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Abstract

Race detection algorithms for multi-threaded programsgigie
common lock-based synchronization idiom must correlatkdo
with the memory locations they guard. The heart of a proof of
race freedom is showing that if two locks are distinct, thiee t
memory locations they guard are also distinct. This is amgta

of a general property we catbnditional must not aliasindJnder
the assumption that two objects are not aliased, prove tmat t
other objects are not aliased. This paper introduces arek gin
algorithm for conditional must not alias analysis and désEs
experimental results for sound race detection of Java progir

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Software/Program Verification — Reliability

General Terms Experimentation, Reliability, Verification

Keywords static race detection, Java, synchronization, concur-
rency, multi-threading

1. Introduction

A multi-threaded program containsrace if two threads can ac-
cess the same memory location without ordering constraints
forced between them and at least one of those accesses igea wri
Races often imply serious violations of program invariatd are
notoriously difficult to find in debugging and testing. Prayrace
freedom—the absence of races—is thus valuable in improving the
reliability of multi-threaded programs.

Most approaches to proving race freedom involve checking
the lock-basedsynchronization idiom [3, 4, 15, 16, 22, 36, 39].
Locking requires that any pair of potentially simultaneausesses
to a locationm from different threads bguardedby a lock (,
meaning that each thread must hold ldckvhile accessingn.
Because at most one thread can hold lé&k any instant, there
are no races o if the locking discipline is used correctly.

A challenge in proving race freedom in the presence of locks
lies in the apparent need for a form of must alias analysias(@ier
the following pseudo-code example:

Thread 1: sync(11) { ... write location mil ... }

Thread 2: sync(12) { ... write location m2 ... }
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Heresync is Java’s lexically-scoped locking construct. The lock
argument taync is acquired before entering the block and released
on exiting the block. Consider the two memory accesses m thi
example, and suppose that it is possible thiat= m2 at run-time,
i.e.,m1 andm2 may alias To show that the accesses cannot race,
it suffices to show that1 and12 always refer to the same lock at
run-time, i.e.11 and12 must alias

In previous work [33], we presented a static race detecéoh-t
nique for Java employing a series of static analyses to sasedy
prune an initial over-estimate of the set of races to a redtismall
set of potential races. The analysis of locks used is an appee
tion based on a may alias analysis to check whether a paické lo
held during a pair of accesses might be the same. This appaexi
tion, while effective at bug-finding, does not perform theded
must alias analysis and cannot prove race freedom. It mpeeti
tions races intdikely andunlikely races. While the likely races are
in practice almost always real races, the set of unlikelgsatas
a high false positive rate and it is difficult to know how maeglr
races it contains (if any) without considerable manual tabo

In this paper, we present a new approach to sound race detecti
in the presence of locks. The key idea is that instead ofkittgc
the problem directly using a must alias analysis, we refdateu
the question that must be solved in terms of a duabt not alias
analysis problem. Consider once more the example aboveabhs
of starting with the locations accessed and reasoning atheut
locks, we start with the locks and try to reason about thetioes.
If we assume that locks1 and12 cannot be the same (we assume
the locks must not alias) then it suffices to show that thetiooa
ml andm2 are not the same (we prove the locations must not
alias). Intuitively, if whenever two locks are differeneihguarded
locations must be different, then there are no races. Neateirth
the case where the two locks must alias there is nothing teepro
accesses to their guarded locations cannot race in any case.

This approach to proving race freedom is an example of a
conditional must not aliaguery:

DEFINITION 1.1. Lete; andes be abstract memory locations (e.g.,
program expressions with associated context sensitivarnve-
tion). A must not alias fact is a pa{e1, e2) assertinge; and e
cannot refer to the same run-time memory location. Pebe a
program and4d and B be sets of must not alias facts.canditional
must not aliassentenced -p B means that in prograr®, under
the assumption that the must not alias factslihold, the must not
alias facts inB must hold.

We use the example in Figure 1 to illustrate the idea of must
not alias analysis in the context of race detection. Thispta has
three parts shown in three columns. The code in the first aolum
allocates an array objeét; and executes a loop, each iteration of
which puts a fresh objeét., whose fieldf points to another fresh
objecths, into the array. Next, the code in the second column exe-
cutes a loop, each iteration of which spawns a thread thassaes



field g of an objecths through fieldf of a non-deterministically
chosen array element objeet. Left unspecified is the lock that
is acquired; several choices forare given in the third column.

Consider the case whetle = a: the lock is acquired on the
entire array. This situation represents a coarse-grakirigcstyle
that uses global, uniquely named locks; in particular, sach lock
is created at an allocation site that executes exactly dBome
previous sound lock checking systems rely on such singleugia
allocation sites for locks [5]. From the point of view of cdtiohal
must not aliasing this case is uncomplicated. Considersyas
in different iterations of the second loop. Since the asgignghat
they acquire different locks is false (they always acquiee same
lock), we can conclude that whenever the locks are diffetiemt
guarded accesses are distinct and the program is race free.

Now consider the case whefe = x.f. This case represents
the extreme of fine-grain locking, and again reasoning usimgli-
tional must not aliasing to prove race freedom is straightfod. If
two syncs in different iterations of the second loop acquire differ-
ent locks, then the locations of thejfields must be different and
the code is race free.

The subtlest case is medium-grain locking represented éy th
caseL = x. Each iteration of the loop holds a lock on objecbut
the potential race is on fielglof a different objeck. £. The key to
showing this example is race free lies in observing thatis only
reachable through and therefore locking is sufficient to guard
against races on fields af £. Thus, if in two different iterations of
the loop thex objects are different, then the £ objects (and hence
the locations of theig; fields) must also be different and the code is
race free.

All three of these locking styles (coarse-, medium-, and-fine
grain) occur frequently in real programs. Note that a common
theme in the informal arguments given above is the abilitset>
son about different locks acquired at the same syntactiatpas
alluded to in phrases such as “if tvegncs in different iterations
...". The medium-grain locking case has the additional aliffiy
of reasoning about correlated objects, such as the facirtttae
first loop, fieldf of each newh, object points to a uniqués ob-
ject allocated in the same loop iteration. We develop a tymek a
effect system that tracks the needed correlations betwejeats.
Section 2 introduces a small language we use for the formal de
velopment and Section 3 introduces the type and effectrsyatel
gives a proof of its soundness.

To concisely represent must not aliasing facts, we use aaepa
object reachability analysis we callsjoint reachability analysis
(Section 4). LefH be the set of all allocation sites in the program;
we define a functioR € 2¥ — 2% such that ifh € DR(H),
then any objecb allocated at sité is reachable by following one
or more field dereferences from at most one of any two distinct
objectso; and o, allocated at sited;,ho € H. Note that we
require o # o2, but we allowh; = hs. In the example in
Figure 1, we havehs € DR({h:}). Figure 2 gives a pictorial
view of how disjoint reachability analysis is used to proeee
freedom. In Figure 2P (e) is thepoints-to sebf e, i.e., the set of
allocation sites at which may be allocated. Let andy be locks
andz.e;.f andy.eo.f be two accesses to instance figldNow,
P(z.e1) N P(y.e2) is the set of may aliases afe; andy.eo—
the set of objects on which there is a potential race. If thisis
contained iDR(P(z) U P(y)), however, then wheneverandy
are distinct objects it is guaranteed that; andy.e. are distinct
objects and no races are possible.

a=new h1[N]; while (*) { Choices for L
for i=0;i< N;i++) { x =a[*; a
a[fi] = new hy; fork { X
a[i].f = new hg; sync (L) { x.f
} xfg=*%
F1}
Figurel. Example program.
sync (x) { sync (y) {
oxelf .. Lye2f ..
el
P(z.e1) P(y.e2)

(P(xz.e1) N P(y.e2)) € DR(P(z) U P(y)) = (fis race-free)

Figure2. Proving race freedom via conditional must not aliasing.

our previous work; the false positives remaining, at leaghese
benchmarks, are the result of engineering shortcomingsattea
straightforward to remove with additional effort. In pattiar, the
large category of unlikely races is almost completely atiatéd.
Significantly, the number of races found in these benchmigrks
creases from 122 using our old unsound approach of consigeri
only likely races to 202 using our new sound algorithm. Thaus,
number of the former unlikely races turn out to be real rabes t
we did not notice with our previous technique.

