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Abstract. Static analyses predominantly use discrete modes of logical
reasoning to derive facts about programs. Despite significant strides, this
form of reasoning faces new challenges in modern software applications
and practices. These challenges concern not only traditional analysis ob-
jectives such as scalability, accuracy, and soundness, but also emerging
ones such as tailoring analysis conclusions based on relevance or severity
of particular code changes, and needs of individual programmers.

We advocate seamlessly extending static analyses to leverage continuous
modes of logical reasoning in order to address these challenges. Central
to our approach is expressing the specification of the static analysis in a
constraint language that is amenable to computing provenance informa-
tion. We use the logic programming language Datalog as proof-of-concept
for this purpose. We illustrate the benefits of exploiting provenance even
in the discrete setting. Moreover, by associating weights with constraints,
we show how to amplify these benefits in the continuous setting.

We also present open problems in aspects of analysis usability, language
expressiveness, and solver techniques. The overall process constitutes a
fundamental rethinking of how to design, implement, deploy, and adapt
static analyses.

Keywords: Static analysis, constraint solving, provenance, probabilis-
tic logics, alarm ranking, inductive logic programming

1 Introduction

Static analysis has made remarkable strides in theory and practice over the
decades since the seminal work of Cousot and Cousot on abstract interpretation
[10]. The practical impact of static analysis tools includes triumphs such as
Astrée [11] for verifying memory safety properties of C programs used in Airbus
controller software, SLAM [6] for verifying temporal safety properties that device
drivers on the Windows operating system must obey, Coverity [7] for checking
a wide variety of programming errors based on semantic inconsistencies in large
enterprise C/C++ applications, and Infer [9] for modularly checking various
safety properties of C, C++, Objective C, and Java code in Android and iOS
mobile applications.
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At the same time, new programming languages with rich dynamic features,
such as Javascript and Python, and new software engineering practices such
as continuous integration and continuous deployment (CI/CD) are becoming
increasingly popular. These settings favor programmer productivity but pose
new challenges to static analysis, such as tailoring analysis conclusions based
on relevance or severity of code changes by individual developers in large teams
[19,30]. The resulting trend in the growth and diversity of software applications
is challenging even traditional objectives of static analysis, such as scalability,
accuracy, and soundness [21].

Static analyses predominantly use discrete modes of logical reasoning to de-
rive facts about programs: the facts and the process of deriving them are discrete
in nature. For instance, such analyses typically work by applying deductive rules
of the form A ⇒ B on program text. The undecidability of the static analysis
problem lends such rules to be necessarily incomplete, deriving consequent B
which may be false even if antecedent A is true.

In this paper, we argue that leveraging continuous modes of logical reason-
ing opens promising avenues to address the above challenges. For instance, we
can extend the syntax of the above deductive rule with a real-valued weight
w ∈ [0, 1], and extend its semantics to the continuous domain, which allows to
selectively violate instances of the rule as well as associate a confidence score
with each derived fact. This enables to leverage inference procedures for conven-
tional probabilistic graphical models such as Bayesian networks [31] (e.g. [32])
or Markov Logic Networks (MLN) [35] (e.g. [24]). We can even learn the weights
and structure of the rules from (possibly partial or noisy) input-output data (e.g.
labeled alarms on program text) rather than being hand-engineered by human
experts. By replacing the traditional operations (∧, ∨) and values {true, false}
of the Boolean semiring with the corresponding operations (×, max ) and values
[0, 1] of the Viterbi semiring [14], we can leverage ideas from numerical relaxation
in optimization problems, such as Newton’s root-finding method, MCMC-based
random sampling, and stochastic gradient descent [36]. This opens the door to
the invention of new program approximations and to the customization of static
analyses by end-users.

