
Conditional Must Not Aliasing for Static Race Detection

Mayur Naik Alex Aiken
Computer Science Department

Stanford University
{mhn,aiken}@cs.stanford.edu

Abstract
Race detection algorithms for multi-threaded programs using the
common lock-based synchronization idiom must correlate locks
with the memory locations they guard. The heart of a proof of
race freedom is showing that if two locks are distinct, then the
memory locations they guard are also distinct. This is an example
of a general property we callconditional must not aliasing: Under
the assumption that two objects are not aliased, prove that two
other objects are not aliased. This paper introduces and gives an
algorithm for conditional must not alias analysis and discusses
experimental results for sound race detection of Java programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification — Reliability

General Terms Experimentation, Reliability, Verification

Keywords static race detection, Java, synchronization, concur-
rency, multi-threading

1. Introduction
A multi-threaded program contains arace if two threads can ac-
cess the same memory location without ordering constraintsen-
forced between them and at least one of those accesses is a write.
Races often imply serious violations of program invariantsand are
notoriously difficult to find in debugging and testing. Proving race
freedom—the absence of races—is thus valuable in improving the
reliability of multi-threaded programs.

Most approaches to proving race freedom involve checking
the lock-basedsynchronization idiom [3, 4, 15, 16, 22, 36, 39].
Locking requires that any pair of potentially simultaneousaccesses
to a locationm from different threads beguardedby a lock l,
meaning that each thread must hold lockl while accessingm.
Because at most one thread can hold lockl at any instant, there
are no races onm if the locking discipline is used correctly.

A challenge in proving race freedom in the presence of locks
lies in the apparent need for a form of must alias analysis. Consider
the following pseudo-code example:

Thread 1: sync(l1) { ... write location m1 ... }

Thread 2: sync(l2) { ... write location m2 ... }

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00

Heresync is Java’s lexically-scoped locking construct. The lock
argument tosync is acquired before entering the block and released
on exiting the block. Consider the two memory accesses in this
example, and suppose that it is possible thatm1 = m2 at run-time,
i.e., m1 andm2 may alias. To show that the accesses cannot race,
it suffices to show thatl1 andl2 always refer to the same lock at
run-time, i.e.,l1 andl2 must alias.

In previous work [33], we presented a static race detection tech-
nique for Java employing a series of static analyses to successively
prune an initial over-estimate of the set of races to a relatively small
set of potential races. The analysis of locks used is an approxima-
tion based on a may alias analysis to check whether a pair of locks
held during a pair of accesses might be the same. This approxima-
tion, while effective at bug-finding, does not perform the needed
must alias analysis and cannot prove race freedom. It merelyparti-
tions races intolikely andunlikely races. While the likely races are
in practice almost always real races, the set of unlikely races has
a high false positive rate and it is difficult to know how many real
races it contains (if any) without considerable manual labor.

In this paper, we present a new approach to sound race detection
in the presence of locks. The key idea is that instead of attacking
the problem directly using a must alias analysis, we reformulate
the question that must be solved in terms of a dualmust not alias
analysis problem. Consider once more the example above. Instead
of starting with the locations accessed and reasoning aboutthe
locks, we start with the locks and try to reason about the locations.
If we assume that locksl1 andl2 cannot be the same (we assume
the locks must not alias) then it suffices to show that the locations
m1 and m2 are not the same (we prove the locations must not
alias). Intuitively, if whenever two locks are different their guarded
locations must be different, then there are no races. Note that in
the case where the two locks must alias there is nothing to prove—
accesses to their guarded locations cannot race in any case.

This approach to proving race freedom is an example of a
conditional must not aliasquery:

DEFINITION 1.1. Lete1 ande2 be abstract memory locations (e.g.,
program expressions with associated context sensitive informa-
tion). A must not alias fact is a pair(e1, e2) assertinge1 ande2

cannot refer to the same run-time memory location. LetP be a
program andA andB be sets of must not alias facts. Aconditional
must not aliassentenceA `P B means that in programP , under
the assumption that the must not alias facts inA hold, the must not
alias facts inB must hold.

We use the example in Figure 1 to illustrate the idea of must
not alias analysis in the context of race detection. This example has
three parts shown in three columns. The code in the first column
allocates an array objecth1 and executes a loop, each iteration of
which puts a fresh objecth2, whose fieldf points to another fresh
objecth3, into the array. Next, the code in the second column exe-
cutes a loop, each iteration of which spawns a thread that accesses

field g of an objecth3 through fieldf of a non-deterministically
chosen array element objecth2. Left unspecified is the lockL that
is acquired; several choices forL are given in the third column.

Consider the case whereL = a: the lock is acquired on the
entire array. This situation represents a coarse-grain locking style
that uses global, uniquely named locks; in particular, eachsuch lock
is created at an allocation site that executes exactly once.Some
previous sound lock checking systems rely on such single execution
allocation sites for locks [5]. From the point of view of conditional
must not aliasing this case is uncomplicated. Consider twosyncs
in different iterations of the second loop. Since the assumption that
they acquire different locks is false (they always acquire the same
lock), we can conclude that whenever the locks are differentthe
guarded accesses are distinct and the program is race free.

Now consider the case whereL = x.f. This case represents
the extreme of fine-grain locking, and again reasoning usingcondi-
tional must not aliasing to prove race freedom is straightforward. If
two syncs in different iterations of the second loop acquire differ-
ent locks, then the locations of theirg fields must be different and
the code is race free.

The subtlest case is medium-grain locking represented by the
caseL = x. Each iteration of the loop holds a lock on objectx, but
the potential race is on fieldg of a different objectx.f. The key to
showing this example is race free lies in observing thatx.f is only
reachable throughx and therefore lockingx is sufficient to guard
against races on fields ofx.f. Thus, if in two different iterations of
the loop thex objects are different, then thex.f objects (and hence
the locations of theirg fields) must also be different and the code is
race free.

All three of these locking styles (coarse-, medium-, and fine-
grain) occur frequently in real programs. Note that a common
theme in the informal arguments given above is the ability torea-
son about different locks acquired at the same syntactic point, as
alluded to in phrases such as “if twosyncs in different iterations
. . . ”. The medium-grain locking case has the additional difficulty
of reasoning about correlated objects, such as the fact thatin the
first loop, fieldf of each newh2 object points to a uniqueh3 ob-
ject allocated in the same loop iteration. We develop a type and
effect system that tracks the needed correlations between objects.
Section 2 introduces a small language we use for the formal de-
velopment and Section 3 introduces the type and effect system and
gives a proof of its soundness.

To concisely represent must not aliasing facts, we use a separate
object reachability analysis we calldisjoint reachability analysis
(Section 4). LetH be the set of all allocation sites in the program;
we define a functionDR ∈ 2H → 2H such that ifh ∈ DR(H),
then any objecto allocated at siteh is reachable by following one
or more field dereferences from at most one of any two distinct
objectso1 and o2 allocated at sitesh1, h2 ∈ H . Note that we
require o1 6= o2, but we allow h1 = h2. In the example in
Figure 1, we haveh3 ∈ DR({h2}). Figure 2 gives a pictorial
view of how disjoint reachability analysis is used to prove race
freedom. In Figure 2,P (e) is thepoints-to setof e, i.e., the set of
allocation sites at whiche may be allocated. Letx andy be locks
andx.e1.f andy.e2.f be two accesses to instance fieldf . Now,
P (x.e1) ∩ P (y.e2) is the set of may aliases ofx.e1 andy.e2—
the set of objects on which there is a potential race. If this set is
contained inDR(P (x) ∪ P (y)), however, then wheneverx andy
are distinct objects it is guaranteed thatx.e1 andy.e2 are distinct
objects and no races are possible.

We have implemented the type and effect system and disjoint
reachability analysis in Chord (Section 5), a static race detector
for Java and performed a number of experiments on complete Java
applications (see Section 6). The main empirical result is that our
sound race detector eliminates almost all of the false positives in

a =new h1[N];
for (i = 0; i < N ; i++) {

a[i] = new h2;
a[i].f = new h3;

}

while (*) {
x = a[*];
fork {

sync (L) {
x.f.g = *;

} } }

Choices for L:
a
x
x.f

Figure 1. Example program.

}

sync (y) {

... y.e2.f ...

}

... x.e1.f ...

sync (x) {

P (y.e2)P (x.e1)

(P (x.e1) ∩ P (y.e2)) ⊆ DR(P (x) ∪ P (y)) ⇒ (f is race-free)

P (y)P (x)

Figure 2. Proving race freedom via conditional must not aliasing.

our previous work; the false positives remaining, at least in these
benchmarks, are the result of engineering shortcomings that are
straightforward to remove with additional effort. In particular, the
large category of unlikely races is almost completely eliminated.
Significantly, the number of races found in these benchmarksin-
creases from 122 using our old unsound approach of considering
only likely races to 202 using our new sound algorithm. Thus,a
number of the former unlikely races turn out to be real races that
we did not notice with our previous technique.

In summary, the main contributions of this paper are:

• We introduce conditional must not aliasing, a property that
is useful in formulating static race detection and may be of
independent interest. Conditional must not aliasing is different
from standard may aliasing precisely in that it is conditional;
instead of computing must not aliasing facts that always hold,
we compute must not aliasing facts that only hold assuming
other must not aliasing facts, allowing a more refined treatment
of the relationship between locks and the locations they guard.

