The loss function I

use for the decoder is cross-entropy loss. Then, the language modeling head follows which

consists of two linear layers that link the decoder to the softmax layer which is responsible

for the production of the next token probabilities over the vocabulary of size 50,348 tokens.

Figure 5.1 illustrates code summarization with CodeTrek. The abstract blue component
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which is labeled CodeTrek is responsible for embedding the source code. The details of this

component can be found in Section 3.2. During the training, I compute the cross-entropy

loss after the softmax layers. Also, I use walk policy learning (Chapter 4) to effectively guide

the walk generation. During inference, I do not consider the summary as the input since it

is the goal but I do a beam search with a width of 1 to generate the summary. Also, I set

the learning rate to 5e-5, the batch size to 16, and the decoder target length to 12814.

5.3. Evaluation

I elaborate on the experimental setup and evaluation results in this section. The main goals

of these experiments are answering the following questions.

1. What is the performance of CodeTrek in the code summarization task?

2. In the context of code summarization, how robust are CodeTrek’s predictions?

3. How sensitive is CodeTrek’s performance to the length of the sampled walks?

5.3.1. Experimental Setup

Code Summarization. Given a function whose name is masked, code summarization

automatically generates a short natural language description that characterizes the input

source code. This task is described as follows in the task specification language which is

introduced in Section 3.3.

1 {
2 RB = { "stmt"; "var"; "expr"; "func"; ... },
3 RQ = { },
4 S = {
5 C = { x : (x instanceof "func") and
6 (x.name is "MASK")},
7 B = { },
8 min = 10,
9 max = 16

10 },
11 N = 50
12 }

14I adopted CodeBERT’s proposed architecture for code-to-text translation, borrowed from https://github.
com/microsoft/CodeXGLUE/tree/main/Code-Text/code-to-text.
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def clean_len(line):
   if isinstance(line, basestring):
      return len(markup.clean_markup(line))
   else:
      markups = markup.get_markup_vars()
      length = 0
      for i in line:
         if i not in markups:
            length += len(i)
      return length

def make_points(msr, a_tags, ts, fld):
    tags = self.tags.copy()
    tags.update(a_tags)
    return {'measure': msr, 'tags': tags,
            'time': int(ts), 'field': fld}

From Original Testset

From Py150ETH Pool

def clean_len(line):
   def make_points(msr, a_tags, ts, fld):
     tags = self.tags.copy()
     tags.update(a_tags)
     return {'measure': msr, 'tags': tags,
             'time': int(ts), 'field': fld}
   if isinstance(line, basestring):
      return len(markup.clean_markup(line))
   else:
      markups = markup.get_markup_vars()
      length = 0
      for i in line:
         if i not in markups:
            length += len(i)
      return length

Transformed Function

Figure 5.2: The process of adding deadcode to transform the test set.

#Training #Validation #Testing
250,720 13,713 14,418

Table 5.1: Code Summarization dataset size.

Dataset. In order to empirically evaluate the performance of the code summarization task,

I used the datasets from the CodeXGLUE benchmark (Lu et al., 2021). Specifically, I use

CodeSearchNet (Husain et al., 2019), which contains thousands of Python code snippets and

their short natural language descriptions. Each sample in this dataset is represented using

a code-comment pair. Table 5.1 reports the dataset statistics. To conduct the robustness

experiments in section 5.3, I generate a perturbed, yet semantically-equivalent test set from

the original test set. To do so, for each function in the test set, I randomly select a Python

function from Py150ETH dataset and insert it before a random statement in the function’s

body. An example of this process is shown in Figure 5.2. I further replace all the function

names by MASK to ensure the models generate the summaries only based on the arguments

and the function body.

Baseline Models. I use two well-known models for code summarization as baseline mod-

els, namely, Code2Seq and CodeBERT. Code2Seq (Alon et al., 2018) is an encoder-decoder

framework. Its encoder receives a vector of leaf-to-leaf paths, where paths are sampled from
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the Abstract Syntax Tree, and the decoder outputs the tokens that build the summaries.

CodeBERT (Feng et al., 2020) is a 125-million parameter, pre-trained, encoder-only model

which follows an architecture similar to that of BERT (Devlin et al., 2018). CodeBERT

encodes both source code and natural language text. Since CodeBERT does not have a

decoder—similar to CodeTrek—I augment the architecture with a standard transformer

decoder for generating the code summaries.

Evaluation Metrics. To evaluate the effectiveness of CodeTrek and baseline models

in code summarization task, I use three metrics: BLEU, ROUGE-L, and METEOR. These

metrics measure token overlap between the prediction and the reference. Using multiple

evaluation metrics can be a good idea when evaluating text summarization systems, as

different metrics may have different strengths and weaknesses. BLEU, ROUGE-L, and

METEOR are all commonly used metrics for text summarization evaluation, and each has

its own advantages and disadvantages.

BLEU (Papineni et al., 2002) is the most common evaluation metric used for assessing the

effectiveness of code summarization task. It works by comparing n-grams in the predicted

and reference summaries. In particular, following the evaluation methodology proposed

by Iyer et al. (2016), I use BLEU-4 which measures the average n-gram precision on a set

of reference sentences with a penalty for overly short sentences. I also apply +1 smooth-

ing (Lin and Och, 2004) before reporting the results. In this smoothing strategy, 1 is added

to both the numerator and denominator. The computations are shown in Equation 5.1

where Pn,t,r is the geometric mean of n-gram precisions (Equation 5.2) and BPt,r is the

brevity penalty (Equation 5.4). Each pn in Equation 5.2 is computed as Equation 5.3 where

mn is the number of matched n-grams between translation t and reference r, and ln is the

total number of n-grams in translation t.

BLEUn,t,r = Pn,t,r ×BPt,r (5.1)

Pn,t,r =
( n∏
i=1

pi
) 1

n (5.2)
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pi =
mi

li
(5.3)

BPt,r = min
(
1, exp(1− |r|

|t|
)
)

(5.4)

The brevity penalty punishes the score if the translation is much shorter than the reference.

ROUGE-L (Lin, 2004) is similar to BLEU but it also incorporates the recall between candi-

date and reference strings. Computing ROUGE-L relies on the notion of Longest Common

Subsequence (LCS). LCS takes into account sentence-level structure similarity. ROUGE-L is

computed as Equation 5.5 where Rlcs and Plcs are LCS-based recall and precision as shown

in Equation 5.6 and Equation 5.7.

ROUGEL =
(1 + β2)PlcsRlcs

β2Plcs +Rlcs
, β = 1.2 (5.5)

Rlcs =
|LCS(Op, Or)|

|Or|
(5.6)

Plcs =
|LCS(Op, Or)|

|Op|
(5.7)

Here, Op is the predicted summary and Or is the reference summary.

Finally, METEOR (Banerjee and Lavie, 2005) evaluates how well the generated comments

capture content from the references via recall and precision. METEOR’s matching criteria

support not only word matches that are identical in each string, but also matches that are

simple morphological variants of each other (e.g. they have the same stem) or synonyms.