Crucially, we advocate to seamlessly extend rather than replace existing meth-
ods, by synergistically combining discrete and continuous forms of logical rea-
soning in static analysis. In particular, we presume that the analysis is expressed
in a constraint language that is amenable to computing provenance information
in the form of proof trees that explain how the analysis derives output facts (e.g.,
alarms) from input facts (e.g., program text). Such information allows to answer
questions such as whether a particular alarm is relevant to a particular code
change in a continuously evolving codebase. Such information is useful even in
the discrete setting but its benefits are amplified in the continuous setting—for
instance, allowing to answer questions such as the extent to which an alarm is
relevant to a code change. Throughout, we use the logic programming language
Datalog [1] as proof-of-concept for the constraint language, since it suffices to
express a wide range of analyses in the literature, and efficient procedures exist
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for evaluating Datalog programs, computing provenance information, and ex-
tending the Datalog language and solvers with capabilities such as statistical
relational models and mathematical optimization procedures [3].

The rest of the paper is organized as follows. Section 2 illustrates the key
ingredients of our approach on the problem of improving the effective accuracy of
a static analysis by incorporating user feedback. Section 3 outlines the landscape
of challenges in static analysis where similar ideas are applicable and discusses
open problems. Finally, Section 4 concludes.

2 Illustrative Overview

We illustrate our approach using an example from [32] which applies a static
analysis to a multi-threaded Java program called Apache FTP server. Figure 1
shows a code fragment from the program. The RequestHandler class is used to
handle client connections. An object of this class is created for every incoming
connection to the server. The close() method is used to clean up and close
an open client connection, and the getRequest() method is used to access the
request field. Both these methods can be invoked from other parts of the pro-
gram by multiple threads in parallel on the same RequestHandler object.

Dataraces are a common and insidious kind of error that plague multi-
threaded programs. Since getRequest() and close() may be called on the same
RequestHandler object by different threads in parallel, there exists a datarace
between lines 10 and 20: the first thread may read the request field while the
second thread concurrently sets the request field to null.

On the other hand, even though the close() method may also be simulta-
neously invoked by multiple threads on the same RequestHandler object, the
atomic test-and-set operation on lines 13–16 ensures that for each object in-
stance, lines 17–24 are executed at most once. There is therefore no datarace
between the pair of accesses to controlSocket on lines 17 and 18, and similarly
no datarace between the accesses to request on lines 19 and 20, and so forth.

We may use a static analysis to find dataraces in this program. However,
due to the undecidable nature of the problem, the analysis may also report
alarms on lines 17–24. In the rest of this section, we illustrate how our approach
generalizes from user feedback to guide the analysis away from the false positives
and towards the actual datarace.

A Static Datarace Analysis. Figure 1 shows a simplified version of the
analysis in Chord, a static datarace detector for Java programs [29]. The analysis
is expressed in Datalog as a set of logical rules over relations.

The analysis takes relations N (p1, p2), U(p1, p2), and A(p1, p2) as input, and
produces relations P(p1, p2) and R(p1, p2) as output. In all relations, variables
p1 and p2 range over the domain of program points. Each relation may be visu-
alized as the set of tuples indicating some known facts about the program. For
our example program, N (p1, p2) may contain the tuples N (l1, l2), N (l2, l3), etc.
While some input relations, such as N (p1, p2), may be directly obtained from
the text of the program being analyzed, other input relations, such as U(p1, p2)
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1 package org . apache . f t p s e r v e r ;
2
3 public class Reques tHand le r {
4 FtpReques t Imp l r e q u e s t ;
5 FtpWr i t e r w r i t e r ;
6 Buf f e r edReade r r e a d e r ;
7 Socket c o n t r o l S o c k e t ;
8 boolean i s C l o s e d ;
9 public FtpRequest ge tReques t ( ) {

10 return r e q u e s t ; // l0
11 }
12 public void c l o s e ( ) {
13 synchronized ( this ) { // l1
14 i f ( i s C l o s e d ) return ; // l2
15 i s C l o s e d = true ; // l3
16 }
17 c o n t r o l S o c k e t . c l o s e ( ) ; // l4
18 c o n t r o l S o c k e t = null ; // l5
19 r e q u e s t . c l e a r ( ) ; // l6
20 r e q u e s t = null ; // l7
21 w r i t e r . c l o s e ( ) ;
22 w r i t e r = null ;
23 r e a d e r . c l o s e ( ) ;
24 r e a d e r = null ;
25 }
26 }

