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Abstract

Now that multicore chips are common, providing an approach to parallel pro-
gramming that is usable by regular programmers has become even more impor-
tant. This cloud has one silver lining: providing useful speedup on a program is
useful in and of itself, even if the resulting performance is lower than the best
possible parallel performance on the same program. To help achieve this goal,
Yada is an explicitly parallel programming language with sequential semantics.
Explicitly parallel, because we believe that programmers need to identify how
and where to exploit potential parallelism, but sequential semantics so that pro-
grammers can understand and debug their parallel programs in the way that
they already know, i.e. as if they were sequential.

The key new idea in Yada is the provision of a set of types that support par-
allel operations while still preserving sequential semantics. Beyond the natural
read-sharing found in most previous sequential-like languages, Yada supports
three other kinds of sharing. Writeonce locations support a single write and
multiple reads, and two kinds of sharing for locations updated with an asso-
ciative operator generalise the reduction and parallel-prefix operations found in
many data-parallel languages. We expect to support other kinds of sharing in
the future.

We have evaluated our Yada prototype on 8 algorithms and 4 applications,
and found that programs require only a few changes to get useful speedups
ranging from 2.2 to 6.3 on an 8-core machine. Yada performance is mostly
comparable to parallel implementations of the same programs using OpenMP
or explicit threads.

Key words: parallelism, parallel language, language design, determinism,

parallel-reduction, parallel-prefix

1. Introduction

Parallel programming is difficult: parallel programs are often hard to write,
hard to understand and, especially, hard to debug. And then, after all this effort,
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it is not uncommon to find that the parallel program or algorithm does not scale
well, and may not even beat the performance of a sequential implementation.
In the past, this has not been such a big problem as parallel machines were
expensive and parallel programs relatively rare, so significant programmer effort
could be expended in implementation, testing and debugging. However, the
world has changed: most of today’s computers have multicore processors, and
sequential performance improvements are slowing down.

This is both a challenge and an opportunity: a challenge, because it is
desirable for many more parallel programs to be written to exploit the now-
omnipresent parallel machines; an opportunity, because the metric of success has
changed. In the past, the goal was to maximise parallel performance to justify
use of an expensive machine. Today any reasonable and easily obtainable paral-
lel speedup (which will hopefully scale as chips with more cores appear) is worth
pursuing as it will be applicable to all users. In a way, this situation mirrors the
situation in sequential programming. Obtaining maximum performance from
sequential code is also hard, involving steps like detailed performance analysis,
blocking for caches, rewriting critical loops in assembly language, etc. Con-
versely, reasonable sequential performance (which improves with new, faster
sequential processors) can be obtained simply by compiling programs written
in statically-typed languages.

The goal of the Yada project is thus to achieve useful speedups in a parallel
language that is easy to write, understand and debug. The approach we have
chosen to achieve this goal is to make Yada an explicitly parallel, shared-memory
language that “feels” sequential: Yada has nestable parallel control structures
– forall-loops over integer ranges and parallel composition (|; |) of statements
or blocks – that mirror sequential control structures – for-loops and sequential
composition (;) – and has sequential semantics. Yada programs are understand-
able as sequential programs, execute deterministically,2and can optionally be
compiled, and therefore debugged, as sequential programs.

There have been a number of previous parallel languages designed to “feel”
sequential, including data-parallel languages like High Performance Fortran
(HPF) [16], the OpenMP extensions to C, C++ and Fortran [1], Cilk [6],
Jade [31], Deterministic Parallel Java (DPJ) [7] and the Galois system [20].
Most of these languages concentrate on preserving determinism by only allowing
read-sharing between parallel threads of execution. In data-parallel languages,
other kinds of sharing are impossible. Cilk and OpenMP support one other
kind of deterministic sharing (corresponding to parallel reductions), but also
allow arbitrary data sharing using locks, at the cost of losing determinism. Jade
and DPJ require fairly extensive annotations: programs must identify all shared
locations accessed by parallel blocks, either by explicit code (Jade) or complex
region annotations (DPJ).

The key idea behind Yada is the belief that providing a sufficient general

2With the usual caveats about changes in the environment, files, etc, which also apply to
sequential programs.
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set of sharing types whose operations (reads, writes, accumulations, etc) are re-
stricted to guarantee deterministic operation will allow the efficient expression
of a large class of parallel algorithms, avoiding the need to escape into non-
deterministic data-sharing (e.g. using locks). The current Yada prototype has
four kinds of sharing types,3 specified via new type qualifiers. These are simple
read-sharing, writeonce locations, and two sharing types for describing updates
to locations with an associative operator like + that allow a natural and gen-
eral way of expressing the classical data-parallel reduction (reduce(op)) and
parallel-prefix [5] operations (scan(op)). This Yada prototype is at least as
expressive as traditional parallel SPMD-style programming models using only
barrier synchronization and reduction and parallel-prefix library routines (the
translation of such programs to Yada is typically straightforward).

Sharing types can be used like any existing type, e.g. in arrays, in structures,
as pointer targets, etc. The conditions the programmer must follow to maintain
determinism while using these types are expressed as simple restrictions on the
parallel and sequential composition of operations on a particular location: a
reduce(+) reduction type allows parallel reads or parallel updates with +, and
places no restrictions on sequential composition; a writeonce location allows
a read in parallel with a write, forbids a write in parallel or in sequence with
another write, and allows a read in parallel or in sequence with another read;
etc.