METEOR is calculated as:

METEOR = (1− γfβ)
PR

αP + (1− α)R
(5.8)

where P and R are unigram precision and recall, and f is a fragmentation fraction. The

fragmentation fraction accounts for the order of unigrams that appear in translations. I

follow the default values for the parameters which are suggested by Banerjee and Lavie
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BLEU (%) ROUGE-L (%) METEOR (%)
CodeTrek 20.17 57.78 15.09
CodeBERT 19.84 51.13 14.10
Code2Seq 18.73 49.73 9.95

Table 5.2: Performance of models on code summarization task for the original dataset.

(2005): α = 0.9, β = 3, and γ = 0.5.

Metrics and Human Judgement. BLEU is simple to compute and has been widely

used in the literature. However, it has been criticized for being overly dependent on ex-

act word matches and not taking into account semantic equivalence (Papineni et al., 2002;

Banerjee and Lavie, 2005; Lin, 2004). I choose to include this metric due to its wide use

in the literature. ROUGE-L, is simple to compute and has been shown to have a better

correlation with human judgement than BLEU (Lin, 2004). ROUGE-L is recall-oriented

which means it is more focused on the content that is included in the generated summary,

rather than what is missing. However, ROUGE-L does not take into account synonymy or

stemming. This semantic limitation is addressed in METEOR at the cost of becoming a

computationally expensive metric as it requires aligning the generated summary with the

reference summary.

5.3.2. Performance

I use three machine translation metrics, BLEU, ROUGE-L, and METEOR, to compare the

performance of the CodeTrek model in generating code summaries with two well-known

baseline models, CodeBERT and Code2Seq. Table 5.2 reports the performance results of all

these models. CodeTrek outperforms both of the baselines. More specifically, CodeTrek

improves upon the baselines by 0.33–1.44% points on BLEU, 6.65–8.05% points on ROUGE-

L, and 0.99–5.14% points on METEOR. The conclusions reached by all three metrics

are the same: The experimental results suggest the importance of using semantically-rich

source code graphs to represent programs.
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Figure 5.3: The performance of CodeTrek before and after transforming the test set.

5.3.3. Robustness

I measure the robustness of CodeTrek against semantic-preserving code transformations

and compare it with the baseline approaches. To create a transformed test set, I randomly

add a function definition inside the function body. This serves as adding deadcode, and is

therefore a semantic-preserving change. Figure 5.2 illustrates an example of such a transfor-

mation. Then, I evaluate the baseline models and CodeTrek model for code summarization

using the transformed test set. The comparison between the performance of CodeTrek

before and after transforming the test set with respect to BLEU, ROUGE-L, and METEOR

is reported in Figure 5.3.

The experimental results show several significant findings. In the first place, when using

the transformed test set instead of the original test set, CodeTrek’s performance degrades

significantly. Specifically, the performance drops by 0.12% points on BLEU, 1.55% points on

ROUGE-L, and 0.13% points on METEOR. This suggests that CodeTrek is robust against

semantic-preserving code transformations. Second, consistent with the results reported in

subsection 5.3.2, CodeTrek outperforms the baseline models on all three evaluation met-

rics. Third, the runner-up in this experiment is Code2Seq—another walk-based approach.

This result suggests that sampling walks can be a promising strategy for robustness. Fi-

nally, CodeBERT’s performance drops significantly on the transformed test set. Specifically,

the performance drops by 5.92% points on BLEU, 9.73% points on ROUGE-L, and 6.15%

points on METEOR. In line with recent studies (Mukherjee et al., 2021), relying only on

token sequences may not be sufficient for ensuring robustness in code comprehension models.
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The poor performance of the baselines can be explained by the fact that the transformed

test set is out-of-distribution. While this is the case, CodeTrek’s performance is explained

by the inductive bias generated by rich relational information during training.

An astute reader may wonder why Code2Seq performs poorly in robustness despite its sim-

ilarity to CodeTrek in being a walk-based technique. An explanation can be found by

comparing the original and transformed abstract syntax trees. Even a single program trans-

formation may affect several leaf-to-leaf paths and lead to a drastically different prediction.

This effect has also been observed by others (Henke et al., 2022). Changes of this nature

have less of an impact on relational program graphs that CodeTrek uses.

Example: Summaries before and after the Transformation. The following example

helps illustrate the the behavior of CodeTrek and baseline models after the code is trans-

formed. The code snippet in Figure 5.4 is the original form of a function that sends a guess

to server. All the models generate reasonable summaries for this function. CodeTrek’s

prediction and CodeBERT’s prediction is write guess to server and Code2Seq’s prediction

is write to server.

1 def MASK(guess):
2 if connected():
3 gui.status_bar_info("Query...", False)
4 try:
5 os.write(guess.to_bytes())
6 os.flush()
7 except Exception:
8 gui.status_bar_info("Failed.", True)

Figure 5.4: Original function for sending a guess to server.

Upon transforming the function in Figure 5.4 by adding a random dead function to ob-

tain the function in Figure 5.5, CodeTrek still predicts the same description but the two

baselines fail to generate meaningful results. In this function, the lines 2–8 are deadcode

but CodeBERT and Code2Seq do not understand this notion. The generated summary by

CodeBERT is start server gui and the summary by Code2Seq is guess host handler.
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Figure 5.6: Sensitivity to the length of walks in code summarization task.

1 def MASK(guess):
2 def start_server(handler , host , port):
3 msg = Message()
4 httpd = ThreadedHTTPServer((host , port), handler)
5 try:
6 httpd.serve_forever()
7 finally:
8 httpd.server_close()
9

10 if connected():
11 gui.status_bar_info("Query...", False)
12 try:
13 os.write(guess.to_bytes())
14 os.flush()
15 except Exception:
16 gui.status_bar_info("Failed.", True)

Figure 5.5: Transformed version of the function in Figure 5.4.

5.3.4. Sensitivity to Walk Lengths

To measure the sensitivity of CodeTrek to the length of walks, I train a number of models

for the code summarization task with walks of length 8–20 steps. I report performance

changes in Figure 5.6.
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A longer walk tends to improve performance. Walks that are shorter than 10 steps result

in a model with low performance. For example, ROUGE-L is 50.34% when CodeTrek is

trained with walks of length 8. The reason is that such short walks are unable to capture

enough semantics for making informed predictions. As the number of steps increases, the

performance improves, and when the number of steps is 16, the model achieves its highest

performance which is 57.78% on ROUGE-L. It appears that this general trend of performance

improving with more steps slows down at about 14 steps when extending the walks by 2

steps only contributes 0.03% points to the improvement of performance. An increase in the

length of the walks does not improve performance any further. In fact, increasing the walk

length from 16 to 18 results in a small drop of 0.07% points on ROUGE-L.

5.4. Qualitative Study of Interpretability

In this section, I qualitatively assess the interpretability of CodeTrek’s predictions using

several case studies. As explained in Section 3.2.6, CodeTrek allows inspecting the in-

dividual walks that contributed the most to predictions to see how it aligns with human

reasoning. I refer to these walks as the explanation that CodeTrek produces along with

the original prediction. In particular, I observe that the walk scores follow this pattern: k

top walks have significantly higher scores than the rest of the walks. For instance, in Case

Study 1, four walks have scores of nearly 0.9 out of 1.0, and the rest of the walks have

scores of less than 0.1. I refer to the former as explanations. In each case, I examine the

explanations and show how they pertain to each piece of the generated function summary.