Input relations:

N (p1, p2) (program point p1 is an immediate suc-

cessor of program point p2)

U(p1, p2) (no common lock guards program

points p1 and p2)

A(p1, p2) (instructions at program points p1 and

p2 may access the same memory loca-

tion, and constitute a possible datarace)

Output relations:

P(p1, p2) (different threads may reach program

points p1 and p2 in parallel)

R(p1, p2) (datarace may occur between different

threads while executing the instructions

at program points p1 and p2)

Analysis rules:

r1 : P(p1, p3) : - P(p1, p2),N (p2, p3),U(p1, p3)

r2 : P(p2, p1) : - P(p1, p2)

r3 : R(p1, p2) : - P(p1, p2),A(p1, p2)

Fig. 1: Java program and simplified static datarace analysis in Datalog.

or A(p1, p2), may themselves be the result of earlier analyses (in this case, a
lockset analysis and a pointer analysis, respectively).

The rules are intended to be read from right-to-left, with all variables uni-
versally quantified, and the : - operator interpreted as implication. For example,
the rule r1 may be read as saying, “For all program points p1, p2, p3, if p1 and p2

may execute in parallel (P(p1, p2)), and p3 may be executed immediately after
p2 (N (p2, p3)), and p1 and p3 are not guarded by a common lock (U(p1, p3)),
then p1 and p3 may themselves execute in parallel.”

Observe that the analysis is flow-sensitive, i.e. it takes into account the
order of program statements, represented by the relation N (p1, p2), but path-
insensitive, i.e. it disregards the satisfiability of path conditions and predicates
along branches. This is an example of an approximation to enable the analysis
to scale to large programs.

Applying the Analysis to a Program. To apply the above analysis to
our example program, one starts with the set of input tuples, and repeatedly
applies the inference rules r1, r2, and r3, until no new facts can be derived.
Starting with the tuple P(l4, l2), we show a portion of the derivation graph thus
obtained in Figure 2. Each box represents a tuple and is shaded gray if it is an
input tuple. Nodes identified with rule names represent grounded clauses: for
example, the node r1(l4, l2, l3) indicates the “grounded instance” of the rule r1

with p1 = l4, p2 = l2, and p3 = l3. This clause takes as hypotheses the tuples
P(l4, l2), N (l2, l3), and U(l4, l3), and derives the conclusion P(l4, l3), and the
arrows represent these dependencies.
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Observe that clause nodes are conjunctive: a rule fires iff all of its antecedents
are derivable. On the other hand, tuple nodes are disjunctive: a tuple is deriv-
able iff there exists at least one derivable clause of which it is the conclusion.
For instance, the tuple P(l6, l7) can be derived in one of two ways: either by
instantiating r1 with p1 = l6, p2 = l6, and p3 = l7 (as shown in Figure 2), or by
instantiating r2 with p1 = l7 and p2 = l6 (not shown).

Observe that lines l4 and l2 can indeed execute in parallel, and the original
conclusion P(l4, l2), in Figure 2, is true. However, the subsequent conclusion
P(l4, l3) is spurious, and is caused by the analysis being incomplete: the second
thread to enter the synchronized block will necessarily leave the method at
line l2. Among others, four subsequent false alarms—R(l4, l5),R(l5, l5),R(l6, l7),
and R(l7, l7)—result from the analysis incorrectly concluding P(l4, l3).

P(l4, l2) N (l2, l3) U(l4, l3)

r1(l4, l2, l3)

P(l4, l3) N (l3, l4) U(l4, l4)

r1(l4, l3, l4)

P(l4, l4) N (l4, l5) U(l4, l5)

r1(l4, l4, l5)

P(l4, l5) N (l5, l6) U(l4, l6)

r1(l4, l5, l6)

P(l4, l6)

r2(l4, l6)

P(l6, l4) N (l4, l5) U(l6, l5)

r1(l6, l4, l5)

P(l6, l5) N (l5, l6) U(l6, l6)

r1(l6, l5, l6)

P(l6, l6) N (l6, l7) U(l6, l7)

r1(l6, l6, l7)

P(l6, l7)

