
29

A Type System Equivalent
to a Model Checker

MAYUR NAIK

Intel Research

and

JENS PALSBERG

UCLA

Type systems and model checking are two prevalent approaches to program verification. A promi-

nent difference between them is that type systems are typically defined in a syntactic and modular

style whereas model checking is usually performed in a semantic and whole-program style. This

difference between the two approaches makes them complementary to each other: type systems

are good at explaining why a program was accepted while model checkers are good at explaining

why a program was rejected.

We present a type system that is equivalent to a model checker for verifying temporal safety

properties of imperative programs. The model checker is natural and may be instantiated with

any finite-state abstraction scheme such as predicate abstraction. The type system, which is also

parametric, type checks exactly those programs that are accepted by the model checker. It uses a

variant of function types to capture flow sensitivity and intersection and union types to capture

context sensitivity. Our result sheds light on the relationship between type systems and model

checking, provides a methodology for studying their relative expressiveness, is a step towards

sharing results between the two approaches, and motivates synergistic program analyses involving

interplay between them.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-

tion—Correctness proofs; formal methods; model checking

General Terms: Verification

Additional Key Words and Phrases: Model checking, type systems

ACM Reference Format:
Nalik, M. and Palsberg, J. 2008. A type system equivalent to a model checker. ACM Trans.

Program. Lang. Syst. 30, 5, Article 29 (August 2008), 24 pages. DOI = 10.1145/1387673.1387678

http://doi.acm.org/10.1145/1387673.1387678

This work was supported by National Science Foundation ITR Award number 0112628.

Authors’ addresses: M. Naik, Intel Research, 2150 Shattuck Avenue, Penthouse Suite, Berkeley,

CA 94704; email: mayur.naik@intel.com; J. Palsberg, Computer Science Department, UCLA, Los

Angeles, CA 90095; email: palsberg@ucla.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0164-0925/2008/08-ART29 $5.00 DOI 10.1145/1387673.1387678 http://doi.acm.org/

10.1145/1387673.1387678

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:2 • M. Naik and J. Palsberg

1. INTRODUCTION

1.1 Background

Type systems and model checking are two prevalent approaches to program
verification. It is well known that both approaches are essentially abstract
interpretations and are therefore closely related [Cousot 1997; Cousot and
Cousot 2000]. Despite deep connections, however, a prominent difference be-
tween them is that type systems are typically defined in a syntactic and modu-
lar style, using one type rule per syntactic construct, whereas model checking
is usually performed in a semantic and whole-program style, by exploring the
reachable state-space of a model of the program. Additionally, type systems
are usually flow-insensitive, whereas model checkers are flow-sensitive; type
systems are usually path-insensitive, whereas model checkers typically explore
only feasible paths. These differences between type systems and model check-
ing have a significant consequence: they make the approaches complementary
to each other, namely, type systems are better at explaining why a program was
accepted whereas model checkers are better at explaining why a program was
rejected.

A type inference algorithm that accepts a program annotates it with types
(keywords: syntactic, modular) explaining why it was accepted. The benefits of
type annotations are well known: they aid in understanding, modifying, reusing
and certifying the program. However, it is often unnatural to explain why a pro-
gram was rejected by a type inference algorithm, and there is a large body of
work on explaining the source of type errors especially in the context of type
inference algorithms for languages with higher-order functions like Haskell,
Miranda, and ML [Wand 1986; Johnson and Walz 1986; Beaven and Stansifer
1993; Duggan and Bent 1996; Tip and Dinesh 2001; Chitil 2001; Haack and
Wells 2003; Lerner et al. 2007] and, more recently, for languages with concur-
rency like Java [Flanagan and Freund 2004; Flanagan et al. 2005].

On the other hand, a model checker that rejects a program provides a coun-
terexample, which is a program trace (keywords: semantic, whole-program) that
explains why the program was rejected. The benefits of counterexamples are
well known: they aid in debugging the program. However, it is often unnat-
ural to explain why a program was accepted by a model checker, and several
proof systems for model checkers have been devised [Peled and Zuck 2001;
Namjoshi 2001; Peled et al. 2001; Henzinger et al. 2002; Tan and Cleaveland
2002; Namjoshi 2003].

1.2 Our Result

In this article, we present a type system that is equivalent to a model checker for
verifying temporal safety properties of imperative programs. In model check-
ing terminology, a safety property is a temporal property whose violation can be
witnessed by a finite program trace or, equivalently, by the failure of an asser-
tion at a program point. Our model checker is natural and may be instantiated
with any finite-state abstraction scheme such as predicate abstraction [Graf
and Saidi 1997]. The type system, which is also parametric, type checks exactly

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:3

those programs that are accepted by the model checker. It uses a variant of
function types to capture flow sensitivity and intersection and union types to
capture context sensitivity.

The implications of our result may be summarized as follows:

(1) Our work sheds light on the relationship between type systems and model
checking. In particular, it shows that the most straightforward form of
model checking corresponds to a complex form of typing.
Finite-state model checkers routinely associate with each statement s of
the program a set of the form:

{ 〈ωi, ω j 〉 | ω j ∈ δs(ωi) },
where ω ranges over a finite set of abstract contexts � and δs : � → 2�

is the abstract transfer function associated with s. Intuitively, the above
set says that if s begins executing in abstract context ωi then it may finish
executing in an abstract context ω j ∈ δs(ωi). For example, in model checkers
such as SLAM [Ball and Rajamani 2002], BLAST [Henzinger et al. 2003],
and MAGIC [Chaki et al. 2003], � represents the set of all valuations to
the finite set of predicates with respect to which the predicate abstraction
(model) of the program is constructed.
Likewise, our type system assigns to each statement in the program, a finite
polymorphic type of the form:

∧
i∈A

(
ωi →

∨
j∈Bi

ω j

)
,

where A and ∀i ∈ A : Bi are finite. This is the most complex form of typing
in our type system. Conventional type systems employ restricted cases of
this form of typing such as ones requiring |A| = 1 (no intersection types)
or ∀i ∈ A : |Bi| = 1 (no union types). Note that the symbol → is not a
function-type arrow in the sense of typed functional languages; we explain
the meaning of → later.

(2) Our work provides a methodology for studying the relative expressiveness
of a type system and a model checker. Our technique for proving the equiva-
lence is novel and general: it has been successfully applied in two additional
settings, namely, stack-size analysis [Ma 2004] and deadline analysis [Naik
2004] for a class of real-time programs called interrupt-driven programs
[Palsberg and Ma 2002].

(3) Our work is a step towards sharing of results between the type systems
and model checking communities. The backward direction of our equiva-
lence theorem states that if the model checker accepts a program, then the
program is well-typed. We prove this by building a type derivation from
the model constructed by the model checker. We thereby obtain a model-
checking-based type inference algorithm for our type system.

(4) Our work motivates synergistic program analyses involving interplay be-
tween a type system and a model checker. The analyses can use types
to document correct programs and counterexamples to explain erroneous
programs. Moreover, they can be implemented efficiently due to the

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:4 • M. Naik and J. Palsberg

correspondence between types and models: types already existing in the
program or inferred by a type inference algorithm can be used to construct
a model for performing model checking, as illustrated in Debbabi et al.
[1999] and Chaki et al. [2002], and conversely, a model constructed by a
model checker can be used to infer types, as shown in this paper.

1.3 Proof Architecture

We present an overview of our technique for proving the equivalence. A typi-
cal type soundness theorem states that well-typed programs do not go wrong
[Milner 1978]. Usually, going wrong is formalized as getting stuck in the oper-
ational semantics. More formally, for a program s, an initial concrete environ-
ment σ , and an initial abstract environment ω that abstracts σ , type soundness
states that:

If 〈s, ω〉 is well-typed then 〈s, σ 〉 does not go wrong (in the concrete semantics).

Type checking requires a predefined set of abstractions, namely, the types.
Then, the existence of a derivable type judgment implies that the program has
the desired property. Model checking, on the other hand, is not concerned with
types. It works with a model, that is, an abstract semantics, and can answer
questions such as:

〈s, ω〉 does not go wrong (in the abstract semantics).

Model-checking soundness then states that:

If 〈s, ω〉 does not go wrong (in the abstract semantics) then
〈s, σ 〉 does not go wrong (in the concrete semantics).

Our equivalence result states that:

〈s, ω〉 is well-typed iff 〈s, ω〉 does not go wrong (in the abstract semantics).

We prove the forward direction using a variant of type soundness in which the
step relation is the abstract semantics instead of the concrete semantics and
we prove the backward direction constructively by building a type derivation
from the model constructed by the model checker.

It is important to note that we do not prove the soundness of either the type
system or the model checker. Our equivalence result guarantees that the type
system is sound iff the model checker is sound but it does not prevent both
from being unsound. Proving soundness would require us to define a concrete
semantics and to instantiate the type system and the model checker (recall
that both are parametric). This in turn would detract from the generality of our
equivalence result.

1.4 Rest of the Article

In Section 2, we present an imperative WHILE language and a model checker for
verifying temporal safety properties expressed as assertions in that language.
In Section 3, we present a type system that is equivalent to the model checker.
In Section 4, we prove the equivalence result. In Section 5, we illustrate the

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:5

equivalence by means of examples. In Section 6, we show an application of our
technique to real-time systems. In Section 7, we discuss related work. Finally,
in Section 8, we conclude with a note on future work.

