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Abstract
We propose a technique to efficiently search a large family of ab-
stractions in order to prove a query using a parametric dataflow
analysis. Our technique either finds the cheapest such abstraction
or shows that none exists. It is based on counterexample-guided
abstraction refinement but applies a novel meta-analysis on abstract
counterexample traces to efficiently find abstractions that are inca-
pable of proving the query. We formalize the technique in a generic
framework and apply it to two analyses: a type-state analysis and
a thread-escape analysis. We demonstrate the effectiveness of the
technique on a suite of Java benchmark programs.

Categories and Subject Descriptors D.2.4 [SOFTWARE EN-
GINEERING]: Software/Program Verification; F.3.2 [LOGICS
AND MEANINGS OF PROGRAMS]: Semantics of Programming
Languages—Program analysis

General Terms Languages, Verification

Keywords Dataflow analysis, CEGAR, abstraction refinement,
optimum abstraction, impossibility, under-approximation

1. Introduction
A central problem in static analysis concerns how to balance its
precision and cost. A query-driven analysis seeks to address this
problem by searching for an abstraction that discards program
details that are unnecessary for proving an individual query.

We consider query-driven dataflow analyses that are parametric
in the abstraction. The abstraction is chosen from a large family
that allow abstracting different parts of a program with varying
precision. A large number of fine-grained abstractions enables an
analysis to specialize to a query but poses a hard search problem in
practice. First, the number of abstractions is infinite or intractably
large to search naı̈vely, with most abstractions in the family being
too imprecise or too costly to prove a particular query. Second,
proving queries in different parts of the same program requires
different abstractions. Finally, a query might be unprovable by all
abstractions in the family, either because the query is not true or
due to limitations of the analysis at hand.

We propose an efficient technique to solve the above search
problem. It either finds the cheapest abstraction in the family that
proves a query or shows that no abstraction in the family can prove
the query. We call this the optimum abstraction problem. Our tech-
nique is based on counterexample-guided abstraction refinement
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(CEGAR) but differs radically in how it analyzes an abstract coun-
terexample trace: it computes a sufficient condition for the failure
of the analysis to prove the query along the trace. The condition
represents a set of abstractions such that the analysis instantiated
using any abstraction in this set is guaranteed to fail to prove the
query. Our technique finds such unviable abstractions by doing a
backward analysis on the trace. This backward analysis is a meta-
analysis that must be proven sound with respect to the abstract se-
mantics of the forward analysis. Scalability of backward analyses is
typically hindered by exploring program states that are unreachable
from the initial state. Our backward analysis avoids this problem as
it is guided by the trace from the forward analysis. This trace also
enables our backward analysis to do under-approximation while
guaranteeing to find a non-empty set of unviable abstractions.

Like the forward analysis, the backward meta-analysis is a static
analysis, and the performance of our technique depends on how
this meta-analysis balances its own precision and cost. If it does
under-approximation aggressively, it analyzes the trace efficiently
but finds only the current abstraction unviable and needs more itera-
tions to converge. On the other hand, if it does under-approximation
passively, it analyzes the trace inefficiently but finds many abstrac-
tions unviable and needs fewer iterations. We present a generic
framework to develop an efficient meta-analysis, which involves
choosing an abstract domain, devising (backward) transfer func-
tions, and proving these functions sound with respect to the forward
analysis. Our framework uses a generic DNF representation of for-
mulas in the domain and provides generic optimizations to scale
the meta-analysis. We show the applicability of the framework to
two analyses: a type-state analysis and a thread-escape analysis.

We evaluate our technique using these two client analyses on
seven Java benchmark programs of 400K–600K bytecodes each.
Both analyses are fully flow- and context-sensitive with 2N pos-
sible abstractions, where N is the number of pointer variables for
type-state analysis, and the number of object allocation sites for
thread-escape analysis. The technique finds the cheapest abstrac-
tion or shows that none exists for 92.5% of queries posed on aver-
age per client analysis per benchmark program.

We summarize the main contributions of this paper:

• We formulate the optimum abstraction problem for parametric
dataflow analysis. The formulation seeks a cheapest abstraction
that proves the query or an impossibility result that none exists.

• We present a new refinement-based technique to solve the prob-
lem. The key idea is a meta-analysis that analyzes counterexam-
ples to find abstractions that are incapable of proving the query.

• We present a generic framework to design the meta-analysis
along with an efficient representation and optimizations to scale
it. We apply the framework to two analyses in the literature.

• We demonstrate the efficacy of our technique in practice on the
two analyses, a type-state analysis and a thread-escape analysis,
for several real-world Java benchmark programs.



The rest of the paper is organized as follows. Section 2 illus-
trates our technique on an example. Section 3 formalizes paramet-
ric dataflow analysis and the optimum abstraction problem. We first
define a generic framework and then apply it to our two example
analyses. Section 4 presents our meta-analysis, first in a generic set-
ting and then for a domain that suffices for our two analyses. Sec-
tion 5 gives our overall algorithm and Section 6 presents empirical
results. Section 7 discusses related work and Section 8 concludes.

2. Example
We illustrate our technique using the program in Figure 1(a). The
program operates on a File object which can be in either state
opened or closed at any instant. It begins in state closed upon
creation, transitions to state opened after the call to open(), and
back to state closed after the call to close(). Suppose that it is
an error to call open() in the opened state, or to call close() in
the closed state. Statements check1 and check2 at the end of the
program are queries which ask whether the state of the File object
is closed or opened, respectively, at the end of every program run.

A static type-state analysis can be used to conservatively answer
such queries. Such an analysis must track aliasing relationships
between pointer variables in order to track the state of objects
correctly and precisely. For instance, in our example program, the
analysis must infer that variables x and y point to the same File
object in order to prove query check1. Analyses that track more
program facts are typically more precise but also more costly. A
query-based analysis enables striking a balance between precision
and cost by not tracking program facts that are unnecessary for
proving an individual query.

Making our type-state analysis query-based enables it to track
only variables that matter for answering a particular query (such as
check1). We therefore parameterize this analysis by an abstraction
π which specifies the set of variables that the analysis must track.
An abstraction π1 is cheaper than an abstraction π2 if π1 tracks
fewer variables than π2 (i.e., |π1| < |π2|). For a program with
N variables there are 2N possible abstractions. Figure 1(b) shows
which abstractions in this family are suitable for each of our two
queries. Any abstraction containing variables x and y is precise
enough to let our analysis prove query check1. The cheapest of
these abstractions is {x, y}. On the other hand, our analysis cannot
prove query check2 using any abstraction in the family. This is
because query check2 is not true concretely, but the analysis may
fail to prove even true queries due to its conservative nature.

We propose an efficient technique for finding the cheapest ab-
straction in the family that proves a query or showing that no ab-
straction in the family can prove the query. We illustrate our tech-
nique on our parametric type-state analysis. This analysis is fully
flow- and context-sensitive, and tracks for each allocation site in
the program a pair 〈ts, vs〉 or >, where ts over-approximates the
set of possible type-states of an object created at that site, and vs
is a must-alias set—a set of variables that definitely point to that
object. Only variables in the abstraction π used to instantiate the
analysis are allowed to appear in any must-alias set.> denotes that
the analysis has detected a type-state error.

Our technique starts by running the analysis with the cheapest
abstraction. For our type-state analysis this corresponds to not
tracking any variable at all. The resulting analysis fails to prove
query check1. Our technique is CEGAR-based and requires the
analysis to produce an abstract counterexample trace as a failure
witness. Such a trace showing the failure to prove query check1

under the cheapest abstraction is shown in Figure 1(c). The trace is
annotated with abstract states computed by the analysis, denoted ↓,
that track information about the lone allocation site in the program.
Note that state 〈{closed}, {}〉 incoming into call x.open() results in
outgoing state 〈{opened, closed}, {}〉 even though the File object

cannot be in the closed state after the call. This is because the
analysis does a weak update as x is not in the must-alias set of
the incoming abstract state.

