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What is the coarsest abstraction a € A that proves the query ¢?
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Motivating problem:
Given a query, try to prove it
as cheaply as possible

Existing solutions:
Abstraction refinement [Guyer & Lin 2003]
[Heintze & Tardieu 2001]
[Sridharan et al. 2005]
[Zheng & Rugina 2008] ...

Our problem (scientific question):
Given that we've proved a query,
cheapest abstraction in hindsight?

Sufficient /necessary conditions:
what aspects of program to model?
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Binary representation

Abstraction a € A is a binary vector (subset of components):
a=1111111111111111111111111 (most precise)

a=0000000000000000000000000O0 (least precise)

Examples:
k-limited [Milanova et al. 2002]: treat site context-sensitively?
Predicate abstraction [Ball et al. 2001]: include predicate?
Shape analysis [Sagiv et al. 2002]: treat as abstraction predicate?
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Given a static analysis F:
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0 (proven) OR 1 (not proven)

Goal: find a minimal abstraction a (not necessarily unique):

(i) F(a) =0 (proves the query)
(i) Fora’ < a,F(a’) =1 (can't coarsen locally)

Challenge: |A| = 27 components ghstractions to consider

Approach: machine learning algorithms that exploit randomization
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Key theme: sparsity

Sparsity hypothesis:
Only a small fraction of components of a need to be refined

a=0100000000000000000101010

Main results:
Theoretical: machine learning algorithms are efficient under sparsity
Empirical: for k-limited race detection,

only 0.4%-2.3% components need to be 1!
(effectively “0.004-CFA”—"0.023-CFA" )
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|dea: start with imprecise a, incrementally refine “relevant” components

a<— (0,...,0)

Loop:
Run analysis F(a)
Find relevant components by cause-effect analysis
Add these components to a

Reasonable iterative refinement baseline
Solves the motivating problem of proving a new query cheaply

Does not solve the minimal abstraction problem (it refines too much)
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|dea: start with most precise a, incrementally discard components

a«—(1,...,1)
Loop:
Remove a component from a
Run analysis F(a)
If F(a) = 1: add component back permanently

Exploits monotonicity of F:
Component whose removal causes F(a) = 1 must exist in min. abstraction

= never visit a component more than once

Problem: takes O(# components) time (can be > 10,000 = > 30 days)
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Theorem:

s = # components in the largest minimal abstraction
d = # components in any minimal abstraction
lJ| = total # components

|f:
Set refinement probability o =

S

s+1
Obtain n = Q(d? log |J|) examples

Then:
STATREFINE outputs a minimal abstraction with high probability

in O(sd?log|J|) time

Significance: s, d are small,
only logarithmic dependence on total # components

Proof sketch: large deviation bounds + optimization over «
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Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
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Example: F(a) = -(as Aag Aaj)
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ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently
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1: add components back

ACTIVECOARSEN algorithm

Try removing each component with probability 1 — «
Run analysis F(a)

If F(a)
Else: remove components permanently

a«—(1,...
Loop:

|ldea: try to remove a constant fraction of components in each step

Example: F(a) = —(as ANag Aajq)
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ACTIVECOARSEN analysis

Theorem:

s = # components in largest minimal abstraction
lJ| = total # components
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ACTIVECOARSEN analysis

Theorem:
s = # components in largest minimal abstraction
lJ| = total # components

If:
Set refinement probability o = e=1/¢

Then:
ACTIVECOARSEN outputs a minimal abstraction

in O(slog|J|) expected time

Proof sketch: solve recurrence + optimization over «

Significance: s is small,
only logarithmic dependence on total # components
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Summary of algorithms

Algorithm Minimal Correct # calls to F
SCANCOARSEN yes yes O(|J])
STATREFINE high prob.  high prob. O(sd?log|J|)
ACTIVECOARSEN | yes yes O(slog |J|)
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Summary of algorithms

Algorithm Minimal Correct # calls to F
SCANCOARSEN yes yes O(|J])
STATREFINE high prob.  high prob. O(sd?log|J|)
ACTIVECOARSEN | yes yes O(slog |J|)

