Learning Minimal Abstractions

POPL - Austin, TX

January 26, 2011

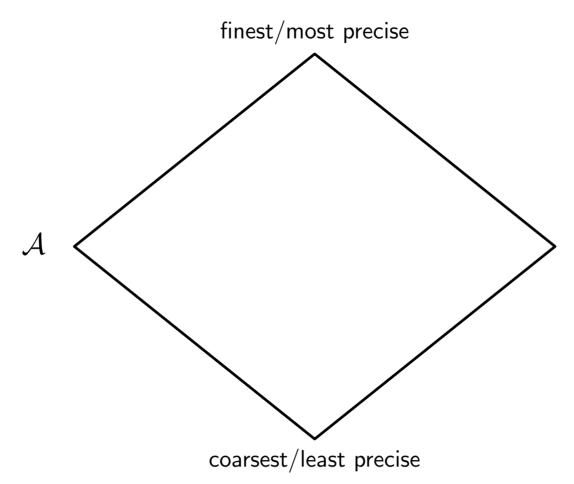
UC Berkeley Tel-Aviv Univ.

Percy Liang Omer Tripp

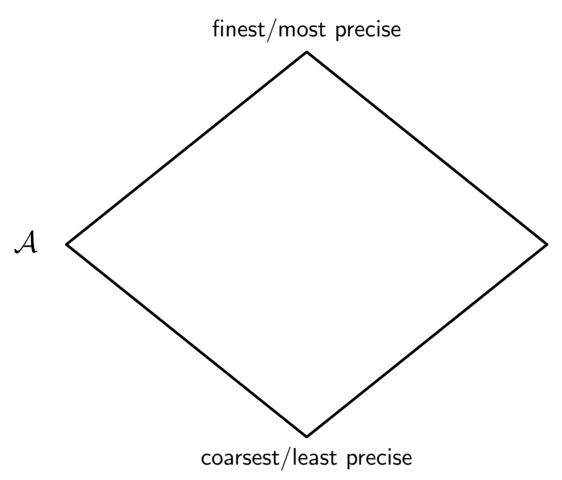
Mayur Naik Intel Labs Berkeley

Given a family of abstractions ${\cal A}$

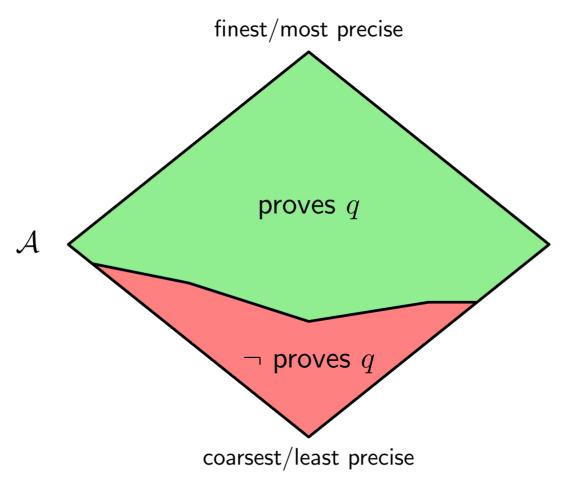
Given a family of abstractions ${\cal A}$



Given a family of abstractions \mathcal{A} and a client query q...



Given a family of abstractions \mathcal{A} and a client query q...



Given a family of abstractions A and a client query q...

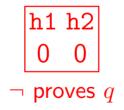


What is the coarsest abstraction $a \in A$ that proves the query q?

Query: is there a data race between x.f = ... and y.f = ...? no

Query: is there a data race between x.f = ... and y.f = ...? no

Query: is there a data race between x.f = ... and y.f = ...? no



```
getnew() { // Thread 1 // Thread 2 h1: z1 = new C x = getnew() y = getnew() h2: z2 = new C x.f = ... y.f = ... return z2 }
```

Query: is there a data race between x.f = ... and y.f = ...? no

```
\begin{bmatrix} h1 & h2 \\ 0 & 0 \end{bmatrix} \neg proves q
```

Query: is there a data race between x.f = ... and y.f = ...? no

```
\begin{array}{c} \text{h1 h2} \\ 1 \ 1 \\ \end{array} \begin{array}{c} \text{proves } q \\ \\ \text{h1 h2} \\ 1 \ 0 \\ \end{array} \begin{array}{c} \text{h1 h2} \\ 0 \ 1 \\ \end{array} \begin{array}{c} \text{proves } q \\ \\ \text{h1 h2} \\ 0 \ 0 \\ \end{array} \begin{array}{c} \text{proves } q \\ \end{array}
```

Query: is there a data race between x.f = ... and y.f = ...? no

```
\begin{array}{c} \begin{array}{c} \begin{array}{c} h1 \ h2 \\ 1 \ 1 \end{array} \end{array} \\ \begin{array}{c} \\ proves \ q \end{array} \\ \begin{array}{c} \\ h1 \ h2 \\ 0 \ 1 \end{array} \\ \begin{array}{c} \\ proves \ q \end{array} \\ \end{array}
```

Motivating problem:

Given a query, try to prove it as cheaply as possible

Motivating problem:

Given a query, try to prove it as cheaply as possible

Existing solutions:

Abstraction refinement [Guyer & Lin 2003]

[Heintze & Tardieu 2001]

[Sridharan et al. 2005]

[Zheng & Rugina 2008] ...