• We introduce disjoint reachability analysis, a program analy-
sis useful for computing conditional must not alias properties.
Disjoint reachability analysis is also a cheaper, and likely more
scalable (but less precise) alternative to some recent decision
procedures for verification of pointer-based data structures. Fur-
ther discussion is included with related work (Section 7).

• We have implemented conditional must not aliasing using a
disjoint reachability analysis in Chord, a static race checker
[33]. On the benchmarks we have studied, this system has
few false positives and, because it is designed to be sound,
should have no false negatives (modulo some standard unsound
assumptions discussed in Section 5).

2. Language
In this section, we present the abstract syntax and operational se-
mantics of a sequentialWHILE language that we use in subsequent
sections to formalize our approach to conditional must not aliasing.

2.1 Syntax

The abstract syntax of the language is given in Figure 3. A program
has a fixed set of variablesV with global scope and a single object

type with instance fieldsF. We label each object allocation site in
the program with a uniqueh ∈ H and we label each loop with a
unique integerw ∈ W. There are no threads; conditional must not
aliasing is not a multi-threading property and the presentation is
simplest in a single-threaded language.

(variable) x, y ∈ V

(instance field) f ∈ F

(object allocation site) h ∈ H

(loop identifier) w ∈ W

s ::= x = null | x = new h | x = y | x = y.f | x.f = y |
s1 ; s2 | if (∗) then s1 else s2 | whilew (∗) do s

Figure 3. Abstract syntax.

(loop iteration) N 3 i ::= 0 | 1 | 2 | . . .
(loop vector) π ∈ W → N

(non-null object) O 3 ō ::= 〈π, h〉
(object) O⊥ 3 o ::= ō | ⊥

(environment) ρ ∈ V → O⊥

(heap) σ ∈ (O × F) → O⊥

(heap effect) C ::= ∅ | C ∪ {ō1 B ō2}

〈π, h〉.π , π

〈π, h〉.h , h

Figure 4. Semantic domains.

2.2 Semantics

We next develop an operational semantics for theWHILE language
in Figure 3. Figure 4 defines the semantic domains. Recall that one
goal is to track reachability properties of objects (e.g., the exam-
ple in Figure 1). Reasoning about object reachability requires rea-
soning about how data structures are built, which means reason-
ing about the times when objects are allocated and linked to one
another. Aloop vectorπ, which is a tuple of non-negative inte-
gers, tracks how many times each loop in a program has executed;
each element ofπ is a counter, and the iteration count of a loop
whilew (∗) do s in the program isπ(w) (treating the tupleπ as a
map from indices to elements ofπ). Objects are uniquely identi-
fied as pairs〈π, h〉 of a loop vectorπ recording the time (in loop
execution counts) when the object was allocated and its allocation
siteh. Abstractions of the loop vector (Section 3) will allow us to
estimate the relative time in terms of the number of loop iterations
when two distinct objects are allocated.

Environments and heaps are standard. An environment maps
variable names to objects in the heap, and a heap records for each
object what object (or null) is in each field. Aheap effect̄o1 B ō2

records that at some point in the execution, objectō2 was reachable
in one step via a field dereference from objectō1.

Figure 5 presents a big-step operational semantics for our lan-
guage. Judgments have the form

s, W,π, ρ, σ ⇓ π
′
, ρ

′
, σ

′
, C

Each step of execution begins with the statements to be executed,
the setW of all loops lexically enclosings, and the current loop
vectorπ, environmentρ, and heapσ. Note thatW records which
loops are currently executing whileπ records the execution count
of all loops in the program and not just of loops currently active.
Since loops may execute as part of a step of execution the semantics
must record a new loop vector as well as an updated environment
and heap. Thus, a step of execution terminates with a final loop
vectorπ′, environmentρ′, and heapσ′, plus the heap effectsC.

(loop iteration abstr.) N> 3 î ::= 0 | 1 | >
(loop vector abstr.) Π ∈ W → N>

(obj. alloc. site abstr.) H> 3 ĥ ::= h | >

(non-null type) T 3 τ̄ ::= 〈Π, ĥ〉
(type) T⊥ 3 τ ::= τ̄ | ⊥

(type environment) Γ ∈ V → T⊥

(heap effect abstr.) K ::= ∅ | K ∪ {τ̄1 D τ̄2}

〈Π, ĥ〉.Π , Π

〈Π, ĥ〉.ĥ , ĥ

Figure 6. Types.

We explain the most interesting rules in Figure 5. Rule (2),
which creates a new object, does not simply use the current loop
vector as the time stamp recorded in the object. Instead, counters
for loops not inW (i.e., those not currently executing) are set to
0, giving a way to determine later whether or not a particularloop
was executing when the object was allocated.1 While this property
is not exploited in the instrumented operational semantics, it is used
in the abstractions discussed in Section 3. Assigning to a field of an
object (Rule (5)) generates a heap effect recording the reachability
between the two objects involved in the assignment. Finally, con-
sider Rules (9) and (10), which give the semantics ofwhile state-
ments. Loops execute a non-deterministic number of times, which
saves us the trouble of defining how loop termination conditions (as
well as the predicates ofif statements, see Rules (6) and (7)) are
evaluated. Also note that when a loop executes an additionaltime
(Rule (10)) the appropriate loop counter is incremented.

We conclude this section with a small example, which is a
simplified version of the program in Figure 1.

EXAMPLE 2.1. while1 (*) do { x = new h1; y = new h2; x.f = y }
If the loop executes one time, the root of the derivation treeis:

while1 . . . , ∅, 〈0〉, [x 7→⊥, y 7→⊥], [] `
〈1〉, [x 7→ ō1, y 7→ ō2], [ō1.f 7→ ō2, ō2.f 7→ ⊥], {ō1 B ō2}

whereō1 = 〈〈1〉, h1〉 andō2 = 〈〈1〉, h2〉 and [] is the empty heap.

3. Type and Effect System
The syntax of types and effects is shown in Figure 6. Types and
effects are parallel with the definitions in Figure 4, but theseman-
tics are significantly different. Before proceeding with the formal
development, we provide an informal explanation.

Objects have types〈Π, ĥ〉 recording information about when
and where they were allocated. The main purpose of the type sys-
tem is to compute abstract heap effects such as〈Π1, ĥ1〉D〈Π2, ĥ2〉.
As in the operational semantics, the effect implies an object of type
〈Π2, ĥ2〉 is reachable from an object of type〈Π1, ĥ1〉 in a single
step via a field dereference. In a type, loop iterations are abstracted
as 0, 1, or>. If Π1(w) = 0, then loopw was not executing when
the object with that type was allocated (similarly forΠ2(w)). If
Π1(w) = > then nothing is known about the iteration of loopw in
which the object was allocated (and similarly forΠ2(w)). In either
case nothing is known about the relative time at which objects of
the two types were allocated. However, ifΠ1(w) = Π2(w) = 1,
then the type system guarantees the two objects were allocated in
the same iteration of loopw. This property allows us to show con-
ditional must not aliasing: intuitively, if〈Π1, ĥ1〉 reaches〈Π2, ĥ2〉
and they were allocated in the same iteration, then objects of type

1 The allocation site could also be used to determine the set oflexically
enclosing loops; usingW is clearer if less economical.

x = null, W,π, ρ, σ ⇓ π, ρ[x 7→ ⊥], σ, ∅ (1)

x = new h, W,π, ρ, σ ⇓ π, ρ[x 7→ ō], σ[ō.f1 7→ ⊥, ..., ō.fn 7→ ⊥], ∅ [ō = 〈λw.(if w ∈ W thenπ(w) else0), h〉] (2)

x = y, W,π, ρ, σ ⇓ π, ρ[x 7→ ρ(y)], σ, ∅ (3)

x = y.f, W, π, ρ, σ ⇓ π, ρ[x 7→ σ(ō.f)], σ, ∅ if ρ(y) = ō (4)

x.f = y,W, π, ρ, σ ⇓ π, ρ, σ[ō1.f 7→ o2], C if ρ(x) = ō1

»

ρ(y) = o2 andC =



{ō1 B ō2} if o2 = ō2

∅ if o2 = ⊥

–

(5)

s1, W, π, ρ, σ ⇓ π′, ρ′, σ′, C

if (∗) s1 else s2, W,π, ρ, σ ⇓ π′, ρ′, σ′, C
(6)

s2, W,π, ρ, σ ⇓ π′, ρ′, σ′, C

if (∗) s1 else s2, W, π, ρ, σ ⇓ π′, ρ′, σ′, C
(7)

s1, W,π, ρ, σ ⇓ π′, ρ′, σ′, C1 s2, W,π′, ρ′, σ′ ⇓ π′′, ρ′′, σ′′, C2

s1; s2, W, π, ρ, σ ⇓ π′′, ρ′′, σ′′, C1 ∪ C2

(8)

while
w (∗) do s, W,π, ρ, σ ⇓ π, ρ, σ, ∅ (9)

s, W ∪ {w}, π[w 7→ π(w) + 1], ρ, σ ⇓ π′, ρ′, σ′, C1 whilew (∗) do s, W, π′, ρ′, σ′ ⇓ π′′, ρ′′, σ′′, C2

whilew (∗) do s, W,π, ρ, σ ⇓ π′′, ρ′′, σ′′, C1 ∪ C2

(10)

Figure 5. Instrumented operational semantics.

o � τ ⇔ (o = ⊥) ∨ (o = ō ∧ τ = τ̄ ∧ ō � τ̄)

ō � τ̄ ⇔ (∀w ∈ W : ō.π(w) � τ̄ .Π(w)) ∧ (ō.h � τ̄ .ĥ)

i � î ⇔ (i = 0 ∧ î = 0) ∨ (i > 0 ∧ î = 1) ∨ (̂i = >)

h � ĥ ⇔ (h = ĥ) ∨ (ĥ = >)

(a) Object abstraction.