In summary, the main contributions of this paper are:

e We introduce conditional must not aliasing, a property that
is useful in formulating static race detection and may be of
independent interest. Conditional must not aliasing ifeckht
from standard may aliasing precisely in that it is condisiipn
instead of computing must not aliasing facts that alwaysl hol
we compute must not aliasing facts that only hold assuming
other must not aliasing facts, allowing a more refined treatm
of the relationship between locks and the locations theydyua

We introduce disjoint reachability analysis, a programlyana
sis useful for computing conditional must not alias projgsrt
Disjoint reachability analysis is also a cheaper, andYikabre
scalable (but less precise) alternative to some recensidaci
procedures for verification of pointer-based data stresturur-
ther discussion is included with related work (Section 7).

e We have implemented conditional must not aliasing using a
disjoint reachability analysis in Chord, a static race &eec
[33]. On the benchmarks we have studied, this system has
few false positives and, because it is designed to be sound,
should have no false negatives (modulo some standard uthsoun
assumptions discussed in Section 5).

2. Language

In this section, we present the abstract syntax and opaedtfe-
mantics of a sequentiaVHILE language that we use in subsequent

We have implemented the type and effect system and disjoint gections to formalize our approach to conditional must hasimg.

reachability analysis in Chord (Section 5), a static raceaer
for Java and performed a number of experiments on complete Ja
applications (see Section 6). The main empirical resulds our
sound race detector eliminates almost all of the false ipesitin

21 Syntax

The abstract syntax of the language is given in Figure 3. A
has a fixed set of variabl&é with global scope and a single object



type with instance field§. We label each object allocation site in
the program with a uniqué € H and we label each loop with a
unique integerw € W. There are no threads; conditional must not
aliasing is not a multi-threading property and the pred@nmtas
simplest in a single-threaded language.

(variable) z,y € V

(instance field) f € F
(object allocationsite) h € H
(loop identifier) w € W

s = z=null | z=newh | z=y | z=y.f | z.f=y |

s1; s2 | if () then sy else s2 | while® (x) do s

Figure 3. Abstract syntax.

(loopiteration) N > ¢ == 0| 1 | 2 |
(loop vector) ™ € W-—N
(non-null object) O > & == (mh)
(object) O, > o == o | L
(environment) p € V-0,
(heap) c € (0OxF)—0y
(heap effect) C == 0 | Cu{o> o}
(m,hym & =
(m,h).h & h

Figure4. Semantic domains.

2.2 Semantics

We next develop an operational semantics foriiLE language

in Figure 3. Figure 4 defines the semantic domains. Recalbtia
goal is to track reachability properties of objects (e.lge €xam-
ple in Figure 1). Reasoning about object reachability nexpuiea-
soning about how data structures are built, which meanoneas
ing about the times when objects are allocated and linkechéo o
another. Aloop vectorm, which is a tuple of non-negative inte-
gers, tracks how many times each loop in a program has exkcute
each element ofr is a counter, and the iteration count of a loop
while” (x) do s in the program isr(w) (treating the tupler as a
map from indices to elements af). Objects are uniquely identi-
fied as pairgm, h) of a loop vectorr recording the time (in loop
execution counts) when the object was allocated and itsatitmn
site h. Abstractions of the loop vector (Section 3) will allow us to
estimate the relative time in terms of the number of loogaiiens
when two distinct objects are allocated.

(loopiterationabstr) N+ > 2 == 0 | 1 | T
(loop vector abstr.) I € W-—N7t
(obj. alloc. siteabstr) Hr > h == h | T
(non-nulltype) T > 7 == (ILA)
(type) T, > 7 = 7 | L
(type environment) ' € VT,
(heap effect abstr.) K == 0 | KU{n>nr}
ILAYIT £ 10
LAY R £ h

Figure6. Types.

We explain the most interesting rules in Figure 5. Rule (2),
which creates a new object, does not simply use the currept lo
vector as the time stamp recorded in the object. Insteadtemu
for loops not inWV (i.e., those not currently executing) are set to
0, giving a way to determine later whether or not a particldap
was executing when the object was allocaktétihile this property
is not exploited in the instrumented operational semariticsused
in the abstractions discussed in Section 3. Assigning tdcdfean
object (Rule (5)) generates a heap effect recording thénadgiity
between the two objects involved in the assignment. Finatn-
sider Rules (9) and (10), which give the semanticsiofle state-
ments. Loops execute a non-deterministic number of timaghw
saves us the trouble of defining how loop termination coodgi(as
well as the predicates dff statements, see Rules (6) and (7)) are
evaluated. Also note that when a loop executes an addittonel
(Rule (10)) the appropriate loop counter is incremented.

We conclude this section with a small example, which is a
simplified version of the program in Figure 1.

EXAMPLE 2.1. while! (*) do { X =new h1;y =new ho; x.f=y}
If the loop executes one time, the root of the derivation izee

while! ..., 0,(0), [z — L,y —1],[] F
(1), [z > 01,y — 02],[01.f — 02,02.f — L],{01 > 02}

wheres, = ((1), h1) andoz2 = ((1), he) and [] is the empty heap.

3. Typeand Effect System

The syntax of types and effects is shown in Figure 6. Types and
effects are parallel with the definitions in Figure 4, but seenan-
tics are significantly different. Before proceeding witle ttormal
development, we provide an informal explanation.

Objects have type$H,iz) recording information about when

Environments and heaps are standard. An environment maps2nd Where they were allocated. The main purpose of the type sy

variable names to objects in the heap, and a heap recordadbr e
object what object (or null) is in each field. Heap effect, > 02
records that at some point in the execution, objeatvas reachable
in one step via a field dereference from object

Figure 5 presents a big-step operational semantics foraour |
guage. Judgments have the form

A
87W77T7p70-‘u’7r7p70—7c

Each step of execution begins with the statemsetatbe executed,
the setWW of all loops lexically enclosing;, and the current loop
vectorr, environmentp, and heapr. Note thati¥ records which
loops are currently executing whiterecords the execution count
of all loops in the program and not just of loops currentlyiact
Since loops may execute as part of a step of execution thensiesia
must record a new loop vector as well as an updated enviranmen
and heap. Thus, a step of execution terminates with a fingl loo
vectorr’, environmeny’, and heap’, plus the heap effects.

