Learning Minimal Abstractions

POPL - Austin, TX January 26, 2011

Percy Liang Omer Tripp Mayur Naik
UC Berkeley Tel-Aviv Univ. Intel Labs Berkeley

The Minimal Abstraction Problem

The Minimal Abstraction Problem

Given a family of abstractions A

The Minimal Abstraction Problem

Given a family of abstractions A

finest/most precise

coarsest /least precise

The Minimal Abstraction Problem

Given a family of abstractions A and a client query q...

finest/most precise

coarsest /least precise

The Minimal Abstraction Problem

Given a family of abstractions A and a client query q...

finest/most precise

proves ¢

— proves q

coarsest /least precise

The Minimal Abstraction Problem

Given a family of abstractions A and a client query q...

finest/most precise

proves ¢

&)

— proves q

coarsest /least precise

What is the coarsest abstraction a € A that proves the query ¢?

Motivating application: race detection

getnew() A // Thread 1 // Thread 2
hl: zl = new C x = getnew() y = getnew()
h2: z2 = new C x.f = ... y.f = ...

return z2

+

Motivating application: race detection

getnew() A // Thread 1 // Thread 2
hl: zl = new C x = getnew() y = getnew()
h2: z2 = new C x.f = ... y.f = ...

return z2

+

Query: is there a data race between x.f

= ...andy.f = ...7

no

Motivating application: race detection

getnew() A // Thread 1 // Thread 2
hl: zl = new C x = getnew() y = getnew()
h2: z2 = new C x.f = ... y.f = ...
return z2
+
Query: is there a data race between x.f = ... andy.f = ...?7 no

Heap abstractions: for each allocation site, context sensitive (1) or not (0)

Motivating application: race detection

return z2

+

getnew() A // Thread 1 // Thread 2
hl: zl = new C x = getnew() y = getnew()
h2: z2 = new C x.f = ... y.f = ...

Query: is there a data race between x.f

= ...andy.f = ...7

no

Heap abstractions: for each allocation site, context sensitive (1) or not (0)

h1l h2
0 O

— proves ¢

Motivating application: race detection

getnew() A // Thread 1 // Thread 2
hl: zl = new C x = getnew() y = getnew()
h2: z2 = new C x.f = ... y.f = ...
return z2
+
Query: is there a data race between x.f = ... andy.f = ...?7 no

Heap abstractions: for each allocation site, context sensitive (1) or not (0)

h1l h2
1 1

proves ¢

h1l h2
0 O

— proves ¢

Motivating application: race detection

getnew() A // Thread 1 // Thread 2
hl: zl = new C x = getnew() y = getnew()
h2: z2 = new C x.f = ... y.f = ...
return z2
+
Query: is there a data race between x.f .andy.f = ...7 no

Heap abstractions: for each allocation site, context sensitive (1) or not (0)

hl h2
1 0

— proves ¢

h1l h2
1 1

proves ¢

h1l h2
0 O

— proves ¢

h1l h2
0 1

proves q

Motivating application: race detection

getnew() A // Thread 1 // Thread 2
hl: zl = new C x = getnew() y = getnew()
h2: z2 = new C x.f = ... y.f = ...
return z2
+
Query: is there a data race between x.f .andy.f = ...7 no

Heap abstractions: for each allocation site, context sensitive (1) or not (0)

hl h2
1 0

— proves ¢

h1l h2
1 1

proves ¢

h1l h2
0 O

— proves ¢

best

h1l h2
0 1

proves q

The landscape

Motivating problem:
Given a query, try to prove it
as cheaply as possible

The landscape

Motivating problem:
Given a query, try to prove it
as cheaply as possible
Existing solutions:
Abstraction refinement [Guyer & Lin 2003]
[Heintze & Tardieu 2001]

[Sridharan et al. 2005]
[Zheng & Rugina 2008] ...

The landscape

Motivating problem:
Given a query, try to prove it
as cheaply as possible
Existing solutions: A
Abstraction refinement [Guyer & Lin 2003]
[Heintze & Tardieu 2001]

[Sridharan et al. 2005]
[Zheng & Rugina 2008] ...

finest/most precise

coarsest/least precise

The landscape

Motivating problem:
Given a query, try to prove it
as cheaply as possible

Existing solutions:
Abstraction refinement [Guyer & Lin 2003]
[Heintze & Tardieu 2001]
[Sridharan et al. 2005]
[Zheng & Rugina 2008] ...