At this point our technique has eliminated abstraction π = {}
as incapable of proving query check1 and must determine which
abstraction to try next. Since the number of abstractions is large,
however, it first analyzes the trace to eliminate abstractions that
are guaranteed to suffer a failure similar to the current one. It
does so by performing a backward meta-analysis that inspects the
trace backwards and analyzes the result of the (forward) type-
state analysis. This meta-analysis is itself a static analysis and the
abstract states it computes are denoted by ↑ in Figure 1(c). Each
abstract state of the meta-analysis represents a set of pairs (d, π)
consisting of an abstract state d of the forward analysis and an
abstraction π. An abstract state of the meta-analysis is a boolean
formula over primitives of the form: (1) err representing the set of
pairs where the d component is >; (2) closed ∈ ts representing
the set of pairs where the d component is 〈ts, vs〉 and ts contains
closed; (3) x ∈ vswhich is analogous to (2) except that vs contains
x; and (4) x ∈ π meaning the π component contains x.

The meta-analysis starts with the weakest formula under which
check1 fails, which is err ∨ (opened ∈ ts), and propagates its
weakest precondition at each step of the trace to obtain formula
(closed ∈ ts) ∧ (opened /∈ ts) ∧ (x /∈ π) at the start of the trace.
This formula implies that any abstraction not containing variable x
cannot prove query check1. Our meta-analysis has two notable as-
pects. First, it does not require the family of abstractions to be finite:
it can show that all abstractions in even an infinite family cannot
prove a query. Second, it avoids the blowup inherent in backward
analyses by performing under-approximation. It achieves this for
the above domain of boolean formulae by dropping disjuncts in the
DNF representation of the formulae. A crucial condition ensured by
our meta-analysis during under-approximation is that the abstract
state computed by the forward analysis is contained in the resulting
simpler formula. Otherwise, it is not possible to guarantee that the
eliminated abstractions cannot prove the query. Section 4 explains
how our technique picks the best k disjuncts for a k ≥ 1 speci-
fied by the analysis designer. Smaller k enables the meta-analysis
to run efficiently on each trace but can require more iterations by
eliminating only the current abstraction in each iteration in the ex-
treme case. We use k = 1 for this example and highlight in bold the
chosen (retained) disjunct in each formula with multiple disjuncts
in Figure 1. For instance, we drop the second disjunct in formula
err∨(opened ∈ ts) at the end point of the trace in Figure 1(c), since
abstract state > computed by the forward analysis at that point is
not in the set of states represented by (opened ∈ ts). The weak-
est precondition of the chosen disjunct err with respect to the call
y.close() is err∨(closed ∈ ts), but this time we drop disjunct err as
the abstract state 〈{closed, opened}, {}〉 computed by the forward
analysis is not in the set of states represented by err.

Having eliminated all abstractions that do not contain variable
x, our technique next runs the type-state analysis with abstraction
π = {x}, but again fails to prove query check1, and produces
the trace showed in Figure 1(d). Our meta-analysis performed on
this trace infers that any abstraction containing variable x but not
containing variable y cannot prove the query. Hence, our technique
next runs the type-state analysis with abstraction π = {x, y}, and
this time succeeds in proving the query. Our technique is effective
at slicing away program details that are irrelevant to proving a
query. For instance, even if either of the traces in Figure 1 (c) or
(d) contained the statement “if (*) z = x”, variable z would not be
included in any abstraction that our technique tries; indeed, tracking
variable z is not necessary for proving query check1.

Finally, consider the query check2. Our technique starts with
the cheapest abstraction π = {}, and obtains a trace identical



x = new File;
y = x;
if (*) z = x;
x.open();
y.close();
if (*)

check1(x, closed);
else

check2(x, opened);

(a) Example program.

query abstraction
check1 any π ⊇ {x, y}
check2 none

(b) Feasible solutions.

↑ closed ∈ ts
∧ opened /∈ ts ∧ x /∈ π

x = new File;
↓ 〈{closed}, {}〉
↑ closed ∈ ts
∧ opened /∈ ts ∧ x /∈ vs

y = x;
↓ 〈{closed}, {}〉
↑ closed ∈ ts
∧ opened /∈ ts ∧ x /∈ vs

x.open();
↓ 〈{closed, opened}, {}〉
↑ err ∨ closed ∈ ts

y.close();
↓ >
↑ err ∨ opened ∈ ts

check1(x, closed);

(c) Iteration 1 for query
check1 using π = {}.

↑ closed ∈ ts ∧ opened /∈ ts
∧ y /∈ π ∧ x ∈ π

x = new File;
↓ 〈{closed}, {x}〉
↑ closed ∈ ts ∧ opened /∈ ts
∧ y /∈ π ∧ x ∈ vs

y = x;
↓ 〈{closed}, {x}〉
↑ closed ∈ ts ∧ opened /∈ ts
∧ y /∈ vs ∧ x ∈ vs

x.open();
↓ 〈{opened}, {x}〉
↑ opened ∈ ts ∧ closed /∈ ts
∧ y /∈ vs

y.close();
↓ 〈{closed, opened}, {x}〉
↑ err ∨ opened ∈ ts

check1(x, closed);

(d) Iteration 2 for query
check1 using π = {x}.

↑ closed ∈ ts
∧ opened /∈ ts ∧ x ∈ π

x = new File;
↓ 〈{closed}, {x}〉
↑ closed ∈ ts
∧ opened /∈ ts ∧ x ∈ vs

y = x;
↓ 〈{closed}, {x}〉
↑ closed ∈ ts
∧ opened /∈ ts ∧ x ∈ vs

x.open();
↓ 〈{opened}, {x}〉
↑ opened ∈ ts ∧ closed /∈ ts

y.close();
↓ 〈{closed, opened}, {x}〉
↑ err ∨ closed ∈ ts

check2(x, opened);

(e) Iteration 2 for query
check2 using π = {x}.

Figure 1. Example illustrating our technique for a parametric type-state analysis.

to that in Figure 1(b) for query check1, except that the meta-
analysis starts by propagating formula err ∨ (closed ∈ ts) instead
of err ∨ (opened ∈ ts). The same disjunct err in this formula is
retained and the rest of the meta-analysis result is identical. Thus,
in the next iteration, our technique runs the type-state analysis with
abstraction π = {x}, and obtains the trace shown in Figure 1(e).
This time, the meta-analysis retains disjunct (closed ∈ ts), and
concludes any abstraction containing variable x cannot prove the
query. Since in the first iteration all abstractions without variable x
were eliminated, our technique concludes that the analysis cannot
prove query check2 using any abstraction.

3. Formalism
This section describes a formal setting used throughout the paper.

3.1 Programming Language
We present our results using a simple imperative language:

(atomic command) a ::= ...
(program) s ::= a | s ; s′ | s+ s′ | s∗

The language includes a (unspecified) set of atomic commands.
Examples are assignments v = w.f and statements assume(e)
which filter out executions where e evaluates to false. The language
also has the standard compound constructs: sequential composi-
tion, non-deterministic choice, and iteration. A trace τ is a finite se-
quence of atomic commands a1a2 . . . an. It records the steps taken
during one execution of a program. Function trace(s) in Figure 2
shows a standard way to generate all traces of a program s.

3.2 Parametric Dataflow Analysis
We consider dataflow analyses whose transfer functions for atomic
commands are parametric in the abstraction. We specify such a
parametric analysis by the following data:

1. A set (P,�) with a preorder � (i.e., � is reflexive and tran-
sitive). Elements π ∈ P are parameter values. We call them
abstractions as they determine the degree of approximation per-
formed by the analysis. The preorder � on π’s dictates the cost
of the analysis: using a smaller π yields a cheaper analysis. We
require that every nonempty subset P ⊆ P has a minimum ele-
ment π ∈ P (i.e., π � π′ for every π′ ∈ P ).

trace(a) = {a}
trace(s+ s′) = trace(s) ∪ trace(s′)
trace(s ; s′) = {τ τ ′ | τ ∈ trace(s) ∧ τ ′ ∈ trace(s′)}

trace(s∗) = leastFixλT. {ε} ∪ {τ ; τ ′ | τ ∈T ∧ τ ′ ∈ trace(s)}

Figure 2. Traces of a program s. Symbol ε denotes an empty trace.

2. A finite set D of abstract states. Our analysis uses a set of
abstract states to approximate reachable concrete states at each
program point. Formally, this means the analysis is disjunctive.