These facilities are significantly more general and convenient than previ-
ous languages: OpenMP and Cilk have neither writeonce nor sharing types
for parallel prefix; OpenMP imposes significant restrictions on where and how
reductions can be used [1, 2.9.3.6]; Jade, DPJ and Galois allow programmers
to specify (unchecked) commutativity annotations on methods, to allow, e.g.
adding elements to a set in parallel, but this approach does not capture the
restrictions necessary on parallel operations for some kinds of shared objects
(Section 3). Finally, the Peril-L pseudo-language used to express parallel al-
gorithms in Lin and Snyder’s Principles of Parallel Programming [22] contains
sharing types similar to Yada, but provides no determinism guarantees.

The Yada prototype is built as an extension to C and currently has two
backends: a serial, debugging backend that checks at runtime that programs
correctly follow the shared type rules, and an unchecked parallel work-stealing
backend built over Intel’s Threaded Building Block library. We have evaluated
this prototype on eight small algorithms and four larger applications, with few
parallelism and sharing annotations (our benchmarks require at most 19 such
annotations) required to achieve speedups ranging from 2.2 to 6.3 on an 8-core
machine. Section 5.1 describes in detail the annotations and changes required.
Furthermore, performance on all applications and all but two algorithms is
competitive with other parallel implementations written with explicit threads

3We know of at least one other kind of deterministic sharing, broadcast in Kahn net-
works [18], that we have not implemented yet as it has not been required in any of our
benchmarks.
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or OpenMP.
In summary, Yada makes the following contributions:

• Deterministic languages can be made much more flexible by providing
multiple different abstractions for shared locations that support parallel
operations while preserving determinism (Section 2).

• Our evaluation shows that a deterministic language can express many
parallel algorithms and obtain useful speedups on real applications (Sec-
tion 5).

• Our shared location type that allows reads in parallel with updates with
an associative operator provides a clear mental model for when a parallel-
prefix operation can be used to parallelise sequential code (Section 2).
Furthermore, the transformation to use the parallel-prefix operation is
performed mostly-automatically by the Yada compiler (Section 4.3.3).

2. Overview

Yada is a shared-memory, explicitly parallel language with deterministic
semantics. But beyond this theoretical property, Yada is designed to “feel”
sequential: a forall loop executes (in parallel) as if the iterations are executed
in the usual sequential order, and s1 appears to execute before s2 in the parallel
composition s1 |; | s2. This property is observable (see the scan(+) examples
below) through Yada’s flexible sharing types.

Sharing types allow concurrent updates on shared state while preserving
Yada’s sequential semantics, and are declared via new type qualifiers. For
instance, a reduce(+) variable allows concurrent updates using += as in the
following loop:

int reduce(+) sum = 0;

forall (i = 0; i < n; i++) sum += A[i];

which expresses a classic parallel reduction in a sequential style.
Sharing types can do much more than just conveniently express well-known

data-parallel operators, as we show through the example of the parallelisation
of a radix sort (Figure 1). As a brief reminder, radix sorts an input array A

by processing individual groups of bits within each number. Each pass runs a
stable sort on the numbers with respect to different bit groups, and when they
have been sorted once for each bit group they are fully sorted. The stable sort
for each bit group (lines 8-17 of radix C) operates by building a histogram of
the bit group’s values in array x (lines 8-11), using that histogram to compute a
starting offset in a destination array y (lines 12-15), then copying the elements
of x to y to their bit group’s positions (lines 16-17). Finally, the roles of the
x and y arrays are swapped and processing passes to the next bit group (lines
18, 7). The RADIX constant defines the number of bits to sort at once, and the
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1 void radix C(int *A, int n) {
2 int B[n], *x = A, *y = B, *tmp, i, pass;

3 int buckets[RADIX];

4 int offset;

5 int offsets[RADIX];

6

7 for (pass = 0; pass < PASSES; pass++) {
8 for (i = 0; i < RADIX; i++)

9 buckets[i] = 0;

10 for (i = 0; i < n; i++)

11 buckets[key(x[i], pass)]++;

12 for (offset = 0, i = 0; i < RADIX; i++) {
13 offsets[i] = offset;

14 offset += buckets[i];

15 }
16 for (i = 0; i < n; i++)

17 y[offsets[key(x[i], pass)]++] = x[i];

18 tmp = x; x = y; y = tmp;

19 }
20 }

1 void radix yada(int *A, int n) {
2 int B[n], *x = A, *y = B, *tmp, i, pass;

3 int reduce(+) buckets[RADIX];

4 int scan(+) offset;

5 int scan(+) offsets[RADIX];

6

7 for (pass = 0; pass < PASSES; pass++) {
8 forall (i = 0; i < RADIX; i++)

9 buckets[i] = 0;

10 forall (i = 0; i < n; i++)

11 buckets[key(x[i], pass)]++;

12 forall (offset = 0, i = 0; i < RADIX; i++) {
13 int b = buckets[i];

14 offset += b;

15 andthen:
16 offsets[i] = offset - b;

17 }
18 forall (i = 0; i < n; i++) {
19 int k = key(x[i], pass);

20 offsets[k]++;

21 andthen:
22 y[offsets[k] - 1] = x[i];

23 }
24 tmp = x; x = y; y = tmp;

25 }
26 }

Figure 1: Radix sort written in C and Yada. Yada keywords in bold.
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key function retrieves the specified bits of the number. We elide the last loop
to copy results to A that is required only if PASSES is odd.