tem is to compute abstract heap effects suafilash: )= (I1a, ho).
As in the operational semantics, the effect implies an dlgetype
(Il2, h2) is reachable from an object of tyd&l,, k) in a single
step via a field dereference. In a type, loop iterations astatted
as 0, 1, ofT. If II; (w) = 0, then loopw was not executing when
the object with that type was allocated (similarly fidg(w)). If
IT; (w) = T then nothing is known about the iteration of loegn
which the object was allocated (and similarly 1@ (w)). In either
case nothing is known about the relative time at which objett
the two types were allocated. However]if (w) = IIz(w) = 1,
then the type system guarantees the two objects were atbaat
the same iteration of loop. This property allows us to show con-
ditional must not aliasing: intuitively, ifII, h1) reachesIlz, h2)
and they were allocated in the same iteration, then objédige

1The allocation site could also be used to determine the skxafally
enclosing loops; usingV is clearer if less economical.



z=null,W,m,p,0 | ﬂ',p[l’HJ_],O',(D (1)

x=newh, W,m,p,c | 7w, plx 0,c[0.fi— L, .., 0.fn— L],0 [0 = (Qw.(if w € W thenr(w) else0), h)] 2
z=y,W,mpo | mplz—py)ol @)
x=y.f,W,m,p,0 | 7 plx— o(o.f)],o,0 if p(y) =0 4)
z.f=y,W,m,p,0 | mp,001.f— 02],C if p(z) = 01 p(y) = oz andC = { éal > 02} :I Zz i ‘12 (5)
' s, W,m,p,o0 |} n',p,0’,C ®) . so, W,m,p,o0 |} n',p,0",C @

if (%) s1 else s2, W, m,p,0 | 7', p",0',C if (%) s1 else so, W, m,p,0 | 7', p',0',C
s1,W,m,p,o |} 7', p',0’,C1 so, W', p' o U 7", p" 0", Co ®)

s1; s2, Wy, p,o |« p" 0", ChUC,

while” (x) do s, W, m, p,o || m p,o,0 9)
s, WU{w}, rlw — w(w) + 1], p,0 | 7', p',0',C1 while® (x) do s, W,n',p’ 0" | ©",p" 0", Cs (10)

while” (x) do s, W, m,p,o || 7", p",c",C1UCs

Figure5. Instrumented operational semantics.

037 & (o=L)V (0o=0ANT=TANG=XT)

627 o (MweW: sw(w) <X 7.I(w)) A (5.h < 7.h)
i<1 & ((=0Ai=0)V (i>0Ai=1)V (G=T)
h=<h < (h=h)V (h=T)

(a) Object abstraction.

C=XK & V01>o2)eC: 3I(n>n)eK: (61,02) x (T1,72)

(1) o1 27
(51,52)0((7_'1,7_'2) = { A (2) 02 X T2
AN B)VweW: (f1.JM(w) =1 A RII(w) =1) = o1.7(w) = 62.7(w))

(b) Heap effect abstraction.

1) Vw e W: w(w) X I(w)
W (m,p) < (I,T) < AN (2)Vz € V: p(z) X T'(z)

A (3)VweW: Ik eN: { (@) T(w) =1 = m(w) =k

AN D)V eV: ((p(z) =0 AT(z) =7 AN 7II(w) = 1) = omw(w) =k)

(c) Environment abstraction.

Figure7. Abstraction.

(I, hy) allocated in different iterations must reach different ob- sites fail to match, the result i$ in the appropriate position.

jects of type(TIz, ;{2>_ The second operation handles the increment of loop vedtoes;
This discussion is made precise in Figure 7, which defines an while” (x) do s statement, if the value in position of the loop

abstraction relatiorx stating when types and abstract heap effects Vector isl, itis incremented tol” when the loop iterates.

abstract object.s and concrete heap effepts, r.eSpeCtTME!Q./I.I‘I.II’d DEFINITION 3.1. (Join of Environments)

clause of sub-figure (b) requires that the iteration counfsition

w of the concrete loop vectors of two objects match if the v@lue (L UT:)(z) = Ti(z)UT2()

in position w of the abstract loop vectors of their types are 1. T if 0 =1

Likewise, the third clause of sub-figure (c) requires thetation lUr = { T2 if 7 =L

counts in positionw of the concrete loop vectors of all objects in TIUT =TI ATa="T

environmentp match if the values in positiom of the abstract

loop vectors of their types in environmehtare 1. Thus, in both AUT = (AIURIL7A.AURR)
abstract heap effects and type environments, any two tyjiesii (I UTly)(w) = Iy (w) U T (w)
in positionw of their abstract loop vectors always abstract objects e .
allocated in the same concrete, but unknown, iterationa 1o. iLUdy = { Ell if :]1 =12
Before we can give the type rules we need two operations otherwise

on type environments. The join of type environments is point Ry = hi if hy = ho
wise. Nulls are absorbed, and if either loop iterations tacation t=n2 = T  otherwise



DEFINITION 3.2. (Loopback Environment)

rvt(z) = T(x)vt
ot = (FII%Y, 7.h)
1wt = 1
. T if w =w A II(w) =1
w—+ ’ _
v’ = { (w’)  otherwise

The upper bound of two types implicitly defines a type lattice
which is ordered pointwise on loop vectors and allocatidassi
Integers and allocation sites are all less thiaand incomparable to
each other. The maximal type is then a loop vector of atlements
and aT allocation site; the minimal element is the typeand since
any program has a finite number of loops and allocation sites,
type lattice is also finite.

The type rules are given in Figure 8. These rules are parallel
with the operational semantics in Figure 5 and for brevitypet
out only a few interesting features. Rule (12) puts 0's inltap
vector positions of newly allocated objects for any loopsat thare
not executing, just as in Rule (2) of Figure 5. The only uséof
is to distinguish active from inactive loops; loop vectosjtions of
active loops take their value from the current loop vedioRule
(14) gives no information about heap reads, which is sountl, b
overly conservative in practice. We discuss improvementSec-
tion 5, which we omit from the formal development for simfiic
The most interesting rule, Rule (18), has three importapéects.
First, the conditiorI(w) # 0 reflects that loop vectors for objects
allocated inside loopv should not be 0 at position (and Rule
(12) already guarantees objects allocated outside {otyave a 0
at positionw). Second, the fact that the environméhis the same
before and after the loop reflects that any conclusion musalé
for any number of executions of the loop—that is, the entipl
may be executed multiple times (e.g., if it is nested insideother
loop) and the environmerit must be an invariant for all of those
executions. For example, a prodf, II,T" + while” ... : T K
wherel = [z — ((...,1,...),h1),y — ({...,1,...), h2)] im-
plies that if the loop ever starts execution in an environmérere
x andy were allocated in the same iteration of some earlier exe-
cution of the loop (e.g., because this loop is nested ingid¢har
loop), then the loop terminates withandy assigned objects from
the same loop iteration. Note that the final concrete loaatiien
associated with: andy may be different than the initial one; the
value 1 in both types only requires that the concrete loaptins
of z andy be equal before and after the loop, but the loop may as-
sign new objects ta: andy from the same iteration and maintain
this property. Third and finally, any objects in the envir@mhat
the start of a loop iteration must be carried over from presii-
erations. Thus, the bodyof loop w is checked in the environment
'+, which ensures that objects in the environment at the start o
new iteration are not in the w'” component of their loop vector;
II(w), however, can be 1, which allows any objestallocates to
be recognized as allocated together in the same iteration.

As an aside, for a single loop the only correlation this type
system can recognize is when objects are allocated andlliinke
the same iteration of the loop (Rule (15)). By adding mordralbs
loop vector values (i.e., 2,3,4, ...) and adjusting defingi (e.g.,

LEMMA 3.3. (Type Preservation) If s, W, m, p, o
and W, ILT + s: I, K andW + (m,p)
Wt («,p) < (I,I") andC < K.

