A Dynamic Evaluation of the Precision

of Static Heap Abstractions

OOSPLA - Reno, NV October 20, 2010

Percy Liang Omer Tripp Mayur Naik Mooly Sagiv
UC Berkeley Tel-Aviv Univ. Intel Labs Berkeley Tel-Aviv Univ.,




Introduction

Broad goal: verify correctness properties of software




Introduction

Broad goal: verify correctness properties of software

Motivating domain: multi-threaded programs (race and deadlock detection)




Introduction

Broad goal: verify correctness properties of software

Motivating domain: multi-threaded programs (race and deadlock detection)

program ——

client query

l

Static Analysis

<— heap abstraction




Introduction

Broad goal: verify correctness properties of software

Motivating domain: multi-threaded programs (race and deadlock detection)

program ——

client query

l

Static Analysis

l

<— heap abstraction

OR possible

(false positives = imprecision!)




Introduction

Broad goal: verify correctness properties of software

Motivating domain: multi-threaded programs (race and deadlock detection)

program ——

client query

l

Static Analysis

l

<— heap abstraction

OR possible

(false positives = imprecision!)

Heap abstraction affects precision and scalabilty




Introduction
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Motivating domain: multi-threaded programs (race and deadlock detection)

client query

l

program — | Static Analysis |«— heap abstraction

l

OR possible

(false positives = imprecision!)

Heap abstraction affects precision and scalabilty

Question: what heap abstractions should one use?
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Example client: THREADESCAPE

Query: Does a variable point to a thread-escaping object at a program point?

getnew() { =====1
return new X_:"Q E

} |

x = getnew() i i oo !

y = getnew() y—lto—i—?@i

y.f = new (P I N

Z = new

spawn y z—»@

p: ... 7 ...

X y zZ
concrete answer  no yes  no
abstract answer yes yes no
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Property holds of partition < do € partition such that property holds of o

Formally: heap abstraction is function «
concrete object o —— abstract object (o)
Example:

a(o) = (alloc-site(0), other-information(o))
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Tradeoff:
imprecise, fast ~ precise, slow
(e.g., 0-CFA) " (e.g., 0o-CFA)

How much precision is necessary for the given client?

But it's expensive to implement precise abstractions...

Many dimensions:

k-CFA: call stack information
Object recency

Heap connectivity

etc.

Question: how can we explore all these abstractions cheaply?
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Goal: get an idea of the utility of these abstractions
without implementing expensive static analyses

Key idea: use dynamic information

Static: all traces (expensive) Dynamic: one trace (cheap)
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Methodology

1. Run program dynamically with instrumentation

2. Compute heap abstraction on each state

3. Answer query under abstraction

Query is true < true on any state in trace

Concrete trace: w1 W9
Abstract trace: w W

Abstract query answer: no yes

= yes
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Note: no approximation on primitive data, method summarization, etc.
(focus exclusively on the heap abstraction)

= performing the most precise analysis using a given heap abstraction «

= provides upper bound on precision of any static analysis using «
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e Abstractions: augment allocation sites with more context
— call stack
— object recency

— heap connectivity

e Clients: motivated by concurrency
— THREADESCAPE
— SHAREDACCESS
— SHAREDLOCK
— NONSTATIONARYFIELD

e Benchmarks: 9 programs from the standard Dacapo suite

e Results: investigate all combinations
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Abstraction: call stack [Shivers, 1988]

Abstraction ALLOCy (k is call stack depth):
call-stack-during-allocation-of(o)|[1..k]

Common pattern: factory constructor methods

getnew() { x—( )1
hl: return new i ALLOC
¥ y—+O
p2: x = getnew() T
p3: y = getnew() L
spawn y X——*ig
pl: ... x ... o ALLOCg—1
y—+0)!

X Allocation sites are too weak

<+ Adding one level of calling context is sufficient
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Common pattern: server programs construct data, release to new thread
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X No amount of calling context helps

+ Recency makes the proper distinctions
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Abstraction: heap connectivity [Sagiv et al., 2002]
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Common pattern: build linked list data structures
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y =X :
while (%) { EQ_

h3: Z = new
y.f =2z
if (x.f ==y)

s.f =

y =2

REACHFROM—q

X
x = x.f
pl: ... x ...

X No amount of recency helps
<+ Reachability makes proper distinctions
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Clients

THREADESCAPE: Does variable v

point to an object potentially reachable from another thread?