If the Yada keywords are ignored in the Yada version (radix yada), it is
essentially identical to the C code, though a little more verbose: Yada’s features
express only restrictions on the usual sequential semantics. These restrictions
allow the code to be executed in parallel but with the same behaviour as if it
were run sequentially.

To preserve familiarity, parallel loops in Yada are written using the forall

keyword following standard C for-loop syntax, but must express iteration over a
simple integer range or they will be rejected at compile-time. We now describe
how Yada’s sharing types allow us to parallelise the four inner loops of radix
sort.

Plain sharing. Locations that are either not shared across loop iterations or
are only read can be treated normally in parallel loops. Accesses to these lo-
cations will always be deterministic, regardless of the implementation strategy.
In radix C, the loop at line 8 accesses independent data and so is easily paral-
lelised.

Reduce. As we saw above, a reduce(op) sharing type allows concurrent up-
dates using op = for associative and commutative operators or functions op.
Commutativity is not strictly required, but gives the implementation more flex-
ibility and hence increases performance. Like all our sharing types, reduce(+)
is not restricted to scalars: the C loop at line 10 that constructs a histogram
performs only ++ updates on the buckets array. This loop can be run in paral-
lel in Yada (line 10) by declaring that buckets is an array of int reduce(+)

(line 3).
This last example brings up an essential difference between reduce types

and a parallel-reduction function. A reduce type expresses the allowable oper-
ations on a location; these operations may or may not be implemented using
an underlying parallel reduction function. For instance, if there are few con-
current updates to a location it makes sense to implement reduce(+) using an
atomic-add instruction; if there are many, it makes sense to replicate the lo-
cation across processors (allowing independent updates) and compute its value
using a reduction when it is read, possibly even a sequential reduction if multiple
reads happen in parallel.

Finally, it is extremely desirable to allow use of floating-point reduce(+)

types even though floating-point addition is not actually associative, and the re-
sulting programs are thus not strictly deterministic. Discussions with a parallel
numerical analysis expert [12] suggested that repeatability on a given machine
for a given parallelism level would be a desirable feature for such programs;
however we have not yet investigated how to provide this in our Yada imple-
mentation.

Scan. The most complicated of our sharing types is scan. It generalises reduce(op)
by allowing reads concurrently with op = updates, while preserving the loop’s
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sequential semantics. Examining radix C, we can see that the loop at line 12
contains both updates (with +=) and reads of the shared variable offset and
the loop at line 16 contains both updates (with ++) and reads of the array
offsets. These loops could not be parallelized with reduce(+) annotations, as
reduce(+) does not allow reads in parallel with += updates.

To parallize these loops with scan(+) we must obey scan()’s one significant
restriction (required to allow parallel execution): within a parallel loop, it must
be possible to perform all the updates (with op =) before any of the reads. To
ensure that this restriction is followed, Yada requires that the parallel loop be
divided into two parts separated by an andthen pseudo-label4 separating the
half of the loop that performs updates from the half that performs reads. This
restriction forces a fairly straightforward transformation of the original C code
to Yada. The Yada version of the first loop (line 12) must update scan(+)

variable offset with b = buckets[i] before assigning offsets, and therefore
must subtract b from offset in the assignment. Similarly, in the second loop
(line 18) the effect of moving the update of offsets[k] to before the read of
offsets[k] is addressed by subtracting one from offsets[k] when indexing
y.

These two examples also exhibit Yada’s (hopefully unsurprising) scoping
rules for local variables: variables declared outside a forall (such as offset)
are shared by all iterations, while those declared within the forall (b and k)
are private to each iteration.

Scan sharing types are implemented using a parallel-prefix operation (some-
times also called a parallel scan). A parallel-prefix of an array A with an asso-
ciative operator op computes an array defined element by element as

prefix(A, op )[i] = A[0] op . . . op A[i]

This apparently sequential computation can actually be performed in paral-
lel [5]. As a consequence, it follows that any loop parallelised using scan()

could have been written using one or more explicit parallel-prefix operations.
We have found that the fairly straightforward restrictions on scan sharing types
make it very easy to understand when loops can be parallelised using parallel
prefix, and helps figure out the necessary loop transformations. Furthermore,
we believe that the code written using scan() is much clearer than the alternate
version using explicit parallel-prefix calls.

This completes the parallelisation of radix sort. Yada has one more sharing
type, writeonce, that is not used in radix sort.

Writeonce. The writeonce sharing type is for variables that are written and
read in parallel: the reads simply block until the write occurs. For example:

4These are not real C labels as they may be multiply defined. They are ignored when
executing sequentially.
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int writeonce value;

forall (int i = 0; i < n; i++)

if (i == 0) value = 42; // write in parallel ...

else f(value); // ... with this read

To preserve the property that Yada programs can also be executed sequen-
tially, Yada requires that the write occurs before the read in the program’s
underlying sequential order. Thus the program above would be illegal if i ==

0 were replaced by i == 1. This restriction has the further advantage of pre-
venting deadlock: without it, it is easy to express circular dependencies between
writeonce values.

2.1. Language Summary

We present here in one place all of Yada’s extensions to C and their associated
rules and restrictions.