In Case Study 1 (Section 5.4.1), I explain how walks correspond to the generated summary.

Case Study 2 (Section 5.4.2) exemplifies the case where interpretability helps debug an in-

correct prediction. Finally, Case Study 3 (Section 5.4.3) shows how CodeTrek’s partial

summaries are nonetheless reliable.

5.4.1. Case Study 1

I start by explaining how the guided random walks that CodeTrek uses to embed source

code correspond to the final natural language summary that is generated. The code snippet
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listed in Figure 5.7 takes the name of an environment variable as input and returns a

filename that is stored in it. The reference summary for this Python function is get the

name of the file from environment variable. CodeTrek correctly generates get filename

from the given variable as the function’s summary. Next, I inspect two guided random

walks that CodeTrek generates for embedding the code snippet. These walks obtain the

highest walk scores so I refer to them as explanations for this prediction. These walks are

illustrated in Figure 5.8.

1 def MASK(variable):
2 filename = os.environ.get(variable)
3 if filename is None:
4 msg = f"Environment Var: variable"
5 raise EnvironmentError(msg)
6 return filename
7

8 # Reference:
9 # get the name of the file from environment variable.

10 # CodeTrek:
11 # get filename from the given variable.

Figure 5.7: Code snippet and CodeTrek’s prediction for Case Study 1.

The anchor (i.e., starting node) in both of the walks in Figure 5.8 is a func node that

corresponds to the function definition node in the relational program graph. Walk number

1 connects the variable filename to the call that is made to the get function. Particularly,

there is a stmt node of kind assign which corresponds to assigning the result of the call

to the get function to filename. Upon manual inspection, this walk clearly corresponds

to getting filename. Walk number 2 is a simpler walk. It connects the variable variable

to a node of type param. Therefore, this walk makes up the given variable portion of the

summary. The combination of these two walks explain why the generated summary is get

filename from the given variable.
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Figure 5.8: Most important walks for the code snippet in Figure 5.7.

5.4.2. Case Study 2

In this case study, I discuss one of the most significant benefits of interpretability in neural

models of code: debugging. In fact, interpretability is a useful debugging tool for finding

problems and biases in data (Molnar, 2020). In particular, I discuss an example where

CodeTrek produces an incorrect summary. Nevertheless, the walks with the highest score

help explain where the prediction is wrong.

The code snippet listed in Figure 5.9 takes an object as input, iterates over all the members

of it, finds the corresponding values, and returns all the members of the object as (member,

value) pairs. The reference summary for this Python function is return all members of an

object as pairs. CodeTrek generates return directory of a given object as the function’s

summary which turns out to be incorrect. Now, I inspect the four guided walks that Code-

Trek generates for embedding the code snippet. These walks, illustrated in Figure 5.10,

obtain the highest walk scores so I refer to them as explanations for this prediction.
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The anchor (i.e., starting node) of all walks in Figure 5.10 is the func node, which cor-

responds to the function definition node in the relational program graph. The first walk

connects the variable object to a param node. Thus, this walk constitutes the given object

portion of the summary. Walk number 2 connects the variable results to a node of type

stmt that corresponds to the return statement on line 11. A domain expert can clearly

argue that this walk corresponds to a natural language description such as return results.

Walk number 3 corresponds to line 3 of the code snippet (which is emphasized by visiting

the scope node after the func node), and corresponds to the call made to a built-in function

dir. An expr node of kind call shows this call. Walk number 4 is a longer walk that con-

nects the mentioned call to its input argument, i.e., a var node that corresponds to variable

object. These two walks correspond to a natural language description of the form get object

directory. The combination of all these walks explains why the generated summary is return

directory of a given object.

The troublesome part of the prediction made by CodeTrek is the presence of directory

instead of all members in the summary. Intuitively, this part of the summary corresponds

to walk number 3 that tentatively gives the natural language description of get directory to

the call to dir function. Upon inspecting the training dataset, I found that the keyword

dir has been used in 1052 Python functions. In 658 cases, dir refers to a directory. In

the rest of the cases, a call has been made to the built-in dir function which “returns all

properties and methods of the specified object, without the values”15. Manual inspection of

these 394 cases shows that only in 7 cases the docstring points to the notion of “members”.

This shows a bias in the data. One can use this piece of debugging information to improve

the distribution of the training data.
15https://docs.python.org/3/library/functions.html#dir
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1 def MASK(object):
2 results = []
3 names = dir(object)
4

5 for key in names:
6 try:
7 value = getattr(object , key)
8 except AttributeError:
9 value = object.__dict__[key]

10 results.append((key , value))
11 return results
12

13 # Reference:
14 # return all members of an object.
15 # CodeTrek:
16 # return directory of a given object.

Figure 5.9: Code snippet and predictions for Case Study 2.
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Figure 5.10: Most important walks for the code snippet in Figure 5.9.
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5.4.3. Case Study 3

In this case study, I discuss a scenario where all the models (baselines and CodeTrek) fail

to make correct predictions. Nevertheless, in contrast to the baselines, CodeTrek manages

to generate a partially correct summary without incorrect information in it.

The code snippet listed in Figure 5.11 takes a number, a format, and a locale as input. It then

applies the appropriate format based on the given locale to the given decimal number. The

reference summary for this Python function is format the given decimal number. CodeTrek

generates apply given locale which is only partially correct, CodeBERT generates set locale to

pattern which is incorrect, and Code2Seq generates is number valid which is also incorrect.

Now, I inspect two guided random walks that CodeTrek generates for embedding the code

snippet. These walks obtain the highest walk scores so I refer to them as explanations for

this prediction. These walks are illustrated in Figure 5.12.

1 def MASK(number , format , locale):
2 locale = locale.parse(locale)
3 if not format:
4 format = locale.decimal_formats.get()
5 pattern = parse_pattern(format)
6 return pattern.apply(number , locale)
7

8 # Reference:
9 # format the given decimal number.

10 # CodeTrek:
11 # apply given locale.
12 # CodeBERT:
13 # set locale to pattern.
14 # Code2Seq:
15 # is number valid.

Figure 5.11: Code snippet for Case Study 3.

The anchor (i.e., starting node) in both walks in Figure 5.12 is a func node that corresponds

to the function definition node in the relational program graph. Walk number 1 connects

the variable locale to the call that is made to the apply function. The call is specified
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with a node of type expr whose kind is call. Upon manual inspection, this walk appears

to correspond to a description such as apply locale. Walk number 2 is a simpler walk.