‘U’ Tr/7 p/7 0—,7 C

< (IL,T) then
Recall that the purpose of the type system is to compute & set o

heap effect abstractions, which we use in disjoint readityabinal-

ysis (Section 4). We use type preservation to prove the smsxd

of heap effect abstraction.

COROLLARY 3.4. (Soundness of Heap Effect Abstraction)
If 5,0, \w.0, \z.L,[] | 7, p,0,Candd,I,T + s:I' K then
C=<K.

Proof. From Figure 7(c), we havét (\w.0, Az.L) < (IL,T").
It follows from Lemma 3.3 tha€ < K. O

Returning to Example 2.1 at the end of Section 2, the type
system can prove:

0, (1), F while'... : T,{7 > =} where
I'= [CC = T, Y 7_'2],7_'1 = <<1>,h1>, andm, = <<1>,h2>

ExXAMPLE 3.5. Consider the following nested loop, with two pos-
sible statements (A) and (B) for the body of the inner loop:
while! (*) do
X =new hi;
while? (*) do
Y = new ho;
(A)x.f=y OR (B)y.f=x

Statement (A) abstracts a typical programming patterndatain-
ers: the outer object controls access to objecysallocated in an
inner loop (in realistic examples afls would be retained in e.g., a
list). With statement (A), the type system can prove:

0,(1,1),T F while' ... : T {71 > 7} where
r= [LE =T,y 77—2]' T = <<170>7h1>' andr; = <<17 1>7h2>

Statement (B) abstracts another common pattern where many o
jects allocated in the inner loop point to a single objediadted in
the outer loop (e.g., parent or root pointers in tree datecgires).
Using statement (B), the type system can prove:

0, (1,1),T  while* ... : T {& > 7, } where
I'= [I =T,y 7_—2]! 1= <<170>7h1>' and7; = <<17 1>7h2>

4. Digoint Reachability Analysis

In this section, we presedisjoint reachability analysisan object
reachability analysis used to compute conditional mustahasing
facts. We first formalize the notion of object reachabilitpled-
ied in thedisjoint reachability propertyWe then present disjoint
reachability analysis which uses the heap effect abstraéfi of a
well-typed program to approximate the disjoint reachapiprop-
erty. Finally, we prove the disjoint reachability analysigind with
respect to the disjoint reachability property.

Consider the concrete heap efféctof a program execution;
C contains an effecto: > o2) if and only if some instance field
f of objecto; was assigned object; during execution (recall
Section 2.2). The (non-reflexive) transitive closureCbfs Ct =

Definition 3.2) the system can be extended to recognize when alJ,,~, C", whereC" is:

value is allocated in one iteration and linked to an objelcicated

in the next iteration, or two iterations later, and so on. lde&r, so
far we have not found this extra power necessary, at leasttar
detection, and so we have presented and implemented théesimp
system. Much more important is correctly handling multipésted
(and non-nested) loops and this is the focus of our system.

We are now ready to state the type preservation lemma. Ap-

pendix A gives a proof of the key cases.

DEFINITION 4.1. (Closure of C)

1.ct=cC
2. If (61 > 32) € C™and(62 > 3) € C then(; > a3) € O™t
If (61 > 02) € C™, theno, may be reachable from; by n

field dereferences. The disjoint reachability property il in
the first equation in Figure 9. It says thate DR¢(H) if and



W, ILT + x=null: [z — L],0 (11)
W,ILT + x=newh : Tz~ (II', h)],0 [ = Mw.(if w € W thenII(w) else0)] 12)
W,ILT + z=y: Tz~ T(y)],0 (13)
WILT F z=y.f: Tz — Qw.T,T)],0 (14)
o N {7_'127_'2} if F(CC):7_'1 andl‘(y):%g
WILT F a.f =y: D, K {K_{@ otheraise (15)
W,IL,T + s1: TV, Ky W,ILT + s2:T" Ko 16 WILT F s1: T, Ky WILT F s2:T9, Ko (17)
WITF s 50 7. K UK, (16) W,IL,T F if () then s1 else 52 : T1 U T2, K1 U Ko
Wu{w}, I,T* - s: T, K
W.ILT F while® (+)dos: [, K [T1(w) # 0] (18)
Figure 8. Type rules.
o1.he H A (611>0) € CT A
h€DRc(H) & os.h€H A (621>0)€CT A = 01 =02
o.h=h
F.h£TA
E‘lg‘sgegi A Fo.h# T A
T2 D> Ty) € A =7
h € DRx(H) < o m~n AT mheHAN | | A A<T
73.h,7a.h € {h, T} fheH AN YweW: (7. I(w)=1=

73.JI(w) = 74 II(w) = 1)

Figure9. Disjoint reachability property and disjoint reachabilégalysis.

only if no objecto allocated at sité: is reachable by one or more
field dereferences from distinct objeets ando- allocated at (not
necessarily distinct) sites iH.

Before defining disjoint reachability analysis we need twed d
initions. We sayr, is compatiblewith 72, written 7, ~ 7o, if they
agree in all components where neitheffis

TL ~ T2 &
(7_'1.h:7_'2.h V 71.h=T vV 7_'2.h:T)/\
Vw e W: (71.II(w) = 7. II(w) V7. II(w) = TV R.Il(w) = T)

We say a type is less thanT if no component ofF is T:
F<T & FTh#T) AVweW: (FII(w)#T)

To define disjoint reachability analysis, we define a traresitlo-
sureK ™ of K analogous to the transitive closure®fBecause the
abstract effects ik may correspond to many concrete effects, the
transitive closure of{ is more involved than the transitive closure
of C. Consider two effect§r: > 72) and(73 > 74). If 72 ~ 735 then

T2 and7s may abstract the same object and there is some transitive
relationship betweef; and 7. Simple transitivity is sound in all
but one case: if; II(w) = 1 = 74.II(w) and eithefr, . II(w) # 1

or 73.II(w) # 1, then we cannot conclude that and 7, are al-
located in the same iteration of loap. In this case it is sound
to replace7,.II(w) by T, ensuring that there is no information
about the relative allocation times with respect to laepWe de-
fineKt =J,-, K", whereK" is:

DEFINITION 4.2. (Closure of K)

1L.K'=K

2. f (A >7%) € K"and(7; > 71) € K then(7, > 75) € K™*!
provided7,; ~ 75 and
(@) 7.h = 74.h
(b) Vw € W :

T if i II(w)=1 A RII(w)=1A
75 II(w) = (e II(w) #1 V 73.II(w) # 1)
72.II(w) otherwise

The following lemma proves soundnessot with respect taC .
LEMMA 4.3. IfC < K thenC™ <X K™.

Proof. [sketch] By induction om, and using the definition of
C = K in Figure 7(b) and Definitions 4.1 and 4.26f and K",
respectively. We omit the details. O

The second equation of Figure 9 defines disjoint reachgbilit
analysis. The idea is that the tést DRk (H) is a sufficient con-
dition to show that: € DRc(H ), whereC' < K. The quantifi-
cation enforces that the test hold for every pair of effegts 75
and7, > 74 in K. Now, 7, and7, correspond t@; anda, in the
definition of the disjoint reachability property. The typesand7,
may abstract the same objectif ~ 74, so these two types play the
role of 6 in the disjoint reachability property. Finally, for the paf
effects to be relevant to the disjoint reachability testhimg.h and
71.h must be eithet or T.