2. MODEL CHECKER

The abstract syntax of our imperative WHILE language is as follows:

(stmt) s ::= p | assume(e) | assert(e) | s1; s2 | if (∗) then s1 else s2 |
while (∗) do s′

A statement s is either a primitive statement p (for instance, an assignment
statement), an assume statement, an assert statement, a sequential compo-
sition of statements, a branching statement, or a looping statement. For the
sake of generality, we leave primitive statements p and boolean expressions
e uninterpreted. Both assume(e) and assert(e) fail if e is false in the current
context. Our goal is to check statically whether an assert statement can fail
while not exploring execution paths that encounter a failing assume statement.
Our abstract syntax for branching and looping statements is standard in the
literature on model checking. It is related to the more familiar syntax for these
statements as follows:

if (e) then s1 else s2 ≡ if (∗) then { assume(e); s1 } else { assume(ē); s2 }
while (e) do s′ ≡ { while (∗) do { assume(e); s′ } }; assume(ē)

where (∗) denotes nondeterministic choice and ē denotes the negation of e. For
example, the right-hand side of the first equation uses two assume statements
to ensure that we take the then branch only if e evaluates to true, and that we
take the else branch only if e evaluates to false.

We next present a model checker for verifying temporal safety properties of
programs expressed in our language. The class of temporal safety properties
is precisely the class of properties whose violation can be witnessed by a fi-
nite program trace or, equivalently, by the failure of an assertion at a program
point. Our model checker is conventional and is parameterized by the following
components:

—A finite set of abstract contexts �.

—An abstract transfer function δp ∈ � → 2� per primitive statement p de-
scribing the effect of p on abstract contexts. We assume that δp is total and
∀i ∈ � : δp(i) �= ∅.

—A predicate δe ⊆ � per boolean expression e denoting the set of abstract
contexts in which e is true.

These components may be instantiated by any finite-state abstraction scheme.
For instance, if the scheme is predicate abstraction, then � is the set of all
valuations to the finite set of predicates with respect to which the predi-
cate abstraction of the program is constructed. For convenience, we treat �

as a set of indices instead of abstract contexts. We use i, j , ... to range over
� and ωi, ω j , ... to denote the corresponding abstract contexts indexed by
them.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:6 • M. Naik and J. Palsberg

Fig. 1. Abstract semantics.

Note that our use of the term “abstract context” is broader than the use of the
term in static analysis where it is often used to mean a sequence of call sites.
If we were to add function calls to our language then we could let our abstract
contexts include sequences of call sites.

The abstract semantics of the model checker is presented in Figure 1. State
〈s, ω〉 is stuck if �a : 〈s, ω〉 ↪→ a. The only kind of state that can get stuck is
of the form 〈assert(e), ω〉 such that ω /∈ δe. State 〈s, ω〉 goes wrong if ∃〈s′, ω′〉 :
(〈s, ω〉 ↪→∗ 〈s′, ω′〉 and 〈s′, ω′〉 is stuck). Given a program s and an abstract context
ω, the model checker determines whether 〈s, ω〉 goes wrong.

Once a model checker has determined whether a state goes wrong, it can
output useful information. If 〈s, ω〉 goes wrong, it can report a counterexample
which is a finite trace 〈s, ω〉 ↪→∗ 〈assert(e), ω′〉 where ω′ /∈ δe. Otherwise, it can
return the finite set of reachable abstract states {a|〈s, ω〉 ↪→∗ a} which serves as
a proof that the concrete program does not go wrong, provided the model checker
is sound. Model checking soundness is typically proved by showing that the
abstract semantics simulates the concrete semantics ([Ma 2004; Naik 2004]).

3. TYPE SYSTEM

Our type system assigns a type of the form
∧

i∈A(ωi → ∨
j∈Bi

ω j) to each state-
ment in the program, where A and ∀i ∈ A : Bi are subsets of �. Recall that
� is finite, whence the type is finite. Intuitively, the type states that it is safe
to begin executing the statement in one of the contexts { ωi | i ∈ A }. The type
also states that if the statement begins executing in context ωi (i ∈ A) and
eventually terminates, it will be in one of the contexts { ω j | j ∈ Bi }. Our type

system includes the type � �
∧ ∅ to handle the case in which A is empty, and

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:7

Fig. 2. Type rules.

⊥ �
∨ ∅ to handle the case in which any Bi (i ∈ A) is empty. Notice that � is a

valid type of a statement while ⊥ is a piece of a type.
The type rules are shown in Figure 2. We say that a statement s is typable

if we can assign s a type using rules (13)–(18). We say that an abstract state
〈s, ωk〉 is well-typed if statement s can be assigned a type that states that it is
safe to begin executing s in abstract context ωk (see rule (12)). Every statement
is typable (see Lemma 4.6), while only some abstract states are well-typed.

Rule (13) type checks primitive statement p. The type of p captures the effect
of the abstract transfer function δp associated with p. Note that the type states
that it is safe to begin executing p in any context in � because we have assumed
that δp is a total function.

Rule (14) type checks statement assume(e). The side-condition of the rule says
that it is safe to begin executing assume(e) in any context in � and, furthermore,
the first conjunct in its type states that it has the effect of a skip statement if it
begins executing in a context in which e is true while the second conjunct in its
type states that there does not exist any context in which it finishes executing
if it begins executing in a context in which e is false.

Rule (15) type checks statement assert(e). The side-condition of the rule says
that it is safe to begin executing assert(e) only in a context in which e is true,
and its type states that it has the effect of a skip statement if it begins executing
in such a context.

Rule (16) type checks sequentially composed statements. The side-condition
says that it is safe to begin executing s1; s2 only in contexts in which it is safe

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:8 • M. Naik and J. Palsberg

to begin executing s1 and, furthermore, if s1 begins executing in such a context,
then it must be safe to begin executing s2 in each context in which s1 might
finish executing.

Rule (17) type checks branching statements. The side-condition says that it
is safe to begin executing if (∗) then s1 else s2 only in contexts in which it is
safe to begin executing both s1 and s2.

Rule (18) type checks looping statements. The side-condition says that it is
safe to begin executing while (∗) do s′ only in contexts in which it is safe to begin
executing s′ and, furthermore, if s′ begins executing in such a context, then it
must be safe to begin executing while (∗) do s′ in each context in which s′ might
finish executing. While our types are non-recursive, we need a least fixed point
to express index sets in the type rules. Suppose λX .E : 2A → 2A denotes a
monotone function. Then, we use μX ⊆ A.E to denote the least fixed point of
λX .E. In our application, E is of the form ({i} ∪⋃{Bj | j ∈ X }), where i ∈ A and⋃

j∈A Bj ⊆ A. Notice that E is monotone in X . Then, the type of while (∗) do s′

states that if the loop begins executing in context ωi (i ∈ A), then it might
finish executing in one of the contexts { ωk | k ∈ μX ⊆ A . ({i} ∪ ⋃{Bj | j ∈ X }) }.
Intuitively, suppose the loop begins executing in context ωi. Then, in the base
case (0 iterations), the loop will finish executing in context ωi. In the inductive
case (n + 1 iterations where n ≥ 0), suppose ω j is a context in which the loop
finishes executing after n iterations. Then, s′ will begin executing in context ω j
and might finish executing in one of contexts { ωk | k ∈ Bj }, and hence the loop
might finish executing in one of contexts { ωk | k ∈ Bj } after n + 1 iterations.

4. EQUIVALENCE

In this section, we prove that a program type checks if and only if the model
checker accepts it.

The proof from type checking to model checking is similar to that of type
soundness, consisting of Progress (Lemma 4.1) and Typability Preservation
(Lemma 4.2), the key difference being that the step relation is the abstract se-
mantics of the model checker instead of the concrete semantics of the language.

LEMMA 4.1 (PROGRESS). If 〈s, ωm〉 is well-typed then 〈s, ωm〉 is not stuck.

PROOF. See Lemma A.1 in the appendix.

LEMMA 4.2 (TYPABILITY PRESERVATION). If 〈s, ωm〉 is well-typed and 〈s, ωm〉 ↪→∗

〈s′, ωn〉 then 〈s′, ωn〉 is well-typed.

PROOF. See Lemma A.5 in the appendix.

It is then straightforward to prove that if a program type checks then it is
accepted by the model checker.

LEMMA 4.3 (FROM TYPE CHECKING TO MODEL CHECKING). If 〈s, ωm〉 is well-
typed then 〈s, ωm〉 does not go wrong.

PROOF. Suppose 〈s, ωm〉 is well-typed. We need to prove that 〈s, ωm〉 ↪→∗

〈s′, ωn〉 implies 〈s′, ωn〉 is not stuck. Suppose 〈s, ωm〉 ↪→∗ 〈s′, ωn〉. From 〈s, ωm〉 is

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:9

well-typed and 〈s, ωm〉 ↪→∗ 〈s′, ωn〉 and Lemma 4.2, we have 〈s′, ωn〉 is well-typed.
From 〈s′, ωn〉 is well-typed and Lemma 4.1, we have 〈s′, ωn〉 is not stuck.