It connects the variable locale to a node of type param. Therefore, this walk makes up

the given locale portion of the summary. The combination of these two walks explain

why the generated summary is apply given locale which is partially correct. In contrast

to CodeTrek, CodeBERT and Code2Seq generate summaries that are incorrect and can

mislead a developer. In particular, CodeBERT generates a summary that does not consider

the flow of the statements in the program at all, and Code2Seq generates a completely

arbitrary one.
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Figure 5.12: Most important walks for the code snippet in Figure 5.11.
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5.5. Discussion

Meaningfulness of Relations. In previous chapters, I argued that CodeTrek does not

fundamentally rely on Semmle’s CodeQL, but is applicable to any relational database of

code. The interpretability of CodeTrek, however, is dependent upon the meaningfulness

of the database relations. Consequently, if relational databases contain arbitrarily defined

relationships without semantic meanings, interpretability is not achieved.

Quantifying Interpretability. In this chapter, I discussed interpretability only qual-

itatively and through case studies. Quantifying interpretability in deep learning can be

challenging since the concept is complex and multifaceted. The best way to do it de-

pends on the specific task, the type of model, and the resources available. Neverthe-

less, there are various interpretability metrics that have been proposed in the literature

for domains other than code-understanding (Hooker et al., 2019), such as feature impor-

tance measures (Lin and Gao, 2022; Lundberg and Lee, 2017; Ribeiro et al., 2016), saliency

maps (Simonyan et al., 2013), and decision trees (Quinlan, 1987). These metrics provide

a quantitative measure of how much a model’s decision is influenced by certain inputs or

features. Note that none of these approaches are free of criticisms.

A feature importance measure quantifies the contribution that each feature or input variable

makes to the prediction of a machine learning model. They identify which input variables

are most significant in determining the model’s predictions (Ribeiro et al., 2016). Saliency

maps are used to explain the predictions of deep neural networks by highlighting the parts

of an input that are most significant for a given prediction. The idea behind saliency maps

is to create a heatmap of the input, where each pixel is colored based on its importance for

the model’s prediction (Simonyan et al., 2013). Finally, decision trees can be used as an

explanation of the model’s predictions, by breaking down the decision process step by step,

and showing how different features or variables contribute to the final prediction.
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5.6. Summary

In this chapter, I showcased the effectiveness of CodeTrek in code summarization task

by conducting a number of empirical studies on a public, commonly-used corpus of code-

comment pairs in addition to qualitative studies. The results showed that CodeTrek

outperforms CodeBERT and Code2Seq by 0.33—1.44% points on BLEU, 6.65—8.05% points

on ROUGE-L, and 0.99—5.14% points on METEOR. Moreover, I showed that CodeTrek

is robust against out-of-distribution data which was presented to the model in the form of a

transformed test set. Finally, I qualitatively showed the promise of CodeTrek framework

in producing predictions that are interpretable.
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CHAPTER 6

Future Work

In this dissertation, I studied the integration of declarative program analysis with deep neu-

ral networks. My research showed that program analysis combined with neural networks can

improve the performance of various code understanding tasks. These results laid the foun-

dation for future research. In future work, I plan to investigate further ways to leverage the

strengths of both declarative program analysis and deep neural networks. This will include

exploring the effectiveness of CodeTrek in other domains and applications, including but

not limited to smart contract security. Additionally, I will investigate ways to improve the

scalability and efficiency of large-scale program analysis using CodeTrek.

6.1. Improving Smart Contract Security

The CodeTrek framework can help identify security bugs in smart contracts. It enables

us to identify patterns that are indicative of common security vulnerabilities. Here are a

few ways CodeTrek can assist us in finding smart contract security issues:

Vulnerability Detection. CodeTrek can be trained to recognize patterns in source

code that are indicative of common yet severe security vulnerabilities, such as re-entrancy

and unauthorized access. The models can then be used to scan complicated smart contracts

and flag potential vulnerabilities.

Anomaly Detection. Blockchain transaction history and smart contract source code can

be used to train CodeTrek models to detect patterns of behavior that deviate from ex-

pected behaviors. Using these models, one can detect suspicious activity in smart contracts,

such as unexpected access to sensitive data or unexpected fund transfers.

Discovering Unexpected Behavior. The intended behavior of smart contracts is often

specified in comments or documentation in the form of plain English. NLP techniques can

be used to extract information from these comments and documentation. This information

can be used along with the CodeTrek framework to train models that can detect bugs and
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unexpected behavior with respect to the provided specification.

Code Review. Human code reviews are expensive and time-consuming. To alleviate this

cost, CodeTrek can be trained to understand the complicated semantics of smart contracts

to automatically flag potential bugs or vulnerabilities for human review.

Integration with other Tools. By integrating CodeTrek with tools other than Semmle,

its capabilities can be extended. For example, we can use MAIAN (Nikolić et al., 2018) to

create a labeled dataset for finding contracts that lock funds indefinitely. This tool—like any

other dynamic analyzer—is expensive to operate. It generates long sequences of invocations

of a contract which can be used as an auxiliary input to Codetrek at training time.

6.2. Improving the Scalability of Program Analysis Tools

As software systems become larger and more complex, there is a growing need for techniques

that can handle large codebases. Future work on CodeTrek could involve using neural

models to analyze large codebases in a more efficient and scalable way. One advantage of

CodeTrek is that it relies on random walks, which are computationally efficient, making

it well-suited to large systems. Some types of program analyses, such as those that use

global dataflow analysis, can be expensive. By integrating a CodeTrek model into the

logic query that calculates dataflow edges, this cost can be reduced. For instance, the logic

query can calculate only local dataflow edges and when a global dataflow edge is needed,

the CodeTrek model is called.

6.3. Applying the Framework to Different Applications

This dissertation only used CodeTrek for detecting a limited set of programming bugs

and producing short summaries of code. It may be possible to extend the benefits of this

framework to other applications.

Code Generation. Code generation models that are at the forefront of technology have

been proven to be very accurate and scalable. The models do, however, have some lim-

itations, including the lack of reasoning ability and explainability, as well as the need for

large amounts of labeled data. CodeTrek is a semantic-heavy framework that may address
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these issues and generate more complex and secure code, such as code for web applications

or distributed systems.

Software Development. The CodeTrek framework may also be useful for developing

models that identify bugs at various stages of the software development lifecycle. For ex-

ample, CodeTrek models can be trained to detect discrepancies in design documents or

use case specifications, as code is being written. This facilitates the detection of bugs early

in the development process. In addition, models can be trained to detect bugs during the

testing phase, by analyzing test cases.

Performance Issues. Last but not least, CodeTrek can be used for developing models

that can detect more types of bugs, such as performance issues, by incorporating available

dynamic information in its relational graph. For example, detecting performance issues can

be done by training models to recognize patterns in the source code that are indicative

of performance bottlenecks. These patterns can include inefficient algorithms or excessive

memory usage.
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CHAPTER 7

Related Work

7.1. Learning to Represent Code

There is a rich literature on using neural networks for code reasoning. At the token se-

quence level, the Transformer and its variants (Hellendoorn et al., 2020; Dowdell and Zhang,

2020) have been widely used (Berabi et al., 2021; Ahmad et al., 2020; Zügner et al., 2021;

Kim et al., 2021; Wang et al., 2020). Their performance can be further boosted via pretrain-

ing (Feng et al., 2020; Guo et al., 2020a; Kanade et al., 2020; Wang et al., 2021; Peng et al.,

2021; Liu et al., 2020; Li et al., 2022; Chen et al., 2021). Others have proposed to represent

programs with ASTs and additional semantic edges (Allamanis et al., 2018; Brockschmidt et al.,

2018; Guo et al., 2020a) or learned abstract relations (Johnson et al., 2020), using GNN or

leaf-to-leaf sequence embeddings (Alon et al., 2018, 2019b). In this dissertation, I present

a new approach for representing programs that enables adding rich semantic information.