C � K ⇔ ∀(ō1 B ō2) ∈ C : ∃(τ̄1 D τ̄2) ∈ K : (ō1, ō2) ∝ (τ̄1, τ̄2)

(ō1, ō2) ∝ (τ̄1, τ̄2) ⇔

8

<

:

(1) ō1 � τ̄1
∧ (2) ō2 � τ̄2
∧ (3) ∀w ∈ W : ((τ̄1.Π(w) = 1 ∧ τ̄2.Π(w) = 1) ⇒ ō1.π(w) = ō2.π(w))

(b) Heap effect abstraction.

W ` (π, ρ) � (Π, Γ) ⇔

8

>

>

<

>

>

:

(1) ∀w ∈ W : π(w) � Π(w)

∧ (2) ∀x ∈ V : ρ(x) � Γ(x)

∧ (3) ∀w ∈ W : ∃k ∈ N :



(a) Π(w) = 1 ⇒ π(w) = k
∧ (b) ∀x ∈ V : ((ρ(x) = ō ∧ Γ(x) = τ̄ ∧ τ̄ .Π(w) = 1) ⇒ ō.π(w) = k)

(c) Environment abstraction.

Figure 7. Abstraction.

〈Π1, ĥ1〉 allocated in different iterations must reach different ob-
jects of type〈Π2, ĥ2〉.

This discussion is made precise in Figure 7, which defines an
abstraction relation� stating when types and abstract heap effects
abstract objects and concrete heap effects, respectively.The third
clause of sub-figure (b) requires that the iteration counts in position
w of the concrete loop vectors of two objects match if the values
in position w of the abstract loop vectors of their types are 1.
Likewise, the third clause of sub-figure (c) requires that iteration
counts in positionw of the concrete loop vectors of all objects in
environmentρ match if the values in positionw of the abstract
loop vectors of their types in environmentΓ are 1. Thus, in both
abstract heap effects and type environments, any two types with a 1
in positionw of their abstract loop vectors always abstract objects
allocated in the same concrete, but unknown, iteration of loopw.

Before we can give the type rules we need two operations
on type environments. The join of type environments is point-
wise. Nulls are absorbed, and if either loop iterations or allocation

sites fail to match, the result is> in the appropriate position.
The second operation handles the increment of loop vectors;in a
whilew (∗) do s statement, if the value in positionw of the loop
vector is1, it is incremented to> when the loop iterates.

DEFINITION 3.1. (Join of Environments)
(Γ1 t Γ2)(x) = Γ1(x) t Γ2(x)

τ1 t τ2 =

8

<

:

τ1 if τ2 = ⊥
τ2 if τ1 = ⊥
τ̄1 t τ̄2 if τ1 = τ̄1 ∧ τ2 = τ̄2

τ̄1 t τ̄2 = 〈τ̄1.Π t τ̄2.Π, τ̄1.ĥt τ̄2.ĥ〉

(Π1 t Π2)(w) = Π1(w) t Π2(w)

î1 t î2 =



î1 if î1 = î2
> otherwise

ĥ1 t ĥ2 =



ĥ1 if ĥ1 = ĥ2

> otherwise

DEFINITION 3.2. (Loopback Environment)

Γw+(x) = Γ(x)w+

τ̄w+ = 〈τ̄ .Πw+, τ̄ .ĥ〉

⊥w+ = ⊥

Πw+(w′) =



> if w′ = w ∧ Π(w) = 1
Π(w′) otherwise

The upper bound of two types implicitly defines a type lattice,
which is ordered pointwise on loop vectors and allocation sites.
Integers and allocation sites are all less than> and incomparable to
each other. The maximal type is then a loop vector of all> elements
and a> allocation site; the minimal element is the type⊥, and since
any program has a finite number of loops and allocation sites,the
type lattice is also finite.

The type rules are given in Figure 8. These rules are parallel
with the operational semantics in Figure 5 and for brevity wepoint
out only a few interesting features. Rule (12) puts 0’s in theloop
vector positions of newly allocated objects for any loops that are
not executing, just as in Rule (2) of Figure 5. The only use ofW
is to distinguish active from inactive loops; loop vector positions of
active loops take their value from the current loop vectorΠ. Rule
(14) gives no information about heap reads, which is sound, but
overly conservative in practice. We discuss improvements in Sec-
tion 5, which we omit from the formal development for simplicity.
The most interesting rule, Rule (18), has three important aspects.
First, the conditionΠ(w) 6= 0 reflects that loop vectors for objects
allocated inside loopw should not be 0 at positionw (and Rule
(12) already guarantees objects allocated outside loopw have a 0
at positionw). Second, the fact that the environmentΓ is the same
before and after the loop reflects that any conclusion must bevalid
for any number of executions of the loop—that is, the entire loop
may be executed multiple times (e.g., if it is nested inside of another
loop) and the environmentΓ must be an invariant for all of those
executions. For example, a proofW, Π,Γ ` whilew . . . : Γ, K
whereΓ = [x 7→ 〈〈. . . , 1, . . .〉, h1〉, y 7→ 〈〈. . . , 1, . . .〉, h2〉] im-
plies that if the loop ever starts execution in an environment where
x andy were allocated in the same iteration of some earlier exe-
cution of the loop (e.g., because this loop is nested inside another
loop), then the loop terminates withx andy assigned objects from
the same loop iteration. Note that the final concrete loop iteration
associated withx andy may be different than the initial one; the
value 1 in both types only requires that the concrete loop iterations
of x andy be equal before and after the loop, but the loop may as-
sign new objects tox andy from the same iteration and maintain
this property. Third and finally, any objects in the environment at
the start of a loop iteration must be carried over from previous it-
erations. Thus, the bodys of loopw is checked in the environment
Γw+, which ensures that objects in the environment at the start of a
new iteration are not1 in thewth component of their loop vector;
Π(w), however, can be 1, which allows any objectss allocates to
be recognized as allocated together in the same iteration.

As an aside, for a single loop the only correlation this type
system can recognize is when objects are allocated and linked in
the same iteration of the loop (Rule (15)). By adding more abstract
loop vector values (i.e., 2,3,4, . . .) and adjusting definitions (e.g.,
Definition 3.2) the system can be extended to recognize when a
value is allocated in one iteration and linked to an object allocated
in the next iteration, or two iterations later, and so on. However, so
far we have not found this extra power necessary, at least forrace
detection, and so we have presented and implemented the simpler
system. Much more important is correctly handling multiplenested
(and non-nested) loops and this is the focus of our system.

We are now ready to state the type preservation lemma. Ap-
pendix A gives a proof of the key cases.

LEMMA 3.3. (Type Preservation) If s, W,π, ρ, σ ⇓ π′, ρ′, σ′, C
and W, Π,Γ ` s : Γ′, K and W ` (π, ρ) � (Π,Γ) then
W ` (π′, ρ′) � (Π,Γ′) andC � K.

Recall that the purpose of the type system is to compute a set of
heap effect abstractions, which we use in disjoint reachability anal-
ysis (Section 4). We use type preservation to prove the soundness
of heap effect abstraction.

COROLLARY 3.4. (Soundness of Heap Effect Abstraction)
If s, ∅, λw.0, λx.⊥, [] ⇓ π, ρ, σ, C and∅, Π, Γ ` s : Γ′, K then
C � K.

Proof.From Figure 7(c), we have∅ ` (λw.0, λx.⊥) � (Π, Γ).
It follows from Lemma 3.3 thatC � K. �

Returning to Example 2.1 at the end of Section 2, the type
system can prove:

∅, 〈1〉, Γ ` while1 . . . : Γ, {τ̄1 D τ̄2} where
Γ = [x 7→ τ̄1, y 7→ τ̄2], τ̄1 = 〈〈1〉, h1〉, andτ̄2 = 〈〈1〉, h2〉

EXAMPLE 3.5. Consider the following nested loop, with two pos-
sible statements (A) and (B) for the body of the inner loop:

while1 (*) do
x = new h1;
while2 (*) do

y = new h2;
(A) x.f = y OR (B) y.f = x

Statement (A) abstracts a typical programming pattern for contain-
ers: the outer objectx controls access to objectsy allocated in an
inner loop (in realistic examples ally’s would be retained in e.g., a
list). With statement (A), the type system can prove:

∅, 〈1, 1〉, Γ ` while1 . . . : Γ {τ̄1 D τ̄2} where
Γ = [x 7→ τ̄1, y 7→ τ̄2], τ̄1 = 〈〈1, 0〉, h1〉, andτ̄2 = 〈〈1, 1〉, h2〉

Statement (B) abstracts another common pattern where many ob-
jects allocated in the inner loop point to a single object allocated in
the outer loop (e.g., parent or root pointers in tree data structures).
Using statement (B), the type system can prove:

∅, 〈1, 1〉, Γ ` while1 . . . : Γ {τ̄2 D τ̄1} where
Γ = [x 7→ τ̄1, y 7→ τ̄2], τ̄1 = 〈〈1, 0〉, h1〉, andτ̄2 = 〈〈1, 1〉, h2〉

4. Disjoint Reachability Analysis
In this section, we presentdisjoint reachability analysis, an object
reachability analysis used to compute conditional must notaliasing
facts. We first formalize the notion of object reachability embod-
ied in thedisjoint reachability property. We then present disjoint
reachability analysis which uses the heap effect abstractionK of a
well-typed program to approximate the disjoint reachability prop-
erty. Finally, we prove the disjoint reachability analysissound with
respect to the disjoint reachability property.