3. A transfer function JaKπ : D→ D for each atomic command a.
The function is parameterized by π ∈ P.

A parametric analysis analyzes a program in a standard way ex-
cept that it requires an abstraction to be provided before the anal-
ysis starts. The abstract semantics in Figure 3 describes the behav-
ior of the analysis formally. In the figure, a program s denotes a
transformer Fπ[s] on sets of abstract states, which is parameterized
by π ∈ P. Note that the abstraction π is used when atomic com-
mands are interpreted. Hence, π controls the analysis by changing
the transfer functions for atomic commands. Besides this parame-
terization all the defining clauses are standard.

Our parametric analyses satisfy a fact of disjunctive analyses:

LEMMA 1. For all programs s, abstractions π, and abstract states
d, we have Fπ[s]({d}) = {Fπ[τ ](d) | τ ∈ trace(s)}, where
Fπ[τ ] is the result of analyzing trace τ as shown in Figure 3.

The lemma ensures that for all final abstract states d′ ∈ Fπ[s]({d}),
we can construct a trace τ transforming d to d′. This trace does not
have loops and is much simpler than the original program s. We
show later how our technique exploits this simplicity (Section 4).
We now formalize two example parametric analyses.

Type-State Analysis. Our first example is a variant of the type-
state analysis from [8]. The original analysis maintains various
kinds of aliasing facts in order to track the type-state of objects
correctly and precisely. Our variant only tracks must-alias facts.

We assume we are given a set T of type-states containing init ,
which represents the initial type-state of objects, and a function
JmK : T → T ∪ {>} for every method m, which describes how a
call x.m() changes the type-state of object x and when it leads to



Fπ[s] : 2D → 2D

Fπ[a](D) = {JaKπ(d) | d ∈ D}
Fπ[s ; s′](D) = (Fπ[s′] ◦ Fπ[s])(D)
Fπ[s+ s′](D) = Fπ[s](D) ∪ Fπ[s′](D)

Fπ[s∗](D) = leastFix λD0. D ∪ Fπ[s](D0)

Fπ[τ ] : D→ D
Fπ[ε](d) = d
Fπ[a](d) = JaKπ(d)

Fπ[τ ; τ ′](d) = Fπ[τ ′](Fπ[τ ](d))

Figure 3. Abstract semantics. In the case of loop, we take the least
fixpoint with respect to the subset order in the powerset domain 2D.

(type-states) σ ∈ T (we assume init ∈ T)
(variables) x, y ∈ V

(analysis parameter) π ∈ P = 2V

(abstract state) d ∈ D = (2T × 2V) ∪ {>}
(order on parameters) π � π′⇔|π| ≤ |π′|

(transfer function) JaKπ : D→ D

JaKπ(>) = >

Jx= yKπ(ts, vs) =

{
(ts, vs ∪ {x}) if y ∈ vs ∧ x∈π
(ts, vs \ {x}) otherwise

Jx= nullKπ(ts, vs) = (ts, vs \ {x})

Jx.m()Kπ(ts, vs) =

> if ∃σ ∈ ts. JmK(σ) = >
({JmK(σ) |σ ∈ ts}, vs) else if x∈ vs
(ts ∪ {JmK(σ) |σ ∈ ts}, vs) otherwise

Figure 4. Data for the type-state analysis.

an error, denoted >. Using these data, we specify the domains and
transfer functions of the analysis in Figure 4.

The abstraction π for the analysis is a set of variables that
determines what can appear in the must-alias set of an abstract state
during the analysis. An abstract state d has form (ts, vs) or >,
where vs should be a subset of π, and it tracks information about a
single object. In the former case, ts represents all the possible type-
states of the tracked object and vs, the must-alias set of this object.
The latter means that the object can be in any type-state including
the error state >. For brevity, we show transfer functions only for
simple assignments and method calls. Those for assignments x = y
and x = null update the must-alias set according to their concrete
semantics and abstraction π. The transfer function for a method call
x.m() updates the ts component of the input abstract state using
JmK. In the case where the must-alias set is imprecise, this update
includes both the old and new type-states.

According to our order �, an abstraction π is smaller than
π′ when its cardinality is smaller than π′. Hence, running this
analysis with a smaller π implies that the analysis would be less
precise about must-alias sets, which normally correlates the faster
convergence of the fixpoint iteration of the analysis.

Thread-Escape Analysis. Our second example is a variant of the
thread-escape analysis from [17]. A heap object in a multithreaded
shared-memory program is thread-local when it is reachable only
from at most a single thread. A thread-escape analysis conserva-
tively answers queries about thread locality.

Let H be the set of allocation sites, L that of local variables, and
F that of object fields in a program. Using these data, we specify
the domains and transfer functions of the analysis in Figure 5.
There N means the null value, and L and E are abstract locations,

representing disjoint sets of heap objects, except that both L and
E include the null value. Abstract location E summaries null, all
the thread-escaping objects, and possibly some thread-local ones.
On the other hand, L denotes all the other heap objects and null;
hence it means only thread-local objects, although it might miss
some such objects. The analysis maintains an invariant that E-
summarized objects are closed under pointer reachability: if a heap
object is summarized by E, following any of its fields always gives
null or E-summarized objects, but not L-summarized ones.

An abstraction π determines for each site h ∈ H whether
L or E should be used to summarize objects allocated at h. An
abstract element d is a function from local variables or fields of L-
summarized objects to abstract locations or N. It records the values
of local variables and those of the fields of L-summarized heap
objects. For instance, abstract state [v 7→ L, f1 7→ E, f2 7→ E]
means that local variable v points to some heap object summarized
by L, and fields f1, f2 of every L object point to those summarized
by E. Since all thread-escaping objects are summarized by E, this
abstract state implies that v points to a thread-local heap object.

We order abstractions π � π′ based on how many sites are
mapped to L by π and π′. This is because the number of L-mapped
sites usually correlates the performance of the analysis.

The thread-escape analysis includes transfer functions of the
following heap-manipulating commands:

a ::= v = new h | g = v | v = g | v = null | v = v′ |
v = v′.f | v.f = v′

Here g and v are global and local variables, respectively, and h ∈ H
is an allocation site. Transfer functions of these commands simulate
their usual meanings but on abstract instead of concrete states.

Function Jv = new hKπ(d) makes variable v point to abstract
location π(h), simulating the allocation of a π(h)-summarized ob-
ject and the binding of this object with v. The transfer function for
g = v models that if v points to a thread-local object, this assign-
ment makes the object escape, because it exposes the object to other
threads via the global variable g. When v points to L, the transfer
function calls esc(d), which sets all local variables to E (unless they
have value N) and resets all fields to N. This means that after calling
esc(d), the analysis loses most of the information about thread lo-
cality, and concludes that all variables point to potentially escaping
objects. This dramatic information loss is inevitable because if v
points to L beforehand, the assignment g = v can cause any object
summarized by L to escape. The transfer functions of the remaining
commands in the figure can be understood similarly by referring to
the concrete semantics and approximating it over abstract states.

Figure 6 shows the abstract state (denoted by ↓) computed by
our thread-escape analysis at each point of an example program.
The results of the analysis in parts (a) and (b1) of the figure are
obtained using the same abstraction [h1 7→ E, h2 7→ E] and are
thus identical; the results in part (b2) are obtained using a different
abstraction [h1 7→ L, h2 7→ E].

3.3 Optimum Abstraction Problem
Parametric dataflow analyses are used in the context of query-
driven verification where we are given not just a program to analyze
but also a query to prove. In this usage scenario, the most important
matter to resolve before running the analysis is to choose a right
abstraction π. Ideally, we would like to pick π that causes the
analysis to keep enough information to prove a given query for
a given program, but to discard information unnecessary for this
proof, so that the analysis achieves high efficiency.