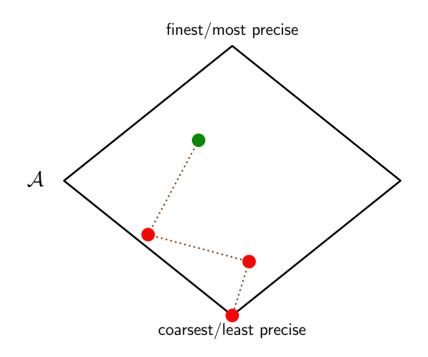
Motivating problem:

Given a query, try to prove it as cheaply as possible

Existing solutions:

Abstraction refinement [Guyer & Lin 2003]

[Guyer & Lin 2003] [Heintze & Tardieu 2001] [Sridharan et al. 2005] [Zheng & Rugina 2008] ...



Motivating problem:

Given a query, try to prove it as cheaply as possible

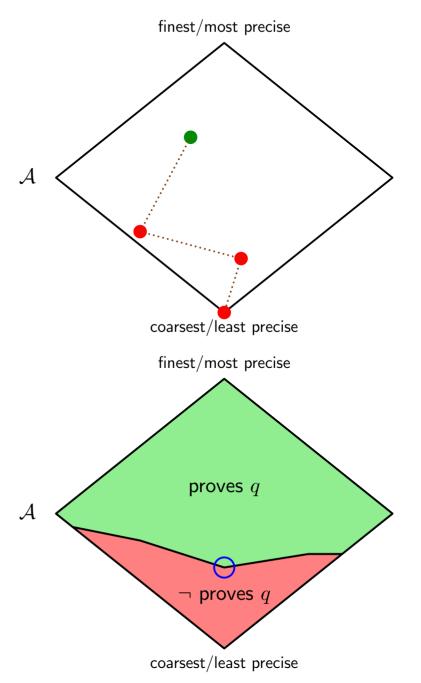
Existing solutions:

Abstraction refinement [Guyer & Lin 2003]

[Guyer & Lin 2003] [Heintze & Tardieu 2001] [Sridharan et al. 2005] [Zheng & Rugina 2008] ...

Our problem (scientific question):

Given that we've proved a query, cheapest abstraction in hindsight?



Motivating problem:

Given a query, try to prove it as cheaply as possible

Existing solutions:

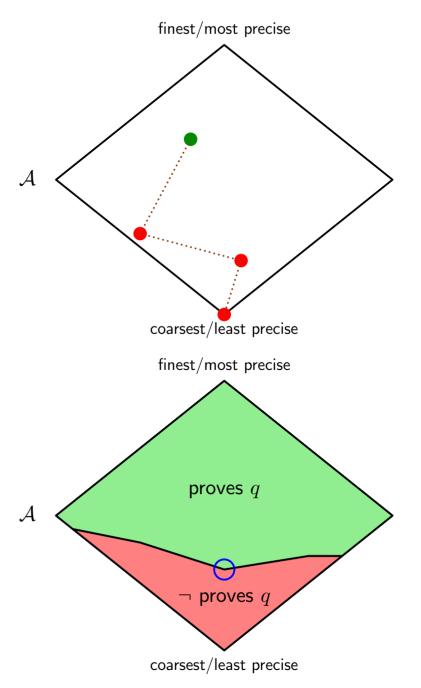
Abstraction refinement [Guyer & Lin 2003]

[Guyer & Lin 2003] [Heintze & Tardieu 2001] [Sridharan et al. 2005] [Zheng & Rugina 2008] ...

Our problem (scientific question):

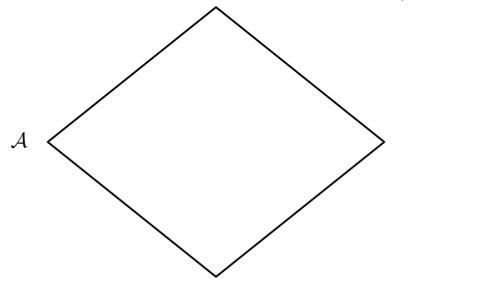
Given that we've proved a query, cheapest abstraction in hindsight?

Sufficient/necessary conditions: what aspects of program to model?