Consider the concrete heap effectC of a program execution;
C contains an effect(ō1 B ō2) if and only if some instance field
f of object ō1 was assigned object̄o2 during execution (recall
Section 2.2). The (non-reflexive) transitive closure ofC is C+ =
S

n≥1
Cn, whereCn is:

DEFINITION 4.1. (Closure of C)

1. C1 = C

2. If (ō1 B ō2) ∈ Cn and(ō2 B ō3) ∈ C then(ō1 B ō3) ∈ Cn+1.

If (ō1 B ō2) ∈ Cn, then ō2 may be reachable from̄o1 by n
field dereferences. The disjoint reachability property is given in
the first equation in Figure 9. It says thath ∈ DRC(H) if and

W, Π,Γ ` x = null : Γ[x 7→ ⊥], ∅ (11)

W,Π, Γ ` x = new h : Γ[x 7→ 〈Π′
, h〉], ∅

ˆ

Π′ = λw.(if w ∈ W thenΠ(w) else0)
˜

(12)

W,Π, Γ ` x = y : Γ[x 7→ Γ(y)], ∅ (13)

W, Π,Γ ` x = y.f : Γ[x 7→ 〈λw.>,>〉], ∅ (14)

W,Π, Γ ` x.f = y : Γ, K

»

K =



{τ̄1 D τ̄2} if Γ(x) = τ̄1 andΓ(y) = τ̄2

∅ otherwise

–

(15)

W, Π,Γ ` s1 : Γ′, K1 W,Π, Γ′ ` s2 : Γ′′, K2

W,Π, Γ ` s1; s2 : Γ′′, K1 ∪ K2

(16)
W,Π, Γ ` s1 : Γ1, K1 W,Π, Γ ` s2 : Γ2, K2

W, Π, Γ ` if (∗) then s1 else s2 : Γ1 t Γ2, K1 ∪ K2

(17)

W ∪ {w}, Π, Γw+ ` s : Γ, K

W,Π, Γ ` whilew (∗) do s : Γ, K
[Π(w) 6= 0] (18)

Figure 8. Type rules.

h ∈ DRC(H) ⇔

0

@

ō1.h ∈ H ∧ (ō1 B ō) ∈ C+ ∧
ō2.h ∈ H ∧ (ō2 B ō) ∈ C+ ∧

ō.h = h
⇒ ō1 = ō2

1

A

h ∈ DRK(H) ⇔

0

B

B

B

B

B

@

(τ̄1 D τ̄3) ∈ K+ ∧
(τ̄2 D τ̄4) ∈ K+ ∧

τ̄3 ∼ τ̄4 ∧

τ̄3.ĥ, τ̄4.ĥ ∈ {h,>}

⇒

τ̄1.ĥ 6= > ∧

τ̄2.ĥ 6= > ∧
0

B

@

„

τ̄1.ĥ ∈ H ∧

τ̄2.ĥ ∈ H

«

⇒

2

6

4

τ̄1 = τ̄2
∧ τ̄1 < >
∧ ∀w ∈ W : (τ̄1.Π(w) = 1 ⇒

τ̄3.Π(w) = τ̄4.Π(w) = 1)

3

7

5

1

C

A

1

C

C

C

C

C

A

Figure 9. Disjoint reachability property and disjoint reachabilityanalysis.

only if no objectō allocated at siteh is reachable by one or more
field dereferences from distinct objectsō1 andō2 allocated at (not
necessarily distinct) sites inH .

Before defining disjoint reachability analysis we need two def-
initions. We saȳτ1 is compatiblewith τ̄2, written τ̄1 ∼ τ̄2, if they
agree in all components where neither is>:

τ̄1 ∼ τ̄2 ⇔

(τ̄1.ĥ = τ̄2.ĥ ∨ τ̄1.ĥ = > ∨ τ̄2.ĥ = >) ∧
∀w ∈ W : (τ̄1.Π(w) = τ̄2.Π(w) ∨ τ̄1.Π(w) = >∨ τ̄2.Π(w) = >)

We say a typēτ is less than> if no component of̄τ is>:

τ̄ < > ⇔ (τ̄ .ĥ 6= >) ∧ ∀w ∈ W : (τ̄ .Π(w) 6= >)

To define disjoint reachability analysis, we define a transitive clo-
sureK+ of K analogous to the transitive closure ofC. Because the
abstract effects inK may correspond to many concrete effects, the
transitive closure ofK is more involved than the transitive closure
of C. Consider two effects(τ̄1 D τ̄2) and(τ̄3 D τ̄4). If τ̄2 ∼ τ̄3 then
τ̄2 andτ̄3 may abstract the same object and there is some transitive
relationship between̄τ1 and τ̄4. Simple transitivity is sound in all
but one case: If̄τ1.Π(w) = 1 = τ̄4.Π(w) and either̄τ2.Π(w) 6= 1
or τ̄3.Π(w) 6= 1, then we cannot conclude thatτ̄1 and τ̄4 are al-
located in the same iteration of loopw. In this case it is sound
to replaceτ̄4.Π(w) by >, ensuring that there is no information
about the relative allocation times with respect to loopw. We de-
fineK+ =

S

n≥1
Kn, whereKn is:

DEFINITION 4.2. (Closure of K)

1. K1 = K

2. If (τ̄1 D τ̄2) ∈ Kn and(τ̄3 D τ̄4) ∈ K then(τ̄1 D τ̄5) ∈ Kn+1

providedτ̄2 ∼ τ̄3 and
(a) τ̄5.ĥ = τ̄4.ĥ

(b) ∀w ∈ W :

τ̄5.Π(w) =

8

<

:

> if τ̄1.Π(w) = 1 ∧ τ̄4.Π(w) = 1 ∧
(τ̄2.Π(w) 6= 1 ∨ τ̄3.Π(w) 6= 1)

τ̄4.Π(w) otherwise

The following lemma proves soundness ofK+ with respect toC+.

LEMMA 4.3. If C � K thenCn � Kn.

Proof. [sketch] By induction onn, and using the definition of
C � K in Figure 7(b) and Definitions 4.1 and 4.2 ofCn andKn,
respectively. We omit the details. �

The second equation of Figure 9 defines disjoint reachability
analysis. The idea is that the testh ∈ DRK(H) is a sufficient con-
dition to show thath ∈ DRC(H), whereC � K. The quantifi-
cation enforces that the test hold for every pair of effectsτ̄1 D τ̄3

andτ̄2 D τ̄4 in K+. Now, τ̄1 andτ̄2 correspond tōo1 andō2 in the
definition of the disjoint reachability property. The typesτ̄3 andτ̄4

may abstract the same object ifτ̄3 ∼ τ̄4, so these two types play the
role of ō in the disjoint reachability property. Finally, for the pair of
effects to be relevant to the disjoint reachability test, both τ̄3.ĥ and
τ̄4.ĥ must be eitherh or>.

If these four conditions are satisfied, then the pair of effects is
relevant to the disjoint reachability test. Intuitively, the test must
now check that whenever̄τ3 and τ̄4 are the same that̄τ1 and τ̄2

are also the same, which is done by the right-hand side of the first
implication. If eitherτ̄1.ĥ or τ̄2.ĥ is > then the test fails; in this
caseτ̄1 and τ̄2 stand for objects allocated at any allocation site
and we can never guarantee the objects they represent are equal.
Otherwise, if either̄τ1.ĥ andτ̄2.ĥ are concrete allocation sites but
not in the setH then this pair of effects does not affect whether
the disjoint reachability property holds or not. Finally ifτ̄1.ĥ and
τ̄2.ĥ are both inH (we are now discussing the right-hand side of
the second implication), then we require two things. First,τ̄1 and
τ̄2 must correspond to the same concrete object, which is enforced

by requiring the types to be equalτ̄1 = τ̄2 and that they have no top
elements̄τ1 < > (because, again, a top element in the loop vector
would also allow the type to correspond to more than one runtime
object and hence the concrete objects corresponding to the two
types could not be shown to always be equal). The other condition,
which is enforced by the last clause, is that wheneverτ̄1.Π(w) = 1
(and thereforēτ2.Π(w) = 1), we havēτ3.Π(w) = τ̄4.Π(w) = 1,
which guarantees that distinct̄τ1 (τ̄2) objects (i.e., allocated in
different loop iterations) reach differentτ̄3 (τ̄4) objects.

The following theorem states the soundness of disjoint reacha-
bility analysis.

THEOREM 4.4. (Soundness of Disjoint Reachability Analysis)
If C � K andh ∈ DRK(H) thenh ∈ DRC(H).