The proof from model checking to type checking is constructive and involves
building a type derivation from the model constructed by the model checker. The
following definitions show how to construct types from the model. Intuitively,
Definition 4.4 provides the set of pre-conditions for a given statement, while
Definition 4.5 provides the set of post-conditions for a given pre-condition of a
given statement.

Definition 4.4. As = { i ∈ � | 〈s, ωi〉 does not go wrong }
Definition 4.5. Given statement s and i ∈ �, define Bs,i ⊆ � as follows:

Bs,i = δp(i) if s = p
Bs,i = {i} if s = assume(e) or assert(e) and i ∈ δe
Bs,i = ∅ if s = assume(e) or assert(e) and i /∈ δe
Bs,i = ⋃ { Bs2, j | j ∈ Bs1,i } if s = s1; s2

Bs,i = Bs1,i ∪ Bs2,i if s = if (∗) then s1 else s2

Bs,i = μX ⊆ � . ({i} ∪ ⋃{ Bs′, j | j ∈ X }) if s = while (∗) do s′

For each statement s, we will use sets As and Bs,i to construct its type. The key
lemma involves showing that the constructed type yields a valid type derivation.
We prove the lemma by induction on the structure of the statement.

LEMMA 4.6 (TYPABILITY). s :
∧

i∈As (ωi → ∨
j∈Bs,i ω j).

PROOF. See Lemma A.11 in the appendix.

It is then straightforward to prove that if a program is accepted by the model
checker then it type checks.

LEMMA 4.7 (FROM MODEL CHECKING TO TYPE CHECKING). If 〈s, ωm〉 does not go
wrong then 〈s, ωm〉 is well-typed.

PROOF. From Lemma 4.6, we have s :
∧

i∈As (ωi → ∨
j∈Bs,i ω j). From 〈s, ωm〉

does not go wrong and Defn. 4.4, we have m ∈ As. From s :
∧

i∈As (ωi → ∨
j∈Bs,i ω j)

and m ∈ As and rule (12), we have 〈s, ωm〉 is well-typed.

Finally, we present our main result which states that a program type checks if
and only if the model checker accepts it.

THEOREM 4.8 (EQUIVALENCE). 〈s, ω〉 is well-typed if and only if 〈s, ω〉 does not
go wrong.

PROOF. Combine Lemma 4.3 and Lemma 4.7.

5. EXAMPLES

In this section, we illustrate our equivalence result by means of three examples.

Example 1. Consider the following program:

s1 � lock1(); lock2() where lock() � assert(x = U); x := L

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:10 • M. Naik and J. Palsberg

where subscripts 1 and 2 are purely to help identify the statements and have no
semantic meaning, and U and L denote the unlocked and locked states, respec-
tively. Suppose the model checker is instantiated with an instance of predicate
abstraction such that � is a set of program predicates, say {x=U, x=L}. It is
easy to see that state 〈s1, x=U〉 goes wrong in the abstract semantics of Figure 1.
Additionally, 〈s1, x=U〉 is not well-typed in the type system of Figure 2 because
lock1() : x=U → x=L and lock2() : x=U → x=L, and so we cannot type check
lock1(); lock2(). As a result, both the model checker and the type system reject
〈s1, x=U〉.

Notice that although not every state 〈s, ω〉 is well-typed in our type system,
every statement s is typable (see Lemma 4.6). For instance, although 〈s1, x=U〉
is not well-typed, s1 has the type �. The following example motivates the need
for making every statement typable.

Example 2. Consider the following program:

s2 � lock1(); assume(false); lock2()

Assuming the same predicate abstraction as in the previous example, it is
easy to see that state 〈s2, x=U〉 does not go wrong in the abstract seman-
tics of Figure 1. This is because lock2() is rendered unreachable from state
〈s2, x=U〉 in the abstract semantics by the assume(false) statement as a result
of which the model checker does not even analyze lock2(). However, the type
system must type check all code, including code that is unreachable. In partic-
ular, it must assign a type to lock2(). It can use the type � for this purpose.
Then, a type derivation for s2 illustrating that 〈s2, x=U〉 is well-typed is as
follows:

lock1() : x=U → x=L assume(false) : x=L → ⊥
lock1(); assume(false) : x=U → ⊥ lock2() : �

s2 : x=U → ⊥

Example 3. Consider the following program:

s3 � { while (∗) do { assume(i �= 2); i := i + 1 } }; assume(i = 2)

Suppose the abstraction scheme is predicate abstraction and suppose � = {i=0,
i=1, i=2}. Then, each of states 〈s3, i=0〉, 〈s3, i=1〉, and 〈s3, i=2〉 does not go
wrong in our abstract semantics and, likewise, each of them is well-typed in
our type system since s3 has type i=0 → i=2 ∧ i=1 → i=2 ∧ i=2 → i=2. For
instance, a type derivation for s3 illustrating that state 〈s3, i=0〉 is well-typed

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:11

is as follows:

assume(i �= 2) : i=0 → i=0 ∧ i=1 → i=1 ∧ i=2 → ⊥
i := i + 1 : i=0 → i=1 ∧ i=1 → i=2

assume(i �= 2); i := i + 1 :
i=0 → i=1 ∧ i=1 → i=2 ∧ i=2 → ⊥

while (∗) do { assume(i �= 2); i := i + 1 } :
i=0 → (i=0 ∨ i=1 ∨ i=2) ∧
i=1 → (i=1 ∨ i=2) ∧
i=2 → i=2

assume(i = 2) :
i=0 → ⊥ ∧
i=1 → ⊥ ∧
i=2 → i=2

s3 : i=0 → i=2 ∧ i=1 → i=2 ∧ i=2 → i=2

Thus, both the model checker and the type system accept each of states 〈s3, i=0〉,
〈s3, i=1〉, and 〈s3, i=2〉.
6. DEADLINE ANALYSIS

We have applied our technique to a class of real-time programs called interrupt-
driven programs that receive and handle interrupts from their environment
[Palsberg and Ma 2002]. In particular, we studied the deadline analysis prob-
lem which decides whether a given interrupt-driven program will handle every
interrupt within its deadline. For some real-time systems such as airbags or im-
planted medical devices, a deadline violation can be catastrophic. We illustrate
the model checker, the type system, and the equivalence result for deadline
analysis by means of an example; we refer the interested reader to Naik [2004]
for full details.

Consider the following interrupt-driven program:

ei0 handler 1 { handler 2 {
loop { skip1 skip21

skip0 iret1 ei2
} } skip22

iret2
}

It consists of a main function and two interrupt handlers each of which han-
dles interrupts from a separate interrupt source in the environment. We have
labeled each statement uniquely for ease of reference. The program can control
interrupt handling in the body of the main function and each interrupt handler
by manipulating the interrupt mask register, denoted imr, which consists of a
master bit, denoted imr(0), plus one bit per interrupt source, denoted imr(1)
and imr(2) for interrupt sources 1 and 2, respectively. At any instant during
execution, interrupt source u is enabled if imr(0) = imr(u) = 1 and disabled
otherwise.

The program begins execution at the main function with imr = 011 (the
master bit is 0), enables interrupt handling by executing statement ei which
sets the master bit to 1, and loops forever. In this example, we assume that each
interrupt source has period 40, that is, the minimum time between the arrivals
of successive interrupts from each source is 40 units. We also assume that

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:12 • M. Naik and J. Palsberg

each interrupt source has deadline 40, that is, the time from the arrival of an
interrupt from the source to the completion of its handling by the corresponding
interrupt handler must be no more than 40 units, or else we have a deadline
violation. Finally, we assume that each primitive statement such as ei, skip,
and iret takes 5 units of time to execute.

When interrupt handler u is invoked, the interrupt mask register is pushed
on the stack and all interrupt handling is disabled by setting imr(0) = imr(u) =
0. An interrupt handler can enable interrupt handling by executing statement
ei and thereby allow interruptions by other interrupt handlers but not by itself,
that is, an interrupt handler cannot be called recursively. An interrupt handler
returns by executing iret which also restores the interrupt mask register from
the stack. In our example, handler 1 executes uninterrupted but handler 2 first
performs a critical computation (denoted by statement skip21), then executes
ei and thereby allows interruptions, and finally performs a non-critical compu-
tation (denoted by statement skip22). Note that in effect, handler 1 has higher
priority: handler 2 allows handler 1 to interrupt it as soon as it finishes its
critical computation.

We have defined a model checker and a type system that are equivalent,
and both guarantee that every interrupt will be handled within its deadline.
In our model checker, an abstract state is a 4-tuple 〈a, imr, I , ω〉 where a is
the program counter, imr is the value of the interrupt mask register, I is the
latency vector (described below), and ω is the stack generated by the grammar
ω ::= 〈a, imr〉 :: ω | nil. The stack, and hence the reachable state-space, is
finite since an interrupt handler cannot be called recursively. In our example,
the latency vector I is a vector of two integers such that for interrupt source
u:

—if I (u) ≥ 0 then an interrupt from source u has been pending for I (u) time
units, in particular, if I (u) = 0 then an interrupt from source u has just
arrived; and

—if I (u) < 0 then no interrupt from source u has been pending and, additionally,
the next interrupt from source u will arrive no earlier than in |I (u)| time units.