The optimum abstraction problem provides a guideline on re-
solving the issue of abstraction selection. It sets a specific target
on abstractions to aim at. Assume that we are interested in queries
expressed as subsets of D. The problem is defined as follows:



↓ [u 7→ N, v 7→ N]
↑ h1→E ∨ (h2→E ∧ h1→L)

u = new h1;
↓ [u 7→ E, v 7→ N]
↑ u→E ∨ (h2→E ∧ u→L) ∨ (h2→L ∧ f→E ∧ u→L)

v = new h2;
↓ [u 7→ E, v 7→ E]
↑ u→E ∨ (v→E ∧ u→L) ∨ (v→L ∧ f→E ∧ u→L)

v.f = u;
↓ [u 7→ E, v 7→ E]
↑ u→E

pc: local(u)?

(a) π = [h1 7→ E, h2 7→ E]

↓ [u 7→ N, v 7→ N]
↑ h1→E

u = new h1;
↓ [u 7→ E, v 7→ N]
↑ u→E

v = new h2;
↓ [u 7→ E, v 7→ E]
↑ u→E

v.f = u;
↓ [u 7→ E, v 7→ E]
↑ u→E

pc: local(u)?

(b1) π = [h1 7→ E, h2 7→ E]

↓ [u 7→ N, v 7→ N]
↑ h1→L ∧ h2→E

u = new h1;
↓ [u 7→ L, v 7→ N]
↑ u→L ∧ h2→E

v = new h2;
↓ [u 7→ L, v 7→ E]
↑ u→L ∧ v→E

v.f = u;
↓ [u 7→ E, v 7→ E]
↑ u→E

pc: local(u)?

(b2) π = [h1 7→ L, h2 7→ E]

Figure 6. Example showing our technique for thread-escape analysis with under-approximation (parts (b1) and (b2)) and without (part (a)).

(allocation sites) h ∈ H
(local variables) v ∈ V

(object fields) f ∈ F
(analysis parameter) π ∈ P = H→ {L, E}

(abstract state) d ∈ D = (L ∪ F)→ {L, E, N}
(order on parameters) π � π′⇔|{h ∈ H | π(h) = L}| ≤

|{h ∈ H | π′(h) = L}|
esc : D→ D

esc(d) = λu. if (d(u) = N ∨ u ∈ F) then N else E

(transfer function) JaKπ : D→ D

Jv= new hKπ(d) = d[v 7→ π(h)]
Jg= vKπ(d) = if (d(v) = L) then esc(d) else d
Jv= gKπ(d) = d[v 7→ E]

Jv= nullKπ(d) = d[v 7→ N]
Jv= v′Kπ(d) = d[v 7→ d(v′)]

Jv= v′.fKπ(d) =

{
d[v 7→ d(f)] if (d(v′) = L)
d[v 7→ E] otherwise

Jv.f = v′Kπ(d) =

esc(d) if d(v) = E ∧ d(v′) = L
d if (d(v) = E ∧ d(v′) 6= L) ∨ d(v) = N
esc(d) if d(v) = L ∧ {d(f), d(v′)} = {L, E}
d[f 7→ L] if d(v) = L ∧ {d(f), d(v′)} = {N, L}
d[f 7→ E] if d(v) = L ∧ {d(f), d(v′)} = {N, E}
d if d(v) = L ∧ d(f) = d(v′)

Figure 5. Data for the thread-escape analysis.

DEFINITION 2 (Optimal Abstraction Problem). Given a program
s, an initial abstract state dI , and a query q ⊆ D, find a minimum
abstraction1 π such that

Fπ[s]{dI} ⊆ q, (1)

or show that Fπ[s]{dI} ⊆ q does not hold for any π.

The problem asks for not a minimal π but a minimum hence cheap-
est one. This requirement encourages any solution to exploit cheap
abstractions (determined by �) as much as possible. Note that the
requirement is aligned with the intended meaning of�, which com-
pares parameters in terms of the analysis cost. A different way of
comparing parameters in terms of precision, not cost, is taken in
Liang et al. [16]. In their case, a minimum parameter for proving a

1 The condition that π be minimum means: if Fπ′ [s]dI ⊆ q, then π � π′.
In contrast, the minimality of π means the absence of π′ that satisfies (1)
and is strictly smaller than π according to �.

query often does not exist or it is expensive to compute, so they ask
for a minimal parameter instead.

Our approach to solve the problem is based on using a form
of a backward meta-analysis that reasons about the behavior of a
parametric dataflow analysis under different abstractions simulta-
neously. We explain this backward meta-analysis next.

4. Backward Meta-Analysis
In this section, we fix a parametric dataflow analysis (P,�,D, J−K)
and describe corresponding backward meta-analyses. To avoid the
confusion between these two analyses, we often call the parametric
analysis as forward analysis.

A backward meta-analysis is a core component of our algorithm
for the optimum abstraction problem. It is invoked when the for-
ward analysis fails to prove a query. The meta-analysis attempts
to determine why a run of the forward analysis with a specific ab-
straction π fails to prove a query, and to generalize this reason.
Concretely, the inputs to the meta-analysis are a trace τ , an ab-
straction π, and an initial abstract state dI , such that the π instance
of the forward analysis fails to prove that a given query holds at
the end of τ . Given such inputs, the meta-analysis analyzes τ back-
ward, and collects abstractions that lead to a similar verification
failure of the forward analysis. The collected abstractions are used
subsequently when our top-level algorithm computes a necessary
condition on abstractions for proving the given query and chooses
a next abstraction to try based on this condition.

Formally, the meta-analysis is specified by the following data:

• A set M and a function

γ : M→ 2P×D.

Elements in M are the main data structures used by the meta-
analysis, and γ determines their meanings. We suggest to read
elements in M as predicates over P×D. The meta-analysis uses
such a predicate φ ∈ M to express a sufficient condition for
verification failure: for every (π, d) ∈ γ(φ), if we instantiate
the forward analysis with π and run this instance from the
abstract state d (over the part of a trace analyzed so far), we
will fail to prove a given query.

• A function

JaKb : M→ M

for each atomic command a. The input φ1 ∈ M represents a
postcondition on P× D. Given such φ1, the function computes
the weakest precondition φ such that running JaK from any
abstract state in γ(φ) has an outcome in γ(φ1). This intuition



B[τ ] : P× D×M→ M
B[ε](π, d, φ) = φ
B[a](π, d, φ) = approx(π, d, JaKb(φ))

B[τ ; τ ′](π, d, φ) = B[τ ](π, d,B[τ ′](π, Fπ[τ ](d), φ))

Figure 7. Backward meta-analysis.

toDNF(φ) transforms φ to the DNF form and sorts disjuncts by size

simplify(
∨
{φi | i ∈ {1, . . . , n}}) =∨
{φi | i ∈ {1, . . . , n} ∧ ¬(∃j < i.φj v φi)}

dropk(π, d,
∨
{φi | i ∈ {1, . . . , n}}) =

(
∨
{φi | i ∈ {1, . . . ,min(k − 1, n)}}) ∨ φj

(where (π, d) ∈ γ(φj) and j is the smallest such index)

Figure 8. Functions for manipulating φ’s.

is formalized by the following requirement on JaKb:

∀φ1 ∈M. γ(JaKb(φ1)) = {(π, d) | (π, JaKπ(d))∈ γ(φ1)}.
(2)

• A function
approx : P× D×M→ M.

The function is required to meet the following two conditions:

1. ∀π, d, φ. γ(approx(π, d, φ)) ⊆ γ(φ); and

2. ∀π, d, φ. (π, d) ∈ γ(φ)⇒ (π, d) ∈ γ(approx(π, d, φ)).

The first ensures that approx(π, d, φ) under-approximates the
input φ, and the second says that this under-approximation
should keep at least (π, d), if it is already in γ(φ). The main
purpose of approx is to simplify φ. For instance, when φ is a
logical formula, approx converts φ to a syntactically simpler
one. The operator is invoked frequently by our meta-analysis to
keep the complexity of the M value (the analysis’s main data
structure) under control.

Using the given data, our backward meta-analysis analyzes a trace
τ backward as described in Figure 7. For each atomic command a
in τ , it transforms an input φ using JaKb first. Then, it simplifies the
resulting φ′ using the approx operator.

Our meta-analysis correctly tracks a sufficient condition that the
forward analysis fails to prove a query. This condition is not trivial
(i.e., it is a satisfiable formula), and includes enough information
about the current failed verification attempt on τ by the forward
analysis. Our theorem below formalizes these guarantees. Proofs
of all theorems are provided in the supplementary material.