Our problem (scientific question):
Given that we've proved a query,
cheapest abstraction in hindsight?

finest/most precise

A
coarsest/least precise
finest/most precise
proves ¢
A

O

— proves ¢

coarsest/least precise

The landscape

Motivating problem:
Given a query, try to prove it
as cheaply as possible

Existing solutions:
Abstraction refinement [Guyer & Lin 2003]
[Heintze & Tardieu 2001]
[Sridharan et al. 2005]
[Zheng & Rugina 2008] ...

Our problem (scientific question):
Given that we've proved a query,
cheapest abstraction in hindsight?

Sufficient /necessary conditions:
what aspects of program to model?

finest/most precise

A
coarsest/least precise
finest/most precise
proves ¢
A

O

— proves ¢

coarsest/least precise

Binary representation

Abstraction a € A is a binary vector (subset of components):
a=1111111111111111111111111 (most precise)

a=0000000000000000000000000O0 (least precise)

Binary representation

Abstraction a € A is a binary vector (subset of components):
a=1111111111111111111111111 (most precise)

a=0000000000000000000000000O0 (least precise)

Examples:
k-limited [Milanova et al. 2002]: treat site context-sensitively?
Predicate abstraction [Ball et al. 2001]: include predicate?
Shape analysis [Sagiv et al. 2002]: treat as abstraction predicate?

Finding a minimal abstraction

Given a static analysis F:

001000111111010010111011001110
'

F

v
0 (proven) OR 1 (not proven)

Finding a minimal abstraction

Given a static analysis F:

001000111111010010111011001110
'

F

v
0 (proven) OR 1 (not proven)

Goal: find a minimal abstraction a (not necessarily unique):

(i) F(a) =0 (proves the query)
(i) Fora’ < a,F(a’) =1 (can't coarsen locally)

Finding a minimal abstraction

Given a static analysis F:

001000111111010010111011001110
'

F

v
0 (proven) OR 1 (not proven)

Goal: find a minimal abstraction a (not necessarily unique):

(i) F(a) =0 (proves the query)
(i) Fora’ < a,F(a’) =1 (can't coarsen locally)

Challenge: |A| = 27 components ghstractions to consider

Finding a minimal abstraction

Given a static analysis F:

001000111111010010111011001110
'

F

v
0 (proven) OR 1 (not proven)

Goal: find a minimal abstraction a (not necessarily unique):

(i) F(a) =0 (proves the query)
(i) Fora’ < a,F(a’) =1 (can't coarsen locally)

Challenge: |A| = 27 components ghstractions to consider

Approach: machine learning algorithms that exploit randomization

Key theme: sparsity

Sparsity hypothesis:
Only a small fraction of components of a need to be refined

a=0100000000000000000101010

Key theme: sparsity

Sparsity hypothesis:
Only a small fraction of components of a need to be refined

a=0100000000000000000101010

Main results:

Key theme: sparsity

Sparsity hypothesis:
Only a small fraction of components of a need to be refined

a=0100000000000000000101010

Main results:

Theoretical: machine learning algorithms are efficient under sparsity

Key theme: sparsity

Sparsity hypothesis:
Only a small fraction of components of a need to be refined

a=0100000000000000000101010

Main results:
Theoretical: machine learning algorithms are efficient under sparsity

Empirical: for k-limited race detection,
only 0.4%-2.3% components need to be 1!

Key theme: sparsity

Sparsity hypothesis:
Only a small fraction of components of a need to be refined

a=0100000000000000000101010

Main results:
Theoretical: machine learning algorithms are efficient under sparsity
Empirical: for k-limited race detection,

only 0.4%-2.3% components need to be 1!
(effectively “0.004-CFA”—"0.023-CFA")

Algorithms

finest/most precise

coarsest /least precise

Refine
BASICREFINE
STATREFINE

Algorithms

finest/most precise

coarsest /least precise

Refine
BASICREFINE
STATREFINE

Algorithms

finest/most precise

coarsest /least precise

Coarsen
SCANCOARSEN
ACTIVECOARSEN

BASICREFINE

|dea: start with imprecise a, incrementally refine “relevant” components

BASICREFINE

|dea: start with imprecise a, incrementally refine “relevant” components

a<— (0,...,0)

Loop:
Run analysis F(a)
Find relevant components by cause-effect analysis
Add these components to a