If these four conditions are satisfied, then the pair of éfféx
relevant to the disjoint reachability test. Intuitiveljet test must
now check that whenevet; and 74 are the same that and 7
are also the same, which is done by the right-hand side ofrte fi
implication. If eitherr,.k or 7.h is T then the test fails; in this
case7; and 7 stand for objects allocated at any allocation site
and we can never guarantee the objects they represent ak equ
Otherwise, if eithetr; .k and ..k are concrete allocation sites but
not in the setH then this pair of effects does not affect whether
the disjoint reachability property holds or not. Finallysif.A and
7>.h are both inH (we are now discussing the right-hand side of
the second implication), then we require two things. Fifstand
T2 must correspond to the same concrete object, which is exdorc



by requiring the types to be equal = 7, and that they have no top
elementsr; < T (because, again, a top element in the loop vector
would also allow the type to correspond to more than one manti
object and hence the concrete objects corresponding towtbe t
types could not be shown to always be equal). The other dongit
which is enforced by the last clause, is that wheneydl (w) = 1
(and therefore». . IT(w) = 1), we havers.II(w) = 74.II(w) = 1,
which guarantees that distinej (72) objects (i.e., allocated in
different loop iterations) reach differeft (7.1) objects.

The following theorem states the soundness of disjointhr@ac
bility analysis.

THEOREM4.4. (Soundness of Digoint Reachability Analysis)
If C < K andh € DRk (H) thenh € DRc(H).

Proof.[sketch] From Lemma 4.3, using the definition®f< K
in Figure 7(b) and the definitions 8fRx andDR¢ in Figure 9. We
omit the details. O

Recall from the end of Section 3 that the type and effect gyste
derives the heap effed = {((1),h1) > ((1), ho)} for Exam-
ple 2.1. In this simple exampl& ™ = K. The single effect says
that every object allocated &t is pointed to by an object allo-
cated ath; in the same loop iteration; therefokg € DRk ({h1})
using the analysis in Figure 9. Now consider the nested laops
Example 3.5. Using statement (A), we haldle= {((1,0), h1) >
({1,1), h2) and againk ™ = K. Because the right side of this ef-
fect has a 1 in every position where the left side has a 1 anigfihe
side has ndl' elements, this effect says that every object allocated
in the inner loop is pointed to by at most one object allocatetie
outer loop; thusha € DRy ({h1}). Finally, using statement (B),
we haveK = {{(1,1), h2) > ({1,0), h1) and K" = K. Because
the left side of this effect has a 1 in a position where thetrigitie
has a 0, we can infer that multiple objects allocated in loagt 2
h2 may point to an object allocated At outside of loop 2. Thus

h1 € DRk ({h2}).

5. Implementation

We have implemented conditional must not alias analysisis-
joint reachability analysis in Chord, a static race detec8ystem
for Java. In this section, we present the architecture ofr€had
discuss extensions to the formalisms presented so far widan
realistic language like Java.

Before beginning, we should explain the claim that our syste
is sound. Unfortunately, the term “sound” is used ratheséip
in the current literature; generally speaking, works reéetheir
algorithm as sound if it is designed to be sound under a widely

used set of assumptions, and we have adopted this convention ®

We ignore the effects of reflection, dynamic loading, andveat
methods; these assumptions are standard for Java. In th&s pa
we also elide checking races on accesses in constructorsassl
initializers (a standard assumption for static race dete)t but
this limitation is to make comparison with experiments iaypous
work direct; Chord as described here can handle the anadysis
constructors and class initializers with adequate precisi

5.1 Chord Architecture

Chord consists of two phases each of which comprises a sdries
stages. The first phase centers around a context-sensiiyalias
analysis while the second is based on conditional must nas al
analysis.

511 Context-Sensitive May Alias Analysis Phase

This phase consists of a series of five stages, caligihal, reach-
able aliasing escapingandmay-happen-in-parallelThese stages

are similar, but not identical, to the stages used in ouiieranh-
sound race detector [33].

All stages work on six-tuples of the for(, c1, e1, t2, c2, €2)
wheree; andes are expressions that may race (i.e., accesses to
instance fields, static fields or array eleménédt1, c1, t2, co are
contexts in the sense of the context-sensitive may alialysisa
around which this phase is centered. Our implementation kise
object-sensitive may alias analysis [28, 32] and is pararizd by
k. We find it necessary to distinguish two different kinds afitaxts
to gain adequate precision:

e ¢; is the calling contextof the methodm containinge;. In
k-object sensitivity, the calling context of a methed is the
allocation context ofn’s this parameter. For instance,Af=
1 than the context is simply the allocation sitetdfis. If m
is a static method, which lacks thais parameter, the calling
context is a distinguished context callefB2].

t1 is thethread contexof e;. The thread context is the calling
context of the starting method of the thread that exectite
Java, this method is either tain method (in the case of the
implicitly created main thread) or thecart () method of class
java.lang.Thread (in the case of any other thread). Thus, in
k-object sensitivity, the thread context is eith€sincemain is

a static method) or the allocation context of #wart method’s
this parameter.

e ¢, andcy are similarly the thread and calling contextseef

The may alias analysis phase begins withdhginal stage which
considers every type-compatible pair of accessemde, in every
possible calling and thread context to be a possible racer@nit
least one of the accesses is a write). The goal of each of tite ne
four stages in this phase is to rule out some pairs of accéssas
the set of possible races. Very briefly, these stages wortdlasvk.
Letd = (t1,c1,e1,t2,c2,e2) be a six-tuple as above:

e Reachable:Not all thread and calling context combinations
represent actual executions. This stage retéias a possible
race only if there is a path in the program’s context-seresiti
call graph from the entry point of the thread starting metimod
contextt; to the program point of; in contexte; (and similarly
for t2, c2, e2). This stage is context-sensitive.

Aliasing: There can be a race between two accesses only if they
access the same memory location, that is, if the accesses may
alias. This stage retairfsas a possible race onlydf in context

c1 may aliasese: in contextcs. This stage is also context-
sensitive.

Escaping:A memory location can be subject to a race only if
it is thread-shared. This stage retafhenly if a thread-escape
analysis shows that; in contextc; may escape the thread in
which it was allocated (and similarly fes, e2). The analysis is
context- and flow-sensitive and more precise than the ong use
in our previous work [33].

e May-happen-in-parallelTwo accesses can race only if they can
happen in parallel. This stage retathenly if it is possible that
e1 andes in their corresponding thread and calling contexts
can execute at the same time. Unlike most other may-happen-
in-parallel analyses, ours is oblivious to locks. The most i
portant role of this flow- and context-sensitive stage isrta-a
lyze the thread spawning structure of the program. Thisestag
is not present in our previous work; together with the impabv
thread-escape analysis, this stage enables us to elintimate

20ur implementation does not separate array elements—eafiegits of an
array are collapsed to a single abstract location.



hand annotations used in [33]—the system presented here rez. Unfortunately, this rule is too coarse in practice, as ehare

quires no annotations.

5.1.2 Conditional Must Not Alias Analysis Phase

This phase consists of a series of three stages, ogldzal-lock
local-lock andlocal-thread that rule out additional pairs of ac-
cesses from the set of possible races that survive the fiesteph
All three stages are based on the concept of conditional maist
aliasing but differ operationally.