Proof.[sketch] From Lemma 4.3, using the definition ofC � K
in Figure 7(b) and the definitions ofDRK andDRC in Figure 9. We
omit the details. �

Recall from the end of Section 3 that the type and effect system
derives the heap effectK = {〈〈1〉, h1〉 D 〈〈1〉, h2〉} for Exam-
ple 2.1. In this simple exampleK+ = K. The single effect says
that every object allocated ath2 is pointed to by an object allo-
cated ath1 in the same loop iteration; thereforeh2 ∈ DRK({h1})
using the analysis in Figure 9. Now consider the nested loopsin
Example 3.5. Using statement (A), we haveK = {〈〈1, 0〉, h1〉 D
〈〈1, 1〉, h2〉 and againK+ = K. Because the right side of this ef-
fect has a 1 in every position where the left side has a 1 and theleft
side has no> elements, this effect says that every object allocated
in the inner loop is pointed to by at most one object allocatedin the
outer loop; thush2 ∈ DRK({h1}). Finally, using statement (B),
we haveK = {〈〈1, 1〉, h2〉 D 〈〈1, 0〉, h1〉 andK+ = K. Because
the left side of this effect has a 1 in a position where the right side
has a 0, we can infer that multiple objects allocated in loop 2at
h2 may point to an object allocated ath1 outside of loop 2. Thus
h1 6∈ DRK({h2}).

5. Implementation
We have implemented conditional must not alias analysis using dis-
joint reachability analysis in Chord, a static race detection system
for Java. In this section, we present the architecture of Chord and
discuss extensions to the formalisms presented so far to handle a
realistic language like Java.

Before beginning, we should explain the claim that our system
is sound. Unfortunately, the term “sound” is used rather loosely
in the current literature; generally speaking, works referto their
algorithm as sound if it is designed to be sound under a widely
used set of assumptions, and we have adopted this convention.
We ignore the effects of reflection, dynamic loading, and native
methods; these assumptions are standard for Java. In this paper
we also elide checking races on accesses in constructors andclass
initializers (a standard assumption for static race detection), but
this limitation is to make comparison with experiments in previous
work direct; Chord as described here can handle the analysisof
constructors and class initializers with adequate precision.

5.1 Chord Architecture

Chord consists of two phases each of which comprises a seriesof
stages. The first phase centers around a context-sensitive may alias
analysis while the second is based on conditional must not alias
analysis.

5.1.1 Context-Sensitive May Alias Analysis Phase

This phase consists of a series of five stages, calledoriginal, reach-
able, aliasing, escaping, andmay-happen-in-parallel. These stages

are similar, but not identical, to the stages used in our earlier un-
sound race detector [33].

All stages work on six-tuples of the form(t1, c1, e1, t2, c2, e2)
wheree1 and e2 are expressions that may race (i.e., accesses to
instance fields, static fields or array elements2) andt1, c1, t2, c2 are
contexts in the sense of the context-sensitive may alias analysis
around which this phase is centered. Our implementation uses k-
object-sensitive may alias analysis [28, 32] and is parameterized by
k. We find it necessary to distinguish two different kinds of contexts
to gain adequate precision:

• c1 is the calling contextof the methodm containinge1. In
k-object sensitivity, the calling context of a methodm is the
allocation context ofm’s this parameter. For instance, ifk =
1 than the context is simply the allocation site ofthis. If m
is a static method, which lacks thethis parameter, the calling
context is a distinguished context calledε [32].

• t1 is thethread contextof e1. The thread context is the calling
context of the starting method of the thread that executese1. In
Java, this method is either themain method (in the case of the
implicitly created main thread) or thestart() method of class
java.lang.Thread (in the case of any other thread). Thus, in
k-object sensitivity, the thread context is eitherε (sincemain is
a static method) or the allocation context of thestart method’s
this parameter.

• t2 andc2 are similarly the thread and calling contexts ofe2.

The may alias analysis phase begins with theoriginal stage which
considers every type-compatible pair of accessese1 ande2 in every
possible calling and thread context to be a possible race (where at
least one of the accesses is a write). The goal of each of the next
four stages in this phase is to rule out some pairs of accessesfrom
the set of possible races. Very briefly, these stages work as follows.
Let θ = (t1, c1, e1, t2, c2, e2) be a six-tuple as above:

• Reachable:Not all thread and calling context combinations
represent actual executions. This stage retainsθ as a possible
race only if there is a path in the program’s context-sensitive
call graph from the entry point of the thread starting methodin
contextt1 to the program point ofe1 in contextc1 (and similarly
for t2, c2, e2). This stage is context-sensitive.

• Aliasing:There can be a race between two accesses only if they
access the same memory location, that is, if the accesses may
alias. This stage retainsθ as a possible race only ife1 in context
c1 may aliasese2 in context c2. This stage is also context-
sensitive.

• Escaping:A memory location can be subject to a race only if
it is thread-shared. This stage retainsθ only if a thread-escape
analysis shows thate1 in contextc1 may escape the thread in
which it was allocated (and similarly forc2, e2). The analysis is
context- and flow-sensitive and more precise than the one used
in our previous work [33].

• May-happen-in-parallel:Two accesses can race only if they can
happen in parallel. This stage retainsθ only if it is possible that
e1 and e2 in their corresponding thread and calling contexts
can execute at the same time. Unlike most other may-happen-
in-parallel analyses, ours is oblivious to locks. The most im-
portant role of this flow- and context-sensitive stage is to ana-
lyze the thread spawning structure of the program. This stage
is not present in our previous work; together with the improved
thread-escape analysis, this stage enables us to eliminatethe

2 Our implementation does not separate array elements—all elements of an
array are collapsed to a single abstract location.

hand annotations used in [33]—the system presented here re-
quires no annotations.

5.1.2 Conditional Must Not Alias Analysis Phase

This phase consists of a series of three stages, calledglobal-lock,
local-lock, and local-thread, that rule out additional pairs of ac-
cesses from the set of possible races that survive the first phase.
All three stages are based on the concept of conditional mustnot
aliasing but differ operationally.

Letθ = (t1, c1, e1, t2, c2, e2) be a six-tuple as in the first phase:

• Global-lock: This stage rules out accesses guarded by global,
uniquely named locks (see Section 1 for an example). Java pro-
grammers not only create such locks explicitly but also use such
locks created by the virtual machine, for instance, by using
static synchronized methods or by synchronizing on the
class field of an object. This stage does not use disjoint reach-
ability analysis since it does not need to track object reachabil-
ity: it merely checks that some global lock is held along every
path in the program’s context-sensitive call graph from theentry
point of the thread starting method in contextt1 to the program
point of e1 in contextc1, and that the same global lock is held
similarly for t2, c2, e2.

• Local-lock:This stage rules out accesses guarded by non-global
locks. It determines whether along each pair of paths in the
program’s context-sensitive call graph from the entry points of
the thread starting methods in contextst1 andt2 to the program
points of e1 in contextc1 and e2 in contextc2, respectively,
some pair of lockse3 and e4 is held in contextsc3 and c4,
respectively, such thate3 and e4 are prefixes ofe1 and e2,
respectively, and:

(P (e1, c1) ∩ P (e2, c2)) ⊆ DRK(P (e3, c3) ∪ P (e4, c4))

whereP (e, c) denotes the points-to set ofe in contextc, K is
the heap effect abstraction of the given program, and by “e is
a prefix of e′”, we meane′ is obtained by one or more field
dereferences frome. The soundness of our disjoint reachability
analysis coupled with the soundness of our points-to analysis
guarantees that, whenever lockse3 ande4 are distinct, accesses
e1 ande2 are also distinct and therefore race-free.

• Local-thread:This stage rules out thread-local accesses using
the following variation on conditional must not alias analysis: if
whenever two threads are distinct, then two expressions in those
threads must refer to distinct locations, then those expressions
cannot race. If neithert1 nor t2 is the ε context, then the
thread starting method of both threads is thestart method (as
opposed to themain method), and we do the check as in the
local-lock stage except that we substitute thestart methods’
this parameters for the locks (e3 and e4), and require the
thread contextst1 andt2 bec3 andc4, respectively. The same
correctness argument applies: whenever threadse3 ande4 are
distinct, accessese1 ande2 are distinct and therefore race-free.

5.2 Extensions

Our presentation thus far has ignored some issues that are impor-
tant in implementing our algorithm for a realistic programming lan-
guage. One such issue is the treatment of field reads; consider the
following example:

1. x.f = y
2. ... no writes to aliases of x.f ...
3. z = x.f

According to Rule 14 of Figure 8 the information forz on
line 3 is 〈λw.>,>)〉; i.e., no useful information is known for

z. Unfortunately, this rule is too coarse in practice, as there are
situations similar to the one given above in realistic programs.

To improve the precision of the analysis we compute flow-
sensitive must alias information for fields, e.g., after line 3 we want
to know thatz = y (with y’s allocation site and loop information).
The approach we use is a standard (but interprocedural) dataflow
algorithm to track must alias facts on names of the formx.f.g.h...;
there are similar algorithms in the literature [10].