BASICREFINE

|dea: start with imprecise a, incrementally refine “relevant” components

a<— (0,...,0)

Loop:
Run analysis F(a)
Find relevant components by cause-effect analysis
Add these components to a

Reasonable iterative refinement baseline

BASICREFINE

|dea: start with imprecise a, incrementally refine “relevant” components

a<— (0,...,0)

Loop:
Run analysis F(a)
Find relevant components by cause-effect analysis
Add these components to a

Reasonable iterative refinement baseline

Solves the motivating problem of proving a new query cheaply

BASICREFINE

|dea: start with imprecise a, incrementally refine “relevant” components

a<— (0,...,0)

Loop:
Run analysis F(a)
Find relevant components by cause-effect analysis
Add these components to a

Reasonable iterative refinement baseline
Solves the motivating problem of proving a new query cheaply

Does not solve the minimal abstraction problem (it refines too much)

SCANCOARSEN

|dea: start with most precise a, incrementally discard components

10

SCANCOARSEN

|dea: start with most precise a, incrementally discard components

a«—(1,...,1)
Loop:
Remove a component from a
Run analysis F(a)
If F(a) = 1: add component back permanently

10

SCANCOARSEN

|dea: start with most precise a, incrementally discard components

a«—(1,...,1)

Loop:
Remove a component from a
Run analysis F(a)

If F(a) = 1: add component back permanently

Exploits monotonicity of F:
Component whose removal causes F(a) = 1 must exist in min. abstraction

= never visit a component more than once

SCANCOARSEN

|dea: start with most precise a, incrementally discard components

a«—(1,...,1)
Loop:
Remove a component from a
Run analysis F(a)
If F(a) = 1: add component back permanently

Exploits monotonicity of F:
Component whose removal causes F(a) = 1 must exist in min. abstraction

= never visit a component more than once

Problem: takes O(# components) time (can be > 10,000 = > 30 days)

10

STATREFINE

Idea: run F on random a, learn correlations between components and F(a)

11

STATREFINE

Idea: run F on random a, learn correlations between components and F(a)

Loop:
Gather n training examples (a, F(a)) where p(a;

Add component j with largest # of a with a; =1 an

=1)=
dF

(

a)

0

11

STATREFINE

Idea: run F on random a, learn correlations between components and F(a)

Loop:

Gather n training examples (a, F(a)) where p(a; =1) = «

Add component j with largest # of a with a; =1 and F(a) =0

Example: F(a) = —(as ANag Aajq)

Or—-HOOOOHHOHOH—-HOHA—-HOOO
£ e e 1
—ArAAA OO A AAAAA—A—A O —
A A A A AT OO AT A A O~ — O
A A A T O OO AT OO O
—HrArAAA A A A A A A A O O A HO
—rArAAA A A A OO A A
e A A A O v O v
—ArAAAA AT OO AT O A A~ ——
HreE AT OO O O v
HreA A A A A A O O
—HO A A 10O A A1 OO — — ———
—HOA 1O A1 O O rdrrr—— Ol
HrArA A A A O A A A A A O O i
—HO A A A A T O O v
—HO"A—1HO0OOHHO A —HO A O
Hr—E A O OO "ArArArArAr—r—O—"—00O
A A A A A A A A A A A1 OO OO
—HrAAA A A O T O A A A A A O —
COO0OAA—A—1000 A
OrArdAAr10AA A A —"A—"A—"10O0O— -

I A 1 OO ArA 1O —1O A r—1O v

11

STATREFINE

Idea: run F on random a, learn correlations between components and F(a)

Loop:

Gather n training examples (a, F(a)) where p(a; =1) = «

Add component j with largest # of a with a; =1 and F(a) =0

Example: F(a) = —(as ANag Aajq)

1

0 0 1

1

OO OO
i
O
— — —
— — —
v —
— — —
— — —
— — —
—Ar— OO
— — —
— — —
O
— — —
— — —
—— OO
— OO0
— — —
— — —
O i
O

—— OO

0

=

1 00 01 1 1 0 0 1

0

1 0 0 1 1

1

OO
T
O
—O
OO
—\ O
— —
— —
—
— —
— —
— —
— O
— —
— —
— O
— OO
OO
— —
—
— —

-

11

STATREFINE

Idea: run F on random a, learn correlations between components and F(a)

Loop:

Gather n training examples (a, F(a)) where p(a; =1) = «

Add component j with largest # of a with a; =1 and F(a) =0

Example: F(a) = —(as ANag Aajq)

1

0 0 1

1

OO OO
i
O
— — —
— — —
v —
— — —
— — —
— — —
—Ar— OO
— — —
— — —
O
— — —
— — —
—A—OO
— OO0
— — —
— — —
O i
O

—— OO

0

=

1 00 01 1 1 0 0 1

0

1 0 0 1 1

1

OO
T
O
—O
OO
—\ O
— —
— —
—
— —
— —
— —
— O
— —
— —
— O
— OO
OO
— —
—
— —

-

8 9 711 9 6 7 1011 7 11 9 7 10 10 10 9 8 9 9

11

STATREFINE

Theorem:

s = # components in the largest minimal abstraction
d = # components in any minimal abstraction
lJ| = total # components

12

STATREFINE

Theorem:

s = # components in the largest minimal abstraction
d = # components in any minimal abstraction
lJ| = total # components

|f:
Set refinement probability o =

S

s+1

12

STATREFINE

Theorem:

s = # components in the largest minimal abstraction
d = # components in any minimal abstraction
lJ| = total # components

|f:
Set refinement probability o =

S

s+1
Obtain n = Q(d? log |J|) examples

12

STATREFINE

Theorem:

s = # components in the largest minimal abstraction
d = # components in any minimal abstraction
lJ| = total # components

|f:
Set refinement probability o =

S

s+1
Obtain n = Q(d? log |J|) examples

Then:
STATREFINE outputs a minimal abstraction with high probability

in O(sd?log|J|) time

Significance: s, d are small,
only logarithmic dependence on total # components

12

STATREFINE

Theorem:

s = # components in the largest minimal abstraction
d = # components in any minimal abstraction
lJ| = total # components

|f:
Set refinement probability o =

S

s+1
Obtain n = Q(d? log |J|) examples

Then:
STATREFINE outputs a minimal abstraction with high probability

in O(sd?log|J|) time

Significance: s, d are small,
only logarithmic dependence on total # components

Proof sketch: large deviation bounds + optimization over «

12

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

13

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Example: F(a) = —(as Aag Aajq)
111111111111111111111111111111=0

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Example: F(a) = -(as Aag Aaj)
1
1

1111111 11111111111 11111111111=
1111111 111111100101 1111111111=

0
1

13

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«— (1,..

Loop:
Try removing each component with probability 1 — «
Run analysis F(a)

If F(a) = 1: add components back
Else: remove components permanently

1)

Example: F(a) = —(as Aag Aajq)
111111111111111111111111111111
111111111111111001011111111111
111111011101011110101110111100

4

OO

13

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«— (1,..

Loop:
Try removing each component with probability 1 — «
Run analysis F(a)

If F(a) = 1: add components back
Else: remove components permanently

1)

=
—_ =
—_

1
1

—_
[S
_= O
_ o
o
Y
— =
— =
—
—_
—
[S

— =

— =
$ 4§

OO

13

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Example: F(a) = —(as Aag Aajq)
111111111111111111111111111111
111111111111111001011111111111
111111 111 1 1111 1 111 1111
0610111 110 1 1111 0 011 0111

44l

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

e =
R = O
— =
o
— =
Y
Y el e
Y =
— =

—
— e
— e
— e
— =

— =
$4 44

oo O

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:

Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Try removing each component with probability 1 — «

Example: F(a) = —(as ANag Aajq)

1
1
1

1
1
1

1 1 11
1 1 1

—_ =
=
=l
—_ =
—_ =
—_
—_ = =

(
1
1
1
1
1

I Wy Gy T W S G
[N N e Wy S gy B
(N N e
—_ = e

I Wy Gy T W S G '
== O
OrRrHH,OK
et e el el
[N G T W T Gy Sy

—_ = =

—_ = =

|—l|—\
|—l|—\

L4444l

(o No Nl i)

13

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:

Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Try removing each component with probability 1 — «

Example: F(a) = —(as ANag Aajq)

1
1
1

1
1
1

1 1 11
1 1 1

) el
e el
PR, O
|—l|—\
RO
Pt
)l

(
1
1
1
1
1

—_ = =
[N G TR Wy N Wy Y G T |
—_ = =

—_ = =
PR, PO
I T Wy T Wy S Wy T
—_ = =

—_
—_ = =

—_ = =

—_ = =

|—l|—\
|—l|—\

L4444l

(o No Nl i)