Letd = (t1,c1,e1,t2,c2, e2) be asix-tuple as in the first phase:

¢ Global-lock: This stage rules out accesses guarded by global,
uniquely named locks (see Section 1 for an example). Java pro
grammers not only create such locks explicitly but also usé s
locks created by the virtual machine, for instance, by using
static synchronized methods or by synchronizing on the
class field of an object. This stage does not use disjoint reach-
ability analysis since it does not need to track object rabith
ity: it merely checks that some global lock is held along gver
path in the program’s context-sensitive call graph fromethiey
point of the thread starting method in contéxto the program
point of e; in contextey, and that the same global lock is held
similarly for ¢z, c2, e2.

locks. It determines whether along each pair of paths in the
program’s context-sensitive call graph from the entry moof

the thread starting methods in context@andt, to the program
points ofe; in contextc; andes in contextcz, respectively,
some pair of lockses and ey is held in contextses and ca,
respectively, such that; and e, are prefixes ofe; and ez,
respectively, and:

(P(el, 01) N .[:)(627 02)) - DRK(P(eg7 03) U P(647 04))

where P(e, ¢) denotes the points-to set efin contexte, K is
the heap effect abstraction of the given program, andebig “

a prefix ofe’”, we meane’ is obtained by one or more field
dereferences frora. The soundness of our disjoint reachability
analysis coupled with the soundness of our points-to aisalys
guarantees that, whenever loeksande, are distinct, accesses
e1 ande, are also distinct and therefore race-free.

Local-thread: This stage rules out thread-local accesses using
the following variation on conditional must not alias arsady if
whenever two threads are distinct, then two expressiorsset
threads must refer to distinct locations, then those egoes
cannot race. If neithet; nor ¢ is the e context, then the
thread starting method of both threads is #hert method (as
opposed to th@ain method), and we do the check as in the
local-lock stage except that we substitute geart methods’
this parameters for the locks{ and e4), and require the
thread context$; andts becs andcs, respectively. The same
correctness argument applies: whenever threadmde, are
distinct, accesses, ande- are distinct and therefore race-free.

5.2 Extensions

Our presentation thus far has ignored some issues that a@-im
tant in implementing our algorithm for a realistic programglan-
guage. One such issue is the treatment of field reads; conbkige
following example:

1. xf=y
2. . no writes to aliases of x.f ...
3. z=x.f

According to Rule 14 of Figure 8 the information faron
line 3 is (A\w.T,T)); i.e., no useful information is known for

Local-lock: This stage rules out accesses guarded by non-global

situations similar to the one given above in realistic paogs.

To improve the precision of the analysis we compute flow-
sensitive must alias information for fields, e.g., afteelgwe want
to know thatz = y (with y’s allocation site and loop information).
The approach we use is a standard (but interproceduralj@ata
algorithm to track must alias facts on names of the ferfg.h...;
there are similar algorithms in the literature [10].

This extension also introduces a new problem for a race detec
tion algorithm that aims to be sound. Consider the read again
line 3 above. The conclusion that= y on line 3 is only valid if
line 2 contains no writes to aliasesxff and also no other thread
writes an alias ok.£. It is not surprising that a flow-sensitive com-
putation must reason about potential races, but it doestead
recursively defined notion of race detection, as computiegset
of races now depends on knowing the set of races to beginWeh.
use a standard iterative approach: initially we run racedin as-
suming the set of races in the program is empty. Any discovered
races are added t8 and the entire algorithm is repeated; races in
R are used to kill must alias dataflow facts where appropriste (
if x.£ on line 3 is part of some race iR, then the assignment on
line 3 yields(\w.T, T) for z). The entire process repeats urfil
reaches a fixed point.

6. Experiments

In this section, we evaluate our implementation on a suit®of
multi-threaded Java programs and provide a detailed cosguar
with our previous work [33f. Figure 10 shows, for each program in
our benchmark suite, the number of application and libréagses
and lines of Java source code in the call graph computed ésing
object-sensitive alias analysis, the valué:afsed, the total running
time of Chord, and a brief description of the program.

Figure 11 shows the results of the first phase of our imple-
mentation. Columns (A) and (B) show the number of six-tuples
(t1,c1,e1,t2,c2,e2) and the number of pair:,es2) in the set
of possible races at the end of the firstiginal) and last fhay-
happen-in-parallél stages, respectively, of this phdsEor com-
parison with our earlier race checker [33], we partition tae
ter six-tuples and pairs intlikely and unlikely races: a six-tuple
(t1,c1,e1,t2,c2,e2) retained after themay-happen-in-parallel
stage is amnlikelyrace if and only if either of the following holds:

e t1 = t2, in which case it is most likely a thread-local pair of
accesses, or

e along every pair of paths in the program’s context-seresitiv
call graph from the entry points of the thread starting meésho
in contextst; andt» to the program points of; andes in
contextse; andcs, respectively, some pair of locks andey is
held in contexts:s andcy, respectively, such tha®(es, c3) =
P(es,ca) = {h}, that is, their points-to sets are singleton and
equal, in which case it is most likely a pair of accesses gdard
by a common lock.

Notice that both the above checks use may alias information t
approximate must alias information. The approximatiorffesotive

for bug-finding in our earlier race checker: the user can shdo
inspect only the small number tikely races that survive both the
above checks. However, the approximation is also unsouthdaam
result in false negatives buried in the large numbarrdikelyraces

3We have not yet attempted the largest benchmarks used inreviops
work [33], but we believe this algorithm can scale to thossgpams.
4The pairs count is the number of unique pairs of expressippsaxing in

all six-tuples—in many cases the same expressions have iraceultiple
contexts.



| | app classeg lib classes] app LOC[ libLOC | k [ time | brief description |
philo 2 423 84 | 110,582| 1 | 3ml4s| Dining Philosophers Problem solver
elevator 5 425 531 | 111,147| 1 | 5m43s| Areal-time discrete event simulator
tsp 4 426 706 | 110,954| 1 | 3m21s| Traveling Salesman Problem solver from ETH
ftp 118 478 21897 | 116,026 | 2 | 7m21s| Apache FTP Server

Figure 10. Benchmark characteristics.