ACTIVECOARSEN: best asymptotic running time

STATREFINE: parallelizes more easily, better when s, d very small

Extensions:

e Adapatively refinement probability «

e Sharing computation across multiple queries
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Experimental setup

Application: static race detector of [Naik et al. 2006]
Pointer analysis using k-object-sensitivity or k-CFA with heap cloning

Combination of call graph, may alias, thread escape, may happen in parallel
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Experimental setup

Application: static race detector of [Naik et al. 2006]
Pointer analysis using k-object-sensitivity or k-CFA with heap cloning
Combination of call graph, may alias, thread escape, may happen in parallel

Benchmark statistics (determines # components in abstraction):

# alloc sites | # call sites

hedc 1,580 7,195

weblech 2,584 12,405

lusearch 2,873 13,928

Number of races:

hedc | weblech | lusearch
0-CFA 21,335 27,941 37,632
1-CFA 17,837 8,208 31,866
diff. (queries) | 3,498 19,733 5,766
1-0BJ 17,137 8,063 31,428
2-OBJ 16,124 5,523 20,929
diff. (queries) | 1,013 2,540 10,499
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Experimental results (all queries)

Setting: find one abstraction to prove all queries
How large is abstraction produced by

BASICREFINE (non-minimal, deterministic) and
ACTIVECOARSEN (minimal, randomized)?
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k-CFA:
total # components | BASICREFINE | ACTIVECOARSEN (minimal)
hedc 8,775 7,270 (83%) 90 (1.0%)
weblech 14,989 | 12,737 (85%) 157 (1.0%)
lusearch 16,801 | 14,864 (88%) 250 (1.5%)
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Experimental results (all queries)

Setting: find one abstraction to prove all queries

How large is abstraction produced by

BASICREFINE (non-minimal, deterministic) and
ACTIVECOARSEN (minimal, randomized)?

k-CFA:
total # components | BASICREFINE | ACTIVECOARSEN (minimal)
hedc 8,775 7,270 (83%) 90 (1.0%)
weblech 14,989 | 12,737 (85%) 157 (1.0%)
lusearch 16,801 | 14,864 (88%) 250 (1.5%)

k-object-sensitivity:

total # components | BASICREFINE | ACTIVECOARSEN (minimal)
hedc 1,580 906 (57%) 37 (2.3%)
weblech 2,584 1,768 (68%) 48 (1.9%)
lusearch 2,873 2,085 (73%) 56 (1.9%)
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Experimental results (breakdown by query)

Setting: find one abstraction to prove one query

How large are the per-query minimal abstractions?
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Setting: find one abstraction to prove one query

How large are the per-query minimal abstractions?

queries

SIS

A
3000

2400
1800
1200

600

hedc (CFA)

_mllm .
1 2 3 4 5 6 7 8 9
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Experimental results (breakdown by query)

Setting: find one abstraction to prove one query

How large are the per-query minimal abstractions?

3000 | hedc (CFA) 900t hedc (0OBJ)
E 2400 E 720
5 1800 5 540
= 1200 = 360
$ 600 Sk 180
123456789 1 23456789
EY EY
A A
25000 weblech (CFA) 1500 weblech (OBJ)
£ 20000 £ 1200
5 15000 5 900
= 10000 = 600
S 5000 $ 300
12345678 91011121314 123456 7
EY |
A A
4500 lusearch (CFA) 7000 lusearch (OBJ)
£ 3600 £ 5600
5 2700 5 4200
= 1800 = 2800
STRI $ 1400
P >
1 2345 6 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 12345678 91011
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Conclusion

e Motivating problem: to scale static analyses, need cheap abstractions

e Scientific question: what's the minimal abstraction to prove a query?
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e Sparsity: very few components are needed
— Theoretical result: leads to efficient machine learning algorithms

— Empirical result: leads to cheap abstractions
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Conclusion

e Motivating problem: to scale static analyses, need cheap abstractions

e Scientific question: what's the minimal abstraction to prove a query?

e Sparsity: very few components are needed
— Theoretical result: leads to efficient machine learning algorithms

— Empirical result: leads to cheap abstractions

e Future work: tackle motivating problem with information
gathered from minimal abstractions
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