Additionally, the proposed approach takes advantage of program analysis queries on rela-

tional databases to eliminate the engineering burden of augmenting program graphs with

additional semantic edges.

7.2. Graph Representation Learning

My work on learning program representations via relational databases is closely related

to inductive representation learning on graphs (Hamilton et al., 2017) with graph neural

networks (Xu et al., 2018) or Transformers (Ying et al., 2021). Although scalable GNNs

via sampling (Chen et al., 2017; Zhou et al., 2020) have been proposed in the transductive

setting, it is still challenging to represent large database graphs with 100k nodes in this

inductive setting (Clement et al., 2021; Yang and Kuang, 2021). Techniques from transduc-

tive graph embedding based on skip-gram (Perozzi et al., 2014; Grover and Leskovec, 2016)

or general knowledge graph embedding (Das et al., 2018; Hamilton et al., 2018; Zheng et al.,

2020) are scalable but not directly applicable for inductive setting. In this dissertation, I
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present an alternative approach that achieves a good balance between modeling for large

codebases and efficiency.

7.3. Automated Feature Selection and Augmentation

Feature selection usually refers to reducing a large set of features to a smaller set of use-

ful features. This is especially true when analyzing large data lakes with a high degree of

diversity (Chepurko et al., 2020). There are efforts in the data-mining literature to mini-

mize human effort in feature augmentation and selection. Chepurko et al. (2020) discover

joins that can improve the prediction accuracy for a single data table. A similar ap-

proach (Yakout et al., 2012) automatically searches the the web to find relevant information

in order to augment the user-provided data. The techniques presented in this dissertation

are orthogonal to these works.

7.4. Sampling Large Graphs

Large graphs have been examined in several studies. Some of them perform various sampling

schemas such as mini-batching (Zeng et al., 2020; Kipf and Welling, 2016; Hamilton et al.,

2017; Chen et al., 2018) or attention mechanism (Veličković et al., 2018) to enable training

on giant graphs. Various efforts have also been made to improve the efficiency of managing

and training large graphs, including (Xie et al., 2021a; Gandhi and Iyer, 2021; Zhu et al.,

2019; Chiang et al., 2019). While these approaches are typically used for recommendation

tasks that involve one huge graph, the technique I propose takes into account many program

graphs when tackling code understanding problems.

7.5. Walk-based Embedding

A number of representation learning techniques on graphs use random walks to learn node

embeddings. DeepWalk (Perozzi et al., 2014) uses simple unbiased random walks to measure

node similarity. node2vec (Grover and Leskovec, 2016) builds on DeepWalk by introducing

two hyperparameters to control the tendency for random walks to traverse more depth or

breadth. Further extensions include Walklets (Perozzi et al., 2017), which skip over steps

in random walks to allow short walks to capture multiple levels of relationships, as well
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as neural embedding approaches that employ hyperbolic rather than Euclidean spaces to

define node similarities (Chamberlain et al., 2017). Unlike these approaches, my proposed

technique aims to learn and guide traversal of graphs, rather than depending on simple

unbiased random walks.

7.6. Representation Learning over Relational Databases

Deep learning models can be used for embedding structured tabular data into a latent

space (Arora et al., 2021). Arora et al. (2021) presents an attention-based model learns node

embeddings by capturing the semantic relationships across tables. Table2Vec (Zhang et al.,

2019) assumes each row to be a sequence of tokens, and trains a model over these sequences.

EmbDi (Cappuzzo et al., 2021) captures the semantics of entities by connecting it to the cor-

responding row identifier. They sample random walks over each node and embed the walks

as token sequences. Finally, RelBERT (Arora et al., 2021) introduces an attention-based

model based on the table and column that each entity appears in. In contrast, the tech-

nique presented in this dissertation takes advantage of the schema of the relational database

to construct a graph in which each row is a node, and each key-foreign-key relationship is an

edge. Then, during the representation learning, guided walks are sampled from the graph

and embedded using the contents of nodes, edges, and their attributes.

7.7. Automated Code Summarization

There are two general techniques for automated code summarization: information retrieval

and deep learning (Cheng et al., 2022). Early studies (Haiduc et al., 2010; Sridhara et al.,

2010) utilized information retrieval techniques. The idea was to extract the most perti-

nent keywords from the given input and generate an extractive summary using them. The

problem with these extractive summarization methods is that they are often inflexible and

unable to generate coherent natural language descriptions (Cheng et al., 2022). Several re-

cent studies have used deep learning to improve abstract code summarization. It has greatly

benefited from advances in Neural Machine Translation (NMT). For learning a mapping be-

tween two languages, NMT generally uses the encoder-decoder model. In NMT-based code
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summarization techniques, the encoder-decoder architecture is used to map code snippets

to their natural language descriptions (Iyer et al., 2016). Nevertheless, other researchers

argue that the characterization of code snippets requires more than token sequences, e.g.,

the structure information extracted from Abstract Syntax Trees (Hu et al., 2018a, 2020;

LeClair et al., 2019; Alon et al., 2018; Wan et al., 2018). Recent works (Ahmad et al., 2020)

take advantage of the Transformer architecture (Vaswani et al., 2017) as their base encoder-

decoder framework. They use token sequences of codes as model inputs. Several other

works (Gao and Lyu, 2022; Yang et al., 2021; Zhang et al., 2020b) combine token sequences

with structural information to improve code summarization.

7.8. Robust Deep Neural Networks

Most deep neural models of code are not robust. The lack of robustness has been stud-

ies from two perspectives (Bui and Yu, 2022): 1) adversarial robustness, and 2) out-of-

distribution data. The former shows that small perturbations to the input lead to incor-

rect predictions (Bielik and Vechev, 2020; Henke et al., 2022; Rabin et al., 2021; Yefet et al.,

2020; Zhang et al., 2020a; Gao et al., 2020). These perturbations are often in the form of

semantics-preserving transformations. The latter shows that models of code fail to produce

correct results when they see an input that differs from the training data (Bui and Yu, 2022).

There has been ample effort on making models of code robust against adversarial at-

tacks (Bielik and Vechev, 2020). For example, Henke et al. (2022) shows how to perform

adversarial training to build models that are robust against semantics-preserving transforma-

tions. Yefet et al. (2020) explores various defense techniques against adversarial examples.

Some of these techniques require re-training (possibly using a modified loss function or a

modified version of the original training set) whereas the rest can be plugged in on top

of existing trained models. An example of a conservative defensive approach is replacing

all variables to an UNK symbol at test or training time. However, there are fewer studies

on tackling out-of-distribution input. One of the most recent solutions for this challenge

proposes to enable source code models to say “I don’t know” whenever possible instead of
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Authors Definition

(Kim et al., 2016) The degree to which a human can consistently
predict the model’s result.