that are uninspected. For instance, the first check=(¢2) prevents new race checker; 115 total false positives of 317 repoms38%
any race between a pair of threads spawned at the same @lfocat false positive rate. Most of the false positives in our negoathm
site from being reported adikely race. Likewise, the second check are the result of engineering shortcomings that are stifaigtard
does not do a disjoint reachability analysis style checleterine to remove with additional effort. Notice that the large nuarsof
whether the same object accessedebynde; is reachable from unlikely races reported in Column (B) in Figure 11 that were left
distinct locks allocated at site uninspected in our earlier work are almost completely elated.
While our earlier race checker stops at the end of the first Significantly, 80 of thesenlikely races turn out to be real races, a
phase and presents thikely races to the user, our current race fact that is witnessed by the increase in the numbers of eealsr
checker does not differentiate betweldtely and unlikely races reported in Column (D) over those in Column (E) in Figure 12.
and proceeds to perform the second phase on all possible race
retained at the end of the first phase. The results of the decon 7. Related Work
phase are shown in Figure 12. Column (C) shows the number of
possible races retained after applying thebal-lock stage to the
results of the first phase, while Column (D) shows the numlber o
possible races retained after the combined applicatiohedbtal-
lock andlocal-threadstages to the results of tigdobal-lockstage.
We present the results for these two stages combined siege th
are similar (they both employ disjoint reachability an&ysbut
Figure 13 shows the number of possible races retained diter t
global-lock stage that were proven to be guarded by a non-global
lock (Column (F)) and proven to be thread-local (Column (k8))
these two stages. Column (H) shows the net effectivenessirof o
disjoint reachability analysis. Notice that the numbersigftuples
in Columns (F) and (G) may not add up to those in Column (H)
since certain six-tuples may be proven to be both, guarded by
non-global lock and thread-local. This may happen if apgpion
code creates and manipulates thread-local data usingyfitlesses ! ‘eclio :
like java.util.Vector andjava.io.* that use synchronization  tical race detectors are primarily dynamic. The most papigian
extensively to ensure thread-safety of multi-threadeehtsi. Pairs ~ Of dynamic race detection is theckset algorithmas exempli-
(as opposed to six-tuples) of accesses are even more ligely t fied by the Eraser tool [40]. Recent work has greatly improved
figure in both columns, since reusable code is polymorphic in the order-of-magnitude slowdowns of the original impletaéions
calling/thread context, with accesses in such code beiagdgd [2, 43, 44] to the point that runtime overhead is generallgimiess
by a lock in one calling/thread context and thread-locariather. than 50% [5]. Other recent work has combined approachesibase
The effectiveness of thglobal-lock stage is evident in the ~ On Lamport's happens-before relation [1, 7, 8, 11, 26, 31,438
results fortsp and ftp. The tsp benchmark exclusively uses With the lockset algorithm to mitigate the disadvantagegacth
global locks: the number of pairs retained reduces from 49410 [12, 23, 34,35,47].
in the global-lock stage, and from 140 to 30 in tHecal-thread Dynamic race detection suffers from the well-known protdem
stage, but no pairs are eliminated in ibeal-lock stage. Theftp of every dynamic analysis, namely that first it cannot be used
benchmark also uses global locks heavily, though they ameapity with a partial, open program (such as a library) and secoed ev
in the library code exercised by this benchmark. when a closed program is available dynamic checking is aégren
The effectiveness of disjoint reachability analysis isaclie the on having adequate input. Note that the lockset algorithity on
results for all four programs: 30 of the 33 pairs survivingeathe depends on the set of locks held for each location and notrte o
global-lock stage forphilo are proven thread-local (the remain- inwhich locks are held, so a strength of the lockset algoriththat
ing 3 are real races), while the majority of such Survivin'gsp&)r it does not require a pal’tlcular InterleaVIng of thl’ead exeans to
elevator andtsp are proven guarded by a non-global lock. Fi- occur to detect races. But, for example, no dynamic racectiete
na”y’ many pairs are proven both guarded by a non_g|obalm can find races in code that is not executed at all.
thread-local forftp because this program creates and manipulates
thread-local data using extensively synchronized libcdagses.

In this section we very briefly survey the large literaturerane
detection (including dynamic techniques, static techesquand
work on checking atomicity) and the considerably smalteréiture
on problems related to conditional must not alias analygesbegin
by noting that our notion of loop vectors harkens back to tleas
of iteration spaceanddependence distande work on vectorizing
compilers. Loop vectors are points in the iteration spaceéhef
program, and our algorithm can be thought of as tracking rolsgret
statements of distance O (i.e., in the same iteration). \Wenat
aware of any deeper connections to the large literature agram
parallelization; our focus is on linked data structures buking

while parallelizing compilers focus primarily on arrayeeénces.

7.1 Dynamic Race Detection
To the extent that race detection is currently used in pracgirac-

7.2 Static Race Detection

Finally, the effectiveness of the conditional must notaphase
is illustrated in the number of real races and false alarmperted
in Column (D) in Figure 12, as compared to those resultinghfro

thelikely races produced by the first phase, shown in Column (E) in

Figure 12. Our new algorithm found a total of 202 real racesifit-
ing pairs) in all four benchmarks; using likely races findy/d?2,
showing that our sound system can find significantly moresrate
real programs. The number of false alarms is generally tangsur

Static race detection offers the promise of being able tortoes
before programs are run or, in the case of libraries, evearbef
they are fully written. Given the non-deterministic natofeaces,
the advantages of static analysis would seem greater ferdetec-
tion than many other program verification problems. Theohnyst
of static race detection has seen considerable theorgtiogtess
using a variety of approaches (flow-insensitive type systgn4,
15, 16, 22, 36, 39], flow-sensitive versions of the statikéat al-
gorithm [6, 13, 42], or path sensitive model checkers [29) Bidt



(A) afteroriginal stage (B) aftermay-happen-in-parallestage

likely unlikely total
hexts [ pairs hexts | pairs | hexts | pairs | hexis| pairs
philo 123344 926 0 0 35 35 35 35
elevator 55680 662 0 0 320 | 305| 320 | 305
tsp 298045 3379 4 4 490 | 490 | 494 | 494
ftp 97661557 55039 | 352 | 156 | 3733 | 1624 | 4085 | 1628

Figure 11. Results for phase 1: Context-sensitive may alias analysis.

(C) afterglobal-lock (D) after (ocal-lock+ local-thread stages (E) classification ofikely races
stage real races false alarms total real races false alarms
hexts|  pairs hexts | pairs | hexts | pairs | hexts| pairs || hexts| pairs | hexis | pairs
philo 33 33 3 3 0 0 3 3 0 0 0 0
elevator 320 305 0 0 0 0 0 0 0 0 0 0
tsp 140 140 12 12 18 18 30 30 0 0 4 4
ftp 2780 1147 | 761 | 187 | 258 97 | 1019 | 284 297 | 122 55 34
Figure 12. Results for phase 2: Conditional must not alias analysis.
(F) proven local-lock| (G) proven local-thread (H) proven race-free
hexts | pairs hexts | pairs hexts|  pairs
philo 30 30 0 0 30 30
elevator 52 37 268 268 320 305
tsp 0 0 110 110 | 110 110
ftp 1398 613 | 1156 577 | 1761 863

Figure 13. Effectiveness of disjoint reachability analysis.

until recently techniques were not known that scaled wifficgent
precision to find large numbers of bugs in realistic programs
Our own previous work, outlined in Section 5, scales redsigna

well and finds many bugs in both open and closed programs [33].

Earlier work by Choi et al. [6] took the same basic approach, b
found that scalability problems hampered effectivenesshably
because the idea éfobject-sensitive analysis did not exist then.
As discussed in Section 1, however, the final lock analysiseh
of [33] is unsound, using a cheaper may alias analysis taddeci
when two abstract locks represent the same concrete loakba p
lem requiring must alias analysis. Our desire to removelitisa-
tion is the inspiration for this paper. Instead of modifyihe origi-
nal algorithm to use must alias information to show when tvak$

are the same, we instead have chosen to focus on the dual prob-

lem of showing when two locks are different. To carry out shun
race detection, however, we must show that if two locks dferei
ent then they protect different locations, which leadsdiyeto the
more general definition of conditional must not alias anialyGon-
ditional must not alias analysis requires considerablydeanaly-
sis of the heap and correspondingly of how the heap is caristiu
than traditional alias analyses—distinguishing multipbgects al-
located at the same site is crucial, as is maintaining cticgls
between objects that are allocated and linked together.

7.3 Other Analysis Approaches

Disjoint reachability for data structures (e.g., provihgtttwo lists
constructed of separate elements are disjoint) is an oldigmm
Algorithms in this area range from flow-sensitive approxXiioas

of heap shape ([9] is an early example) to very powerful decis
procedures [27, 30]. Our notion of disjoint reachability léss
precise (e.g., it is flow-insensitive) but easier to scaldatge
programs and gives good results for race detection.