A fraction of the reachable state-space of this example program explored by
our model checker is as follows:

〈ei0; loop skip0, 011, 0 0, nil〉 (19)

↪→ 〈loop skip0, 111, 5 5, nil〉 (20)

↪→ 〈skip21; ei2; skip22; iret2, 010, 5 5, 〈loop skip0, 111〉 :: nil〉 (21)

↪→ 〈ei2; skip22; iret2, 010, 10 10, 〈loop skip0, 111〉 :: nil〉 (22)

↪→ 〈skip22; iret2, 110, 15 15, 〈loop skip0, 111〉 :: nil〉 (23)

↪→ 〈skip1; iret1, 000, 15 15, 〈skip22; iret2, 110〉 :: 〈loop skip0, 111〉 :: nil〉 (24)

↪→ 〈iret1, 000, 20 20, 〈skip22; iret2, 110〉 :: 〈loop skip0, 111〉 :: nil〉 (25)

↪→ 〈skip22; iret2, 110, –15 25, 〈loop skip0, 111〉 :: nil〉 (26)

↪→ 〈iret2, 110, –10 30, 〈loop skip0, 111〉 :: nil〉 (27)

↪→ 〈loop skip0, 111, –5 –5, nil〉 (28)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:13

This abstract execution path starts in abstract state 〈ei0; loop skip0, 011, 0 0, nil〉.
In this state, we are ready to execute the main function, imr is set to 011,
interrupts from both sources have just arrived, and the stack is empty. The
path first executes ei0 and thereby sets imr(0) to 1; both numbers in the latency
vector are incremented by 5 and we arrive at state (20). Both interrupt handlers
are now enabled and the semantics arbitrarily picks handler 2 to be called.
The current statement and imr are pushed on the stack, we jump to the body of
handler 2, imr(0) and imr(2) are set to 0, and we arrive at state (21). Notice that
we model this operation as being instantaneous; it takes no time. The next two
steps execute skip21, which only updates the latency vector, and ei2, which sets
imr(0) to 1 and updates the latency vector, to arrive at state (23). In this state,
handler 1 is enabled while handler 2 is disabled. Now handler 1 is called so
the current statement and imr are pushed on the stack, we jump to the body of
handler 1, imr(0) and imr(1) are set to 0, and we arrive at state (24). Next,
handler 1 executes skip1, which only updates the latency vector, and iret1, which
updates the latency vector and returns to the statement and imr stored on the
stack, arriving at state (26). Notice that the first number in the latency vector
in state (26) is negative; we obtain that number by taking the previous number
20, adding the time increment 5, and then subtracting the period 40. Therefore,
in state (26) no interrupt from source 1 is pending and the next interrupt from
source 1 will arrive in 15 or more time units. Finally, handler 2 executes skip22

and iret2 and returns to the main function in state (28).
The numbers in the latency vector in each abstract state in the above exe-

cution path as well as in the rest of the reachable state-space are always less
than the deadlines. The model checker is sound and therefore guarantees that
no deadline violation will occur in any execution of the program. Our type sys-
tem is equivalent to the model checker and therefore guarantees the absence
of deadline violations as well. The types of interrupt handlers and statements
have the same structure that we used for the types of statements in our WHILE

language. The types of the two interrupt handlers in our example program in
compact notation are as follows:

type of handler 1 = . . . ∧ (15 15
110−→ –15 25) ∧ (5 20

110−→ –25 30) ∧ . . .

type of handler 2 = . . . ∧ (5 5
111−→ (–5 –5 ∨ 5 –15 ∨ –20 –5)) ∧ . . .

In the type for handler 1, the first conjunct stems from the above abstract
execution path: if we call handler 1 from state (23) in which the latency vector
is [15 15] and the imr is 110, then we will return from the handler in state (26)
in which the latency vector is [–15 25]. Likewise, in the type for handler 2, the
displayed conjunct includes the case we saw above where we call handler 2 in
a state with latency vector [5 5] and the imr is 111, and we return to a state
with latency vector [–5 –5].

7. RELATED WORK

In recent years, there has been a significant surge of interest in type sys-
tems for checking temporal safety properties of imperative programs [Xi 2000;
DeLine and Fahndrich 2001; Foster et al. 2002; Igarashi and Kobayashi 2002;

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:14 • M. Naik and J. Palsberg

Mandelbaum et al. 2003]. For instance, consider program s3 in Example 3 from
Section 5 which has the type i=0 → i=2 ∧ i=1 → i=2 ∧ i=2 → i=2 in our type
system instantiated with the set of abstract contexts � = {i=0, i=1, i=2}. In
CQual [Foster et al. 2002], which supports references and therefore has a more
specialized type system than ours, s3 would be annotated with a constrained
polymorphic type:

s3 : ∀c, c′. (ref (l), [l �→ int(c)]) → (ref (l), [l �→ int(c′)]) /

{(c = 0 ⇒ c′ = 2), (c = 1 ⇒ c′ = 2), (c = 2 ⇒ c′ = 2)}

where ref (l) is a singleton reference type, namely, the type of a reference to
the location l , and int(c) is a singleton integer type, namely, the type of the
integer constant c. Singleton types are not unusual and have also been used
in the type systems of languages such as Xanadu [Xi 2000] and Vault [DeLine
and Fahndrich 2001] as well as in the type systems of alias types [Walker and
Morrisett 2001] and refinement types [Mandelbaum et al. 2003].

There is a large body of work on bridging different approaches to static anal-
ysis, most notably (i) on relating type systems and control-flow analysis for
higher-order functional languages, and (ii) on relating data-flow analysis and
model checking for first-order imperative languages.

Type systems and control-flow analysis. The Amadio-Cardelli type system
[Amadio and Cardelli 1993] with recursive types and subtyping has been shown
to be equivalent to a certain 0-CFA-based safety analysis by Palsberg and
O’Keefe [1995] and to a certain form of constrained types by Palsberg and Smith
[1996], thereby unifying three different views of typing. Heintze [1995] proves
that four restrictions of 0-CFA are equivalent to four type systems parameter-
ized by recursive types and subtyping. [Palsberg 1998] shows that equality-
based 0-CFA is equivalent to a type system with recursive types and an un-
usual notion of subtyping. Our result is most closely related to the results of
Palsberg and Pavlopoulou [2001] and Amtoft and Turbak [2000], who show that
a class of finitary polyvariant control-flow analyses is equivalent to a type sys-
tem with finitary polymorphism in the form of union and intersection types.
In Palsberg and Pavlopoulou’s type system [2001], the type of a function is
of the form

∨
i∈I

∧
j∈J (σi j → σ ′

i j) where → is the function-type arrow, and
σi j , σ ′

i j are types. An open problem is to unify their result with ours. Mossin
[1997] presents a sound and complete type-based flow analysis in that it pre-
dicts a redex if and only if there exists a reduction sequence such that the re-
dex will be reduced. Mossin’s approach uses intersection types annotated with
flow information; a related approach to flow analysis has been presented by
Banerjee [1997].

Data-flow analysis and model checking. Schmidt and Steffen [Steffen 1991;
Schmidt 1998; Schmidt and Steffen 1998] relate dataflow analysis and model
checking for first-order imperative languages. They show that the information
computed by classical iterative dataflow analyses is the same as that obtained
by model checking certain modal mu-calculus formulae on a trace-based ab-
stract interpretation of the program.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:15

8. CONCLUSIONS

We have presented a type system that is equivalent to a model checker for
verifying temporal safety properties of imperative programs. Our result high-
lights the essence of the relationship between type systems and model checking,
provides a methodology for studying their relative expressiveness, is a step to-
wards sharing results between the two approaches, and motivates synergistic
program analyses that can gain the advantages of both approaches without
suffering the drawbacks of either.

Two limitations of our current work are that our language lacks features such
as higher-order functions, objects, and concurrency, and the type information
extracted from the model constructed by our model checker may not be suitable
for human reasoning. In particular, types in many widely used type systems
tend to be concise, while types in our type systems tend to bulky. We intend to
explore these issues in the context of specific verification problems.

Our type system does not have notions of subtyping or dependent types. An
open problem is to define a type system with subtyping and/or dependent types
which is equivalent to a model checker.

Type systems can handle higher-order functions and dynamic allocation eas-
ily, while model checkers traditionally were applied to hardware, which has no
such features. An open problem is to define a type system and an equivalent
model checker for such features.

APPENDIX

We now give a proof of Lemma 4.1 (here called A.1), and later in the appendix
we give proofs of Lemma 4.2 (here called A.5) and Lemma 4.6 (here called
A.11).

LEMMA A.1 (PROGRESS). If 〈s, ωm〉 is well-typed then 〈s, ωm〉 is not stuck.

PROOF. By induction on the structure of s. There are six cases depending
upon the form of s. (In cases (1), (2), (5), and (6), we do not use the hypothesis
that 〈s, ωm〉 is well-typed.)

(1) s = p. Immediate from rule (1) and the fact that ∀i ∈ � : δp(i) �= ∅.

(2) s = assume(e). Immediate from rules (2) and (3).

(3) s = assert(e). From 〈s, ωm〉 is well-typed and rule (12), we have s :∧
i∈A(ωi → ∨

j∈Bi
ω j) and m ∈ A. From s :

∧
i∈A(ωi → ∨

j∈Bi
ω j) and rule

(15), we have A ⊆ δe. From m ∈ A and A ⊆ δe, we have m ∈ δe. From m ∈ δe
and rule (4), we have 〈s, ωm〉 ↪→ ωm, whence 〈s, ωm〉 is not stuck.