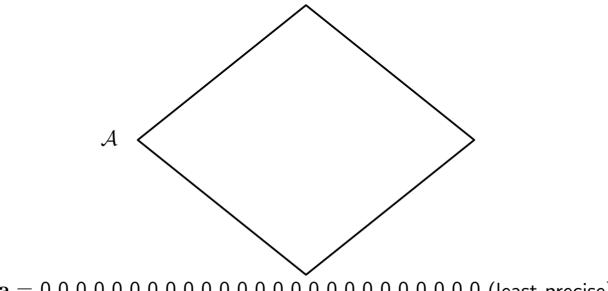
Binary representation

Abstraction $a \in A$ is a binary vector (subset of components):



Binary representation

Abstraction $a \in A$ is a binary vector (subset of components):



Examples:

k-limited [Milanova et al. 2002]: treat site context-sensitively?

Predicate abstraction [Ball et al. 2001]: include predicate?

Shape analysis [Sagiv et al. 2002]: treat as abstraction predicate?

Given a static analysis F:

Given a static analysis F:

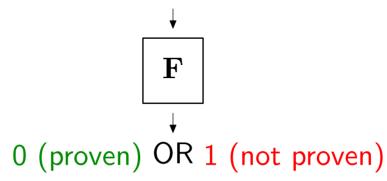
 $0\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 0$

0 (proven) OR 1 (not proven)

Goal: find a minimal abstraction a (not necessarily unique):

- (i) $\mathbf{F}(\mathbf{a}) = 0$ (proves the query)
- (ii) For $\mathbf{a}' \prec \mathbf{a}, \mathbf{F}(\mathbf{a}') = 1$ (can't coarsen locally)

Given a static analysis F:



Goal: find a minimal abstraction a (not necessarily unique):

- (i) $\mathbf{F}(\mathbf{a}) = 0$ (proves the query)
- (ii) For $\mathbf{a}' \prec \mathbf{a}, \mathbf{F}(\mathbf{a}') = 1$ (can't coarsen locally)

Challenge: $|\mathcal{A}| = 2^{\# \text{ components}}$ abstractions to consider

Given a static analysis F:

0 (proven) OR 1 (not proven)

Goal: find a minimal abstraction a (not necessarily unique):

- (i) $\mathbf{F}(\mathbf{a}) = 0$ (proves the query)
- (ii) For $\mathbf{a}' \prec \mathbf{a}, \mathbf{F}(\mathbf{a}') = 1$ (can't coarsen locally)

Challenge: $|\mathcal{A}| = 2^{\# \text{ components}}$ abstractions to consider

Approach: machine learning algorithms that exploit randomization

Sparsity hypothesis:

Only a small fraction of components of a need to be refined

Sparsity hypothesis:

Only a small fraction of components of ${\bf a}$ need to be refined

Main results:

Sparsity hypothesis:

Only a small fraction of components of ${\bf a}$ need to be refined

Main results:

Theoretical: machine learning algorithms are efficient under sparsity

Sparsity hypothesis:

Only a small fraction of components of ${\bf a}$ need to be refined

Main results:

Theoretical: machine learning algorithms are efficient under sparsity

Empirical: for k-limited race detection, only 0.4%-2.3% components need to be 1!

Sparsity hypothesis:

Only a small fraction of components of ${\bf a}$ need to be refined

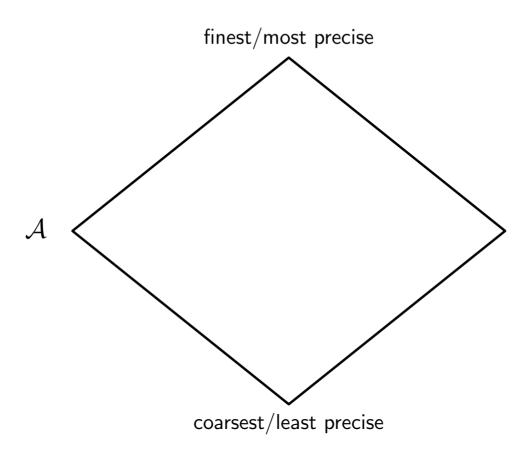
```
a = 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
```

Main results:

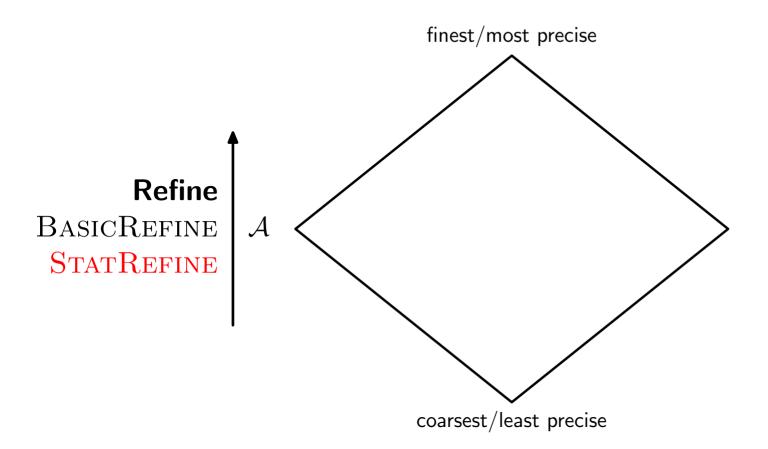
Theoretical: machine learning algorithms are efficient under sparsity

```
Empirical: for k-limited race detection, only 0.4\%-2.3\% components need to be 1! (effectively "0.004-CFA" – "0.023-CFA")
```

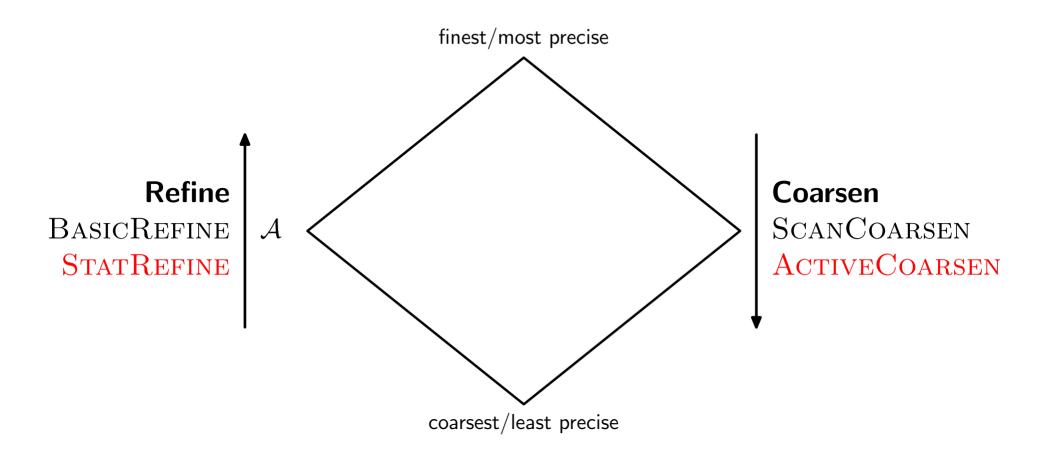
Algorithms



Algorithms



Algorithms



BASICREFINE

Idea: start with imprecise a, incrementally refine "relevant" components

BASICREFINE

Idea: start with imprecise a, incrementally refine "relevant" components

 $\mathbf{a} \leftarrow (0, \dots, 0)$

Loop:

Run analysis $\mathbf{F}(\mathbf{a})$

Find relevant components by cause-effect analysis

Add these components to a

BASICREFINE

Idea: start with imprecise a, incrementally refine "relevant" components

 $\mathbf{a} \leftarrow (0, \dots, 0)$ Loop:

Run analysis F(a)

Find relevant components by cause-effect analysis

Add these components to a

Reasonable iterative refinement baseline

BASICREFINE

Idea: start with imprecise a, incrementally refine "relevant" components

$$\mathbf{a} \leftarrow (0, \dots, 0)$$
 Loop:

Run analysis F(a)

Find relevant components by cause-effect analysis

Add these components to a

Reasonable iterative refinement baseline

Solves the motivating problem of proving a new query cheaply

BASICREFINE

Idea: start with imprecise a, incrementally refine "relevant" components

$$\mathbf{a} \leftarrow (0, \dots, 0)$$
 Loop:

Run analysis F(a)

Find relevant components by cause-effect analysis

Add these components to a

Reasonable iterative refinement baseline

Solves the motivating problem of proving a new query cheaply

Does not solve the minimal abstraction problem (it refines too much)

Idea: start with most precise a, incrementally discard components

Idea: start with most precise a, incrementally discard components

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Loop:

Remove a component from a

Run analysis $\mathbf{F}(\mathbf{a})$

If F(a) = 1: add component back permanently

Idea: start with most precise a, incrementally discard components

$$\mathbf{a} \leftarrow (1, \dots, 1)$$

Loop:

Remove a component from a

Run analysis F(a)

If F(a) = 1: add component back permanently

Exploits monotonicity of **F**:

Component whose removal causes F(a) = 1 must exist in min. abstraction

 \Rightarrow never visit a component more than once

Idea: start with most precise a, incrementally discard components

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Loop:

Remove a component from a

Run analysis F(a)

If F(a) = 1: add component back permanently

Exploits monotonicity of **F**:

Component whose removal causes $\mathbf{F}(\mathbf{a})=1$ must exist in min. abstraction \Rightarrow never visit a component more than once