2.1.1. Expressing Parallelism

The s1 |; | s2 construction allows any two statements (including blocks and
nested parallel constructs) to be executed in parallel. The forall parallel loops
follow traditional C syntax, but must have the form:

forall (local = s; local < e; local++) body

where local is a local variable whose address is not taken, s and e are identical
expressions and body is any statement or block, and may include nested par-
allel statements or calls to functions with parallel statements.5 The s and e

expressions are evaluated once, before the loop starts.

2.1.2. Sharing Types

Yada sharing types are simply type annotations that can be placed anywhere
where C allows its existing const and volatile annotations (with obvious
restrictions, e.g. reduce(*) has no meaning on a pointer). Two sharing types
cannot modify the same type. For instance, the following are all allowed:

static int reduce(+) x; // a global allowing parallel accumulation

struct force_vector_2d { // a type allowing parallel force accumulation

float double(+) forcex, forcey;

};

int scan(+) * writeonce p; // a writeonce-pointer to a scan(+) array

while the following are illegal:

int reduce(+) writeonce x; // two sharing types

int *reduce(*) x; // multiplication is not defined on pointers

5Extensions to allow strides and downwards parallel iterations would be straightforward.
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The following paragraphs summarize the rules governing the use of Yada’s
sharing types, and give short examples of valid and invalid use:

plain: A location l of type t * has two operations: ∗l (read) and ∗l = v (write).
The only legal parallel combination is read||read (two reads in parallel). This is
the default sharing type when no sharing qualifiers are used, allowing parallel
reads of shared and unshared data, but only parallel writes to unshared data.

Valid:

int x = f(...);

forall (i = 0; i < 10; i++)

a[i] = x * i;

Invalid (parallel writes):

int x = 3;

forall (i = 0; i < 10; i++)

x = x * 2

writeonce: A location l of type t writeonce * has two operations: ∗l (read)
and ∗l = v (write). The only legal parallel combinations are read||read and
write||read, with the write occurring before the read in Yada’s implicit sequen-
tial execution order. This last restriction is sufficient to guarantee that Yada
programs that respect the sharing rules cannot deadlock.

Valid:

int writeonce pipe1, pipe2;

pipe1 = slow(1) |; |
pipe2 = slow(2) |; |
return pipe1 + pipe2;

Invalid (read before write):

int writeonce x[11];

forall (i = 0; i < 10; i++)

x[i] = x[(i + 1) % 10] + 1;

reduce: A location l of type t reduce(op) * has three operations: ∗l (read),
∗l = v (write) and ∗l op= v (accumulate). The only legal parallel combinations
are read||read and accumulate||accumulate. The operation is an associative and
commutative6 operator or user-defined function with signature t op(t, t).

Valid:

float step(float, float);

float reduce(step) a = 0;

forall (i = 0; i < N; i++)

a = step(a, v[i]);

Invalid (invalid parallel write):

int reduce(+) x;

forall (i = 0; i < 10; i++) {
x = x + f(i);

if (g(i)) x = 0;

}

scan: scan(op) behaves likes reduce(op), except that scan locations allow both
accumulates and reads in the same parallel loop, under the condition that the
accumulate happens in the loop’s first part (before andthen), and the read
happens in the loop’s second part. A parallel loop can also perform just reads
or just accumulates, i.e. scan is a strict superset of reduce (but reduce can be

6As mentioned earlier, commutativity increases implementation flexibility and hence per-
formance.
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implemented more efficiently).

Valid:

float step(float, float);

float scan(step) a = 0;

int reduce(+) large = 0;

forall (i = 0; i < N; i++) {
a = step(a, v[i]);

andthen:

if (a > 100) large++;

}

Invalid (reads before writes):

int scan(+) x;

forall (i = 0; i < 10; i++) {
for (k = 0; k < 5; k++) {
x = x + f(i);

andthen:

a[i] = x;

}
}

It is easy to imagine other useful types that can be restricted to support
determinism: sets that support adding elements in parallel and later iterating
over them in parallel, message queues restricted to a single-sender and single-
receiver, etc. We fully expect that a released version of Yada will include more
such types based on our experience parallelizing more programs. However, even
as is Yada is able to express a significant variety of parallel algorithms, as we
discuss in Sections 5 and 7. In Section 3 we formalize the rules presented above
as restrictions on the the parallel and sequential composition of operations on
shared types. This formalism is able to capture the restrictions necessary for
all our current and envisioned sharing types.

An implementation of Yada is free to exploit all or none of the parallelism
expressed with forall and |; |. However, irrespective of the amount of par-
allelism in use, the sharing rules described above are checked in terms of the
program’s logical parallelism. Thus the Yada compiler and runtime can decide
on a parallel execution strategy independently of the data sharing present in
the program (though they may still want to consider sharing for performance
reasons).

In the current Yada prototype, these sharing checks are performed at run-
time in a special sequential backend that tracks a program’s logical parallelism
and checks all reads and writes (Section 4.2). We chose runtime rather than
static checking for two main reasons. First, our major goal in Yada was to see
whether sharing types are a good and effective approach for expressing paral-
lelism, independent of whether they are practically statically checkable or not.
Second, DPJ [7] suggests that statically checking sharing is complicated, im-
poses a significant additional annotation burden, and is not able to express
some operations (e.g. permuting an array of bodies in a barnes-hut N-body
simulation to improve locality).