(4) s = s1; s2. From 〈s, ωm〉 is well-typed and rule (12), we have s :
∧

i∈A(ωi →∨
j∈Bi

ω j) and m ∈ A. From s :
∧

i∈A(ωi → ∨
j∈Bi

ω j) and rule (16), we have
s1 :

∧
i∈A′ (ωi → ∨

j∈B′
i
ω j) and A ⊆ A′. From m ∈ A and A ⊆ A′, we have

m ∈ A′. From s1 :
∧

i∈A′ (ωi → ∨
j∈B′

i
ω j) and m ∈ A′ and rule (12), we

have 〈s1, ωm〉 is well-typed. From 〈s1, ωm〉 is well-typed and the induction
hypothesis, we have 〈s1, ωm〉 is not stuck. From 〈s1, ωm〉 is not stuck, we
have ∃a : 〈s1, ωm〉 ↪→ a. There are three cases depending upon the form of
a. In each case, we will prove that 〈s, ωm〉 is not stuck.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:16 • M. Naik and J. Palsberg

—a = ω′. From rule (5), we have 〈s, ωm〉 ↪→ 〈s2, ω′〉.
—a = halt. From rule (6), we have 〈s, ωm〉 ↪→ halt.
—a = 〈s′

1, ω′〉. From rule (7), we have 〈s, ωm〉 ↪→ 〈s′
1; s2, ω′〉.

(5) s = if (∗) then s1 else s2. Immediate from rules (8) and (9).

(6) s = while (∗) do s′. Immediate from rules (10) and (11).

We next prove Lemma 4.2 (here called A.5). We first prove Lemmas A.2–A.4
which are required in the proof.

LEMMA A.2. If s :
∧

i∈A(ωi → ∨
j∈Bi

ω j) and m ∈ A and 〈s, ωm〉 ↪→ ωn then
n ∈ Bm.

PROOF. By case analysis of the rule used in 〈s, ωm〉 ↪→ ωn. There are four
cases depending upon which one of rules (1), (2), (4), and (11) is used.

—Rule (1). We have s = p and n ∈ δp(m). From p :
∧

i∈A(ωi → ∨
j∈Bi

ω j) and
rule (13), we have ∀i ∈ A : Bi = δp(i). From ∀i ∈ A : Bi = δp(i) and m ∈ A, we
have Bm = δp(m). From n ∈ δp(m) and Bm = δp(m), we have n ∈ Bm.

—Rule (2). We have s = assume(e) and m ∈ δe and n = m. From assume(e) :∧
i∈A(ωi → ∨

j∈Bi
ω j) and rule (14), we have ∀i ∈ A : (i ∈ δe ⇒ Bi = {i}) ∧ (i /∈

δe ⇒ Bi = ∅). From ∀i ∈ A : (i ∈ δe ⇒ Bi = {i}) ∧ (i /∈ δe ⇒ Bi = ∅) and
m ∈ A and m ∈ δe, we have m ∈ Bm. From n = m and m ∈ Bm, we have n ∈
Bm.

—Rule (4). We have s = assert(e) and m ∈ δe and n = m. From assert(e) :∧
i∈A(ωi → ∨

j∈Bi
ω j) and rule (15), we have ∀i ∈ A : Bi = {i}. From ∀i ∈ A :

Bi = {i} and m ∈ A, we have m ∈ Bm. From n = m and m ∈ Bm, we have
n ∈ Bm.

—Rule (11). We have s = while (∗) do s′ and n = m. From while (∗) do s′ :∧
i∈A(ωi → ∨

j∈Bi
ω j) and rule (18), we have ∀i ∈ A : i ∈ Bi. From ∀i ∈ A :

i ∈ Bi and m ∈ A, we have m ∈ Bm. From n = m and m ∈ Bm, we have n ∈
Bm.

LEMMA A.3. If s :
∧

i∈C(ωi → ∨
j∈Di

ω j) and m ∈ C and 〈s, ωm〉 ↪→ 〈s′, ωn〉
then s′ :

∧
i∈E (ωi → ∨

j∈Fi
ω j) and n ∈ E and Fn ⊆ Dm.

PROOF. By induction on the structure of s. There are five cases depending
upon which one of rules (5), (7), (8), (9), and (10) is used in 〈s, ωm〉 ↪→ 〈s′, ωn〉.
—Rule (5). We have s = s1; s2 and s′ = s2. From s1; s2 :

∧
i∈C(ωi → ∨

j∈Di
ω j) and

rule (16), we have:

s1 :
∧

i∈A1
(ωi → ∨

j∈Bi
ω j)

s2 :
∧

i∈A2
(ωi → ∨

j∈B′
i
ω j)

s1; s2 :
∧

i∈A(ωi → ∨
k∈⋃{B′

j | j∈Bi} ωk)

[
A ⊆ A1 and

⋃
i∈A

Bi ⊆ A2

]

where C = A and ∀i ∈ C : Di = ⋃
j∈Bi

B′
j . Choose E = A2 and ∀i ∈ E : Fi =

B′
i. We will prove that s2 :

∧
i∈E (ωi → ∨

j∈Fi
ω j) and n ∈ E and Fn ⊆ Dm.

From s2 :
∧

i∈A2
(ωi → ∨

j∈B′
i
ω j) and E = A2 and ∀i ∈ E : Fi = B′

i, we have

s2 :
∧

i∈E (ωi → ∨
j∈Fi

ω j).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:17

From m ∈ C and C = A ⊆ A1, we have m ∈ A and m ∈ A1. From 〈s1; s2, ωm〉 ↪→
〈s2, ωn〉 and rule (5), we have 〈s1, ωm〉 ↪→ ωn. From s1 :

∧
i∈A1

(ωi → ∨
j∈Bi

ω j)
and m ∈ A1 and 〈s1, ωm〉 ↪→ ωn and Lemma A.2, we have n ∈ Bm. From m ∈ A
and n ∈ Bm and

⋃
i∈A Bi ⊆ A2 = E, we have n ∈ E.

We have:

Fn = B′
n

⊆
⋃

j∈Bm

B′
j (from n ∈ Bm)

= Dm

—Rule (7). We have s = s1; s2 and s′ = s′
1; s2. From s1; s2 :

∧
i∈C(ωi → ∨

j∈Di
ω j)

and rule (16), we have:

s1 :
∧

i∈A1
(ωi → ∨

j∈Bi
ω j)

s2 :
∧

i∈A2
(ωi → ∨

j∈B′
i
ω j)

s1; s2 :
∧

i∈A(ωi → ∨
k∈⋃{B′

j | j∈Bi} ωk)

[
A ⊆ A1 and

⋃
i∈A

Bi ⊆ A2

]

where C = A and ∀i ∈ C : Di = ⋃
j∈Bi

B′
j . From m ∈ C and C = A ⊆ A1, we

have m ∈ A1. From 〈s1; s2, ωm〉 ↪→ 〈s′
1; s2, ωn〉 and rule (7), we have 〈s1, ωm〉 ↪→

〈s′
1, ωn〉. From s1 :

∧
i∈A1

(ωi → ∨
j∈Bi

ω j) and m ∈ A1 and 〈s1, ωm〉 ↪→ 〈s′
1, ωn〉

and the induction hypothesis, we have s′
1 :

∧
i∈A3

(ωi → ∨
j∈B′′

i
ω j) and n ∈ A3

and B′′
n ⊆ Bm. Choose E = {n} and ∀i ∈ E : Fi = ⋃

j∈B′′
i

B′
j . We will prove

that s′
1; s2 :

∧
i∈E (ωi → ∨

j∈Fi
ω j) and n ∈ E and Fn ⊆ Dm. Notice that the

choice of E = {n} gives s′
1; s2 a “monovariant” type, that is, a type with just

one conjunct.

From m ∈ C and C = A, we have m ∈ A. From m ∈ A and
⋃

i∈A Bi ⊆ A2, we
have Bm ⊆ A2. From s′

1 :
∧

i∈A3
(ωi → ∨

j∈B′′
i
ω j) and s2 :

∧
i∈A2

(ωi → ∨
j∈B′

i
ω j)

and n ∈ A3 and B′′
n ⊆ Bm ⊆ A2 and rule (16), we have s′

1; s2 :
∧

i∈{n}(ωi →∨
k∈⋃{B′

j | j∈B′′
i } ωk). From s′

1; s2 :
∧

i∈{n}(ωi → ∨
k∈⋃{B′

j | j∈B′′
i } ωk) and E = {n} and

∀i ∈ E : Fi = ⋃
j∈B′′

i
B′

j , we have s′
1; s2 :

∧
i∈E (ωi → ∨

j∈Fi
ω j).

From E = {n}, we have n ∈ E.