SHAREDACCESS: Does variable v

point to an object actually accessed by multiple threads?

SHAREDLOCK: Does variable v

point to an object which is locked by multiple threads?

NONSTATIONARYFIELD: for a field f, does there exist an object o such that

o.f Is written to after o.f is read from?

(generalization of final in Java from [Unkel & Lam, 2008])

Motivated by race and deadlock detection.
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Benchmarks

9 Java programs from the DaCapo benchmark suite (version 9.12):

antlr A parser generator and translator generator

avrora A simulation and analysis framework for
AVR microcontrollers

batik A Scalable Vector Graphics (SVG) toolkit

fop An output-independent print formatter

hsqldb An SQL relational-database engine
luindex A text indexing tool

lusearch A text search tool

pmd A source-code analyzer

xalan An XSLT processor for transforming XML

290-1357 classes, 1.7K-6.8K methods, 133K-512K bytecodes, 5—46 threads

14
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Experiments

Precision:
0% < number of queries ¢ such that ¢ is true (concrete)
0 . .
~ number of queries ¢ such that ¢ is true (abstract)
Questions:

e \What abstraction works best for a given client?

e \What is the effect of the k in k-CFA?

e What is the effect of the recency depth r?

e How scalable are the high-precision abstractions?

< 100%

15




General results: THREADESCAPE

benchmark | ArLoc ALLociy—s RECENCY REACHFROM
antlr 48.6 85.0 81.0 100.0
avrora 54.7 62.3 69.2 77.8
batik 13.5 15.1 20.9 20.6
fop 36.3 99.3 42.8 41.3
hsqldb 62.6 69.0 94.3 ?
luindex 6.3 97.2 6.8 6.8
lusearch 14.3 90.0 19.0 19.6
pmd 12.4 87.1 14.9 14.6
xalan 64.0 78.9 78.7 76.6
average 34.8 76.0 47.5 44.7
Main points:

e ALLOC can be very imprecise

e ALLOC.—5 works best most of the time
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General results: NONSTATIONARYFIELD

benchmark | ArLoc ALLociy—s RECENCY REACHFROM
antlr 59.1 60.1 91.0 78.3
avrora 33.2 33.6 93.6 77.2
batik 35.8 36.1 99.5 65.3
fop 42.0 44 .9 90.9 68.2
hsqldb 45.4 49.5 94.6 ?
luindex 78.0 84.2 94.8 94.8
lusearch 38.2 38.2 64.9 56.5
pmd 37.8 39.9 96.4 69.4
xalan 44.0 44 5 90.4 74.2
average 45.9 47.9 90.7 73.0
Main points:

e Call stack useless, reachability helps a bit

e RECENCY offers huge improvement: captures temporal properties




Effect
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Main points:

of call stack depth £
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(b) (THREADESCAPE, lusearch)

e Phase transition: sharp increase in precision beyond k ~ 5

e Synergy of information: REACHEFROM requires high k to be precise
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Effect of recency depth

THREADESCAPE on batik:

r=0 r=1 r=2 r=3 r=4 r=3>5
k=0 13.5 20.9 21.4 22,1 225 226
k=oo | 15.1 234 99.0 99.0 99.0 99.0

Main points:
e Increasing recency depth beyond 1 helps, but maxes out quickly

e Synergy of information: need both large k and large r for success




Tradeoff between precision and size

2000.0 2000.0

| RanNDOM
275.9 X ALLoC " 275.9
%
o % RECENCY o !
5 381 % | O PorepToBy S 381 X
I | I
— | ¥ ReacHFRrROM E -
N 53 O Q53 X
‘B | o g !
0.7 0.7
| |
20 40 60 80 100 20 40 60 80 100
precision precision
(a) (THREADESCAPE, batik) (b) (NONSTATIONARYFIELD, batik)
Main points:

e Reachability is quite expensive, RECENCY is cheap

e RANDOM is surprisingly effective on NONSTATIONARYFIELD,
but RECENCY is better
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Summary

e Goal: determine good heap abstractions to use in static analysis
e Dynamic analysis enables us to quickly explore many heap abstractions

e Heap abstraction has large impact on precision
— Best abstraction depends on how its properties fit the client

— Non-trivial interactions between dimensions

e Hopefully will serve as a useful guide for developers of static analyses

Thank you!
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