The current parallel backend performs no checks and so will only produce
correct results if the input does not cause it to violate any of the sharing type
rules, i.e. the same input would pass the sequential backend without any runtime
errors. It is however clear that a future Yada implementation should perform
a static analysis to remove unnecessary checks and report any detected shar-
ing errors, and that the remaining runtime checks should be implemented in a
parallel backend, to be able to check determinism on large inputs.
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(locations) l ∈ L

(type) τ ∈ T

(type decls.) ρ : L → T

(operator) o ∈ O

(operation) e ::= l.o()
(statement) s ::= ǫ | e | seq s1, ..., sn |

par (s1, s
′
1), ..., (sn, s′n)

(trace) t ::= 〈ρ, s〉

Figure 2: Execution traces.

2.2. Prototype

We implemented Yada as an extension to C, but the Yada concepts are read-
ily applicable to any other imperative language. We view this implementation
as a prototype designed to test the expressiveness of Yada and to investigate
the achievable parallel speedups. The prototype is not intended to be a final,
complete implementation of a deterministic parallel language and thus takes a
number of shortcuts. First, the programmer must do some amount of manual
tuning to get good performance: choose under which conditions forall loops
should be run sequentially rather than in parallel, and choose between multiple
implementations of the same sharing type with different performance tradeoffs.
Second, the prototype does not guarantee complete determinism, e.g. the ad-
dresses returned by malloc may be different from run to run, no attempt is
made to control non-determinism due to system calls, etc.

3. Determinism Framework

We formally define our determinism-checking rules as an operational seman-
tics7 over execution traces (Figure 2), which capture a Yada program’s nested
parallelism structure and the operations performed on a collection of locations
of known types (the arguments to the operations are unimportant). The par

construct captures the two parts (s, s′) of a parallel loop containing an andthen

pseudo-label (s′ = ǫ if it is absent).
For example, the program
int writeonce x;

forall (i = 0; i < 2; i++)

x = i;

would generate the trace

par(x.wr(), ǫ), (x.wr(), ǫ)

with ρ(x) = writeonce.

7Interested readers not familiar with operational semantics may wish to refer to Plotkin’s
structured operational semantics paper [28].
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(state) σ ∈ S = {⊥,⊤, ...}
(environment) Σ : L → S

(state of operator) ops : (T × O) → S

(sequential state composition) ⊲ : S × S → S

(andthen state composition) ⊲b : S × S → S

(parallel state composition) || : S × S → S

ρ ⊢ ǫ : λl.⊥

ρ ⊢ l.o() : (λl′.⊥)[l 7→ (Σ(l) ⊲ ops(ρ(l), o))]

ρ ⊢ s1 : Σ1 ... ρ ⊢ sn : Σn

ρ ⊢ seq s1, ..., sn : (Σ1 ⊲ ... ⊲ Σn)

ρ ⊢ s1 : Σ1 ... ρ ⊢ sn : Σn

ρ ⊢ s′1 : Σ′
1 ... ρ ⊢ s′

n
: Σ′

n

ρ ⊢ par (s1, s
′
1)..., (sn, s′

n
) : ((Σ1 ⊲b Σ′

1)||...||(Σn ⊲b Σ′
n
))

ρ ⊢ s : Σ 6 ∃l : Σ(l) = ⊤

⊢ 〈ρ, s〉

Figure 3: Determinism-checking semantics.

Figure 3 specifies the overall structure of our rules for checking determin-
ism. They essentially match the informal intuition given earlier: determinism is
ensured by restricting the sequential and parallel composition of operations on
each location. The formal specification of these rules uses a state σ = Σ(l) to
track the effects of the operations in each statement s on a location l. These ef-
fects are computed by the ρ ⊢ s : Σ judgment. By convention, σ = ⊥ represents
a location untouched by s and σ = ⊤ represents a determinism violation. Fig-
ure 3 guarantees a few general properties of determinism checking: the states for
each location l are independent of each other and depend only on the operations
performed on l and the trace’s sequential and parallel structure.

Each type specifies its rules for enforcing determinism by specifying the ops,
⊲, ⊲b and || state computation functions and operators (these extend naturally
to apply to environments). As locations are independent of each other, these can
be viewed as being defined independently for each type. The ops function maps
each operation to a state, ⊲ specifies the effects of the sequential composition
of operations and || the effects of parallel composition. Finally, ⊲b specifies how
to combine the effects of the two parts of a parallel loop iteration separated by
andthen.

Figures 4 and 5 specify the sharing rules for writeonce and scan types; we
omit here the rules for plain and reduce types as they are straightforward. The
writeonce rules are simple: a write is forbidden after any other operation. The
parallel composition rules are identical to the sequential ones, and thus enforce
that any write in a parallel loop must happen before any read in the parallel
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σ ::= ⊥ < R < W < ⊤
o ::= rd | wr

ops(τ, o) =

{

R if o = rd

W if o = wr

s1 ⊲ s2 =

{

⊤ if s1 6= ⊥, s2 = W

s1 ⊔ s2 otherwise
s1 ⊲b s2 = s1 ⊲ s2

s1||s2 = s1 ⊲ s2

Figure 4: Determinism rules for τ = writeonce.