We have:

Fn =
⋃
j∈B′′

n

B′
j

⊆
⋃

j∈Bm

B′
j (from B′′

n ⊆ Bm)

= Dm

—Rule (8). We have s = if (∗) then s1 else s2 and s′ = s1 and n = m. From
if (∗) then s1 else s2 :

∧
i∈C(ωi → ∨

j∈Di
ω j) and rule (17), we have:

s1 :
∧

i∈A1
(ωi → ∨

j∈Bi
ω j)

s2 :
∧

i∈A2
(ωi → ∨

j∈B′
i
ω j)

if (∗) then s1 else s2 :
∧

i∈A(ωi → ∨
j∈Bi∪B′

i
ω j)

[A ⊆ A1 ∩ A2]

where C = A and ∀i ∈ C : Di = Bi ∪ B′
i. Choose E = A1 and ∀i ∈ E : Fi = Bi.

We will prove that s1 :
∧

i∈E (ωi → ∨
j∈Fi

ω j) and n ∈ E and Fn ⊆ Dm.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:18 • M. Naik and J. Palsberg

From s1 :
∧

i∈A1
(ωi → ∨

j∈Bi
ω j) and E = A1 and ∀i ∈ E : Fi = Bi, we have

s1 :
∧

i∈E (ωi → ∨
j∈Fi

ω j).

From n = m and m ∈ C and C = A ⊆ A1 = E, we have n ∈ E.

We have Fn = Bn = Bm ⊆ Bm ∪ B′
m = Dm.

—Rule (9). The proof is similar to that of the preceding item.

—Rule (10). We have s = while (∗) do s1 and s′ = s1; while (∗) do s1 and n = m.
From while (∗) do s1 :

∧
i∈C(ωi → ∨

j∈Di
ω j) and rule (18), we have:

s1 :
∧

i∈A′ (ωi → ∨
j∈Bi

ω j)

while (∗) do s1 :
∧

i∈A(ωi → ∨
k∈μX ⊆A.({i}∪⋃{Bj | j∈X }) ωk)

[⋃
i∈A

Bi ⊆ A ⊆ A′
]

where C = A and ∀i ∈ C : Di = μX ⊆ A . ({ i } ∪ ⋃{ Bj | j ∈ X }). Choose
E = A and ∀i ∈ E : Fi = ⋃

j∈Bi
μX ⊆ A . ({ j } ∪ ⋃{ Bk | k ∈ X }). We will

prove that s1; while (∗) do s1 :
∧

i∈E (ωi → ∨
j∈Fi

ω j) and n ∈ E and Fn ⊆ Dm.

From s1 :
∧

i∈A′ (ωi → ∨
j∈Bi

ω j) and
while (∗) do s1 :

∧
i∈A(ωi → ∨

k∈μX ⊆A.({i}∪⋃{Bj | j∈X }) ωk) and A ⊆ A′ and⋃
i∈A Bi ⊆ A and rule (16), we have

s1; while (∗) do s1 :
∧

i∈A(ωi → ∨
l∈⋃{μX ⊆A.({ j }∪⋃{Bk |k∈X })| j∈Bi} ωl) which com-

bined with E = A and ∀i ∈ E : Fi = ⋃
j∈Bi

μX ⊆ A. ({ j } ∪ ⋃{ Bk | k ∈ X })
proves that s1; while (∗) do s1 :

∧
i∈E (ωi → ∨

j∈Fi
ω j).

From n = m and m ∈ A and E = A, we have n ∈ E.

We have:

Fn =
⋃
j∈Bn

μX ⊆ A . ({ j } ∪
⋃

{ Bk | k ∈ X })

= μX ⊆ A . (Bn ∪
⋃

{ Bk | k ∈ X })
⊆ μX ⊆ A . ({ n } ∪ Bn ∪

⋃
{ Bk | k ∈ X })

= μX ⊆ A . ({ n } ∪
⋃

{ Bj | j ∈ X })
= μX ⊆ A . ({ m } ∪

⋃
{ Bj | j ∈ X }) (from n = m)

= Dm

LEMMA A.4 (SINGLE-STEP TYPABILITY PRESERVATION). If 〈s, ωm〉 is well-typed
and 〈s, ωm〉 ↪→ 〈s′, ωn〉 then 〈s′, ωn〉 is well-typed.

PROOF. From 〈s, ωm〉 is well-typed and rule (12), we have s :
∧

i∈A(ωi →∨
j∈Bi

ω j) and m ∈ A. From s :
∧

i∈A(ωi → ∨
j∈Bi

ω j) and m ∈ A and 〈s, ωm〉 ↪→
〈s′, ωn〉 and Lemma A.3, we have s′ :

∧
i∈A′ (ωi → ∨

j∈B′
i
ω j) and n ∈ A′. From

s′ :
∧

i∈A′ (ωi → ∨
j∈B′

i
ω j) and n ∈ A′ and rule (12), we have 〈s′, ωn〉 is well-

typed.

LEMMA A.5 (MULTISTEP TYPABILITY PRESERVATION). If 〈s, ωm〉 is well-typed and
〈s, ωm〉 ↪→∗ 〈s′, ωn〉 then 〈s′, ωn〉 is well-typed.

PROOF. We will prove the stronger statement that for every natural num-
ber t, t ≥ 0, if 〈s, ωm〉 is well-typed and 〈s, ωm〉 ↪→t 〈s′, ωn〉 then 〈s′, ωn〉 is

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:19

well-typed. The proof proceeds by induction on t (using Lemma A.4); we omit the
details.

Finally, we prove Lemma 4.6 (here called A.11). We first prove Lemmas A.6–
A.10 which are required in the proof.

LEMMA A.6. If 〈s, ω〉 ↪→∗ ω′ then 〈s; s′, ω〉 ↪→∗ 〈s′, ω′〉.
PROOF. We will prove the stronger statement that for every natural number

t ≥ 1, if 〈s, ω〉 ↪→t ω′ then 〈s; s′, ω〉 ↪→t 〈s′, ω′〉. We proceed by induction on t.
In the base case of t = 1, the result is immediate from rule (5). In the induc-
tion step, suppose 〈s, ω〉 ↪→t+1 ω′. We must have 〈s, ω〉 ↪→ 〈s′′, ω′′〉 ↪→t ω′. From
〈s, ω〉 ↪→ 〈s′′, ω′′〉 and rule (7), we have 〈s; s′, ω〉 ↪→ 〈s′′; s′, ω′′〉. From 〈s′′, ω′′〉 ↪→t ω′

and the induction hypothesis, we have 〈s′′; s′, ω′′〉 ↪→t 〈s′; ω′〉. From 〈s; s′, ω〉 ↪→
〈s′′; s′, ω′′〉 and 〈s′′; s′, ω′′〉 ↪→t 〈s′; ω′〉, we have 〈s; s′, ω〉 ↪→t+1 〈s′, ω′〉, as
required.

LEMMA A.7. If 〈s, ω〉 ↪→∗ 〈s′, ω′〉 then 〈s; s2, ω〉 ↪→∗ 〈s′; s2, ω′〉.
PROOF. We will prove the stronger statement that for every natural number

t ≥ 1, if 〈s, ω〉 ↪→t 〈s′, ω′〉 then 〈s; s2, ω〉 ↪→t 〈s′; s2, ω′〉. We proceed by induction
on t. In the base case of t = 1, the result is immediate from rule (7). In the
induction step, suppose 〈s, ω〉 ↪→t+1 〈s′, ω′〉. We must have 〈s, ω〉 ↪→ 〈s′′, ω′′〉 ↪→t

〈s′, ω′〉. From 〈s, ω〉 ↪→ 〈s′′, ω′′〉 and rule (7), we have 〈s; s2, ω〉 ↪→ 〈s′′; s2, ω′′〉.
From 〈s′′, ω′′〉 ↪→t 〈s′, ω′〉 and the induction hypothesis, we have 〈s′′; s2, ω′′〉 ↪→t

〈s′; s2, ω′〉. From 〈s; s2, ω〉 ↪→ 〈s′′; s2, ω′′〉 and 〈s′′; s2, ω′′〉 ↪→t 〈s′; s2, ω′〉, we have
〈s; s2, ω〉 ↪→t+1 〈s′; s2, ω′〉, as required.

LEMMA A.8. We have:

As ⊆
⎧⎨
⎩

As1 if s = s1; s2

As1 ∩ As2 if s = if (∗) then s1 else s2

As′
if s = while (∗) do s′

PROOF. Let us first show As ⊆ As1 , if s = s1; s2. Suppose i ∈ As, that is,
〈s, ωi〉 does not go wrong. For the purpose of deriving a contradiction, assume
i �∈ As1 . From i �∈ As1 we have that 〈s1, ωi〉 goes wrong, that is, we have 〈s′, ω′〉
such that 〈s1, ωi〉 ↪→∗ 〈s′, ω′〉 and 〈s′, ω′〉 is stuck. From 〈s1, ωi〉 ↪→∗ 〈s′, ω′〉 and
Lemma A.7 we have 〈s1; s2, ωi〉 ↪→∗ 〈s′; s2, ω′〉. We have that 〈s′; s2, ω′〉 is stuck,
contradicting i ∈ As.

The other two cases can be proved in a similar manner; we omit the de-
tails.

LEMMA A.9. If j ∈ Bs,i then 〈s, ωi〉 ↪→∗ ω j .

PROOF. By induction on the structure of s. There are six cases depending
upon the form of s:

—s = p. From j ∈ Bs,i and Defn. 4.5, we have j ∈ δp(i). From j ∈ δp(i) and rule
(1), we have 〈s, ωi〉 ↪→ ω j .