(Doshi-Velez and Kim, 2017) Ability to explain or to present in understandable
terms to a human.

(Miller, 2019) The degree to which a human can understand the
cause of a decision.

(Molnar, 2020)
Methods and models that make the behavior and
predictions of machine learning systems understandable
to humans.

Table 7.1: Interpretability Definitions.

making a blind prediction by pretending that they knew the answer (Bui and Yu, 2022).

7.9. Interpretable Deep Neural Networks

There has been multiple attempts at defining interpretability in machine learning over the

past years. All these definitions revolve around the strength of humans in intuition and

reasoning. These definitions are illustrated in Table 7.1. According to Miller (2019), the

interpretability of a model is higher if it is easier for a person to reason and trace back why

a prediction was made by the model. Thus, interpretability is clearly related to humans’

ability to grasp information through observation and reasoning (Carvalho et al., 2019).

There are two major paths towards interpretability: 1. creating intrinsically interpretable

models and 2. creating explanation methods which are applicable to existing blackbox

models (Carvalho et al., 2019).
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CHAPTER 8

Conclusion

In this dissertation, I proposed to model programs as relational databases and demonstrated

the power of sampling biased random walks over relational graphs in tackling three major

challenges in the AI4Code community: (1) representing code in a systematic and extensible

way, (2) maintaining the robustness of models when faced with out-of-distribution input,

and (3) being able to explain why a model makes a particular prediction in a human-

understandable way. I demonstrated the superiority of relational representation of code

in terms of performance, robustness, and interpretability through several qualitative and

quantitative evaluations.
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APPENDIX A

Glossary

Throughout the dissertation, several terms are used but not directly defined. This glossary

includes their definitions.

Accuracy. The percentage of examples for which the model produces correct results.

Adam. or Adaptive Moment Estimation. A adaptive learning rate optimization algorithm

based on exponentially decaying averages of past gradients and squared gradients.

Attention Pooling. Attention pooling behaves like a normal self-attention mechanism

with a few adjustments to transform attention into a learnable pooling mechanism. Attention

pooling uses the self-attention mechanism to choose the right set of two-dimensional features

to transform into one-dimensional features.

Cross-Entropy Loss. A function that measures the difference between the empirical

distribution defined by the training set and the probability distribution defined by the model.

E-M Algorithm. or Expectation-Maximization Algorithm. E-M is a training algorithm

for models with latent variables. There are two steps in the algorithm: (E-step) Find the

expected value of the log-likelihood on the observed data with current estimates of the

parameters. (M-step) Update parameter estimates to increase the likelihood. These two

steps are alternated until convergence is achieved.

Foreign Key. In relational databases, a foreign key is a column or set of columns that

links data in two tables. By referencing the primary key of another table, it establishes a

link between them.

k-fold Cross-Validation. an algorithm to estimate the generalization error of a learning

algorithm when the given dataset is too small for a simple train/test or train/valid split to

yield accurate estimation of generalization error because the mean of a loss on a small test

set may have too high a variance.
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Mean Pooling. This operation calculates the average value for patches of a feature map,

and uses it to create a downsampled (pooled) version.

MLP. or multilayer perceptron. Also known as a feedforward deep network, a MLP is a

mathematical function mapping some set of input values to output values.

Primary Key. In relational databases, a primary key is a column or combination of

columns that uniquely identifies each row.

Query. A query is a question that a user formulates to obtain information from a database.

Query Language. The language through which users interact with database systems. It

defines data structures in the database, and allows fast retrieval and modification of data.

Referential Integrity Constraint. Referential integrity requires that foreign keys have

a corresponding primary key, or they must be null. This constraint maintains the corre-

spondence between rows in two tables.

Relation. Each relation (or table) in a relational database contains one or more data

categories in columns or attributes.

Relational Database. A relational database is a repository of information that organizes

data in established relationships.

Relationship. The interactions between entities in a database.

ROC Curve. or Receiver Operating Characteristics Curve. ROC curve plots the true

positive rate (i.e., recall) against the false positive rate (i.e., FPR). To compute the ROC

curve, one has to compute the recall and FPR for various threshold values. One way to

compare classifiers is to measure the area under the curve (AUC). A perfect classifier has a

ROC-AUC of 1.0, whereas a purely random classifier has a ROC-AUC of 0.5.

SGD. or Stochastic Gradient Descent. The most commonly applied optimization algo-

rithms for machine learning in general and for deep learning in particular. At every training

iteration, SGD samples a minibatch of m samples from the training set. It then computes a

gradient estimate by taking the average gradient on a minibatch of those samples. It applies
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the updates at the end of each iteration. SGD handles large datasets efficiently because it

operates on training instances independently.

Sub-tokenization. or Subword Tokenization. Subword tokenization is a strategy from

machine translation that breaks words into “subword units”—strings of characters like “ing”

or “eau”—that allows the downstream model to make intelligent decisions about words it

does not recognize. This strategy greatly reduces the size of the vocabulary.

WordPiece. A subword tokenization technique. WordPiece pre-tokenizes text into words

(by splitting punctuation and whitespace) and tokenizes each word into subwords, called

wordpieces. WordPiece tokenizes a single word using a greedy longest-match-first strategy,

that is, it iteratively selects the longest prefix of the remaining text that matches a word in

the model’s vocabulary.
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APPENDIX B

Full Task Specification Syntax

This section describes the full task specification syntax that is introduced in Section 3.3.

B.1. Walk and Task Specifications

In Table B.1, walk and task specification syntax can be found. All the tokens in bold font

are keywords. Commas (,), curly braces ({}), colons (:), and semi-colons (;) are also part of

the language. Any token in italics is a non-terminal. INT is any integer literal. If no score is

specified for a relation name, then its score is initialized to 1. “relationName” is any available

relation name. For a full list of available Python relation names refer to Appendix C.

walk_spec ::= { task_spec ::= {
C = predicate , RB = relations ,
B = scores , RQ = relations ,
min = INT , S = walk_spec ,
max = INT N = INT
} }

scores ::= { score_tuples } relations ::= { rels }
score_tuples ::= score | score_tuples rels ::= rel | rels
score ::= rel : INT ; rel ::= relationName

Table B.1: Walk and Task Specification.

B.2. Predicates and Formulas

Table B.2 illustrates the full syntax of predicates and formulas. The syntax is similar to

that of CodeQL. All the tokens in bold font are keywords. The keyword x refers to any

node, and the formula that comes after the colon (:) in front of it is used to filter specific

nodes. Moreover, random is a keyword that can be used when no particular conditions are

defined on anchors and they should be sampled randomly.
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predicate ::= { x : formula } | random

formula ::= fparen | disjunction | conjunction | negation
| instanceof | isliteral | call

fparen ::= ( formula )
disjunction ::= formula or formula
conjunction ::= formula and formula
call ::= predicateRef ( (exprs)? )

| primary . predicateName ( (exprs)? )
negation ::= not formula
instanceof ::= expr instanceof type
isliteral ::= expr is literal

Table B.2: Syntax of Predicates and Formulas.