Ownership typegxpress the idea that among all pointers to an

object, one is often special in that it has more operatioas tther

pointers. In the context of race detection, ownership candssl
to prove encapsulation (that an object is the exclusive sscte
another object), which in turn can prove conditional mustatias-
ing facts: if two objects are distinct, any objects they qscdate
must be distinct. There are algorithms for inferring owhgr§24]
and encapsulation [21] and ownership types have been &qgblioi
race detectors [3]. While encapsulation is sufficient tovproon-
ditional must not aliasing, it is not necessary. Roughlyagpey,
ownership/encapsulation are properties of how an objecbiis
structed, while conditional must not aliasing also considiee spe-
cific pointers through which an object is used; this more egfin
treatment can fully automatically check race freedom fgects
that are not encapsulated and without ownership types.
Another related approach is thatcarrelation exists between
two objects if they are used consistently together [36]. feae
detection, correlation means a particular lock is alwaysdu®
guard a particular locatiotCorrelation analysisnfers which locks
always guard which locations. Our approach does not retpckes
and locations to be correlated; because each potentiaitygaair
of expressions is handled separately, different locks neaysied to
prove race freedom for the same expression in differenspair

7.4 Atomicity Checking

Much recent work on verification of concurrent programs tas f
cused on checkingtomicityrather than race freedom [2, 14, 17—
20, 39, 45, 46]. Atomicity is arguably a simpler and more natu
ral property for programmers and experimental work suggtstt
programmers most often use locks to achieve atomicity. Riess

of whether future languages rely primarily on atomicity ock-
ing, however, checking race freedom will be an importantpro
lem: existing concurrent languages will continue to usé&{based
synchronization idioms heavily, and many algorithms foeating
atomicity (in particular, those based on Lipton’s theoryaafuction
[29]) reduce to checking race freedom.



8. Conclusions

We have introduced conditional must not aliasing and shawn i

application to static race detection. We have also prededite

joint reachability analysis, an object reachability as#ythat is
useful for computing conditional must not alias facts. Weehian-

plemented conditional must not alias analysis using disjgiacha-
bility analysis in Chord, a static race checker for Java,applied it
to a suite of Java programs. The resulting system is fullgraatic,

reasonably efficient, and produces relatively few falsetjves.
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A. Proof of Type Preservation
We state a useful fact of environment abstraction (Figueg) Tigat
is needed in proving type preservation.

FAacT A.1. (Loopset Weakening) If W + (m,p) < (II,T") and
W' C W thenW’ + (m,p) < (II,T).

Proof. [of Type Preservation] By induction on the structure of
the derivation ofs, W, w,p,0 | «',p’,0’,C. There are 10 cases
depending on which one of rules (1)—(10) in Figure 5 was uasd |

in the derivation. For brevity, we only provide the proof fbe two
most interesting cases.

1. Rule (5). We haves = z.f = y. There are two sub-cases
depending upon whethe(y) is null or non-null. We only prove

the latter more interesting sub-case. We have:

(@): p(z) = 01 andp(y) = 02 and

(b): s, W, m,p,0 | 7, p,cl01.f — 02],{01 > 02}.

Froms = z.f = y and hypothesi$V,II,T s : I, K of the
lemma and rule (15) in Figure 8, we have:

C): W,II,T + s:T, K where:
K= {77—1 > 7:2} if F(l’) =T andF(y) = To
0 otherwise
We need to prove:
(A): W (m,p) 2 (IL,T) and
B):{o1> 02} 2 K.

The proof of (A) is trivial since (A) is one of the hypothesds o
the lemma. To prove (B), it suffices to prove (see Figure 7(b))

(d):I(F > 7)€ K: (61,02)  (T1, T2).
Proof of (d): From hypothesiV + (m,p) < (II,T') of the

lemma, we have (see item (2) and item (3)@)) in Figure 7(c)):

(e):Vz e V: p(z) 2T(z)and

H:VweW: IkeN: VzeV: ((p(z) =0 A T'(z) =
7 AN TI(w) =1) = on(w) =k).

From (a) and (e), we have (see defnook 7 in Figure 7(a)):
(9):T'(z) = 71 andI'(y) = 72 and

(h):51 < 71 andos < 7.

From (c) and (g), we have:

() K ={r1 > 7}

From (f) and (a) and (g), we have:

():VweW: IkeN: (7. Il(w) =1 = o1.7w(w) =k)
A (RI(w) =1 = o.mw(w) =k)).

From (h) and (j), we have (k)o1,02) x (71, 72) (see Figure
7(b)). From (i) and (k), we have (d).

2. Rule (10). We have = while” (x) do s” and

(@):5', W U {w}, n[w — 7(w) + 1], p,o 4 7., 0", C1 and
(b) s, W, 71-,7 p,7 o’ I 7T”7 p”7 UH7 Ca.
Froms = while" () do s" and hypothesiV, II,T - s : IV, K
of the lemma and rule (18) in Figure 8, we have:
(c): W, II,T + s:T', K and
(d): W u{w},IL,T*" F & :T, K and
(e): II(w) # 0.
We need to prove:
(A): W (=", p") < (II,T) and
B): (C1uUC(C2) X K.
From hypothesi$V + (r, p) < (IL,T") of the lemma, we have
(see Figure 7(c)):
(f): V' € W r(w') < II(w') and
9):Vz eV :p(z) XTI (x)and
(h):vw' e W: 3k € N:
(M(w") =1 = w(w)=k)A
(VzeV: (plx)y=0 AT(z)=7 A 7.I(v") =1) =
om(w') =k"))
We will first prove:
@O): Wu{w} F (rfw m(w)+ 1], p) = (I, T*F).
From Figure 7(c), this requires proving:
(i.1): Vo' € WU {w} : 7[w — 7(w) + 1](w’) < T(w’)
(i.2):Vzx € V: p(x) X T¥ ()
(.3):vw' e W: Ik’ e N:
(M) =1 = (afw — (w) + 1)(w') = k') A
VzeV: (p(z) =06 AT (z) =7 A 7H(w) =1) =
omw(w') =k)).
Proof of (i.1): From (e), we have (jJI(w) =1 V II(w) = T.
From(m(w)+1) > 0and (j), we have (K){m(w)+1) < II(w)
(see defn. of < 7 in Figure 7(a)). From (f) and (k), we have
(i.1).
Proof of (i.2): Immediate from (g) and defn. 3.2I6¥ ™ and the
defn. ofo < 7 in Figure 7(a).
Proof of (i.3): It suffices to prove:
(): 3k eN:
M(w) =1 = (7w m(w)+1 =
(VzeV: ((p(z)=0 A T¥H(z)=7 A
o.m(w) = k)).
since we will have (i.3) from (h) and (I).
Proof of (I): Choosek = (n[w — w(w) + 1])(w) whence we
have (m)Il(w) =1 = (7[w — w(w) + 1])(w) = k. Also,
from defn. 3.2 of ", we havevz € V : (T%t(z) = 7
= 7.II(w) # 1) whence we trivially have (n)vx € V :
((p(x) =0 AT¥T(2) =7 A 7.II(w) = 1) = om(w) =
k). From (m) and (n), we have (l).
We now prove (A) and (B). From (a) and (d) and (i) and the
induction hypothesis, we have (o) U {w} + (7',p") =<
(I,T) and (p):C:1 < K. From (o) and Fact A.1, we have
@Q: W + («',p") 2 (II,T). From (b) and (c) and (g) and
the induction hypothesis, we have (A) and (£} < K. From
(p) and (r), we have (B) (see Figure 7(b)).

O
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