—s = assume(e). From j ∈ Bs,i and Defn. 4.5, we have j = i and i ∈ δe. From
j = i and i ∈ δe and rule (2), we have 〈s, ωi〉 ↪→ ω j .

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:20 • M. Naik and J. Palsberg

—s = assert(e). The proof is similar to that of the preceding item.

—s = s1; s2. From j ∈ Bs,i and Defn. 4.5, we have j ∈ Bs2,k for some k ∈ Bs1,i.
From k ∈ Bs1,i and the induction hypothesis, we have 〈s1, ωi〉 ↪→∗ ωk . From
〈s1, ωi〉 ↪→∗ ωk and Lemma A.6, we have 〈s1; s2, ωi〉 ↪→∗ 〈s2, ωk〉. From j ∈ Bs2,k

and the induction hypothesis, we have 〈s2, ωk〉 ↪→∗ ω j . From 〈s1; s2, ωi〉 ↪→∗

〈s2, ωk〉 and 〈s2, ωk〉 ↪→∗ ω j , we have 〈s1; s2, ωi〉 ↪→∗ ω j .

—s = if (∗) then s1 else s2. From j ∈ Bs,i and Defn. 4.5, we have j ∈ Bs1,i ∪
Bs2,i. Suppose j ∈ Bs1,i. (The proof of the case in which j ∈ Bs2,i is similar.)
From rule (8), we have 〈s, ωi〉 ↪→ 〈s1, ωi〉. From j ∈ Bs1,i and the induction
hypothesis, we have 〈s1, ωi〉 ↪→∗ ω j . From 〈s, ωi〉 ↪→ 〈s1, ωi〉 and 〈s1, ωi〉 ↪→∗ ω j ,
we have 〈s, ωi〉 ↪→∗ ω j .

—s = while (∗) do s′. From Defn. 4.5, we have Bs,i = ⋃
t≥0 Bt where:

B0 = {i}
Bt =

⋃
{Bs′,k | k ∈ Bt−1}, t > 0

We will first prove that ∀t : (l ∈ Bt ⇒ 〈s, ωi〉 ↪→∗ 〈s, ωl 〉). The proof is by
induction on t. The base case (t = 0) is trivial. To prove the induction step,
suppose l ∈ Bt , t > 0. From the definition of Bt above, we have l ∈ Bs′,k for
some k ∈ Bt−1. From k ∈ Bt−1 and the induction hypothesis of the induction
on t, we have 〈s, ωi〉 ↪→∗ 〈s, ωk〉. From rule (10), we have 〈s, ωk〉 ↪→ 〈s′; s, ωk〉.
From l ∈ Bs′,k and the induction hypothesis of the induction on s, we have
〈s′, ωk〉 ↪→∗ ωl . From 〈s′, ωk〉 ↪→∗ ωl and Lemma A.6, we have 〈s′; s, ωk〉 ↪→∗

〈s, ωl 〉. From 〈s, ωi〉 ↪→∗ 〈s, ωk〉 and 〈s, ωk〉 ↪→ 〈s′; s, ωk〉 and 〈s′; s, ωk〉 ↪→∗

〈s, ωl 〉, we have 〈s, ωi〉 ↪→∗ 〈s, ωl 〉, which completes the proof.
From j ∈ Bs,i and Bs,i = ⋃

t≥0 Bt , we have j ∈ Bt ′ for some t ′. From j ∈ Bt ′

and ∀t : (l ∈ Bt ⇒ 〈s, ωi〉 ↪→∗ 〈s, ωl 〉), we have 〈s, ωi〉 ↪→∗ 〈s, ω j 〉. From rule
(11), we have 〈s, ω j 〉 ↪→ ω j . From 〈s, ωi〉 ↪→∗ 〈s, ω j 〉 and 〈s, ω j 〉 ↪→ ω j , we have
〈s, ωi〉 ↪→∗ ω j .

LEMMA A.10. We have:

(1) If s = s1; s2 then
⋃

i∈As Bs1,i ⊆ As2 .
(2) If s = while (∗) do s′ then

⋃
i∈As Bs′,i ⊆ As.

PROOF. Consider any i ∈ As. From i ∈ As and Defn. 4.4, we have 〈s, ωi〉 does
not go wrong.

—s = s1; s2

Consider any j ∈ Bs1,i. We need to prove that j ∈ As2 . From j ∈ Bs1,i and
Lemma A.9, we have 〈s1, ωi〉 ↪→∗ ω j . From 〈s1, ωi〉 ↪→∗ ω j and Lemma A.6,
we have 〈s1; s2, ωi〉 ↪→∗ 〈s2, ω j 〉. From 〈s1; s2, ωi〉 does not go wrong and
〈s1; s2, ωi〉 ↪→∗ 〈s2, ω j 〉, we have 〈s2, ω j 〉 does not go wrong. From 〈s2, ω j 〉 does
not go wrong and Defn. 4.4, we have j ∈ As2 .

—s = while (∗) do s′

Consider any j ∈ Bs′,i. We need to prove that j ∈ As. From rule (10), we have
〈s, ωi〉 ↪→ 〈s′; s, ωi〉. From j ∈ Bs′,i and Lemma A.9, we have 〈s′, ωi〉 ↪→∗ ω j .
From 〈s′, ωi〉 ↪→∗ ω j and Lemma A.6, we have 〈s′; s, ωi〉 ↪→∗ 〈s, ω j 〉. From
〈s, ωi〉 does not go wrong and 〈s, ωi〉 ↪→ 〈s′; s, ωi〉 ↪→∗ 〈s, ω j 〉, we have 〈s, ω j 〉

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:21

does not go wrong. From 〈s, ω j 〉 does not go wrong and Defn. 4.4, we have
j ∈ As.

LEMMA A.11 (TYPABILITY). s :
∧

i∈As (ωi → ∨
j∈Bs,i ω j).

PROOF. By induction on the structure of s. There are six cases depending
upon the form of s:

—s = p. From Defn. 4.4 and rule (1), we have As = �. From Defn. 4.5, we have
∀i ∈ � : Bs,i = δp(i). From As = � and ∀i ∈ As : Bs,i = δp(i) and rule (13), we
have s :

∧
i∈As (ωi → ∨

j∈Bs,i ω j).

—s = assume(e). From Defn. 4.4 and rules (2) and (3), we have As = �. From
Defn. 4.5, we have ∀i ∈ δe : Bs,i = {i} and ∀i /∈ δe : Bs,i = ∅. From As = �

and ∀i ∈ δe : Bs,i = {i} and ∀i /∈ δe : Bs,i = ∅ and rule (14), we have
s :

∧
i∈As (ωi → ∨

j∈Bs,i ω j).

—s = assert(e). From Defn. 4.4 and rule (4), we have As = δe. From Defn. 4.5,
we have ∀i ∈ δe : Bs,i = {i}. From As = δe and ∀i ∈ As : Bs,i = {i} and rule (15),
we have s :

∧
i∈As (ωi → ∨

j∈Bs,i ω j).

—s = s1; s2. From the induction hypothesis, we have s1 :
∧

i∈A
s1 (ωi →∨

j∈B
s1,i ω j) and s2 :

∧
i∈A

s2 (ωi → ∨
j∈B

s2,i ω j). From Lemma A.8, we have

As ⊆ As1 . From Lemma A.10, we have
⋃

i∈As Bs1,i ⊆ As2 . From Defn. 4.5,
we have Bs,i = ⋃ { Bs2, j | j ∈ Bs1,i }. From s1 :

∧
i∈A

s1 (ωi → ∨
j∈B

s1,i ω j)

and s2 :
∧

i∈A
s2 (ωi → ∨

j∈B
s2,i ω j) and As ⊆ As1 and

⋃
i∈As Bs1,i ⊆ As2 and

Bs,i = ⋃ { Bs2, j | j ∈ Bs1,i } and rule (16), we have s :
∧

i∈As (ωi → ∨
j∈Bs,i ω j).

—s = if (∗) then s1 else s2. From the induction hypothesis, we have s1 :∧
i∈A

s1 (ωi → ∨
j∈B

s1,i ω j) and s2 :
∧

i∈As (ωi → ∨
j∈B

s2,i ω j). From Lemma A.8,

we have As ⊆ As1 and As ⊆ As2 . From Defn. 4.5, we have Bs,i = Bs1,i ∪ Bs2,i.
From s1 :

∧
i∈As (ωi → ∨

j∈B
s1,i ω j) and s2 :

∧
i∈As (ωi → ∨

j∈B
s2,i ω j) and

As ⊆ As1 and As ⊆ As2 and Bs,i = Bs1,i ∪ Bs2,i and rule (17), we have
s :

∧
i∈As (ωi → ∨

j∈Bs,i ω j).

—s = while (∗) do s′. From the induction hypothesis, we have s′ :
∧

i∈As′ (ωi →∨
j∈Bs′ ,i ω j). From Lemma A.8, we have As ⊆ As′

. From Lemma A.10, we have⋃
i∈As Bs′,i ⊆ As. From Defn. 4.5, we have Bs,i = μX ⊆ �.({i}∪⋃{Bs′, j | j ∈ X }).