Problem: takes O(# components) time (can be $> 10,000 \Rightarrow > 30 \text{ days}$)

ldea: run ${\bf F}$ on random ${\bf a}$, learn correlations between components and ${\bf F}({\bf a})$

Idea: run \mathbf{F} on random \mathbf{a} , learn correlations between components and $\mathbf{F}(\mathbf{a})$

Loop:

Gather n training examples $(\mathbf{a}, \mathbf{F}(\mathbf{a}))$ where $p(\mathbf{a}_j = 1) = \alpha$ Add component j with largest # of \mathbf{a} with $\mathbf{a}_j = 1$ and $\mathbf{F}(\mathbf{a}) = 0$

Idea: run ${\bf F}$ on random ${\bf a}$, learn correlations between components and ${\bf F}({\bf a})$

```
Loop: Gather n training examples (\mathbf{a}, \mathbf{F}(\mathbf{a})) where p(\mathbf{a}_j = 1) = \alpha Add component j with largest \# of \mathbf{a} with \mathbf{a}_j = 1 and \mathbf{F}(\mathbf{a}) = 0
```

Idea: run \mathbf{F} on random \mathbf{a} , learn correlations between components and $\mathbf{F}(\mathbf{a})$

Gather n training examples $(\mathbf{a}, \mathbf{F}(\mathbf{a}))$ where $p(\mathbf{a}_i = 1) = \alpha$

```
Add component j with largest # of a with a_i = 1 and F(a) = 0
Example: \mathbf{F}(\mathbf{a}) = \neg(\mathbf{a_4} \wedge \mathbf{a_9} \wedge \mathbf{a_{11}})
    1 0 1 0 0
```

Idea: run \mathbf{F} on random \mathbf{a} , learn correlations between components and $\mathbf{F}(\mathbf{a})$

```
Gather n training examples (\mathbf{a}, \mathbf{F}(\mathbf{a})) where p(\mathbf{a}_i = 1) = \alpha
      Add component j with largest # of a with a_i = 1 and F(a) = 0
Example: \mathbf{F}(\mathbf{a}) = \neg(\mathbf{a_4} \wedge \mathbf{a_9} \wedge \mathbf{a_{11}})
        1 0 1 0
                                      1
                                        1 0
                                             1 \quad 1 \quad 1 \quad 1 \quad \Rightarrow \quad 0
                                    1
```

Theorem:

```
s=\# \text{ components in the largest minimal abstraction} \\ d=\# \text{ components in any minimal abstraction} \\ |\mathbb{J}|=\text{total }\# \text{ components}
```

Theorem:

```
s=\# components in the largest minimal abstraction d=\# components in any minimal abstraction |\mathbb{J}|= total \# components If:
```

Set refinement probability $\alpha = \frac{s}{s+1}$

Theorem:

```
s=\# \text{ components in the largest minimal abstraction} \\ d=\# \text{ components in any minimal abstraction} \\ |\mathbb{J}|=\text{total }\# \text{ components} \\ \\ \text{If:} \\ \text{Set refinement probability } \alpha=\frac{s}{s+1} \\ \text{Obtain } n=\Omega(d^2\log|\mathbb{J}|) \text{ examples} \\ \end{aligned}
```

Theorem:

```
s=\# \text{ components in the largest minimal abstraction} \\ d=\# \text{ components in any minimal abstraction} \\ |\mathbb{J}|= \text{total }\# \text{ components}
```

If:

Set refinement probability $\alpha = \frac{s}{s+1}$

Obtain $n = \Omega(d^2 \log |\mathbb{J}|)$ examples

Then:

Statrefine outputs a minimal abstraction with high probability in $O(sd^2\log |\mathbb{J}|)$ time

Significance: s, d are small,

only logarithmic dependence on total # components

Theorem:

```
s=\# \text{ components in the largest minimal abstraction} \\ d=\# \text{ components in any minimal abstraction} \\ |\mathbb{J}|= \text{total }\# \text{ components}
```

If:

Set refinement probability $\alpha = \frac{s}{s+1}$

Obtain $n = \Omega(d^2 \log |\mathbb{J}|)$ examples

Then:

Statrefine outputs a minimal abstraction with high probability in $O(sd^2\log |\mathbb{J}|)$ time

Significance: s, d are small,

only logarithmic dependence on total # components

Proof sketch: large deviation bounds + optimization over α

Idea: try to remove a constant fraction of components in each step

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Loop:

Try removing each component with probability $1-\alpha$

Run analysis F(a)