THEOREM 3 (Soundness). For all τ , π, d and φ ∈ M,

1. (π, Fπ[τ ](d)) ∈ γ(φ)⇒ (π, d) ∈ γ(B[τ ](π, d, φ)); and
2. ∀(π0, d0) ∈ γ(B[τ ](π, d, φ)). (π0, Fπ0 [τ ](d0)) ∈ γ(φ).

4.1 Disjunctive Meta-Analysis and Underapproximation
Designing a good under-approximation operator approx is impor-
tant for the performance of a backward meta-analysis, and it often
requires new insights. In this subsection, we identify a special sub-
class of meta-analyses, called disjunctive meta-analyses, and define
a generic under-approximation operator for these meta-analyses.
Both our example analyses have disjunctive meta-analyses and use
the generic under-approximation operator.

A meta-analysis is disjunctive if the following conditions hold:

• The set M consists of formulas φ:

φ ::= p | true | false | ¬φ | φ∧φ′ | φ∨φ′ (p ∈ PForm)

(primitive formula) p ∈ PForm

p ::= err | param(x) | var(x) | type(σ)

γ(err) = {(π,>)}
γ(param(x)) = {(π, d) | x ∈ π}

γ(var(x)) = {(π, (ts, vs)) | x ∈ vs}
γ(type(σ)) = {(π, (ts, vs)) | σ ∈ ts}

p v p′ ⇔ p = p′

φ v φ′ ⇔ φ = φ′, or both φ and φ′ are conjunction of primitive
formulas and for every conjunct p′ of φ′, there exists
a conjunct p of φ such that p v p′

Figure 9. Data for backward meta-analysis for type-state analysis.

where PForm is a set of primitive formulas, and the boolean
operators have the standard meanings:

γ(true) = P× D γ(false) = ∅ γ(¬φ) = (P× D) \ γ(φ)
γ(φ∧φ′) = γ(φ) ∩ γ(φ′) γ(φ∨φ′) = γ(φ) ∪ γ(φ′)

• The set M comes with a binary relation v such that

∀φ, φ′ ∈ M. φ v φ′ ⇒ γ(φ) ⊆ γ(φ′).

The domain M of a disjunctive meta-analysis in a sense contains
all boolean formulas which are constructed from primitive ones
in PForm. We define a generic under-approximation operator for
disjunctive meta-analyses as follows:

approx : P× D×M→ M
approx(π, d, φ) = let φ′ = (simplify ◦ toDNF)(φ) in

if (number of disjuncts in φ′ ≤ k) then φ′

else dropk(π, d, φ′)

Subroutines toDNF, simplify, and drop are defined in Figure 8. The
approx operator first transforms φ to disjunctive normal form and
removes redundant disjuncts in the DNF formula that are subsumed
by other shorter disjuncts in the same formula. If the resulting
formula φ′ is simple enough in that it has no more than k disjuncts
(where k is pre-determined by an analysis designer), then φ′ is
returned as the result. Otherwise, some disjuncts of φ′ are pruned:
the first k − 1 disjuncts according to their syntactic size survive,
together with the shortest disjunct φj that includes the input (π, d)
(i.e., (π, d) ∈ γ(φj)). Our pruning is an instance of beam search
in Artificial Intelligence which keeps only the most promising k
options during exploration of a search space.

Meta-Analysis for Type-State. We define a disjunctive meta-
analysis for our type-state analysis using the above recipe. Doing so
means defining three entities shown in Figures 9 and 10: the set of
primitive formulas, the order v on formulas, and a function J−Kb.

The meta-analysis uses three primitive formulas. The first is err
which says the d component of a pair (π, d) is >. The remaining
three formulas describe elements that should be included in some
component of (π, d). For instance, var(x) says that the d compo-
nent is a non-> value (ts, vs) such that the vs part contains x.

We order formulas φ v φ′ in M when φ and φ′ are the same,
or both φ and φ′ are conjunction of primitive formulas and every
primitive formula p′ in φ′ corresponds to some primitive formula p
in φ that implies p′.

Finally, for each atomic command a, the meta-analysis uses
transfer function JaKb, which we show in [23] satisfies requirement
(2) of our framework. This requirement means that JaKb collects all
the abstractions π and abstract pre-states d such that the run of the
π-instantiated analysis with d generates a result satisfying φ. That
is, JaKb(φ) computes the weakest precondition of JaKπ with respect
to the postcondition φ.



Jg = vKb(δ→o) =



false if δ ≡ v ∧ o = L
v→L ∨ v→E if δ ≡ v ∧ o = E
v→N if δ ≡ v ∧ o = N
(v→E ∨ v→N) ∧ δ→L if δ ∈ (L \ {v}) ∧ o = L
(v→L ∧ δ→L) ∨ δ→E if δ ∈ (L \ {v}) ∧ o = E
δ→N if δ ∈ (L \ {v}) ∧ o = N
(v→E ∨ v→N) ∧ δ→o if δ ∈ F ∧ o ∈ {L, E}
v→L ∨ ((v→E ∨ v→N) ∧ δ→N) if δ ∈ F ∧ o = N
δ→o otherwise

Jv = gKb(δ→o) = if (δ ≡ v ∧ o = E) then (true) else (if (δ ≡ v ∧ o 6= E) then (false) else (δ→o))
Jv = new hKb(δ→o) = if (δ ≡ v) then (h→o) else (δ→o)
Jv = nullKb(δ→o) = if (δ ≡ v ∧ o = N) then (true) else (if (δ ≡ v ∧ o 6= N) then (false) else (δ→o))

Jv = v′Kb(δ→o) = if (δ ≡ v) then (v′→o) else (δ→o)

Jv = v′.fKb(δ→o) =

 (v′→L ∧ f→E) ∨ v′→E ∨ v′→N if δ ≡ v ∧ o = E
v′→L ∧ f→o if δ ≡ v ∧ o 6= E
δ→o if δ 6≡ v

Jv.f = v′Kb(δ→o) =



δ→o if δ 6∈ (L ∪ F)
δ→E ∨ (δ→L ∧ v→E ∧ v′→L)

∨ (δ→L ∧ v→L ∧ f→L ∧ v′→E)
∨ (δ→L ∧ v→L ∧ f→E ∧ v′→L)

if δ ∈ L ∧ o = E

δ→o if δ ∈ L ∧ o = N
δ→o ∧ (v→N ∨ (v→E ∧ (v′→E ∨ v′→N))

∨ (v→L ∧ (v′→N ∨ f→N
∨ (v′→L ∧ f→L)
∨ (v′→E ∧ f→E))))

if (δ ∈ L ∧ o = L)
∨ (δ ∈ F ∧ o = E ∧ δ 6≡ f)
∨ (δ ∈ F ∧ o = L ∧ δ 6≡ f)

δ→N ∨ (v→E ∧ v′→L)
∨ (v→L ∧ f→L ∧ v′→E)
∨ (v→L ∧ f→E ∧ v′→L)

if δ ∈ F ∧ o = N ∧ δ 6≡ f

(δ→N ∧ (v→E ∨ v→N ∨ (v→L ∧ v′→N)))
∨ (v→E ∧ v′→L)
∨ (δ→L ∧ v→L ∧ v′→E)
∨ (δ→E ∧ v→L ∧ v′→L)

if δ ∈ F ∧ o = N ∧ δ ≡ f

(δ→N ∧ v→L ∧ v′→L)
∨ (δ→L ∧ v→N)
∨ (δ→L ∧ v→E ∧ (v′→E ∨ v′→N))
∨ (δ→L ∧ v→L ∧ (v′→N ∨ v′→L))

if δ ∈ F ∧ o = L ∧ δ ≡ f

(δ→N ∧ v→L ∧ v′→E)
∨ (δ→E ∧ v→N)
∨ (δ→E ∧ (v→E ∨ v→L) ∧ (v′→E ∨ v′→N))

if δ ∈ F ∧ o = E ∧ δ ≡ f

Figure 11. Backward transfer function for thread-escape analysis. We use δ to range over h, v, f , and we use o to range over L, E, N.