σ ::=
A

RX

⊤⊥

AX

S
R

W

o ::= rd | wr | acc

ops(τ, o) =







R if o = rd

W if o = wr

A if o = acc

s1 ⊲ s2 = s1 ⊔ s2

s1 ⊲b s2 =















RX if s1 ⊔ s2 = R ∧ s1 6= ⊥
AX if s1 ⊔ s2 = A ∧ s2 6= ⊥
W if s1 ⊔ s2 = S ∧ ¬(s1 = A ∧ s2 = R)
s1 ⊔ s2 otherwise

s1||s2 =

{

⊤ if s1 ⊓ s2 6= ⊥ ∧ s1 ⊔ s2 = W

s1 ⊔ s2 otherwise

Figure 5: Determinism rules for τ = scan(op).

loop’s implicit sequential order.
Consider the trace shown earlier. From the rule for par in Figure 3, we know

that we must check the two statements separately and combine them with ||.
Both consist of only a single write, so they will both generate Σ(x) = W . To
combine them, we compute W ||W = ⊤, and so we have found a violation.

Scan locations have three operations, read (rd), write (wr) and accumulate
(acc). Scan locations require a number of extra states beyond those corre-
sponding directly to individual operations (R, W, A) to enforce the scan rules:
if accumulates are performed in parallel with reads, then all accumulates must
be before the andthen and all reads must be after the andthen. The RX (re-
spectively AX) state tracks reads that occur before an andthen (respectively
accumulates that occur after an andthen) and thus cannot happen in parallel
with accumulates (respectively reads). The S state is used for scan locations on
which parallel accumulates and reads are “in progress”. The lattice for σ defines
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the sequential composition rules for scan locations. The parallel composition
rules are actually identical to the sequential ones, except that sequential compo-
sitions that map to the write state represent determinism violations when they
occur in parallel (except in the trivial case where one state is ⊥). The andthen

composition rules also match the sequential rules, but with three exceptions
to enforce the scan rules: reads before an andthen map to RX , accumulates
after an andthen map to AX , and only accumulates before an andthen com-
bined with reads after an andthen map to S. Note also that two nested parallel
loops cannot both accumulate and read the same scan location as either the
inner loop’s reads occur before, or its accumulates occur after, the outer loop’s
andthen.

The restrictions described here for writeonce and scan locations cannot be
expressed as parallel commutativity rules on the read, write and accumulate
operations. It is thus not possible to express these kinds of sharing with the
commutativity declarations found in Jade [31], DPJ [7] and Galois [20].

4. Yada Prototype

Our Yada prototype targets 32 and 64-bit Intel R© processors on Linux and
Mac OS X machines (it would not be hard to port to other architectures and
operating systems). It is composed of a Yada to C++ compiler, and two back-
ends: a serial, determinism-checking backend (for debugging) and a parallel
(unchecked) backend (for performance).

4.1. Compiler

The Yada compiler is implemented as an extension to the CIL [26] C fron-
tend, and generates C++ code. Sharing types are specified as type qualifiers
on existing base types. These qualifiers both specify the sharing type and select
amongst the available implementations: for instance, int reduce atomic(+)

selects the atomic-update implementation of the int reduce(+) sharing type
(Section 4.3.2). Parallel loops are specified by an annotation on regular C for

loops (an error is reported if the loop doesn’t correspond to an iteration over an
integer range). Parallel execution of n statements is translated to the obvious
parallel loop over the 1..n range.

Generating C++ simplifies the implementation of sharing types: a sharing
type is implemented as a C++ class with a constructor and destructor to auto-
mate the management of its internal state, e.g. to initialise a lock, and methods
that implement the type’s operations. To ensure that constructors and destruc-
tors are called for heap-allocated data, Yada supports C++’s new and delete

syntax.
Parallel loops are compiled by generating a closure for the body. The closure

function and closure state are then passed to a runtime library function that
executes the parallel loop. The decision of how to execute the parallel loop is
left completely to the runtime. The closure state is a structure with a field
for each local variable accessed in the loop. These fields are pointers to locals
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unless a variable’s sharing type indicates that an optimisation is possible. For
instance, most sharing types place the local’s value in the closure if the body
contains only reads (but this is not a safe transformation for writeonce locals).
We do not detail the closure generation or these optimisations here as they
are straightforward. We defer discussion of two-part loops using andthen to
Section 4.3.3, which presents the implementation of scan(op) sharing types.

After closures have been generated for all parallel loops, the compiler then
rewrites all accesses to sharing types. These are replaced by a call to an inlined
method on the C++ class representing the sharing type.

4.2. Determinism Checking Backend

Yada’s sequential backend essentially performs the checking rules outlined in
Section 3 online during the execution of the program and reports any determin-
ism violations as they occur. This implementation has not been optimised for
performance and currently causes a large slowdown (20x-75x), which is some-
what acceptable when debugging, but clearly far from ideal. We believe this
overhead can be significantly reduced by a better implementation.

When using the determinism-checking backend, for each operation o on a
shared location l, the compiler inserts a runtime call to detcheck o(&l). The
runtime uses a hash-table (indexed by the address of l) to track l’s state as of
the last access at each parallelism nesting level. The detcheck function then
updates these states using either the ⊲ or || operators as appropriate. If any
state becomes ⊤, a determinism violation is reported.

Finally, the determinism checker needs to interact with the execution of
parallel loops using andthen (to emulate the ⊲b operator), and with memory
allocation, including allocation of locals on the stack, to avoid reporting invalid
errors due to address reuse.