A(l4, l5)

r3(l4, l5)

R(l4, l5)

A(l6, l7)

r3(l6, l7)

R(l6, l7)

Fig. 2: A portion of the derivation graph obtained by applying the static datarace
analysis to the program in Figure 1. The central focus of this section is following:
if the user identifies R(l4, l5) as a false alarm, then how should this affect our
confidence in the remaining alarms?
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Quantifying Incompleteness using Probabilities. Incomplete analysis
rules are the principal cause of false alarms: although P(l4, l2), N (l2, l3), and
U(l4, l3) are all true, it is not the case that P(l4, l3). To address this problem,
we relax the interpretation of clause nodes, and treat them probabilistically:

Pr(r1(l4, l2, l3) | h1) = 0.95, and (1)

Pr(¬r1(l4, l2, l3) | h1) = 1− 0.95 = 0.05, (2)

where h1 = P(l4, l2) ∧ N (l2, l3) ∧ U(l4, l3) is the event indicating that all the
hypotheses of r1(l4, l2, l3) are true, and p1 = 0.95 is the probability of the clause
“correctly firing”. By setting p1 to a value strictly less than 1, we make it possible
for the conclusion of r1(l4, l2, l3), P(l4, l3) to still be false, even though all the
hypotheses in h1 hold.

In this new setup, as before, if any of the antecedents of r1(l4, l2, l3) is false,
then it is itself definitely false:

Pr(r1(l4, l2, l3) | ¬h1) = 0, and (3)

Pr(¬r1(l4, l2, l3) | ¬h1) = 1. (4)

We also continue to treat tuple nodes as regular disjunctions:

Pr(P(l6, l7) | r1(l6, l6, l7) ∨ r2(l7, l6)) = 1, (5)

Pr(P(l6, l7) | ¬(r1(l6, l6, l7) ∨ r2(l7, l6))) = 0, (6)

and treat all input tuples t as being known with certainty: Pr(t) = 1.
These rule probabilities can be learnt using an expectation maximization

(EM) algorithm from training data. For now, we associate the rule r3 with firing
probability p3 = 0.95, and r2 with probability p2 = 1. Finally, to simplify the
discussion, we treat P(l0, l1) and P(l1, l1) as input facts, with Pr(P(l0, l1)) = 0.40
and Pr(P(l1, l1)) = 0.60.

From Derivation Graphs to Bayesian Networks. By attaching con-
ditional probability distributions (CPDs) such as equations 1–6 to each node
of Figure 2, we view the derivation graph as a Bayesian network. Specifically,
we perform marginal inference on the network to associate each alarm with the
probability, or belief, that it is a true datarace. This procedure generates a list
of alarms ranked by probability, shown in Table 1a. For example, it computes
the probability of R(l4, l5) as follows:

Pr(R(l4, l5)) = Pr(R(l4, l5) ∧ r3(l4, l5)) + Pr(R(l4, l5) ∧ ¬r3(l4, l5))

= Pr(R(l4, l5) ∧ r3(l4, l5))

= Pr(R(l4, l5) | r3(l4, l5)) · Pr(r3(l4, l5))

= Pr(r3(l4, l5) | P(l4, l5) ∧ A(l4, l5)) · Pr(P(l4, l5)) · Pr(A(l4, l5))

= 0.95 · Pr(P(l4, l5)) = 0.954 · Pr(P(l4, l2))

= 0.958 · Pr(P(l1, l1)) = 0.398.
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The user now inspects the top-ranked report, R(l4, l5), and classifies it as
a false alarm. The key idea underlying our approach is that generalizing from
feedback is conditioning on evidence. By replacing the prior belief Pr(a), for each
alarm a, with the posterior belief, Pr(a | ¬R(l4, l5)), our approach effectively
propagates the user feedback to the remaining conclusions of the analysis. This
results in the updated list of alarms shown in Table 1b. Observe that the belief
in the closely related alarm R(l6, l7) drops from 0.324 to 0.030, while the belief
in the unrelated alarm R(l0, l7) remains unchanged at 0.279. As a result, the
entire family of false alarms drops in the ranking, so that the only true datarace
is now at the top.