Meta-Analysis for Thread-Escape. The backward meta-analysis
for the thread-escape analysis is also disjunctive. Its domain M is
constructed from the following primitive formulas p:

p ::= h→o | v→o | f→o

where o is an abstract value in {L, E, N}, and h, v, f are an alloca-
tion site, a local variable, and a field, respectively. These formulas
describe properties about pairs (π, d) of abstraction and abstract
state. Formula h→o says that an abstraction π should map h to o.
Formula v→o means that an abstract state d should bind v to o;
formula f→o expresses a similar fact on the field f . We formalize
these meanings via function γ : M→ 2P×D below:

γ(h→o) = {(π, d) | π(h) = o} γ(v→o) = {(π, d) | d(v) = o}
γ(f→o) = {(π, d) | d(f) = o}

We order formulas φ v φ′ in M when our simple entailment
checker concludes that φ′ subsumes φ. This conclusion is reached
when φ and φ′ are the same, or both φ and φ′ are conjunction of
primitive formulas and all the primitive formulas in φ′ appear in

φ. This proof strategy is fast yet highly incomplete. However, we
found it sufficient in practice for our application, where the order is
used to detect redundant disjuncts in formulas in the DNF form.

Figure 11 shows transfer function JaKb of the meta-analysis
for each atomic command a. We show in [23] that it satisfies
requirement (2) of our framework which determines the semantics
of the function using weakest preconditions.

Figure 6 shows the backward meta-analysis for thread-escape
analysis without and with under-approximation on an example pro-
gram. The trace in part (a) is generated by the forward analysis
using initial abstraction [h1 7→ E, h2 7→ E]. The abstract states
computed by the meta-analysis at each point of this trace without
under-approximation are denoted by ↑. It correctly computes the
sufficient condition for failure at the start of the trace as h1→E ∨
(h2→E∧h1→L), thus yielding the cheapest abstraction that proves
the query as [h1 7→ L, h2 7→ L]. Despite taking a single iteration,
however, the lack of under-approximation causes a blow-up in the
size of the formula tracked by the meta-analysis.



Jx = yKb(err) = err
Jx = nullKb(err) = err

Jx.m()Kb(err) = err ∨
∨
{type(σ) | JmK(σ) =>}

Jx = yKb(param(z)) = param(z)
Jx = nullKb(param(z)) = param(z)

Jx.m()Kb(param(z)) = param(z)

Jx = yKb(var(z)) =

{
param(x) ∧ var(y) if x ≡ z
var(z) otherwise

Jx = nullKb(var(z)) =

{
false if x ≡ z
var(z) otherwise

Jx.m()Kb(var(z)) = var(z) ∧
∧
{¬type(σ) | JmK(σ) =>}

Jx = yKb(type(σ)) = type(σ)
Jx = nullKb(type(σ)) = type(σ)

Jx.m()Kb(type(σ)) = ¬err
∧ (
∧
{¬type(σ′) | JmK(σ′) =>})

∧ ((¬var(x) ∧ type(σ))
∨
∨
{type(σ′) | JmK(σ′) =σ})

Figure 10. Backward transfer function for type-state analysis.

Part (b) shows the result with under-approximation, using k = 1
in the beam search via function dropk. This time, the first iteration,
shown in part (b1), yields a stronger sufficient condition for failure,
h1→E, causing our technique to next run the forward analysis using
abstraction [h1 7→ L, h2 7→ E]. But the analysis again fails to prove
the query, and the second iteration, shown in part (b2), computes
the sufficient condition for failure as (h1→L ∧ h2→E). By com-
bining these conditions from the two iterations, our technique finds
the same cheapest abstraction as that without under-approximation
in part (a). Despite needing an extra iteration, the formulas tracked
in part (b) are much more compact than those in part (a).

5. Iterative Forward-Backward Analysis
This section presents our top-level algorithm, called TRACER,
which brings a parametric analysis and a corresponding backward
meta-analysis together, and solves the parametric static analysis
problem. Throughout the section, we fix a parametric analysis and
a backward meta-analysis, and denote them by (P,�,D, J−K) and
(M, γ, J−Kb, approx), respectively.

Our TRACER algorithm assumes that queries are expressed by
elements φ in M satisfying the following condition:

∃D0 ⊆ D. γ(φ) = P×D0 ∧ (∃φ′ ∈ M. γ(φ′) = P× (D \D0)).

The first conjunct means that φ is independent of abstractions, and
the second, that the negation of φ is expressible in M. A φ satisfying
these two conditions is called a query and is denoted by symbol q.
The negation of a query q is also a query and is denoted not(q).

TRACER takes as inputs initial abstract state dI , a program
s, and a query q ∈ M. Given such inputs, TRACER repeatedly
invokes the forward analysis with different abstractions, until it
proves the query or finds that the forward analysis cannot prove
the query no matter what abstraction is used. The key part of
TRACER is to choose a new abstraction π′ to try after the forward
analysis fails to prove the query using some π. TRACER does this
abstraction selection using the backward meta-analysis which goes
over an abstract counterexample trace of the forward analysis and
computes a condition on abstractions that are necessary for proving
the query. TRACER chooses a minimum-cost abstraction π′ among
such abstractions.

The TRACER algorithm is shown in Algorithm 1. It uses vari-
able Πviable to track abstractions that can potentially prove the
query. Whenever TRACER calls the forward analysis, it picks a min-

imum π from Πviable, and instantiates the forward analysis with π
before running the analysis (lines 8-9). Also, whenever TRACER
learns a necessary condition from the backward meta-analysis for
proving a query (i.e., P \ Π in line 14), it conjoins the condition
with Πviable (line 15). In the description of the algorithm, we do
not specify how to choose an abstract counterexample trace τ from
a failed run of the forward analysis. Such traces can be chosen by
well-known techniques from software model checking [2, 20]. We
show the correctness of our algorithm in [23].

Algorithm 1 TRACER(dI , s, q): iterative forward-backward analysis

1: INPUTS: Initial abstract state dI , program s, and query q
2: OUTPUTS: Minimum π according to � such that
Fπ[s]({dI}) ⊆ {d | (π, d) ∈ γ(q)}. Or impossibility
meaning that @π : Fπ[s]({dI}) ⊆ {d | (π, d) ∈ γ(q)}.

3: var Πviable := P
4: while true do
5: if Πviable = ∅ then
6: return impossible
7: end if
8: choose a minimum π ∈ Πviable according to �
9: let D = (Fπ[s]({dI}) ∩ {d | (π, d) ∈ γ(not(q))}) in

10: if D = ∅ then
11: return π
12: end if
13: choose any τ ∈ trace(s) : Fπ[τ ](dI) ∈ D
14: let Π = {π′ | (π′, dI) ∈ γ(B[τ ](π, dI , not(q)))} in
15: Πviable := Πviable ∩ (P \Π)
16: end let
17: end let
18: end while

6. Experiments
We implemented our parametric dataflow analysis technique in
Chord [1], an extensible program analysis framework for Java
bytecode. The forward analysis is expressed as an instance of the
RHS tabulation framework [19] while the backward meta-analysis
is expressed as an instance of a trace analysis framework that
implements our proposed optimizations.

We implemented our type-state and thread-escape analyses in
our framework, and we evaluated our technique on both of them
using a suite of seven real-world concurrent Java benchmark pro-
grams. Table 1 shows characteristics of these programs. All exper-
iments were done using JDK 1.6 on Linux machines with 3.0 GHz
processors and a maximum of 8GB memory per JVM process.

The last two columns of Table 1 show the size of the family
of abstractions searched by each analysis for each benchmark.
For the type-state analysis, it is 2N where N is the number of
pointer-typed variables in reachable methods, since an abstraction
determines which variables the analysis can track in must-alias sets.
For thread-escape analysis, it is 2N where N is the number of
object allocation sites in reachable methods, since the abstraction
determines whether to map each such site to L or E.