13

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:

Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Try removing each component with probability 1 — «

Example: F(a) = —(as Aag Aajq)
1111111111111111111111111
111111111111111001011111]1
111111 111 1 1111 1 111 1
1 111 11 1 1111 11
1 111 11 111 11
1 001 00 01 1 0 1

M T Wy Wy T W T W ¥

—_ = = e e

C)|_||_\|_l|_||_\

|—l|—\

|—l|—\

44 idd

HPOOORrO

13

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Example: F(a) = -

—
—

R = O

— =

o

— =

Y

— =

—

— =

— =
R R

= e e el e
|_\C)|_||_\|_||_||_\
—_ QO = = e e
i e = N s
RFOREFERFREF -
Pt el el el el el
= e e el el et
= = e el e
|_\C)|_||_\|_l|_||_\

OrRrOoOOoOOoOH+HOo

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:

Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Try removing each component with probability 1 — «

Example: F(a) = -

[y W Gy Y
—
PR, O
|—l|—\
RO
Pt
)l
1
Ry W G Y

= e e el e
|_\C)|_||_\|_||_||_\
—_ QO = = e e
i e = N s
RFOREFERFREF -
Pt el el el el el

—_ = = = e e

—_ = = e e e

|_\C)|_||_\|_l|_||_\

|—l|—\

|—l|—\

R A R

OrRrOoOOoOOoOH+HOo

13

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

Example: F(a) = -

—_ = =

—_ = = e e e e

a«—(1,...,1)
Loop:

Try removing each component with probability 1 — «

Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

—_

Q
B

>
Q
e

>
A

1
1

1
1
PR, O
|—l|—\
RO
Pt
)l
1
Ry W G Y

(
1
1
1
1
1
0
1
1

RO RFRPEFPRPREFPRBE
RPRPRORRRRRE
R RO
HFRFORFRRFERFERFRF
R Wy N Wy N W N W N W N W T W T ¥
[l S S S e s I
R R ORRFRREF =R
= = e e e e

O MMM MR

O|_\|_l|_||_\|_l|_||_\

|_||_\C)|_||_\|_l|_||_\

|—l|—\

|—l|—\

R R R A

OSCOrRrOOOHrHO

13

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Q
B

>
Q
e

>
A

Example: F(a) = -

1
1

—
—
=

— =

— =

— e

—_

R = O

— =

o

— =

Y

— =

—
N o Wy Sy Ty S
N o Wy Sy Ty S
— =

— =

R R A

(
1
1
1
1
1
0
1
1

R Wy N Wy N W N W N W N W T W S ¥
|_||_\C)|_||_\|_||_||_\
RPFRPRORRRRRE
R RO
HF R ORFRRFERFERFRRFE
R Wy N Wy N W N W N W N W T W T ¥
[l S S S e s I
R R ORRFRREF =R
= = e e e e
|_||_\C)|_||_\|_l|_||_\

OSCOrRrOOOHrHO

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Q
B

>
Q
e

>
A

Example: F(a) = -

1
1

—
—
=

— =

— =

— e

—_

R = O

— =

o

— =

Y

— =

—
N o Wy Sy Ty S
N o Wy Sy Ty S

— =

— =

S R 0 R R A

1
1
1
1
1
0
1
1
0

PR PR RRPrR PR RPR R
|_||_||_\C)|_||_\|_||_||_\
RPFRPRRPRORRFRRRRE
R R PR OREFERF R
O FRFORFRFMFMFERFE
P PR RPrR PR PR R R
o—rrFRFKFFRPEFEEEORK
R R PR OREFERF R
N Wy TN W T W TR W T A T S W
|_l|_||_\C)|_||_\|_l|_||_\

RFOORrROOORrrO

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Q
B

>
Q
e

>
A

Example: F(a) = -

1
1

—
—

=

— =

— =

— e

—_

R = O

— =

o

— =

Y

— =

—
N o Wy Sy Ty S
N o Wy Sy Ty S

— =

— =

S O 0 0 R R

1
1
1
1
1
0
1
1
0
1

R Wy N Wy NN W N W N R N W N QN
|_\|_||_||_\C)|_||_\|_||_l|_\
RPFRPRRPRRPORRRRLRE
R R R EFEFORFRRFREF R
RFORRFORFRRFMFMF
R PR RRPRRPR R PR R R
O, FFEFMFEMFEEEFEOR
R R R EFEFORFR R R
= = e e e e e e
O|_l|_l|_\O|_l|_\|_l|_l|_\