The computation of the updated confidence values occurs by a similar pro-
cedure as before. For example:

Pr(R(l6, l7) | ¬R(l4, l5))

= Pr(R(l6, l7) ∧ P(l4, l5) | ¬R(l4, l5)) + Pr(R(l6, l7) ∧ ¬P(l4, l5) | ¬R(l4, l5))

= Pr(R(l6, l7) ∧ P(l4, l5) | ¬R(l4, l5)).

Next, R(l4, l5) and R(l6, l7) are conditionally independent given P(l4, l5) as it
occurs on the unique path between them. So,

Pr(R(l6, l7) ∧ P(l4, l5) | ¬R(l4, l5))

= Pr(R(l6, l7) | P(l4, l5)) · Pr(P(l4, l5) | ¬R(l4, l5))

= 0.955 · Pr(P(l4, l5) | ¬R(l4, l5)).

Finally, by Bayes’ rule, we have:

Pr(P(l4, l5) | ¬R(l4, l5)) =
Pr(¬R(l4, l5) | P(l4, l5)) · Pr(P(l4, l5))

Pr(¬R(l4, l5))

=
0.05 · 0.957 · 0.60

0.60
= 0.03.

Our prior belief in P(l4, l5) was Pr(P(l4, l5)) = 0.42, so that Pr(P(l4, l5) |
¬R(l4, l5))� Pr(P(l4, l5)), but is still strictly greater than 0. This is because one
eventuality by which ¬R(l4, l5) may occur is for P(l4, l5) to be true, but for the
clause r3(l4, l5) to misfire. We may now conclude that Pr(R(l6, l7) | ¬R(l4, l5)) =
0.955 · 0.03 = 0.030.

The Interaction Model. In summary, given an analysis and a program to
be analyzed, our approach takes as input the set of tuples and grounded clauses
produced by the Datalog solver at fixpoint, and constructs the belief network.
Next, it performs Bayesian inference to compute the probability of each alarm,
and presents the alarm with highest probability for inspection by the user. The
user then indicates its ground truth, and our approach incorporates this feedback
as evidence for subsequent iterations.

There are several possible stopping criteria by which the user could cease
interaction, e.g., only inspect alarms with confidence higher than some threshold
p0, and stop once the confidence of the highest ranked alarm drops below p0;
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or only inspect n alarms, and stop after n iterations. In all these situations, we
lose any soundness guarantees provided by the underlying analysis, but given
the large number of alarms typically emitted by analysis tools, this approach
strikes a useful tradeoff between accuracy and soundness.

Table 1: List of alarms produced (a) before and (b) after the feedback ¬R(l4, l5).
Observe how the real datarace R(l0, l7) rises in ranking as a result of feedback.

(a) Pr(a).

Rank Belief Program points

1 0.398 l4, l5
2 0.378 l5, l5
3 0.324 l6, l7
4 0.308 l7, l7
5 0.279 l0, l7

(b) Pr(a | ¬R(l4, l5)).

Rank Belief Program points

1 0.279 l0, l7
2 0.035 l5, l5
3 0.030 l6, l7
4 0.028 l7, l7
5 0 l4, l5

3 A Taxonomy of Research Directions

In this section, we outline the landscape of challenges in static analysis, argue
how techniques similar to those in the preceding section can be used to address
them, and discuss open problems. We classify the landscape into three broad
categories: i) balancing analysis tradeoffs (Section 3.1), ii) tailoring analysis re-
sults (Section 3.2), and iii) specifying and implementing analyses (Section 3.3).
Note that these challenges are agnostic of specific analyses and apply broadly to
a variety of different analyses.

3.1 Balancing Analysis Tradeoffs

The undecidability of the static analysis problem necessitates tradeoffs between
accuracy, cost, and soundness. We focus on two of the most common tradeoffs:
accuracy vs. cost, and accuracy vs. soundness.

Analysis Accuracy vs. Cost. This tradeoff concerns balancing the cost of
the program abstraction against the accuracy of the analysis result. A popular
paradigm to suitably strike this tradeoff is counterexample-guided abstraction
refinement (CEGAR).