4.3. Parallel Backend

The parallel backend is built over the Intel R©Threading Building Blocks
(TBB)8 library version 2.2, which supports nested parallelism using a work-
stealing scheduler. Simple parallel loops map to a single TBB parallel for

that invokes the body closure. We discuss two-part parallel loops using andthen

along with the implementation of scan() sharing types below.
At startup, the user specifies the number P of threads to create to run

the Yada program. To help implement the sharing types, each thread has an
identifier myproc between 0 and P − 1.

The most interesting part of the parallel backend is the implementation
of the sharing types. The implementation of these types is greatly simplified
(and their performance enhanced) by the fact that they can assume that the
sharing rules described in Section 2.1 and formalized in Section 3 are respected.
In particular, locations without a sharing type specifier (“plain” sharing) only

8Retrieved from http://www.threadingbuildingblocks.org in November 2009.
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allow read-read parallelism and so can be compiled and optimised as if the code
were sequential.

We present a brief overview of the implementation of each sharing type t as
it applies to a location l of type pointer-to-t. Each implementation description
starts with a reminder of the rules for each type as presented in Section 2.1.

4.3.1. writeonce

A location l of type t writeonce * has two operations: ∗l (read) and ∗l = v

(write). The only legal parallel combinations are read||read and write||read (the
write occurs before the read in Yada’s implicit sequential execution order).

Yada provides two implementation of writeonce. The first, writeonce busy,
implements t writeonce as a structure containing a value of type t and a
written flag. Reads simply busy-wait until written is true. The second im-
plementation, writeonce sleepy, adds a lock and condition variable. When
written is false, reads wait on the condition variable (which is signaled by
writes) rather than busy-waiting. writeonce busy has lower space overhead,
but should only be used when waits are expected to be unusual or of short
duration. Currently, the programmer must manually choose between these im-
plementations.

4.3.2. reduce

A location l of type t reduce(op) * has three operations: ∗l (read), ∗l = v

(write) and ∗l op= v (accumulate). The only legal parallel combinations are
read||read and accumulate||accumulate.

Yada also provides two implementations of reduce, and the programmer
must manually specify which to use. The first, reduce atomic, is best when
contention on l is low: in the compiled program, l simply has type t, reads
and writes are unchanged, and accumulate is compiled to an atomic operation
implemented as an atomic instruction for the supported combinations of op and
t (C operators on integer types) and a compare-and-swap loop for all other
cases.

The second, reduce rep, is best when contention on l is high: l is represented
by a structure containing l’s value and a P element array that allows threads
to perform independent, unsynchronised accumulates on l. A subsequent read
of l (which cannot happen in parallel with the accumulates) must update l’s
value based on the contents of the array. Figure 6 gives the pseudocode of
reduce rep’s implementation.

To avoid performance problems caused by false sharing, the values array
actually stores one element per cache line.9To save memory and improve locality,
an array of n t reduce rep(op) locations is represented slightly differently:
value becomes an n element array, and values is a two-dimensional P × n

array where the n elements for each thread are stored contiguously.

9Cache line size is configured in the compiler on a per-target basis.
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template<t> class reduce {

t value;

t *values;

reduce() { values = 0; }

~reduce() { if (values) delete values; }

void write(t v) { // No parallelism

if (values) { delete values; values = 0; }

value = v;

}

void accumulate(t by) { // Parallelism with itself

if (!values) allocate_reduce_values();

values[myproc] op= by;

}

t read() { // Parallelism with itself

if (values) reduce();

return value;

}

void allocate_reduce_values() {

... allocate values ...

... handle races when called in parallel ...

}

void reduce() {

... update value from values, delete values ...

... handle races when called in parallel ...

}

};

Figure 6: Replicated reduce implementation for operator op.

4.3.3. scan

Like reduce, a location l of type t scan(op) * has three operations: ∗l
(read), ∗l = v (write) and ∗l op= v (accumulate). However, scan locations allow
both accumulates and reads in the same parallel loop, under the condition that
the accumulate happens in the loop’s first part (before andthen), and the read
happens in the loop’s second part (a two-part parallel loop can also perform
just reads or just accumulates, but these cases need no additional handling).
To simplify scan implementation, our prototype restricts accumulates to the
innermost parallel loop. We have not found this restriction problematic in
practice.

Essentially, a parallel loop of the form

forall (i = s; i < e; i++)

body_a;

andthen:

body_b;

}
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that accesses scan locations l1, . . . , ln is executed as:

l1->setup(e - s); ... ln->setup(e - s);

forall (i = s; i < e; i++)

body_a;

l1->prefix(); ...; ln->prefix();

forall (i = s; i < e; i++)

body_b;

l1->cleanup(e - s); ...; ln->cleanup(e - s);

Each location l is represented by a structure containing a value field con-
taining l’s value before the parallel loop, and an n = e − s values array that
collects the values accumulated by body a in each iteration. The prefix op-
eration then performs a parallel-prefix operation on values. Finally, reads in
body b read the element of values that corresponds to the loop iteration. After
the loop completes, cleanup updates l->value to reflect l’s final value and the
array is discarded. This implementation is summarised in Figure 7.

The set of locations accessed by a parallel loop is not necessarily discov-
erable at compile-time. Therefore, the Yada prototype simply tracks this set
dynamically (the details are straightforward).

