Automated Testing of Mobile Apps

Mayur Naik

Georgia Institute of Technology

Joint work with:
Aravind Machiry and Rohan Tahiliani

The Growth of Smartphones and Tablets

1 million new Android devices
activated every day

» 750 million total (March 2013)

The Growth of Mobile Apps

* 30K new apps on Google Play per month
* 1 million total (July 2013)

[Number of Apps
1,200,000

1,000,000
800,000
600,000
400,000

200,000

0
2010 2011 2012 2013

The Growth of Mobile Apps

e 1.5 billion downloads from Google Play per month
e 50 billion total (July 2013)

[Number of Apps 4 Downloads to Date (Billions)
1,200,000 60
1,000,000 50
800,000 40
600,000 30
400,000 20
200,000 10

0 0
2010 2011 2012 2013

The Life of a Mobile App

Reliability Security Performance

Development Pre-deployment Post-deployment
and testing Certification Adaptation

* New software engineering problems in all stages
— need new program analysis-based tools

Program Analysis for Mobile Apps

e Static Analysis
— Program analysis using program text
— Hindered by features common in mobile apps

* Large SDK, obfuscated and native code, concurrency,
IPC, databases, GUIs, ...

* Dynamic Analysis
— Program analysis using program runs

— Needs test inputs yielding high app coverage
* Focus of our work

Desiderata for Input Generation System

> Robust: handles real-world apps

> Black-box: does not need sources or ability to
decompile binaries

> Versatile: exercises important app functionality
> Automated: reduces manual effort

> Efficient: avoids generating redundant inputs

Our Contributions

* Design of a system Dynodroid satisfying the
five desired criteria

* Open-source implementation of Dynodroid
on the dominant Android platform

e Evaluation of Dynodroid on real-world apps
against state-of-the-art approaches

Our Approach

* View an app is an event-driven program

el e?2 e3
SO —> sl ——> s2 ——> s3 ...

* Broadly two kinds of events:

— Ul event: LongTap(245, 310), Drag(0, 0O, 245, 310), ...
— System event: BatteryLow, SmsReceived(“hello”), ...

* Assumption: Fixed concrete data in each event
and environment (sdcard, network, etc.)

— May cause loss of coverage

Relevant Events

* Key challenge: Large number of possible events
— E.g., 108 system events in Android Gingerbread

* Insight #1: In any state, few events are relevant
—> vast majority of events are no-ops

* |Insight #2: Can identify relevant events by lightly
instrumenting SDK once and for all

= Does not require instrumenting app

Observe-Select-Execute Algorithm

sO executor

el

sl executor s2
observer e? observer e3
El selector E2 selector

e Statelessness does not cause any coverage loss
in principle provided:

— observer treats “restart app” event always relevant

— selector is fair

Event Selection Algorithms

* Frequency
— Selects event that has been selected least often
— Drawback: deterministic => unfair

* UniformRandom
— Selects event uniformly at random

— Drawback: does not consider domain knowledge; no
distinction of Ul vs. system events, contexts in which
event occurs, frequent vs. rare events

 BiasedRandom
— Combines benefits of above without drawbacks

BiasedRandom Event Selection Algorithm

* Global map G(e, S) tracks number of times e is
selected in context S

— Context = set of events relevant when e is selected

* Local map L(e) computed to select next event
from relevant set S

— Initialize: L(e) to O for each ein S
— Repeat:
* Pick an e in S uniformly at random

* |If L(e) = G(e, S) increment G(e, S) and return e
else increment L(e)

e Hallmark: No starvation

Implementation of Dynodroid

Implemented for Android 2.3.4 (Gingerbread)
— Covers 50% of all Android devices (March 2013)

Modified ~ 50 lines of the SDK
= Easy to port to other Android versions

Heavily used off-the-shelf tools

— HierarchyViewer to observe Ul events

— MonkeyRunner to execute Ul events

— ActivityManager (am) to execute system events
— Emma to measure source code coverage

Comprises 16 KLOC of Java

Open-source: http://dyno-droid.googlecode.com

Demo: Dynodroid on Photostream A

(Ol <« Bt N Ut /host/darwin-xB6/sdk/android-sdk_eng. shn_mac-xB6// 10015/ Lib/xB6_64/"

- 0/0in: "
P [om— a 5iv4d00egn/T/
Eay .

cnment”

B/main/’

P‘F"M"F"FH“ Library/Java/Extensions: /Systen/Library/Java/lavavirtuaiMachines/1. 6.0, jdk/Contents/Home
oulwsleslrulralveluclsilosleslB

s ol doulmalyclee e @

FFHHFHFWFM pag/code/ jchord/ incubator/”

M0 7] F— R

Pic/android/out/host/darwin-xB86/s0%/android-sdk_eng.mhn_mac-x86/tcols/ Lib/cans. jar: /Nolumes/
Jmatl. jar:Users/mhn/a3/Libs/commons~£0-2. 3. Jar: /JUsers/shn/e3/ L ibs/mysql~connector-java-5. 18
{Java] "edu.gatech.m3.master.MairMarness”®
[java] ‘ser’
{java] ‘m3.properties’

{javal

[Java]l The ' characters around the executable and arguments are

[java]l mot part of the command.