OrRrOOHrHROOORrrO

ACTIVECOARSEN algorithm

|ldea: try to remove a constant fraction of components in each step

a«—(1,...,1)
Loop:
Try removing each component with probability 1 — «
Run analysis F(a)
If F(a) = 1: add components back
Else: remove components permanently

Q
B

>
Q
e

>
A

Example: F(a) = -

1
1

—
—

=

— =

— =

— e

—_

R = O

— =

o

— =

Y

— =

—
N o Wy Sy Ty S
N o Wy Sy Ty S

R R RO
— =

— =

S O 0 0 R R

1
1
1
1
1
0
1
1
0
1

R Wy N Wy NN W NN W W R N W T QN
PR L) RPF RO EFEE=
RPFRPRRPRRPORRRRLRE
R R R EFEFORFRRFREF R
RFORRFORFRRFMFMF
R PR RRPRRPR R PR R R
O, FFEFMFEMFEEEFEOR
R R R EFEFORFR R R
= = e e e e e e

OrRrOOHrHROOORrrO

1: add components back

ACTIVECOARSEN algorithm

Try removing each component with probability 1 — «
Run analysis F(a)

If F(a)
Else: remove components permanently

a«—(1,...
Loop:

|ldea: try to remove a constant fraction of components in each step

Example: F(a) = —(as ANag Aajq)

13

Or—HOOOHOO-HO
L A O O
—

—

A A A A O
o
o

i

—

Yt A v v v
rTrAd A A O
1 i

—

- O

—

— O

A O A A A" A O
Yl A v v
T A A A OO
i

N

i

1 i

YT A A T O A O
rTrA A A A O A O
—

o

A A A A O
—TrA A A A1 O
i

Yt A v v v v

1 i

ACTIVECOARSEN analysis

Theorem:

s = # components in largest minimal abstraction
lJ| = total # components

14

ACTIVECOARSEN analysis

Theorem:

s = # components in largest minimal abstraction
lJ| = total # components

If:
Set refinement probability o = e=1/¢

14

ACTIVECOARSEN analysis

Theorem:
s = # components in largest minimal abstraction
lJ| = total # components

If:
Set refinement probability o = e=1/¢

Then:
ACTIVECOARSEN outputs a minimal abstraction

in O(slog|J|) expected time

Proof sketch: solve recurrence + optimization over «

14

ACTIVECOARSEN analysis

Theorem:
s = # components in largest minimal abstraction
lJ| = total # components

If:
Set refinement probability o = e=1/¢

Then:
ACTIVECOARSEN outputs a minimal abstraction

in O(slog|J|) expected time

Proof sketch: solve recurrence + optimization over «

Significance: s is small,
only logarithmic dependence on total # components

14

Summary of algorithms

Algorithm Minimal Correct # calls to F
SCANCOARSEN yes yes O(|J])
STATREFINE high prob. high prob. O(sd?log|J|)
ACTIVECOARSEN | yes yes O(slog |J|)

15

Summary of algorithms

Algorithm Minimal Correct # calls to F
SCANCOARSEN yes yes O(|J])
STATREFINE high prob. high prob. O(sd?log|J|)
ACTIVECOARSEN | yes yes O(slog |J|)

ACTIVECOARSEN: best asymptotic running time

STATREFINE: parallelizes more easily, better when s, d very small

15

Summary of algorithms

Algorithm Minimal Correct # calls to F
SCANCOARSEN yes yes O(|J])
STATREFINE high prob. high prob. O(sd?log|J|)
ACTIVECOARSEN | yes yes O(slog |J|)

ACTIVECOARSEN: best asymptotic running time

STATREFINE: parallelizes more easily, better when s, d very small

Extensions:

e Adapatively refinement probability «

e Sharing computation across multiple queries

15

Experimental setup

Application: static race detector of [Naik et al. 2006]
Pointer analysis using k-object-sensitivity or k-CFA with heap cloning

Combination of call graph, may alias, thread escape, may happen in parallel

16

Experimental setup

Application: static race detector of [Naik et al. 2006]
Pointer analysis using k-object-sensitivity or k-CFA with heap cloning
Combination of call graph, may alias, thread escape, may happen in parallel
Benchmark statistics (determines # components in abstraction):

alloc sites | # call sites
hedc 1,580 7,195
weblech 2,584 12,405
lusearch 2,873 13,928