We presented our technique for a single query but in practice a
client may pose multiple queries in the same program. Our frame-
work has the same effect as running our technique separately for
each query but it uses a more efficient implementation: at any
instant, it maintains a set of groups {G1, ..., Gn} of unresolved
queries (i.e., queries that are neither proven nor shown impossible
to prove). Two queries belong to the same group if the sets of un-
viable abstractions computed so far for those queries are the same.
All queries start in the same group with an empty set of unviable
abstractions but split into separate groups when different sets of
unviable abstractions are computed for them.



description # classes # methods bytecode (KB) KLOC log2(# abstractions)
app total app total app total app total type-state thread-esc.

tsp Traveling Salesman implementation 4 997 21 6,423 2.6 391 0.7 269 569 6,175
elevator discrete event simulator 5 998 24 6,424 2.3 390 0.6 269 352 6,180
hedc web crawler from ETH 44 1,066 234 6,881 16 442 6 283 1,400 7,326
weblech website download/mirror tool 57 1,263 312 8,201 20 504 13 326 2,993 7,663
antlr A parser/translator generator 118 1,134 1,180 7,786 131 532 29 303 16,563 7,748
avrora microcontroller simulator/analyzer 1,160 2,192 4,253 10,985 224 634 64 340 37,797 10,151
lusearch text indexing and search tool 229 1,236 1,508 8,171 101 511 42 314 14,508 7,395

Table 1. Benchmark statistics computed using a 0-CFA call graph analysis. The “total” and “app” columns report numbers with and without
counting JDK library code, respectively. The last two columns determine the (log of the) number of abstractions for our two client analyses.

To avoid skewing our results by using a real type-state property
to evaluate our type-state analysis, we used a fictitious one that
tracks the state of every object allocated in the application code
of the program (as opposed to, say, only file objects). The type-
state automaton for this property has two states, init and error.
The type-state analysis tracks a separate abstract object for each
allocation site h in application code that starts in the init state,
and transitions to error upon any method call v.m() in application
code if the following two conditions hold: (i) v may point to an
object created at site h according to a 0-CFA may-alias analysis
that is used by the type-state analysis, and (ii) v is not in the current
must-alias set tracked by the type-state analysis. If neither of these
conditions holds, then the abstract object remains in the init state,
which corresponds to precise type-state tracking by the analysis.

To enable a comprehensive evaluation of our technique, we
generated queries pervasively and uniformly from the application
code of each benchmark. For the type-state analysis, we generated
a query at each method call site, and for the thread-escape analysis,
we generated a query at each instance field access and each array
element access. Specific clients of these analyses may pose queries
more selectively but our technique only stands to benefit in such
cases by virtue of being query-driven. To avoid reporting duplicate
results across different programs, we did not generate any queries
in the JDK standard library, but our analyses analyze all reachable
bytecode including that in the JDK.

Our type-state analysis answers each query (pc, h) such that the
statement at program point pc is a method call v.m() in application
code and variable v may point to an object allocated at a site h that
also occurs in application code. The query is proven if every object
allocated at site h that variable v may refer to at the point of this
call is in state init (i.e., not error). These queries stress-test our
type-state analysis since they fail to be proven if the underlying
may-alias or must-alias analysis loses precision along any program
path from the point at which any object is created in application
code to the point at which any application method is called on it.

Our thread-escape analysis answers each query (pc, v) such that
the statement at program point pc in application code accesses
(reads or writes) an instance field or an array element of the object
denoted by variable v. Such queries may be posed by a client such
as static datarace detection.

We chose type-state and thread-escape analyses as they are
challenging to scale: both are fully flow- and context-sensitive
analyses that use radically different heap abstractions. The thread-
escape analysis is especially hard to scale: simply mapping all
allocation sites to L in the abstraction causes the analysis to run
out of memory even on our smallest benchmark. Moreover, these
analyses are useful in their own right: type-state analysis is an
important general analysis for object state verification while thread-
escape analysis is beneficial to a variety of concurrency analyses.

We next summarize our evaluation results, including precision,
scalability, and useful statistics of proven queries.

Precision. Figure 12 shows the precision of our technique. The
absolute number of queries for each benchmark appears at the top.

The queries are classified into three categories: those proven using
a cheapest abstraction, those shown impossible to prove using any
abstraction, and those that could not be resolved by our technique
in 1,000 minutes (we elaborate on these queries below).

All queries are resolved in the type-state analysis. Of these
queries, 25% are proven on average per benchmark. Queries im-
possible to prove are notably more than proven queries for the
type-state analysis primarily due to the stress-test nature of the
type-state property that the analysis checks. In contrast, for the
thread-escape analysis, our technique proves 38% queries and it
shows 47% queries impossible to prove, for a total of 85% resolved
queries on average per benchmark. We manually inspected several
queries that were unresolved, and found that all of them were true
but impossible to prove using our thread-escape analysis, due to its
limit of two abstract locations (L and E). There are two possible
ways to address such queries depending on the desired goal: alter
the backward meta-analysis to show impossibility more efficiently
or alter the forward analysis to make the queries provable.

In summary, we found our technique useful at quantifying the
limitations of a parametric dataflow analysis, and inspecting the
queries deemed impossible to prove suggests what aspects of the
analysis to change to overcome those limitations.

Scalability. It is challenging to scale backward static analyses.
We found that underapproximation is crucial to the scalability of
our backward meta-analysis: disabling it caused our technique to
timeout for all queries even on our smallest benchmark. Recall that
for disjunctive meta-analysis (Section 4.1) the degree of underap-
proximation can be controlled by specifying the maximum number
of disjuncts k retained in the boolean formulae that are propagated
backward by the meta-analysis. We found it optimal to set k = 5
for our two client analyses on all our benchmarks. We arrived at
this setting by experimenting with different values of k. Figure 13
illustrates the effect of setting k to 1, 5, and 10 on the running time
of our thread-escape analysis. We show these results only for our
smallest four benchmarks as the analysis ran out of memory on the
larger three benchmarks for k = 1 and k = 10. Intuitively, the rea-
son is that doing underapproximation aggressively (k = 1) reduces
the running time of the backward analysis in each iteration but it
increases the number of iterations to resolve a query, whereas do-
ing underapproximation passively (k = 10) reduces the number of
iterations but increases the running time of the backward analysis
in each iteration. Compared to these two extremes, setting k = 5
results in much fewer timeouts and better scalability overall.

Table 2 shows statistics about the number of iterations of our
technique for resolved queries using k = 5. Minimum, maximum,
and average number of iterations are shown separately for proven
queries and for queries found impossible to prove. The table high-
lights the scalability of our technique as queries for most bench-
marks are resolved in under ten iterations on average. The only
exception is the type-state analysis on avrora which takes 48 itera-
tions on average for proven queries. The reason is that, compared
to the remaining benchmarks, for avrora our type-state analysis re-
quires many more variables in the cheapest abstraction for most
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Figure 12. Precision measurements.

number of iterations running time of thread-escape analysis
type-state analysis thread-escape analysis (s = seconds, m = minutes, h = hours)

proven impossible proven impossible proven impossible
min max avg min max avg min max avg min max avg min max avg min max avg

tsp 2 2 2 1 2 1.5 2 2 2 1 1 1 14s 29s 21s 6s 8s 7s
elevator 2 3 2.1 1 9 3.8 2 3 2 1 5 1.3 12s 107s 34s 6s 144s 15s
hedc 2 3 2.3 1 2 1 2 6 2.4 1 4 1.8 17s 6m 89s 10s 5m 51s
weblech 2 3 2.1 1 3 1.4 2 17 6.9 1 3 1.2 20s 16m 5m 11s 150s 28s
antlr 2 18 8.9 1 47 7.8 2 88 3 1 18 1.4 18s 77m 98s 6s 21m 64s
avrora 2 82 47.7 1 30 3.5 2 97 3 1 38 1.4 16s 28m 67s 5s 3h 41s
lusearch 2 32 2.1 1 23 2 2 19 2.7 1 20 2.3 14s 13m 112s 6s 45m 131s

Table 2. Scalability measurements.
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Figure 13. Running time of thread-escape analysis per query for different degrees of underapproximation k = 1, 5, 10 in its meta-analysis on
our smallest four benchmarks. The timeout columns denote queries that could not be resolved in 1,000 minutes. Setting k to 1 or 10 resolves
fewer queries than k = 5 for the shown benchmarks and also caused the analysis to run out of memory for the largest three benchmarks.
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Figure 14. Sizes of the cheapest abstractions computed for proven queries of the thread-escape analysis on our largest three benchmarks.