[java]l INFO:Total Number of Test Profiles:1

{java] INFO:Total Nusmber of Threads scheduled:1

{java] INFO:Starting to Run Emulatoriemulator -avd esul -verbose -scale 0.70 -show-kernel -kernel /Users/shn/n3/m3setup/kernelfiles/zInage -syst
[javal INFO:Running M3:add -s emulator-5554 logeat

[Java] INFO:Created New DeviceEmulator ODject
[javal INFO:Photostream:Got Device:emulator-5554

15

Evaluation Study 1: App Code Coverage

* 50 open-source apps from F-Droid
— SLOC ranging from 16 to 22K, mean of 2.7K

* Evaluated Approaches:
— Dynodroid (various configurations)
— Monkey fuzz testing tool

— Expert human users
* Ten graduate students at Georgia Tech
* All familiar with Android development

Testing Approaches Used in Our Evaluation

Approach ___#Events | __#Runs___

Dynodroid - Frequency 2,000 1
Dynodroid - UniformRandom 2,000 3
Dynodroid - BiasedRandom 2,000 3
Monkey 10,000 3

Humans No limit >=2

17

Dynodroid vs. Monkey

% App Code Coverage

47% 8% 6%

EmmmE cOmmon 1 Dynodroid ol Monkey

100
| y []
80 L o Iz 1 : A
MY 5 I 0
i In M 1
(L ‘Is‘ K] h E K] h .@In 3
rlv ‘ % IN =b K
nqi: y q [k - 1§
D i I I% I 9 = % »
¥ Kl L
|1 ;
R] I R | |
I X
20 | HE ‘
[

App ID

Dynodroid achieves higher coverage than Monkey
for 30 of the 50 apps.

18

Dynodroid vs. Humans

7%
2z Human

4%

— Dynodroid

51%
s common

T
=<
-
0
—
—
0
—
: KX XA
—
[l vavavy
i EXX
—
—
K ”
—I
XX]
]
m
-
—J
v i
V. V...
; -
Sava~
X]
TV VALV VAV,
ava
XXX
ZXZ2 (]
—
; A AN A A A AT A A AT A AT o
ava A
-
S
O}
avavy
XXX
[l cavavavavava
ava
: =
—
= ,
: r‘w‘w‘“
<]
i -
KX
v
-
aaaes
—
-
vavere:
]
X
ava
[l
-—

abesanon apon ddy o,

C(Dynodroid N Human) /C(Human)

Automation Degree

21%

8-100%, Average =83%, S.D.=

Range

19

Sample Feedback from Participants

“Tried to cancel download to raise exception.”

“Human cannot trigger change to AudioFocus.”

“Many, many options and lots of clicking but no
actions really involved human intelligence.”

“There are too many combinations of state
changes (play -> pause, etc.) for a human to
track.”

Dynodroid without vs. with System Events

% App Code Coverage

47% 2% 8.3%

EmmmE cOmmon 1 Dynodroid oo Dynodroid
w/o system
100
80 : i i
L . i i
- § A = M ﬂ [I
SR I i
GOSN | R BN Sl (I R 50
i) . 0
‘ g : : 0
g -a -i
40 . e ff R R
X r K o
X §
9 X N
20 w 4} X
0

App ID

Dynodroid without System Events vs. Monkey

10%
el Monkey

6%
1 Dynodroid

43%

w/o system

EmmmE common

100

T
-
——]
]
]
KX
—
)
-
: O
SNV~
X
O
3
I
1
XX XXX X]
EAASA
- " "
KX
—
VAVAVANAS,
]
; &
: O
: i
; O
N
—
LSS S
N
i O
e ee:
—
N vavaivev, (]
: —
—
— (o3
N
H Q
i —]
XX
— ' '
i
—1
i
—]
0
C
L
—
K XX
-
—
XXXX]
—
VA
—
: =
<A
—
XXXXX]
-
—]
X
- "
XX
0
XXXXX]
—
i
-
LR
——
aararae
-
VAVAVAVAVAVAVAVAVAY
; —
i viv.9.9:
] 1

abetanon apon ddy o

22

Minimum Number of Events to Peak Coverage

Number of Events

¢ BiasedRandom “ UniformRandom Frequency < Monkey
10,000 = XX X v X
k ’ A ’ N X X X
\/ \/\ ‘
X ™ X (W
o o
g o
1,000 . -
o o L.
] o ¢ B
o
I o o
AR BHOCLAXBEOES® 090 ¢ Q¢ LNEX NExeOoe *e o B X
gy *N ¢ oEE epe LD 0 oW SO0 DoEEeeND