In [39], we show how to enable CEGAR for arbitrary analyses specified in
Datalog. It uses a formulation of maximum satisfiability (MaxSAT), an optimiza-
tion extension of the Boolean satisfiability problem, wherein the hard constraints
encode provenance information relating analysis results (e.g. alarms) to abstrac-
tions, while the soft constraints encode the relative costs of different abstractions.
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The objective is to either find the cheapest abstraction that suffices to prove a
program property of interest or show that no such abstraction exists.

Open problems in this space include supporting richer analyses, such as those
that employ widening, and considering not only the costs of different abstractions
but also their likelihood of success (e.g. [15]).

Analysis Accuracy vs. Soundness. This tradeoff concerns balancing the
accuracy of the analysis result against the soundness of the analysis. Arguably
the most common tradeoff struck by static analyses in practice, it incurs false
positives as well as false negatives, unlike the accuracy vs. cost tradeoff which
only incurs false positives.

In [24] and [32], we show how to enable this tradeoff for arbitrary analyses
specified in Datalog. The approach in [32] was illustrated in Section 2 wherein
we perform marginal inference on a Bayesian network induced by provenance
constraints to rank alarms produced by the analysis. In [24], we employ a different
approach by performing MAP inference on a Markov Logic Network (MLN). The
main difference between the two approaches, besides the different probabilistic
models, is that we obtain a confidence score for each derived fact in [32], whereas
we obtain the “most likely world” in [24]. The former is more amenable to
user interaction both because it allows to rank analysis alarms and because
incorporating user feedback translates into conditioning on evidence (in contrast,
[24] requires additional constraints to propagate the user feedback).

Open problems in this space include how to transfer user feedback across
programs, providing a rigorous semantics of rule weights, and richer probabilistic
models which allow rule weights to depend on finer-grained program contexts.

3.2 Tailoring Analysis Results

A relatively recent area of exploration in static analysis concerns how to improve
usability by tailoring analysis results. We consider unguided vs. interactive ap-
proaches, batch vs. continuous approaches, classification vs. ranking approaches,
and different metrics for ranking.

Unguided vs. Interactive. Conventional static analyses are unguided in that
they cannot tailor results to individual users. As we illustrated in Section 2, con-
tinuous modes of logical reasoning allow analyses to incorporate and generalize
user feedback, but no longer guarantee soundness. Our earlier work [38] enables
interaction while preserving soundness, but does not generalize user feedback; in-
stead, the objective is to minimize the user burden by prioritizing questions that
maximize the alarms to be resolved. Even in this discrete setting, provenance
information is used to relate alarms to questions.

Open problems in this space include coping with noise inherent in interactive
approaches, how to generalize user feedback effectively within a program, and
how to transfer the knowledge learnt from interaction across programs.
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Batch vs. Continuous Reasoning. Conventional static analyses operate in
batch mode in that different parts of the program are presumed to be equally
relevant to the user. However, in prevalent settings of continuous integration
and continuous deployment, the user is interested only in alarms relevant to
their code change [19,30].

In [16], we show how to compute differential provenance information be-
tween two program versions in order to prioritize alarms relevant to the code
change, even in discrete modes of reasoning. Moreover, by incorporating contin-
uous modes of reasoning, we show how to amplify the benefits by ranking the
alarms, and by incorporating and generalizing user feedback.

Open problems in this arena include how to guarantee the soundness of dif-
ferential analysis even in the discrete setting, and the related problem of what
code granularity to use for identifying the changes between two program versions
(e.g. AST-based vs. line-based).

Alarm Clustering vs. Ranking. Another dimension to tailor analysis re-
sults is to cluster related alarms in order to reduce inspection effort. Provenance
information can be used to identify dependencies between alarms and cluster
correlated alarms together (e.g. [20]). However, clustering treats all alarms uni-
formly, which is seldom useful in practice.

Ranking alarms on the other hand opens the door to different metrics to
prioritize alarms. We showed in Section 2 how continuous modes of reasoning
can be combined with provenance information to rank alarms based on ground
truth. However, alternative metrics of ranking are possible, such as relevance to
code changes, and alarm severity. An important open problem in this setting is
how to quantify severity.