If F(a) = 1: add components back

Else: remove components permanently

```
\mathbf{a} \leftarrow (1,\dots,1) Loop: 
 Try removing each component with probability 1-\alpha Run analysis \mathbf{F}(\mathbf{a}) 
 If \mathbf{F}(\mathbf{a})=1: add components back 
 Else: remove components permanently
```

```
\begin{aligned} \mathbf{a} &\leftarrow (1,\dots,1) \\ \text{Loop:} \\ &\text{Try removing each component with probability } 1-\alpha \\ &\text{Run analysis } \mathbf{F}(\mathbf{a}) \\ &\text{If } \mathbf{F}(\mathbf{a}) = 1 \text{: add components back} \\ &\text{Else: remove components permanently} \end{aligned}
```

```
\begin{aligned} \mathbf{a} &\leftarrow (1,\dots,1) \\ \text{Loop:} \\ &\text{Try removing each component with probability } 1-\alpha \\ &\text{Run analysis } \mathbf{F}(\mathbf{a}) \\ &\text{If } \mathbf{F}(\mathbf{a}) = 1 \text{: add components back} \\ &\text{Else: remove components permanently} \end{aligned}
```

```
 \begin{array}{c} \mathsf{Example:} \ \mathbf{F}(\mathbf{a}) = \neg (\mathbf{a_4} \wedge \mathbf{a_9} \wedge \mathbf{a_{11}}) \\ & \overset{1}{1} \ \overset{1}{
```

```
\begin{aligned} \mathbf{a} &\leftarrow (1,\dots,1) \\ \text{Loop:} \\ &\text{Try removing each component with probability } 1-\alpha \\ &\text{Run analysis } \mathbf{F}(\mathbf{a}) \\ &\text{If } \mathbf{F}(\mathbf{a}) = 1 \text{: add components back} \\ &\text{Else: remove components permanently} \end{aligned}
```

```
 \begin{array}{c} \mathsf{Example:} \ \mathbf{F}(\mathbf{a}) = \neg (\mathbf{a_4} \wedge \mathbf{a_9} \wedge \mathbf{a_{11}}) \\ & \overset{1}{1} \ \overset{1}{
```

```
\mathbf{a} \leftarrow (1,\dots,1) Loop: 
 Try removing each component with probability 1-\alpha Run analysis \mathbf{F}(\mathbf{a}) 
 If \mathbf{F}(\mathbf{a})=1: add components back 
 Else: remove components permanently
```

```
 \begin{array}{c} \text{Example: } \mathbf{F}(\mathbf{a}) = \neg (\mathbf{a_4} \wedge \mathbf{a_9} \wedge \mathbf{a_{11}}) \\ & \stackrel{1}{1} \stackrel{1}{1}
```

```
\mathbf{a} \leftarrow (1,\dots,1) Loop: Try removing each component with probability 1-\alpha Run analysis \mathbf{F}(\mathbf{a}) If \mathbf{F}(\mathbf{a})=1: add components back Else: remove components permanently
```

```
 \begin{array}{c} \text{Example: } \mathbf{F}(\mathbf{a}) = \neg (\mathbf{a_4} \wedge \mathbf{a_9} \wedge \mathbf{a_{11}}) \\ & \stackrel{1}{1} \stackrel{1}{1}
```

```
\mathbf{a} \leftarrow (1,\dots,1) Loop: 
 Try removing each component with probability 1-\alpha Run analysis \mathbf{F}(\mathbf{a}) 
 If \mathbf{F}(\mathbf{a})=1: add components back 
 Else: remove components permanently
```

```
\begin{array}{c} \text{Example: } \mathbf{F}(\mathbf{a}) = \neg (\mathbf{a_4} \wedge \mathbf{a_9} \wedge \mathbf{a_{11}}) \\ & \stackrel{1}{1} \stackrel
```

```
\mathbf{a} \leftarrow (1,\dots,1) Loop: 
 Try removing each component with probability 1-\alpha Run analysis \mathbf{F}(\mathbf{a}) 
 If \mathbf{F}(\mathbf{a})=1: add components back 
 Else: remove components permanently
```

```
 \begin{array}{l} \text{Example: } \mathbf{F}(\mathbf{a}) = \neg (\mathbf{a}_4 \wedge \mathbf{a}_9 \wedge \mathbf{a}_{11}) \\ & \stackrel{1}{1} \stackrel{1}{1}
```

```
\mathbf{a} \leftarrow (1,\dots,1) Loop: Try removing each component with probability 1-\alpha Run analysis \mathbf{F}(\mathbf{a}) If \mathbf{F}(\mathbf{a})=1: add components back Else: remove components permanently
```

```
\begin{array}{c} \text{Example: } \mathbf{F}(\mathbf{a}) = \neg(\mathbf{a}_4 \wedge \mathbf{a}_9 \wedge \mathbf{a}_{11}) \\ & \stackrel{1}{1} \stackrel{
```

Idea: try to remove a constant fraction of components in each step

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Loop:

Try removing each component with probability $1-\alpha$

Idea: try to remove a constant fraction of components in each step

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Loop:

Try removing each component with probability $1-\alpha$

Try removing each component with probability $1-\alpha$

Idea: try to remove a constant fraction of components in each step

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Run analysis F(a)