This extension also introduces a new problem for a race detec-
tion algorithm that aims to be sound. Consider the read againon
line 3 above. The conclusion thatz = y on line 3 is only valid if
line 2 contains no writes to aliases ofx.f and also no other thread
writes an alias ofx.f. It is not surprising that a flow-sensitive com-
putation must reason about potential races, but it does leadto a
recursively defined notion of race detection, as computing the set
of races now depends on knowing the set of races to begin with.We
use a standard iterative approach: initially we run race detection as-
suming the set of racesR in the program is empty. Any discovered
races are added toR and the entire algorithm is repeated; races in
R are used to kill must alias dataflow facts where appropriate (so
if x.f on line 3 is part of some race inR, then the assignment on
line 3 yields〈λw.>,>〉 for z). The entire process repeats untilR
reaches a fixed point.

6. Experiments
In this section, we evaluate our implementation on a suite offour
multi-threaded Java programs and provide a detailed comparison
with our previous work [33].3 Figure 10 shows, for each program in
our benchmark suite, the number of application and library classes
and lines of Java source code in the call graph computed usingk-
object-sensitive alias analysis, the value ofk used, the total running
time of Chord, and a brief description of the program.

Figure 11 shows the results of the first phase of our imple-
mentation. Columns (A) and (B) show the number of six-tuples
(t1, c1, e1, t2, c2, e2) and the number of pairs(e1, e2) in the set
of possible races at the end of the first (original) and last (may-
happen-in-parallel) stages, respectively, of this phase.4 For com-
parison with our earlier race checker [33], we partition thelat-
ter six-tuples and pairs intolikely and unlikely races: a six-tuple
(t1, c1, e1, t2, c2, e2) retained after themay-happen-in-parallel
stage is anunlikelyrace if and only if either of the following holds:

• t1 = t2, in which case it is most likely a thread-local pair of
accesses, or

• along every pair of paths in the program’s context-sensitive
call graph from the entry points of the thread starting methods
in contextst1 and t2 to the program points ofe1 and e2 in
contextsc1 andc2, respectively, some pair of lockse3 ande4 is
held in contextsc3 andc4, respectively, such thatP (e3, c3) =
P (e4, c4) = {h}, that is, their points-to sets are singleton and
equal, in which case it is most likely a pair of accesses guarded
by a common lock.

Notice that both the above checks use may alias information to
approximate must alias information. The approximation is effective
for bug-finding in our earlier race checker: the user can choose to
inspect only the small number oflikely races that survive both the
above checks. However, the approximation is also unsound and can
result in false negatives buried in the large number ofunlikelyraces

3 We have not yet attempted the largest benchmarks used in our previous
work [33], but we believe this algorithm can scale to those programs.
4 The pairs count is the number of unique pairs of expressions appearing in
all six-tuples—in many cases the same expressions have races in multiple
contexts.

app classes lib classes app LOC lib LOC k time brief description
philo 2 423 84 110,582 1 3m14s Dining Philosophers Problem solver
elevator 5 425 531 111,147 1 5m43s A real-time discrete event simulator
tsp 4 426 706 110,954 1 3m21s Traveling Salesman Problem solver from ETH
ftp 118 478 21897 116,026 2 7m21s Apache FTP Server

Figure 10. Benchmark characteristics.

that are uninspected. For instance, the first check (t1 = t2) prevents
any race between a pair of threads spawned at the same allocation
site from being reported as alikely race. Likewise, the second check
does not do a disjoint reachability analysis style check to determine
whether the same object accessed bye1 ande2 is reachable from
distinct locks allocated at siteh.

While our earlier race checker stops at the end of the first
phase and presents thelikely races to the user, our current race
checker does not differentiate betweenlikely and unlikely races
and proceeds to perform the second phase on all possible races
retained at the end of the first phase. The results of the second
phase are shown in Figure 12. Column (C) shows the number of
possible races retained after applying theglobal-lockstage to the
results of the first phase, while Column (D) shows the number of
possible races retained after the combined application of the local-
lock andlocal-threadstages to the results of theglobal-lockstage.
We present the results for these two stages combined since they
are similar (they both employ disjoint reachability analysis), but
Figure 13 shows the number of possible races retained after the
global-lockstage that were proven to be guarded by a non-global
lock (Column (F)) and proven to be thread-local (Column (G))by
these two stages. Column (H) shows the net effectiveness of our
disjoint reachability analysis. Notice that the numbers ofsix-tuples
in Columns (F) and (G) may not add up to those in Column (H)
since certain six-tuples may be proven to be both, guarded bya
non-global lock and thread-local. This may happen if application
code creates and manipulates thread-local data using library classes
like java.util.Vector andjava.io.* that use synchronization
extensively to ensure thread-safety of multi-threaded clients. Pairs
(as opposed to six-tuples) of accesses are even more likely to
figure in both columns, since reusable code is polymorphic in
calling/thread context, with accesses in such code being guarded
by a lock in one calling/thread context and thread-local in another.

The effectiveness of theglobal-lock stage is evident in the
results fortsp and ftp. The tsp benchmark exclusively uses
global locks: the number of pairs retained reduces from 494 to 140
in the global-lock stage, and from 140 to 30 in thelocal-thread
stage, but no pairs are eliminated in thelocal-lockstage. Theftp
benchmark also uses global locks heavily, though they are primarily
in the library code exercised by this benchmark.

The effectiveness of disjoint reachability analysis is clear in the
results for all four programs: 30 of the 33 pairs surviving after the
global-lock stage forphilo are proven thread-local (the remain-
ing 3 are real races), while the majority of such surviving pairs for
elevator andtsp are proven guarded by a non-global lock. Fi-
nally, many pairs are proven both guarded by a non-global lock and
thread-local forftp because this program creates and manipulates
thread-local data using extensively synchronized libraryclasses.

Finally, the effectiveness of the conditional must not alias phase
is illustrated in the number of real races and false alarms reported
in Column (D) in Figure 12, as compared to those resulting from
thelikely races produced by the first phase, shown in Column (E) in
Figure 12. Our new algorithm found a total of 202 real races (count-
ing pairs) in all four benchmarks; using likely races finds only 122,
showing that our sound system can find significantly more races in
real programs. The number of false alarms is generally larger in our

new race checker; 115 total false positives of 317 reports isa 36%
false positive rate. Most of the false positives in our new algorithm
are the result of engineering shortcomings that are straightforward
to remove with additional effort. Notice that the large numbers of
unlikely races reported in Column (B) in Figure 11 that were left
uninspected in our earlier work are almost completely eliminated.
Significantly, 80 of theseunlikely races turn out to be real races, a
fact that is witnessed by the increase in the numbers of real races
reported in Column (D) over those in Column (E) in Figure 12.

7. Related Work
In this section we very briefly survey the large literature onrace
detection (including dynamic techniques, static techniques, and
work on checking atomicity) and the considerably smaller literature
on problems related to conditional must not alias analysis.We begin
by noting that our notion of loop vectors harkens back to the ideas
of iteration spaceanddependence distancein work on vectorizing
compilers. Loop vectors are points in the iteration space ofthe
program, and our algorithm can be thought of as tracking dependent
statements of distance 0 (i.e., in the same iteration). We are not
aware of any deeper connections to the large literature on program
parallelization; our focus is on linked data structures andlocking
while parallelizing compilers focus primarily on array references.

7.1 Dynamic Race Detection

To the extent that race detection is currently used in practice, prac-
tical race detectors are primarily dynamic. The most popular form
of dynamic race detection is thelockset algorithmas exempli-
fied by the Eraser tool [40]. Recent work has greatly improved
the order-of-magnitude slowdowns of the original implementations
[2, 43, 44] to the point that runtime overhead is generally much less
than 50% [5]. Other recent work has combined approaches based
on Lamport’s happens-before relation [1, 7, 8, 11, 26, 31, 38, 41]
with the lockset algorithm to mitigate the disadvantages ofeach
[12, 23, 34, 35, 47].

Dynamic race detection suffers from the well-known problems
of every dynamic analysis, namely that first it cannot be used
with a partial, open program (such as a library) and second even
when a closed program is available dynamic checking is dependent
on having adequate input. Note that the lockset algorithm only
depends on the set of locks held for each location and not the order
in which locks are held, so a strength of the lockset algorithm is that
it does not require a particular interleaving of thread executions to
occur to detect races. But, for example, no dynamic race detector
can find races in code that is not executed at all.

7.2 Static Race Detection

Static race detection offers the promise of being able to findraces
before programs are run or, in the case of libraries, even before
they are fully written. Given the non-deterministic natureof races,
the advantages of static analysis would seem greater for race detec-
tion than many other program verification problems. The history
of static race detection has seen considerable theoreticalprogress
using a variety of approaches (flow-insensitive type systems [3, 4,
15, 16, 22, 36, 39], flow-sensitive versions of the static lockset al-
gorithm [6, 13, 42], or path sensitive model checkers [25, 37]) but

(A) afteroriginal stage (B) aftermay-happen-in-parallelstage
likely unlikely total

hexts pairs hexts pairs hexts pairs hexts pairs
philo 123344 926 0 0 35 35 35 35
elevator 55680 662 0 0 320 305 320 305
tsp 298045 3379 4 4 490 490 494 494
ftp 97661557 55039 352 156 3733 1624 4085 1628

Figure 11. Results for phase 1: Context-sensitive may alias analysis.

(C) afterglobal-lock (D) after (local-lock+ local-thread) stages (E) classification oflikely races
stage real races false alarms total real races false alarms

hexts pairs hexts pairs hexts pairs hexts pairs hexts pairs hexts pairs
philo 33 33 3 3 0 0 3 3 0 0 0 0
elevator 320 305 0 0 0 0 0 0 0 0 0 0
tsp 140 140 12 12 18 18 30 30 0 0 4 4
ftp 2780 1147 761 187 258 97 1019 284 297 122 55 34

Figure 12. Results for phase 2: Conditional must not alias analysis.