type-state analysis thread-escape analysis
min max avg min max avg

tsp 2 3 2.3 1 1 1
elevator 2 4 2.8 1 2 1.1
hedc 2 5 2.9 1 5 1.4
weblech 2 4 3.3 1 16 6.1
antlr 2 20 10.9 1 87 1.9
avrora 2 84 50.2 1 96 2.1
lusearch 2 34 16.5 1 18 1.7

Table 3. Statistics of cheapest abstraction size for proven queries.

type-state analysis thread-escape analysis
# groups min max avg # groups min max avg

tsp 4 1 1 1 3 1 3 2
elevator 8 1 5 1.5 10 1 13 3.8
hedc 26 1 4 1.3 34 1 50 7.6
weblech 18 1 17 2.3 51 1 88 6.4
antlr 101 1 106 4.6 237 1 374 10.7
avrora 158 1 368 8.6 890 1 262 9
lusearch 151 1 139 3.6 270 1 256 13.7

Table 4. Statistics of cheapest abstraction reuse for proven queries.

of the proven queries (this is confirmed below by statistics on the
sizes of the cheapest abstractions). The numbers of iterations also
show that our technique is effective at finding queries that are im-
possible to prove since for most benchmarks it finds such queries
in under four iterations on average. We also show the running time
for thread-escape analysis in the table as it is relatively harder to
scale than type-state analysis. For each benchmark, our technique
takes one to two minutes on average for resolved queries.

Statistics of Proven Queries. We now present some useful statis-
tics about proven queries. Table 3 shows the minimum, maximum,
and average sizes of the cheapest abstraction computed by our tech-
nique for these queries. For type-state analysis, the size of the
cheapest abstraction correlates the benchmark size and is greatly
affected by the depth of method calls. The average number of vari-
ables that must be tracked in must-alias sets ranges from 2 to 50
from our smallest benchmark to our largest. On the other hand,
thread-escape analysis only needs 1 to 2 sites mapped to L on aver-
age for most benchmarks, though there are queries that need upto
96 such sites (this means that no abstraction with fewer than those
many sites can prove those queries). The graphs in Figure 14 show
the distribution of the cheapest abstraction sizes for thread-escape
analysis on our largest three benchmarks. We see that most queries
are indeed proven using 1 or 2 allocation sites mapped to L.

Finally, it is worth finding how different the cheapest abstrac-
tions computed by our technique are for these proven queries. Ta-
ble 4 answers this question by showing the numbers of queries
grouped together sharing the same cheapest abstraction. The table
shows that around ten or less queries on average share the same
cheapest abstraction for both analyses, indicating that the cheapest
abstraction tends to be different for different queries, though there
are also a few large groups containing up to 368 queries for type-
state analysis and 374 queries for thread-escape analysis.

These statistics underscore both the promise and the challenge
of parametric static analysis: on one hand, most queries can be
proven by instantiating the analysis using very inexpensive abstrac-
tions, but on the other hand, these abstractions tend to be very dif-
ferent for queries from different parts of the same program.

7. Related Work
Our work is related to iterative refinement analyses but differs in the
goal and the technique. They aim to find a cheap enough abstraction

to prove a query while we aim to find a cheapest abstraction or show
that none exists. We next contrast the techniques.

CEGAR-based model checkers such as SLAM [3] and BLAST
[14] compute a predicate abstraction of the given program to prove
an assertion (query) in the program. Yogi [4, 9] combines CEGAR-
based model checking and directed input generation to simulta-
neously search for proofs and violations of assertions. All these
approaches can be viewed as parametric in which program predi-
cates to use in the predicate abstraction. They differ from our ap-
proach primarily in the manner in which they analyze an abstract
counterexample trace that is produced as a witness to the failure
to prove a query using the currently chosen abstraction. In particu-
lar, these approaches compute an interpolant, which can be viewed
as a minimal sufficient condition for the model checker to suc-
ceed in proving the query on the trace, whereas our meta-analysis
computes a sufficient condition for the failure of the given analy-
sis to prove the query on the trace. Intuitively, our meta-analysis
attempts to find as many other abstractions destined to a similar
proof failure as the currently chosen abstraction; the next abstrac-
tion our approach attempts is simply a cheapest one not discarded
by the meta-analysis. One advantage of the above approaches over
our approach is that they can produce concrete counterexamples
for false queries, whereas our approach can at best declare such
queries impossible to prove using the given analysis. Conversely,
our approach can declare when true queries are impossible to prove
using the given analysis, whereas the above approaches can diverge
for such queries.

Refinement-based pointer analyses compute cause-effect de-
pendencies for finding aspects of the abstraction that might be re-
sponsible for the failure to prove a query and then refine these as-
pects in the hope of proving it. These aspects include field reads
and writes to be matched [21, 22], methods or object allocation
sites to be cloned [15, 18], or memory locations to be treated flow-
sensitively [13]. A drawback of these analyses is that they can refine
much more than necessary and thereby sacrifice scalability.

Combining forward and backward analysis has been proposed
(e.g., [5]) but our approach differs in three key aspects. First, ex-
isting backward analyses are proven sound with respect to the pro-
gram’s concrete semantics, whereas ours is a meta-analysis that is
proven sound with respect to the abstract semantics of the forward
analysis. Second, existing backward analyses only track abstract
states (to prune the over-approximation computed by the forward
analysis), whereas ours also tracks parameter values. Finally, exist-
ing backward analyses may not scale due to tracking of program
states that are unreachable from the initial state, whereas ours is
guided by the abstract counterexample trace provided by the for-
ward analysis, which also enables underapproximation.

Parametric analysis is a search problem that may be tackled
using various algorithms with different pros and cons. Liang et al.
[16] propose iterative coarsening-based algorithms that start with
the most precise abstraction (instead of the least precise one in
the case of iterative refinement-based algorithms). Besides being
impractical, these algorithms solve a different problem and cannot
be adapted to ours: they find a minimal abstraction in terms of
precision as opposed to a minimum or cheapest abstraction. Naik
et al. [17] use dynamic analysis to infer a necessary condition on
the abstraction to prove a query. They instantiate the parametric
analysis using a cheapest abstraction that satisfies this condition.
However, there is no guarantee that it will prove the query, and the
approach does not do refinement in case the analysis fails.

Finally, constraint-based and automated theorem proving tech-
niques have been proposed that use search procedures similar
in spirit to our approach: they too combine over- and under-
approximations, and compute strongest necessary and weakest
sufficient conditions for proving queries (e.g, [6, 7, 11, 12]). A



key difference is that none of these approaches address finding
minimum-cost abstractions or proving impossibility results.

8. Conclusion
We presented a new approach to parametric dataflow analysis
with the goal of finding a cheapest abstraction that proves a given
query or showing that no such abstraction exists. Our approach is
CEGAR-based and applies a novel meta-analysis on abstract coun-
terexample traces to efficiently eliminate unsuitable abstractions.
We showed the generality of our approach by applying it to two
example analyses in the literature. We also showed its practicality
by applying it to several real-world Java benchmark programs.

Our approach opens intriguing new problems. First, our ap-
proach requires the abstract domain of the parametric analysis to be
disjunctive in order to be able to provide a counterexample trace to
the meta-analysis. Our meta-analysis relies on the existence of such
a trace for scalability: the trace guides the meta-analysis in deciding
which parts of the formulae it tracks represent infeasible states that
can be pruned. One possibility is to generalize our meta-analysis
to operate on DAG counterexamples that have been proposed for
non-disjunctive analyses [10]. Second, the meta-analysis is a static
analysis, and designing its abstract domain is an art. We proposed
a DNF representation along with optimizations that were very ef-
fective in compacting the formulas tracked by the meta-analysis
for our type-state analysis and our thread-escape analysis. It would
be useful to devise a generic semantics-preserving simplification
process to assist in compacting such formulas. Finally, manually
defining the transfer functions of the meta-analysis can be tedious
and error-prone. One plausible solution is to devise a general recipe
for synthesizing these functions automatically from a given abstract
domain and parametric analysis.
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