Try removing each component with probability $1-\alpha$

Idea: try to remove a constant fraction of components in each step

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Run analysis F(a)

Idea: try to remove a constant fraction of components in each step

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Try removing each component with probability $1-\alpha$

Idea: try to remove a constant fraction of components in each step

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Run analysis F(a)

Try removing each component with probability $1-\alpha$

Idea: try to remove a constant fraction of components in each step

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Run analysis F(a)

Try removing each component with probability $1-\alpha$

Idea: try to remove a constant fraction of components in each step

 $\mathbf{a} \leftarrow (1, \dots, 1)$

Run analysis F(a)

ACTIVECOARSEN analysis

Theorem:

s=# components in largest minimal abstraction $|\mathbb{J}|=$ total # components

ACTIVECOARSEN analysis

Theorem:

```
s = \# \text{ components in largest minimal abstraction} \\ |\mathbb{J}| = \text{total } \# \text{ components}
```

If:

Set refinement probability $\alpha = e^{-1/s}$

ACTIVECOARSEN analysis

Theorem:

```
s=\# components in largest minimal abstraction |\mathbb{J}|= total \# components
```

If:

Set refinement probability $\alpha = e^{-1/s}$

Then:

ACTIVECOARSEN outputs a minimal abstraction in $O(s \log |\mathbb{J}|)$ expected time

Proof sketch: solve recurrence + optimization over α

ACTIVECOARSEN analysis

Theorem:

```
s=\# components in largest minimal abstraction |\mathbb{J}|= total \# components
```

If:

Set refinement probability $\alpha = e^{-1/s}$

Then:

ACTIVECOARSEN outputs a minimal abstraction in $O(s \log |\mathbb{J}|)$ expected time

Proof sketch: solve recurrence + optimization over α

Significance: s is small,

only logarithmic dependence on total # components

Summary of algorithms

Algorithm	Minimal	Correct	$\#$ calls to ${f F}$
BASICREFINE	no	yes	O(1)
SCANCOARSEN	yes	yes	$O(\mathbb{J})$
STATREFINE	high prob.	high prob.	$O(sd^2 \log \mathbb{J})$
ACTIVECOARSEN	yes	yes	$O(s \log \mathbb{J})$

Summary of algorithms

Algorithm	Minimal	Correct	$\#$ calls to ${f F}$
BASICREFINE	no	yes	O(1)
SCANCOARSEN	yes	yes	$O(\mathbb{J})$
STATREFINE	high prob.	high prob.	$O(sd^2 \frac{\log \mathbb{J} }{})$
ACTIVECOARSEN	yes	yes	$O(s \log \mathbb{J})$

ACTIVECOARSEN: best asymptotic running time

Statrefine: parallelizes more easily, better when s,d very small

Summary of algorithms

Algorithm	Minimal	Correct	$\#$ calls to ${f F}$
BASICREFINE	no	yes	O(1)
SCANCOARSEN	yes	yes	$O(\mathbb{J})$
STATREFINE	high prob.	high prob.	$O(sd^2 \log \mathbb{J})$
ACTIVECOARSEN	yes	yes	$O(s \log \mathbb{J})$

ACTIVECOARSEN: best asymptotic running time

Statrefine: parallelizes more easily, better when s,d very small

Extensions:

- ullet Adapatively refinement probability lpha
- Sharing computation across multiple queries

Experimental setup

Application: static race detector of [Naik et al. 2006]

Pointer analysis using k-object-sensitivity or k-CFA with heap cloning

Combination of call graph, may alias, thread escape, may happen in parallel

Experimental setup

Application: static race detector of [Naik et al. 2006]

Pointer analysis using k-object-sensitivity or k-CFA with heap cloning

Combination of call graph, may alias, thread escape, may happen in parallel

Benchmark statistics (determines # components in abstraction):

	# alloc sites	# call sites
hedc	1,580	7,195
weblech	2,584	12,405
lusearch	2,873	13,928

Experimental setup

Application: static race detector of [Naik et al. 2006]

Pointer analysis using k-object-sensitivity or k-CFA with heap cloning

Combination of call graph, may alias, thread escape, may happen in parallel

Benchmark statistics (determines # components in abstraction):

	# alloc sites	# call sites
hedc	1,580	7,195
weblech	2,584	12,405
lusearch	2,873	13,928

Number of races:

	hedc	weblech	lusearch
0-cfa	21,335	27,941	37,632
1-CFA	17,837	8,208	31,866
diff. (queries)	3,498	19,733	5,766
1 -OBJ	17,137	8,063	31,428
2 -obj	16,124	5,523	20,929
diff. (queries)	1,013	2,540	10,499

Experimental results (all queries)

Setting: find **one** abstraction to prove **all** queries
How large is abstraction produced by
BASICREFINE (non-minimal, deterministic) and
ACTIVECOARSEN (minimal, randomized)?