(F) proven local-lock (G) proven local-thread (H) proven race-free
hexts pairs hexts pairs hexts pairs

philo 30 30 0 0 30 30
elevator 52 37 268 268 320 305
tsp 0 0 110 110 110 110
ftp 1398 613 1156 577 1761 863

Figure 13. Effectiveness of disjoint reachability analysis.

until recently techniques were not known that scaled with sufficient
precision to find large numbers of bugs in realistic programs.

Our own previous work, outlined in Section 5, scales reasonably
well and finds many bugs in both open and closed programs [33].
Earlier work by Choi et al. [6] took the same basic approach, but
found that scalability problems hampered effectiveness, probably
because the idea ofk-object-sensitive analysis did not exist then.

As discussed in Section 1, however, the final lock analysis phase
of [33] is unsound, using a cheaper may alias analysis to decide
when two abstract locks represent the same concrete lock, a prob-
lem requiring must alias analysis. Our desire to remove thislimita-
tion is the inspiration for this paper. Instead of modifyingthe origi-
nal algorithm to use must alias information to show when two locks
are the same, we instead have chosen to focus on the dual prob-
lem of showing when two locks are different. To carry out sound
race detection, however, we must show that if two locks are differ-
ent then they protect different locations, which leads directly to the
more general definition of conditional must not alias analysis. Con-
ditional must not alias analysis requires considerably deeper analy-
sis of the heap and correspondingly of how the heap is constructed
than traditional alias analyses—distinguishing multipleobjects al-
located at the same site is crucial, as is maintaining correlations
between objects that are allocated and linked together.

7.3 Other Analysis Approaches

Disjoint reachability for data structures (e.g., proving that two lists
constructed of separate elements are disjoint) is an old problem.
Algorithms in this area range from flow-sensitive approximations
of heap shape ([9] is an early example) to very powerful decision
procedures [27, 30]. Our notion of disjoint reachability isless
precise (e.g., it is flow-insensitive) but easier to scale tolarge
programs and gives good results for race detection.

Ownership typesexpress the idea that among all pointers to an
object, one is often special in that it has more operations than other

pointers. In the context of race detection, ownership can beused
to prove encapsulation (that an object is the exclusive access to
another object), which in turn can prove conditional must not alias-
ing facts: if two objects are distinct, any objects they encapsulate
must be distinct. There are algorithms for inferring ownership [24]
and encapsulation [21] and ownership types have been exploited in
race detectors [3]. While encapsulation is sufficient to prove con-
ditional must not aliasing, it is not necessary. Roughly speaking,
ownership/encapsulation are properties of how an object iscon-
structed, while conditional must not aliasing also considers the spe-
cific pointers through which an object is used; this more refined
treatment can fully automatically check race freedom for objects
that are not encapsulated and without ownership types.

Another related approach is that acorrelation exists between
two objects if they are used consistently together [36]. Forrace
detection, correlation means a particular lock is always used to
guard a particular location.Correlation analysisinfers which locks
always guard which locations. Our approach does not requirelocks
and locations to be correlated; because each potentially racing pair
of expressions is handled separately, different locks may be used to
prove race freedom for the same expression in different pairs.

7.4 Atomicity Checking

Much recent work on verification of concurrent programs has fo-
cused on checkingatomicityrather than race freedom [2, 14, 17–
20, 39, 45, 46]. Atomicity is arguably a simpler and more natu-
ral property for programmers and experimental work suggests that
programmers most often use locks to achieve atomicity. Regardless
of whether future languages rely primarily on atomicity or lock-
ing, however, checking race freedom will be an important prob-
lem: existing concurrent languages will continue to use lock-based
synchronization idioms heavily, and many algorithms for checking
atomicity (in particular, those based on Lipton’s theory ofreduction
[29]) reduce to checking race freedom.

8. Conclusions
We have introduced conditional must not aliasing and shown its
application to static race detection. We have also presented dis-
joint reachability analysis, an object reachability analysis that is
useful for computing conditional must not alias facts. We have im-
plemented conditional must not alias analysis using disjoint reacha-
bility analysis in Chord, a static race checker for Java, andapplied it
to a suite of Java programs. The resulting system is fully automatic,
reasonably efficient, and produces relatively few false positives.

Acknowledgments
We thank the anonymous POPL reviewers for insightful comments.
This research was supported in part by NSF grants CCF-0430378
and CNS-0509558, a gift from Intel, and a Microsoft fellowship.

A. Proof of Type Preservation
We state a useful fact of environment abstraction (Figure 7(c)) that
is needed in proving type preservation.

FACT A.1. (Loopset Weakening) If W ` (π, ρ) � (Π, Γ) and
W ′ ⊆ W thenW ′ ` (π, ρ) � (Π,Γ).

Proof. [of Type Preservation] By induction on the structure of
the derivation ofs, W, π, ρ, σ ⇓ π′, ρ′, σ′, C. There are 10 cases
depending on which one of rules (1)–(10) in Figure 5 was used last
in the derivation. For brevity, we only provide the proof forthe two
most interesting cases.

1. Rule (5). We haves ≡ x.f = y. There are two sub-cases
depending upon whetherρ(y) is null or non-null. We only prove
the latter more interesting sub-case. We have:

(a):ρ(x) = ō1 andρ(y) = ō2 and

(b): s,W, π, ρ, σ ⇓ π, ρ, σ[ō1.f 7→ ō2], {ō1 B ō2}.

Froms ≡ x.f = y and hypothesisW,Π, Γ ` s : Γ′, K of the
lemma and rule (15) in Figure 8, we have:

(c): W, Π, Γ ` s : Γ, K where:

K =



{τ̄1 D τ̄2} if Γ(x) = τ̄1 andΓ(y) = τ̄2

∅ otherwise

We need to prove:

(A): W ` (π, ρ) � (Π, Γ) and

(B): {ō1 B ō2} � K.

The proof of (A) is trivial since (A) is one of the hypotheses of
the lemma. To prove (B), it suffices to prove (see Figure 7(b)):

(d): ∃(τ̄1 D τ̄2) ∈ K : (ō1, ō2) ∝ (τ̄1, τ̄2).

Proof of (d): From hypothesisW ` (π, ρ) � (Π,Γ) of the
lemma, we have (see item (2) and item (3)(b) in Figure 7(c)):

(e):∀z ∈ V : ρ(z) � Γ(z) and

(f): ∀w ∈ W : ∃k ∈ N : ∀z ∈ V : ((ρ(z) = ō ∧ Γ(z) =
τ̄ ∧ τ̄ .Π(w) = 1) ⇒ ō.π(w) = k).

From (a) and (e), we have (see defn. ofo � τ in Figure 7(a)):

(g): Γ(x) = τ̄1 andΓ(y) = τ̄2 and

(h): ō1 � τ̄1 andō2 � τ̄2.

From (c) and (g), we have:

(i): K = {τ̄1 D τ̄2}.

From (f) and (a) and (g), we have:

(j): ∀w ∈ W : ∃k ∈ N : ((τ̄1.Π(w) = 1 ⇒ ō1.π(w) = k)
∧ (τ̄2.Π(w) = 1 ⇒ ō2.π(w) = k)).

From (h) and (j), we have (k):(ō1, ō2) ∝ (τ̄1, τ̄2) (see Figure
7(b)). From (i) and (k), we have (d).

2. Rule (10). We haves ≡ whilew (∗) do s′ and

(a):s′, W ∪ {w}, π[w 7→ π(w) + 1], ρ, σ ⇓ π′, ρ′, σ′, C1 and

(b): s, W, π′, ρ′, σ′ ⇓ π′′, ρ′′, σ′′, C2.

Froms ≡ whilew (∗) do s′ and hypothesisW,Π, Γ ` s : Γ′, K
of the lemma and rule (18) in Figure 8, we have:

(c): W, Π,Γ ` s : Γ, K and

(d): W ∪ {w}, Π,Γw+ ` s′ : Γ, K and

(e):Π(w) 6= 0.

We need to prove:

(A): W ` (π′′, ρ′′) � (Π, Γ) and

(B): (C1 ∪ C2) � K.

From hypothesisW ` (π, ρ) � (Π,Γ) of the lemma, we have
(see Figure 7(c)):

(f): ∀w′ ∈ W : π(w′) � Π(w′) and

(g): ∀ x ∈ V : ρ(x) � Γ(x) and

(h): ∀w′ ∈ W : ∃k′ ∈ N :

(Π(w′) = 1 ⇒ π(w′) = k′) ∧
(∀x ∈ V : ((ρ(x) = ō ∧ Γ(x) = τ̄ ∧ τ̄ .Π(w′) = 1) ⇒
ō.π(w′) = k′))

We will first prove:

(i): W ∪ {w} ` (π[w 7→ π(w) + 1], ρ) � (Π, Γw+).