16

Experimental setup

Application: static race detector of [Naik et al. 2006]
Pointer analysis using k-object-sensitivity or k-CFA with heap cloning
Combination of call graph, may alias, thread escape, may happen in parallel

Benchmark statistics (determines # components in abstraction):

alloc sites | # call sites

hedc 1,580 7,195

weblech 2,584 12,405

lusearch 2,873 13,928

Number of races:

hedc | weblech | lusearch
0-CFA 21,335 27,941 37,632
1-CFA 17,837 8,208 31,866
diff. (queries) | 3,498 19,733 5,766
1-0BJ 17,137 8,063 31,428
2-OBJ 16,124 5,523 20,929
diff. (queries) | 1,013 2,540 10,499

16

Experimental results (all queries)

Setting: find one abstraction to prove all queries
How large is abstraction produced by

BASICREFINE (non-minimal, deterministic) and
ACTIVECOARSEN (minimal, randomized)?

17

Experimental results (all queries)

Setting: find one abstraction to prove all queries

How large is abstraction produced by

BASICREFINE (non-minimal, deterministic) and
ACTIVECOARSEN (minimal, randomized)?

k-CFA:
total # components | BASICREFINE | ACTIVECOARSEN (minimal)
hedc 8,775 7,270 (83%) 90 (1.0%)
weblech 14,989 | 12,737 (85%) 157 (1.0%)
lusearch 16,801 | 14,864 (88%) 250 (1.5%)

17

Experimental results (all queries)

Setting: find one abstraction to prove all queries

How large is abstraction produced by

BASICREFINE (non-minimal, deterministic) and
ACTIVECOARSEN (minimal, randomized)?

k-CFA:
total # components | BASICREFINE | ACTIVECOARSEN (minimal)
hedc 8,775 7,270 (83%) 90 (1.0%)
weblech 14,989 | 12,737 (85%) 157 (1.0%)
lusearch 16,801 | 14,864 (88%) 250 (1.5%)

k-object-sensitivity:

total # components | BASICREFINE | ACTIVECOARSEN (minimal)
hedc 1,580 906 (57%) 37 (2.3%)
weblech 2,584 1,768 (68%) 48 (1.9%)
lusearch 2,873 2,085 (73%) 56 (1.9%)

17

Experimental results (breakdown by query)

Setting: find one abstraction to prove one query

How large are the per-query minimal abstractions?

18

Experimental results (breakdown by query)

Setting: find one abstraction to prove one query

How large are the per-query minimal abstractions?

queries

SIS

A
3000

2400
1800
1200

600

hedc (CFA)

_mllm .
1 2 3 4 5 6 7 8 9

al

18

Experimental results (breakdown by query)

Setting: find one abstraction to prove one query

How large are the per-query minimal abstractions?

3000 | hedc (CFA) 900t hedc (0OBJ)
E 2400 E 720
5 1800 5 540
= 1200 = 360
$ 600 Sk 180
123456789 1 23456789
EY EY
A A
25000 weblech (CFA) 1500 weblech (OBJ)
£ 20000 £ 1200
5 15000 5 900
= 10000 = 600
S 5000 $ 300
12345678 91011121314 123456 7
EY |
A A
4500 lusearch (CFA) 7000 lusearch (OBJ)
£ 3600 £ 5600
5 2700 5 4200
= 1800 = 2800
STRI $ 1400
P >
1 2345 6 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 12345678 91011

18
al al

Conclusion

e Motivating problem: to scale static analyses, need cheap abstractions

e Scientific question: what's the minimal abstraction to prove a query?

19

Conclusion

e Motivating problem: to scale static analyses, need cheap abstractions

e Scientific question: what's the minimal abstraction to prove a query?

e Sparsity: very few components are needed
— Theoretical result: leads to efficient machine learning algorithms

— Empirical result: leads to cheap abstractions

19

Conclusion

e Motivating problem: to scale static analyses, need cheap abstractions

e Scientific question: what's the minimal abstraction to prove a query?

e Sparsity: very few components are needed
— Theoretical result: leads to efficient machine learning algorithms

— Empirical result: leads to cheap abstractions

e Future work: tackle motivating problem with information
gathered from minimal abstractions

19