B.3. Expressions

Table B.3 illustrates non-terminals that are made up of identifiers. “lowerId” is an identifier

that starts with a lower-case letter. “upperId” is an identifier that starts with an upper-

case letter. Anything between a pair of parentheses and a question mark at the front (e.g.,

“(exprs)?” ) refers to an occurrence of zero or one.

simpleId ::= lowerId | upperId
classname ::= upperId
variable ::= lowerId
predicateName ::= lowerId
moduleId ::= simpleId | moduleId :: simpleId
predicateRef ::= (moduleId ::)? lowerId

Table B.3: Identifiers.

Table B.4 illustrates the full syntax of expressions. The syntax is similar to that of CodeQL.

All the tokens in bold font are keywords. All the tokens in italic are non-terminals. INT,

FLOAT, and STRING are integer, floating point, and string literals, respectively.
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expr ::= unop | binop | primary
primary ::= eparen | literal | variable | call_res | range
eparen ::= ( expr )
literal ::= false | true | INT | FLOAT | STRING

unop ::= + expr | - expr
binop ::= expr + expr | expr - expr | expr * expr | expr / expr | expr % expr
call_res ::= predicateRef ( (expr)? ) | primary . predicateName ( (expr)? )
range ::= [ expr .. expr ]

Table B.4: Syntax of Expressions.

B.4. Types

Since QL is a statically typed language, each variable has a declared type. In Table B.5,

boolean, float, int, and string are primitive QL types and are language keywords. boolean

contains true and false values, float contains 64-bit floating point numbers, int contains

32-bit two’s complement integers, and string contains finite strings of 16-bit characters.

type ::= ( moduleId :: )? classname | boolean | float | int | string

Table B.5: Types.
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APPENDIX C

List of Python Relations

This section contains a full list of available relation names for Python.

Table C.1: Python Base Relations in CodeQL

locations_ast py_false_successors py_ssa_phi
py_boolops py_flow_bb_node py_ssa_use
py_bytes py_Functions py_ssa_var
py_Classes py_idoms py_stmt_lists
py_cmpop_lists py_ints py_stmts
py_cmpops py_locations py_str_lists
py_comprehension_lists py_Modules py_strs
py_comprehensions py_numbers py_successors
py_dict_item_lists py_operators py_true_successors
py_dict_items py_parameter_lists py_unaryops
py_exception_successors py_scope_flow py_variables
py_expr_contexts py_scope_location variable
py_expr_lists py_scopes py_cobjectnames
py_exprs py_ssa_defn py_cobjects
py_cobjecttypes py_decorated_object py_line_lengths
py_codelines py_docstringlines py_module_path
py_commentblocks py_exports py_special_objects
py_commentlines py_extracted_version py_StringPart_lists
py_comments py_flags_versioned py_StringParts
containerparent files folders
locations_default numlines py_absolute_names
py_alias_lists py_aliases py_alllines
py_arguments py_bools py_citems
py_cmembers_versioned tokens py_cobject_sources
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Table C.2: Python Derived Relations in CodeQL

AlertSuppression ContainsNonContainer
AssertLiteralConstant ContextEfficiency
AssertOnTuple ContextMarginalEfficiency
BackspaceEscape CookieInjection
BadTagFilter CSRFProtectionDisabled
BindToAllInterfaces CsvInjection
BreakOrReturnInFinally CyclicImport
BrokenCryptoAlgorithm CyclomaticComplexity
C_StyleParentheses DefineEqualsWhenAddingAttributes
CallableDisplayStrings Definitions
CallableExtents DeprecatedModule
CallableSourceLinks DeprecatedSliceMethod
CallGraph DirectImports
CallGraphEfficiency DocStringRatio
CallGraphMarginalEfficiency DocStrings
CallToSuperWrongClass DuplicateBlock
CatchingBaseException DuplicateCharacterInSet
ClassAfferentCoupling DuplicateFunction
ClassDisplayStrings DuplicateKeyInDictionaryLiteral
ClassEfferentCoupling Efficiency
ClassExtents EmptyExcept
ClassifyFiles EncodingError
ClassSourceLinks EqualsNone
CleartextLogging EqualsOrHash
CleartextStorage EqualsOrNotEquals
ClientSuppliedIpUsedInSecurityCheck ExecUsed
CLinesOfCode ExpectedMappingForFormatString
CodeInjection ExplicitCallToDel
CommandInjection ExplicitReturnInInit
CommentedOutCode ExternalAPIsUsedWithUntrustedData
CommentRatio ExternalDependencies
CommitDisplayStrings ExternalDependenciesSourceLinks
CommitSourceLinks ExtractionWarnings
CompareConstants FailedInference
CompareIdenticalValues FClasses
CompareIdenticalValuesMissingSelf FCommentedOutCode
ConflictingAttributesInBaseClasses FFunctionsAndMethods
Consistency FileNotAlwaysClosed
ConsistentReturns FlaskDebug
ConstantInConditional FLines
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Table C.3: Python Derived Relations in CodeQL (continued)

FLinesOfCode IncorrectlySpecifiedOverriddenMethod
FLinesOfComments IncorrectRaiseInSpecialMethod
FLinesOfDuplicatedCode InitCallsSubclassMethod
FLinesOfSimilarCode InitIsGenerator
FNumberOfTests InsecureCookie
FromImportOfMutableAttribute InsecureDefaultProtocol
FullServerSideRequestForgery InsecureProtocol
FunctionNumberOfCalls InsecureRandomness
FunctionStatementNestingDepth InsecureTemporaryFile
Global IterableStringOrSequence
GlobalAtModuleLevel IterReturnsNonIterator
HardcodedCredentials IterReturnsNonSelf
HashedButNoHash Jinja2WithoutEscaping
HChurn JWTEmptyKeyOrAlgorithm
HeaderInjection JWTMissingSecretOrPublicKeyVerification
HLinesAdded KeyPointsToFailure
HLinesDeleted LackofCohesionInMethodsCK
HNumberOfAuthors LackofCohesionInMethodsHM
HNumberOfCoCommits LdapInjection
HNumberOfCommits LDAPInsecureAuth
HNumberOfRecentAuthors LeakingListComprehension
HNumberOfRecentChangedFiles LinesOfCode
HNumberOfRecentCommits LinesOfUserCode
HNumberOfReCommits LocalDefinitions
IllegalExceptionHandlerType LocalReferences
IllegalRaise LogInjection
ImportandImportFrom LoopVariableCapture
ImportFailure MaybeUndefinedClassAttribute
Imports MismatchInMultipleAssignment
ImportShadowedByLoopVar MissingCallToDel
ImportStarUsed MissingCallToInit
ImpreciseAssert MissingHostKeyValidation
ImproperLdapAuth MissingPartSpecialGroup
IncompleteHostnameRegExp MixedExplicitImplicitIn3101Format
IncompleteOrdering ModificationOfLocals
IncompleteUrlSubstringSanitization ModificationOfParameterWithDefault
InconsistentMRO ModuleAfferentCoupling
IncorrectComparisonUsingIs ModuleEfferentCoupling
IncorrectExceptOrder ModuleImportsItself
IncorrectlyOverriddenMethod ModuleLevelCyclicImport
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Table C.4: Python Derived Relations in CodeQL (continued)