Experimental results (all queries)

Setting: find one abstraction to prove all queries

How large is abstraction produced by

BasicRefine (non-minimal, deterministic) and ActiveCoarsen (minimal, randomized)?

k-CFA:

	total # components	BASICREFINE	ACTIVECOARSEN (minimal)
hedc	8,775	7,270 (83%)	90 (1.0%)
weblech	14,989	12,737 (85%)	157 (1.0%)
lusearch	16,801	14,864 (88%)	250 (1.5%)

Experimental results (all queries)

Setting: find one abstraction to prove all queries

How large is abstraction produced by

BasicRefine (non-minimal, deterministic) and ActiveCoarsen (minimal, randomized)?

k-CFA:

	total # components	BasicRefine	ACTIVECOARSEN (minimal)
hedc	8,775	7,270 (83%)	90 (1.0%)
weblech	14,989	12,737 (85%)	157 (1.0%)
lusearch	16,801	14,864 (88%)	250 (1.5%)

k-object-sensitivity:

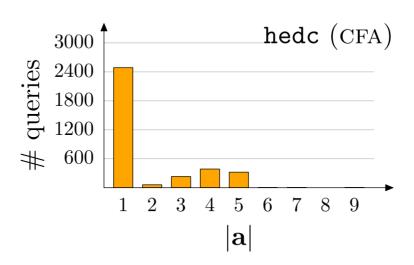
	total # components	BASICREFINE	ACTIVECOARSEN (minimal)
hedc	1,580	906 (57%)	37 (2.3%)
weblech	2,584	1,768 (68%)	48 (1.9%)
lusearch	2,873	2,085 (73%)	56 (1.9%)

Experimental results (breakdown by query)

Setting: find **one** abstraction to prove **one** query How large are the per-query minimal abstractions?

Experimental results (breakdown by query)

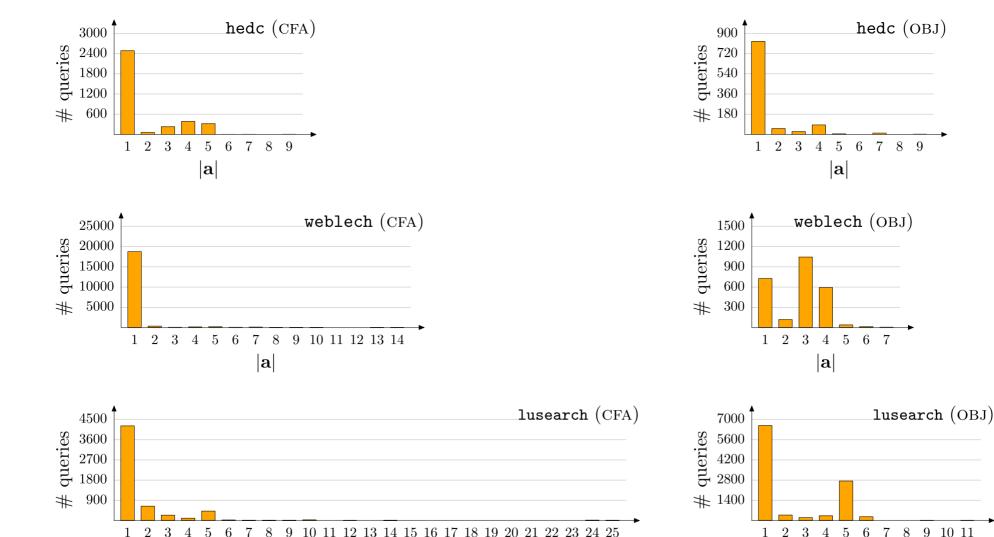
Setting: find **one** abstraction to prove **one** query How large are the per-query minimal abstractions?



Experimental results (breakdown by query)

Setting: find **one** abstraction to prove **one** query How large are the per-query minimal abstractions?

 $|\mathbf{a}|$



 $|\mathbf{a}|$

Conclusion

- Motivating problem: to scale static analyses, need cheap abstractions
- Scientific question: what's the minimal abstraction to prove a query?

Conclusion

- Motivating problem: to scale static analyses, need cheap abstractions
- Scientific question: what's the minimal abstraction to prove a query?
- Sparsity: very few components are needed
 - Theoretical result: leads to efficient machine learning algorithms
 - Empirical result: leads to cheap abstractions

Conclusion

- Motivating problem: to scale static analyses, need cheap abstractions
- Scientific question: what's the minimal abstraction to prove a query?
- Sparsity: very few components are needed
 - Theoretical result: leads to efficient machine learning algorithms
 - Empirical result: leads to cheap abstractions
- Future work: tackle motivating problem with information gathered from minimal abstractions