* Monkey requires 20X more events than BiasedRandom
* Frequency and UniformRandom require 2X more events

than BiasedRandom

23

Evaluation Study 2: Bugs Found in Apps

* 1,000 most popular free apps from Google Play

Books &

Tools » ' Reference
18% / 8% N 4%
System | _* Communication
2% o 8%
Productlwty \ [A Education
Phone & SMS Entertainment
6%

Personalization Games
16%

Music & Audio Media & Video

2%

e Conservative notion of bug: FATAL EXCEPTION
(app forcibly terminated)

Bugs Found in 50 F-Droid Apps
| AppName |Bugs| Kind | Descripton

PasswordMakerProForAndroid 1 Null Improper handling of user data.

com.morphoss.acal 1 Null Derefe.rencmg.null returned by
an online service.

hu.vsza.adsdroid 2 Null Dereferencing null returned by
an online service.

cri.sanity 1 Null Improper handling of user data.

com.zoffcc.applications.aagtl 2 Null Dersferencing null returned by
an online service.

org.beide.bomber 1 Array Game indexes an array with

improper index.
com.addi 1 Null Improper handling of user data.

25

Bugs Found in 1,000 Google Play Apps

App Name Bugs | Kind | ____ Description ___

Null pointer check missed in

com.ibm.events.android.usopen 1 Null onCreate() of an activity.

: Improper handling of RSS
sl s 2 sl feeds read from online service.
com.almalence.niaht 1 Null Null pointer check missed in

' -Ng onCreate() of an activity.
: : : Receiver callback fails to check
com.avast.android.mobilesecurity 1 Null for null in optional data.
com.aviary.android.feather 1 Null REBNET CElREEES (19 Elnees

for null in optional data.

26

Limitations

* Does not exercise inter-app communication
— Communication via key-value maps (“Bundle” objects)
— Could synthesize such maps symbolically

* Uses fixed, concrete data for events
— E.g., geo-location, touch-screen coordinates, etc.
— Could randomize or symbolically infer such data

* Requires instrumenting the platform SDK
— Limited to particular SDK version
— But lightweight enough to implement for other versions

Related Work

* Model-based Testing

— GUITAR [ASE’12], EXSYST [ICSE’12], ...

* Fuzz Testing
— Monkey, ...

* Symbolic Execution
— Acteve [FSE’12], Symdroid, ...

New Challenges: Client-Driven

* App code typically has far fewer paths than framework
and third-party libraries

 Most clients care only about paths in app code

A Called by framework]
private void doTranslate() {

Language from = (Language) fromButton.getTag();

Enter the text to translate

o T Language to = (Language) toButton.getTag();
e — String fromName = from.getShortName();
The translation will appear here St”ng toName = to.getShortNamE();

String input = fromEditText.getText().toString();
String result = translateService.translate(input,
fromName, toName);
if (result !=null)
setOutputText(result);
else
throw new Exception(...);

Calls 379 party library]

New Challenges: Mixing Static & Dynamic

Fabricate “target”; not
used subsequently

public void onClick(View target) {
if (target == play)

startService(new Intent(ACTION_PLAY));
else if (target == pause)

startService(new Intent(ACTION_PAUSE));
else if (target == skip)

startService(new Intent(ACTION_SKIP));
else if (target == rewind)

startService(new Intent(ACTION_REWIND));
else if (target == stop)

startService(new Intent(ACTION_STOP));
else if (target == eject)

Random Music Player

showUrlIDialog();

New Challenges: Mixing Static & Dynamic

Cursor ¢ = query(Account.ID_PROJECTION);
int numAccounts = c.getCount();
if (numAccounts == 0)

else if (hnumAccounts == 1) {

} else

public class Cursor {

Concretely takes
this branch

x i & 12:27

: . You can configure Email for most
aCtIOHNEWACCOUﬂt(), accounts in just a few steps.

c.moveToPosition(0);
Fabricated to
take this branch

Password

long accountld = c.getLong(Account.ID
actionHandleAccount(accountid);

actionShowAccounts();

public boolean moveToPosition(int pos) {

// Check position isn't past end of curso(

int count = getCount(); this branch: (c.getCount() ==

if (pos >= count) return false; .
(p) \/\ 0 >= c.getCount()) is unsat
return true;

Symbolic state prevents taking

~N

Conclusion

* Proposed a practical system for generating
relevant inputs to mobile apps

— Satisfying the five desirable criteria we identified:
robust, black-box, versatile, automated, efficient

* Showed its effectiveness on real-world apps
— Significantly automates tasks that users consider tedious
— Yields significantly more concise inputs than fuzz testing
— Exposed handful of crashing bugs

Thank You!

http://pag.gatech.edu/dynodroid

(@

33