From Figure 7(c), this requires proving:

(i.1): ∀w′ ∈ W ∪ {w} : π[w 7→ π(w) + 1](w′) � Π(w′)

(i.2): ∀x ∈ V : ρ(x) � Γw+(x)

(i.3): ∀w′ ∈ W : ∃k′ ∈ N :

(Π(w′) = 1 ⇒ (π[w 7→ π(w) + 1])(w′) = k′) ∧
(∀x ∈ V : ((ρ(x) = ō ∧ Γw+(x) = τ̄ ∧ τ̄ .Π(w′) = 1) ⇒
ō.π(w′) = k′)).

Proof of (i.1): From (e), we have (j):Π(w) = 1 ∨ Π(w) = >.
From(π(w)+1) > 0 and (j), we have (k):(π(w)+1) � Π(w)
(see defn. ofi � î in Figure 7(a)). From (f) and (k), we have
(i.1).

Proof of (i.2): Immediate from (g) and defn. 3.2 ofΓw+ and the
defn. ofo � τ in Figure 7(a).

Proof of (i.3): It suffices to prove:

(l): ∃k ∈ N :

(Π(w) = 1 ⇒ (π[w 7→ π(w) + 1])(w) = k) ∧
(∀x ∈ V : ((ρ(x) = ō ∧ Γw+(x) = τ̄ ∧ τ̄ .Π(w) = 1) ⇒
ō.π(w) = k)).

since we will have (i.3) from (h) and (l).

Proof of (l): Choosek = (π[w 7→ π(w) + 1])(w) whence we
have (m):Π(w) = 1 ⇒ (π[w 7→ π(w) + 1])(w) = k. Also,
from defn. 3.2 ofΓw+, we have∀x ∈ V : (Γw+(x) = τ̄
⇒ τ̄ .Π(w) 6= 1) whence we trivially have (n):∀x ∈ V :
((ρ(x) = ō ∧ Γw+(x) = τ̄ ∧ τ̄ .Π(w) = 1) ⇒ ō.π(w) =
k). From (m) and (n), we have (l).

We now prove (A) and (B). From (a) and (d) and (i) and the
induction hypothesis, we have (o):W ∪ {w} ` (π′, ρ′) �
(Π,Γ) and (p):C1 � K. From (o) and Fact A.1, we have
(q): W ` (π′, ρ′) � (Π, Γ). From (b) and (c) and (q) and
the induction hypothesis, we have (A) and (r):C2 � K. From
(p) and (r), we have (B) (see Figure 7(b)).

�

References
[1] S. Adve, M. Hill, B. Miller, and R. Netzer. Detecting dataraces on

weak memory systems. InProceedings of ISCA’91, pages 234–243,
1991.

[2] R. Agarwal, A. Sasturkar, Wang L, and S. Stoller. Optimized run-time
race detection and atomicity checking using partial discovered types.
In Proceedings of ASE’05, pages 233–242, 2005.

[3] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe pro-
gramming: Preventing data races and deadlocks. InProceedings of
OOPSLA’02, pages 211–230, 2002.

[4] C. Boyapati and M. Rinard. A parameterized type system for race-free
Java programs. InProceedings of OOPSLA’01, pages 56–69, 2001.

[5] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, andM. Sridha-
ran. Efficient and precise datarace detection for multithreaded object-
oriented programs. InProceedings of PLDI’02, pages 258–269, 2002.

[6] J. Choi, A. Loginov, and V. Sarkar. Static datarace analysis for
multithreaded object-oriented programs. Technical Report RC22146,
IBM Research, 2001.

[7] J. Choi, B. Miller, and R. Netzer. Techniques for debugging parallel
programs with flowback analysis.ACM TOPLAS, 13(4):491–530,
1991.

[8] M. Christiaens and K. Brosschere. TRaDe: A topological approach to
on-the-fly race detection in Java programs. InProceedings of JVM’01,
pages 105–116, 2001.

[9] P. Cousot and R. Cousot. Static determination of dynamicproperties
of generalized type unions. InLanguage Design for Reliable Software,
pages 77–94, 1977.

[10] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program
verification in polynomial time. InProceedings of PLDI’02, pages
57–68, 2002.

[11] A. Dinning and E. Schonberg. An empirical comparison ofmoni-
toring algorithms for access anomaly detection. InProceedings of
PPoPP’90, pages 1–10, 1990.

[12] A. Dinning and E. Schonberg. Detecting access anomalies in programs
with critical sections. InProceedings of PADD’91, pages 85–96, 1991.

[13] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race
conditions and deadlocks. InProceedings of SOSP’03, pages 237–
252, 2003.

[14] C. Flanagan. Verifying commit-atomicity using model-checking. In
Proceedings of SPIN’04, pages 252–266, 2004.

[15] C. Flanagan and M. Abadi. Types for safe locking. InProceedings of
ESOP’99, pages 91–108, 1999.

[16] C. Flanagan and S. Freund. Type-based race detection for Java. In
Proceedings of PLDI’00, pages 219–232, 2000.

[17] C. Flanagan and S. Freund. Atomizer: a dynamic atomicity checker for
multithreaded programs. InProceedings of POPL’04, pages 256–267,
2004.

[18] C. Flanagan, S. Freund, and M. Lifshin. Type inference for atomicity.
In Proceedings of TLDI’05, pages 47–58, 2005.

[19] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
Proceedings of PLDI’03, pages 338–349, 2003.

[20] C. Flanagan and S. Qadeer. Types for atomicity. InProceedings of
TLDI’03, pages 1–12, 2003.

[21] S. Ghemawat, K. Randall, and D. Scales. Field analysis:Getting useful
and low-cost interprocedural information. InProceedings of PLDI’00,
pages 334–344, 2000.

[22] D. Grossman. Type-safe multithreading in Cyclone. InProceedings
of TLDI’03, pages 13–25, 2003.

[23] J. Harrow. Runtime checking of multithreaded applications with visual
threads. InProceedings of SPIN’00, pages 331–342, 2000.

[24] D. Heine and M. Lam. A practical flow-sensitive and context-sensitive
C and C++ memory leak detector. InProceedings of PLDI’03, pages
168–181, 2003.

[25] T. Henzinger, R. Jhala, and R. Majumdar. Race checking by context
inference. InProceedings of PLDI’04, pages 1–13, 2004.

[26] L. Lamport. Time, clocks, and the ordering of events in adistributed
system.CACM, 21(7):558–565, 1978.

[27] T. Lev-Ami, N. Immerman, T. Reps, S. Sagiv, S. Srivastava, and
G. Yorsh. Simulating reachability using first-order logic with appli-
cations to verification of linked data structures. InProceedings of
CADE’05, pages 99–115, 2005.

[28] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: is it
worth it? InProceedings of CC’06, 2006.

[29] R. Lipton. Reduction: A method of proving properties ofparallel
programs.CACM, 18(12):717–721, 1975.

[30] S. McPeak and G. Necula. Data structure specifications via local
equality axioms. InProceedings of CAV’05, pages 476–490, 2005.

[31] J. Mellor-Crummey. On-the-fly detection of data races for programs
with nested fork-join parallelism. InProceedings of SC’91, pages 24–
35, 1991.

[32] A. Milanova, A. Rountev, and B. Ryder. Parameterized object sensi-
tivity for points-to and side-effect analyses for Java. InProceedings of
ISSTA’02, pages 1–11, 2002.

[33] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
Java. InProceedings of PLDI’06, pages 308–319, 2006.

[34] R. O’Callahan and J. Choi. Hybrid dynamic data race detection. In
Proceedings of PPoPP’03, pages 167–178, 2003.

[35] E. Pozniansky and A. Schuster. Efficient on-the-fly datarace detection
in multithreaded C++ programs. InProceedings of PPoPP’03, pages
179–190, 2003.

[36] P. Pratikakis, J. Foster, and M. Hicks. LOCKSMITH: Context-
sensitive correlation analysis for race detection. InProceedings of
PLDI’06, pages 320–331, 2006.

[37] S. Qadeer and D. Wu. KISS: Keep it simple and sequential.In
Proceedings of PLDI’04, pages 14–24, 2004.

[38] M. Ronsse and K. Bosschere. RecPlay: A fully integratedpractical
record/replay system.ACM TOCS, 17(2):133–152, 1999.

[39] A. Sasturkar, R. Agarwal, L. Wang, and S. Stoller. Automated
type-based analysis of data races and atomicity. InProceedings of
PPoPP’05, pages 83–94, 2005.

[40] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multi-threaded programs. In
Proceedings of SOSP’97, pages 27–37, 1997.

[41] E. Schonberg. On-the-fly detection of access anomalies. In Proceed-
ings of PLDI’89, pages 285–297, 1989.

[42] N. Sterling. WARLOCK - a static data race analysis tool.In Proceed-
ings of the Usenix Winter 1993 Technical Conference, pages 97–106,
1993.

[43] C. von Praun and T. Gross. Object race detection. InProceedings of
OOPSLA’01, pages 70–82, 2001.

[44] C. von Praun and T. Gross. Static conflict analysis for multi-threaded
object-oriented programs. InProceedings of PLDI’03, pages 115–128,
2003.

[45] L. Wang and S. Stoller. Static analysis of atomicity forprograms with
non-blocking synchronization. InProceedings of PPoPP’05, pages
61–71, 2005.

[46] L. Wang and S. Stoller. Runtime analysis of atomicity for multi-
threaded programs.IEEE TSE, 32(2):93–110, 2006.

[47] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient detection of
data race conditions via adaptive tracking. InProceedings of SOSP’05,
pages 221–234, 2005.