MostlyDuplicateClass RemoteFlowSources
MostlyDuplicateFile RemoteFlowSourcesReach
MostlySimilarFile RequestHandlers
MultipleImports RequestWithoutValidation
MultiplyDefined ResolvableCallCandidates
MutatingDescriptor ReturnConsistentTupleSizes
NamingConventionsClasses ReturnOrYieldOutsideFunction
NamingConventionsFunctions ReturnValueIgnored
NestedLoopsSameVariable ShadowBuiltin
NestedLoopsSameVariableWithReuse ShadowGlobal
NonCallableCalled ShouldBeContextManager
NonCls ShouldUseWithStatement
NonIteratorInForLoop SideEffectInAssert
NonPortableComparisonUsingIs SignatureOverriddenMethod
NonSelf SignatureSpecialMethods
NoSQLInjection SimilarFunction
NotImplementedIsNotAnException SimpleXmlRpcServer
NumberOfParametersWithoutDefault SlotsInOldStyleClass
NumberOfStatements SqlInjection
OldOctalLiteral StackTraceExposure
OverlyComplexDelMethod StatementNoEffect
OverwritingAttributeInSuperClass StringConcatenationInLoop
PamAuthorization SubclassShadowing
PartialServerSideRequestForgery SuccessfullyExtractedFiles
PathInjection Summary
PointsToFailure SuperclassDelCalledMultipleTimes
PointsToResolvableCallRatio SuperclassInitCalledMultipleTimes
PointsToResolvableCalls SuperInOldStyleClass
PointsToResolvableCallsRelevantTarget SuspiciousUnusedLoopIterationVariable
PolynomialReDoS SyntaxError
PropertyInOldStyleClass TarSlip
Pruned TemplateInjection
Pythagorean ToDoComment
RaisingTuple TopLevelPrint
RatioOfDefinitions TransitiveImports
ReDoS TruncatedDivision
RedundantAssignment TypeHierarchyFailure
ReflectedXSS TypeInferenceFailure
ReflectedXss UndefinedClassAttribute
RegexInjection UndefinedExport
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Table C.5: Python Derived Relations in CodeQL (continued)

UndefinedGlobal UrlRedirect
UndefinedPlaceHolder UseImplicitNoneReturnValue
UnguardedNextInGenerator UselessClass
UninitializedLocal UselessComparisonTest
UnintentionalImplicitStringConcatenation UseofApply
UnintentionalImport UseOfExit
UnmatchableCaret UseofInput
UnmatchableDollar WeakCryptoKey
UnnecessaryDelete WeakFilePermissions
UnnecessaryElseClause WeakSensitiveDataHashing
UnnecessaryLambda WrongNameForArgumentInCall
UnnecessaryPass XmlBomb
UnreachableCode XpathInjection
UnsafeDeserialization Xslt
UnsupportedFormatCharacter Xxe
UntrustedDataToExternalAPI ZipSlip
UnusedArgumentIn3101Format
UnusedExceptionObject
UnusedImport
UnusedLocalVariable
UnusedModuleVariable
UnusedNamedArgumentIn3101Format
UnusedParameter
WrongNumberArgumentsInCall
WrongNumberArgumentsForFormat
WrongNumberArgumentsFor3101Format
WrongNameInArgumentsFor3101Format
WrongNameForArgumentInClassInstantiation
WrongNumberArgumentsInClassInstantiation
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APPENDIX D

CodeQL Queries used for Labeling

In this section, I present the CodeQL queries that we used to label the examples for newly

added tasks. Both queries are adapted from the official CodeQL’s query repository at

https://github.com/github/codeql.

D.1. DefUse-Fun Query

1 import python

2 import Definition

3

4 predicate unused_local(Name unused , LocalVariable v) {

5 forex(Definition def | def.getNode () = unused |

6 def.getVariable () = v

7 and def.isUnused ()

8 and not exists(def.getARedef ())

9 and not exists(ann_wo_assignment(v))

10 and def.isRelevant ()

11 and not v = any(Nonlocal n).getAVariable ()

12 and not exists(def.getNode ().getParentNode ()

13 .( FunctionDef).getDefinedFunction ()

14 .getADecorator ())

15 and not exists(def.getNode ().getParentNode ()

16 .( ClassDef).getDefinedClass ()

17 .getADecorator ())

18 )

19 }

20

21 private AnnAssign ann_wo_assignment(LocalVariable v) {
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22 result.getTarget () = v.getAStore ()

23 and not exists(result.getValue ())

24 }

25

26 from Name unused , LocalVariable v

27 where

28 unused_local(unused , v) and

29 forall(Name el | el = unused.getParentNode ().(Tuple).

getAnElt ()

30 | unused_local(el , _))

31 select unused , v.getId ()

D.2. VarShadow Query
1 import python

2 import semmle.python.types.Builtins

3

4 predicate optimizing_parameter(Parameter p) {

5 exists(string name , Name glob | p.getDefault () = glob

6 | glob.getId() = name

7 and p.asName ().getId() = name

8 )

9 }

10

11 predicate shadows(Name d, GlobalVariable g,

12 Function scope , int line) {

13 g.getScope () = scope.getScope ()

14 and d.getScope () = scope

15 and exists(LocalVariable l |

16 d.defines(l) and
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17 l.getId() = g.getId()

18 )

19 and not exists(Import il, Import ig, Name gd |

20 il.contains(d)

21 and gd.defines(g)

22 and ig.contains(gd))

23 and not exists(Assign a | a.getATarget () = d

24 and a.getValue () = g.getAnAccess ())

25 and not exists(Builtin :: builtin(g.getId()))

26 and d.getLocation ().getStartLine () = line

27 and exists(Name defn | defn.defines(g)

28 | not exists(If i | i.isNameEqMain ()

29 | i.contains(defn)))

30 and not optimizing_parameter(d)

31 }

32

33 AttrNode pytest_fixture_attr () {

34 exists(ModuleValue pytest

35 | result.getObject("fixture").pointsTo(pytest))

36 }

37

38 Value pytest_fixture () {

39 exists(CallNode call |

40 call.getFunction () = pytest_fixture_attr ()

41 or call.getFunction ().( CallNode).getFunction () =

pytest_fixture_attr ()

42 | call.pointsTo(result)

43 )
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44 }

45

46 predicate assigned_pytest_fixture(GlobalVariable v) {

47 exists(NameNode def |

48 def.defines(v) and def.( DefinitionNode).getValue ()

49 .pointsTo(pytest_fixture ())

50 )

51 }

52

53 predicate first_shadowing_def(Name d, GlobalVariable g) {

54 exists(int first , Scope scope |

55 shadows(d, g, scope , first)

56 and first = min(int line | shadows(_, g, scope , line))

57 )

58 }

59

60 from Name d, GlobalVariable g, Name def

61 where

62 first_shadowing_def(d, g)

63 and not exists(Name n | n.deletes(g))

64 and def.defines(g)

65 and not assigned_pytest_fixture(g)

66 and not g.getId() = "_"

67 select d, g.getId (), def
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