3.3 Analysis Specification and Implementation

Another set of challenges concerns how to specify and implement constraint-
based analyses to effectively support the use-cases discussed above. We discuss
how to synthesize analyses automatically from data, expressiveness issues of the
language for specifying analyses, and capabilities required of analysis solvers.

Synthesizing Analyses from Data. The problem of synthesizing analyses
from input-output data (e.g., programs with labeled alarms) is motivated by
two reasons: first, allowing end-users to customize analyses to diverse settings,
and secondly, overcoming limitations of hand-engineered analyses that hinder
use-cases discussed above. For example, the effectiveness of generalizing user
feedback across alarms relies heavily on the quality of analysis rules, as rule
weights can only go so far to compensate for it.

In recent work [2,33,36], we have developed increasingly scalable approaches
to synthesize Datalog programs from input-output data. Provenance information
is crucial to scaling the approach in [33] which follows the counterexample-guided
inductive synthesis (CEGIS) paradigm for program synthesis. The key idea is
to use a Datalog solver to not only produce counterexamples for the candidate
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Datalog program with respect to given input-output data, but also explain them
using “why” and “why-not” provenance. This in turn allows the iterative CEGIS
process to converge faster and scale better.

The Datalog synthesis problem can also be seen as an instance of the classic
Inductive Logic Programming (ILP) problem [26, 28]. A key difference is that
ILP techniques focus on learning relations, often probabilistic ones, from vast
amounts of mined data, e.g., biological data [27]. On the other hand, in our
setting, and in a large class of synthesis techniques, the goal is to interactively
infer a program from a small, representative set of input-output examples.

Open problems in this arena include active learning to reduce the burden
on providing labeled data upfront, coping with noisy data, avoiding the need for
syntactic rule templates, and synthesizing analyses with expressive features such
as invented predicates, recursion, negation, and aggregation. Note that coping
with noisy data is fundamentally necessary because, even if the data perfectly
captures the concrete semantics of program behavior, the synthesized analysis
must follow an abstract semantics that approximates the data.

Expressiveness of Analysis Language. The use of Datalog for static anal-
ysis dates back to Reps’s work on demand-driven analysis [34]. The desire to
express a wide variety of analyses in Datalog has led to extending the language
with features such as value construction, negation, aggregation, and higher-order
predicates. These extensions include LogicBlox’s LogiQL [3] which forms the ba-
sis of the Doop static analysis framework [8], Semmle’s QL [5] which allows
Datalog programs to be written over the target program’s syntax, the higher-
order functional Datalog language Datafun [4], and Flix for specifying static
analyses [22]. Finally, many works extend the semantics of logic programming
to the continuous domain, such as Markov Logic Networks [35], ProbLog [12],
and its extensions such as DeepProbLog [25] and aProbLog [18].

Capabilities of Analysis Solvers. A benefit of constraint-based analysis lies
in the ability to leverage off-the-shelf solvers. The need for more expressive fea-
tures in the constraint language is counterbalanced by the need to efficiently
execute analyses specified in the language. Moreover, the use-cases discussed
above require features besides just efficient execution, notably efficient compu-
tation of provenance information. Efficient algorithms for “why” and “why not”
provenance for Datalog remain areas of active research [37, 40], and notions of
provenance for more expressive logics are further beyond [13]. Finally, another
interesting direction of exploration is the integration of Datalog solvers with
solvers for other theories, such as SMT solvers [17] and solvers for mathematical
optimization (e.g. MaxSAT and Integer Linear Programming) [3, 23].

4 Conclusions

We proposed a new approach to static analysis that builds upon the long-
standing constraint-based approach while providing fundamentally new capabil-
ities. The approach aims to seamlessly combine discrete and continuous modes
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of logical reasoning. To this end, it relies on static analyses being specified in a
constraint language that is amenable to computing provenance information. We
showed how provenance plays a crucial role in a rich variety of applications of our
approach. Finally, we outlined a taxonomy of research directions and described
open problems in the field.
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