From s′ :
∧

i∈As′ (ωi → ∨
j∈Bs′ ,i ω j) and As ⊆ As′

and
⋃

i∈As Bs′,i ⊆ As and

Bs,i = μX ⊆ �.({i} ∪ ⋃{Bs′, j | j ∈ X }) and rule (18), we have s :
∧

i∈As (ωi →∨
j∈Bs,i ω j).

ACKNOWLEDGMENTS

We originally proved our equivalence result in the setting of the deadline analy-
sis problem for interrupt-driven programs. That result can be found in the first
author’s master’s thesis [Naik 2004]. We thank the many people who suggested
that we prove the result in a more conventional setting such as the one in this
paper. The proof technique remains essentially the same. We would also like
to thank Alex Aiken and Jakob Rehof for useful discussions. An earlier ver-
sion of this paper appeared in the 14th European Symposium on Programming
(ESOP’05); this revised version contains more detailed explanations, full proofs,

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:22 • M. Naik and J. Palsberg

and a discussion of deadline analysis. We thank the anonymous ESOP’05 and
TOPLAS reviewers for insightful comments.

REFERENCES

AMADIO, R. M. AND CARDELLI, L. 1993. Subtyping recursive types. ACM Trans. Program. Lang.
Syst. 15, 4, 575–631.

AMTOFT, T. AND TURBAK, F. 2000. Faithful translations between polyvariant flows and polymorphic

types. In Proceedings of the 14th European Symposium on Programming. Springer, 26–40.

BALL, T. AND RAJAMANI, S. 2002. The SLAM project: Debugging system software via static analysis.

In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, 1–3.

BANERJEE, A. 1997. A modular, polyvariant and type-based closure analysis. In Proceedings of
the 2nd ACM SIGPLAN International Conf. on Functional Programming. ACM Press, 1–10.

BEAVEN, M. AND STANSIFER, R. 1993. Explaining type errors in polymorphic languages. ACM Lett.
on Program. Lang. Syst. 2, 1-4, 17–30.

BRYLOW, D. AND PALSBERG, J. 2004. Deadline analysis of interrupt-driven software. IEEE Trans.
Soft. Engin. 30, 10 634–655.

CHAKI, S., CLARKE, E. M., GROCE, A., JHA, S., AND VEITH, H. 2003. Modular verification of soft-

ware components in C. In Proceedings of the 25th International on Software Engineering. IEEE

Computer Society Press, 385–395.

CHAKI, S., RAJAMANI, S. K., AND REHOF, J. 2002. Types as models: Model checking message-passing

programs. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. ACM Press, 45–57.

CHATTERJEE, K., MA, D., MAJUMDAR, R., ZHAO, T., HENZINGER, T. A., AND PALSBERG, J.

2004. Stack size analysis of interrupt driven software. Inform. Comput. 194, 2,

144–174.

CHITIL, O. 2001. Compositional explanation of types and algorithmic debugging of type errors.

In Proceedings of the 6th ACM SIGPLAN International Conference on Functional Programming.

193–204.

COUSOT, P. 1997. Types as abstract interpretations. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM Press, 316–331.

COUSOT, P. AND COUSOT, R. 2000. Temporal abstract interpretation. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, 12–25.

DEBBABI, M., BENZAKOUR, A., AND KTARI, B. 1999. A synergy between model-checking and type

inference for the verification of value-passing higher-order processes. In Proceedings of the 7th
International Conference on Algebraic Methodology and Software Technology. Springer, 214–230.

DELINE, R. AND FAHNDRICH, M. 2001. Enforcing high-level protocols in low-level software. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. ACM Press, 59–69.

DUGGAN, D. AND BENT, F. 1996. Explaining type inference. Sci. Comput. Program. 27, 1, 37–83.

FLANAGAN, C. AND FREUND, S. N. 2004. Type inference against races. Sci. Comput. Program. 64, 1,

140–165.

FLANAGAN, C., FREUND, S. N., AND LIFSHIN, M. 2005. Type inference for atomicity. In Proceedings
of the ACM SIGPLAN Workshop on Types in Language Design and Implementation. ACM Press,

47–58.

FOSTER, J. S., TERAUCHI, T., AND AIKEN, A. 2002. Flow-sensitive type qualifiers. In Proceedings of
the 2002 ACM SIGPLAN Conference on Programming Language Design and Implementation.

ACM Press, 1–12.

GRAF, S. AND SAIDI, H. 1997. Construction of abstract state graphs with PVS. In Proceedings of
the 9th International Conference on Computer-Aided Verification. Springer, 72–83.

HAACK, C. AND WELLS, J. B. 2003. Type error slicing in implicitly typed higher-order languages.

In Proceedings of the 12th European Symposium on Programming. Springer, 284–301.

HEINTZE, N. 1995. Control-flow analysis and type systems. In Proceedings of the 2nd International
Symposium on Static Analysis. Springer, 189–206.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

A Type System Equivalent to a Model Checker • 29:23

HENZINGER, T. A., JHALA, R., MAJUMDAR, R., NECULA, G. C., SUTRE, G., AND WEIMER, W. 2002.

Temporal-safety proofs for systems code. In Proceedings of the 14th International Conference
on Computer-Aided Verification. Springer, 526–538.

HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2003. Software verification with Blast.

In Proceedings of the 10th International SPIN Workshop on Model Checking Software. Springer,

235–239.

IGARASHI, A. AND KOBAYASHI, N. 2002. Resource usage analysis. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press,

331–342.

JOHNSON, G. F. AND WALZ, J. A. 1986. A maximium flow approach to anomaly isolation in

unification-based incremental type inference. In Proceedings of the 13th ACM Symposium on
Principles of Programming Languages. ACM Press, 44–57.

LERNER, B., FLOWER, M., GROSSMAN, D., AND CHAMBERS, C. 2007. Searching for type-error mes-

sages. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM Press, 425–434.

MA, D. 2004. Bounding the stack size of interrupt-driven programs. Ph.D. thesis, Purdue

University.

MANDELBAUM, Y., WALKER, D., AND HARPER, R. 2003. An effective theory of type refinements. In

Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming.

ACM Press, 213–225.

MILNER, R. 1978. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17, 348–

375.

MOSSIN, C. 1997. Exact flow analysis. In Proceedings of the 4th International Symposium on
Static Analysis. Springer, 250–264.

NAIK, M. 2004. A type system equivalent to a model checker. M.S. thesis, Purdue University.

NAMJOSHI, K. S. 2001. Certifying model checkers. In Proceedings of the 13th International Con-
ference on Computer-Aided Verification. Springer, 2–12.

NAMJOSHI, K. S. 2003. Lifting temporal proofs through abstractions. In Proceedings of the 14th
International Conference on Verification, Model Checking, and Abstract Interpretation. Springer,

174–188.

PALSBERG, J. 1998. Equality-based flow analysis versus recursive types. ACM Trans. Program.
Lang. Syst. 20, 6, 1251–1264.

PALSBERG, J. AND MA, D. 2002. A typed interrupt calculus. In Proceedings of the 7th International
Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems. Springer, 291–310.

PALSBERG, J. AND O’KEEFE, P. M. 1995. A type system equivalent to flow analysis. ACM Trans.
Program. Lang. Syst. 17, 4, 576–599.

PALSBERG, J. AND PAVLOPOULOU, C. 2001. From polyvariant flow information to intersection and

union types. J. Funct. Program. 11, 3, 263–317.

PALSBERG, J. AND SMITH, S. 1996. Constrained types and their expressiveness. ACM Transactions
Program. Lang. Syst. 18, 5, 519–527.

PELED, D., PNUELI, A., AND ZUCK, L. D. 2001. From falsification to verification. In Proceedings of
the 21st Conference on Foundations of Software Technology and Theoretical Computer Science.

Springer, 292–304.

PELED, D. AND ZUCK, L. D. 2001. From model checking to a temporal proof. In Proceedings of the
8th International SPIN Workshop on Model Checking Software. Springer, 1–14.

SCHMIDT, D. AND STEFFEN, B. 1998. Program analysis as model checking of abstract interpretations.

In Proceedings of the 5th International Symposium on Static Analysis. Springer, 351–380.

SCHMIDT, D. A. 1998. Data flow analysis is model checking of abstract interpretations. In Proceed-
ings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

ACM Press, 38–48.

STEFFEN, B. 1991. Data flow analysis as model checking. In Proceedings of Theoretical Aspects of
Computer Science. Springer, 346–364.

TAN, L. AND CLEAVELAND, R. 2002. Evidence-based model checking. In Proceedings of the 14th
International Conference on Computer-Aided Verification. Springer, 455–470.

TIP, F. AND DINESH, T. B. 2001. A slicing-based approach for locating type errors. ACM Trans. Soft.
Engin. Method. 10, 1 , 5–55.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

29:24 • M. Naik and J. Palsberg

WALKER, D. AND MORRISETT, G. 2001. Alias types for recursive data structures. In Proceedings of
the 3rd International Workshop on Types in Compilation. Springer, 177–206.

WAND, M. 1986. Finding the source of type errors. In Proceedings of the 13th ACM Symposium
on Principles of Programming Languages. ACM Press, 38–43.

XI, H. 2000. Imperative programming with dependent types. In Proceedings of the 15th IEEE
Symposium on Logic in Computer Science. IEEE Computer Society Press, 375–387.

Received November 2005; revised September 2007; accepted December 2007

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 5, Article 29, Pub. date: August 2008.