This implementation has one significant problem: when the body of the forall
loop is simple (performs very little computation) and the iteration space is large,
the overheads of scan locations swamp any gain from increased parallelism. This
is true of the examples we saw in radix sort in Section 2, and in fact of all the
uses of scan in our evaluation (Section 5). In particular, the requirement of an
n element array for an n iteration parallel loop significantly increases memory-
bandwidth consumption in simple loops.

In many cases, and in all cases in our benchmarks, we can fix this per-
formance problem by an alternate compilation strategy while leaving the scan
implementation nearly unchanged. If body a, the first half of the parallel loop,
has side effects only on scan locations, then we can execute our parallel loop
as:

nchunks = 4 * P; // 4 is arbitrary, but works well

l1->setup(nchunks); ... ln->setup(nchunks);

forall (chunk = 0; chunk < nchunks; chunk++)

for (i = s(chunk); i < e(chunk); i++)

body_a;

l1->prefix_exclusive(); ...; ln->prefix_exclusive();

forall (chunk = 0; chunk < nchunks; chunk++)

for (i = s(chunk); i < e(chunk); i++) {

body_a;

body_b;

}

l1->cleanup(nchunks); ...; ln->cleanup(nchunks);

where s(i) and e(i) compute the loop bounds for the ith chunk and prefix exclusive

computes the exclusive-parallel-prefix rather than the parallel-prefix (where the
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template<t> class scan {

t value;

t *values;

scan() { values = 0; }

void write(t v) {

value = v;

}

void accumulate(t by) {

values[current_loop_index] op= by;

}

t read() {

if (values)

return value + values[current_loop_index];

else

return value; // no accumulate in this loop

}

void setup(int n) {

values = new t[n];

}

void prefix() {

... perform parallel-prefix on values using op ...

}

void cleanup(int n) {

value op= values[n - 1];

delete values;

values = 0;

}

};

Figure 7: Scan implementation (simplified) for operator op. current loop index is a thread-
local variable containing the value of the innermost parallel loop iteration.

ith result element does not include the contribution of the element at i):

prefix exclusive(A, op)[i] = A[0] op . . . op A[i − 1]

This reduces the loops’ parallelism to four times the number of threads, which is
typically enough for load-balancing,10and greatly reduces both the memory size
of a scan location and the computational cost in the parallel-prefix step between
the two parallel loops (in fact, we execute prefix exclusive sequentially in
our prototype, as we currently use at most 8 threads). This alternate execution
strategy is valid because the re-execution of body a in the second parallel loop
leaves each of the scan locations with its correct value.

10The value four was selected empirically to reduce overhead while maintaining sufficient
load-balance on our benchmarks.
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Lines of code
Program Seq. Par. Yada.
quick sort 34 184(T) 57
radix sort 46 61(S) 68
merge sort 40 170(T) 114
sample sort 73 164(S) 84
shell sort 29 39(T) 33

bitonic sort 117 131(T) 118
pure bitonic sort 39 47(T) 39

cholesky 30 58(S) 45

ebarnes 2066 2107(S) 1944
bzip2 - 2613(P) 1596
ammp 13484 13521(O) 13546

mg 1742 1774(O) 1792

Table 1: Benchmark Sizes (the top eight are algorithms, the bottom four are applications).
The parallel sizes are followed by a letter in parenthesis indicating the parallel application’s
programming style: (T) for the TBB library, (S) for SPMD-style, (P) for raw use of pthreads
and (O) for OpenMP.

5. Evaluation

We evaluated Yada on eight algorithms and four applications, covering a
reasonably diverse set of programming domains: sorting algorithms (7), scien-
tific algorithms and applications (4), and a file-compression tool (bzip2). We
investigated the sorting algorithms to see if Yada could express parallelism and
get useful speedups in a diverse set of algorithms. We chose the scientific appli-
cations and pbzip2 because we could compare Yada’s performance with existing
parallel implementations and because most of them exhibited non-trivial data-
sharing patterns. For all algorithms and applications we either wrote sequential
and parallel versions, or, when possible, reused the existing sequential and par-
allel implementations.

The sorting algorithms are quick sort, radix sort, merge sort, sample sort,
shell sort and two variations on bitonic sort. The sequential implementation is
a natural implementation of the algorithm. The parallel implementations are
implemented either using the Intel R©Threading Building Blocks (TBB) library
(quick sort, merge sort, shell sort and the bitonic sorts) or a custom library
(inspired by and derived from the Split-C [19] parallel C dialect) for writing
SPMD-style parallel programs (radix sort and sample sort).

The scientific algorithm is a cholesky decomposition. The sequential code is
the natural implementation of the algorithm. The parallel version uses presence
booleans for each matrix cell to wait for results computed by other threads.
The scientific programs are ammp, a molecular dynamics simulator included
in the SPEC2000 (in a sequential version) and SPECOMP2001 (in a parallel
OpenMP version) benchmark suites, mg, a multigrid solver for the 3-D scalar
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Number of
Program foralls writeonce reduce() scan()
quick sort 2 2
radix sort 5 1 2
merge sort 2
sample sort 3 2
shell sort 1

bitonic sort 3
pure bitonic sort 1

cholesky 1 1

ebarnes 4 1
bzip2 4 2
ammp 7 12

mg 11 2

Table 2: Yada parallel annotation statistics.

Poisson equation from the NAS parallel benchmark suite [3] (available in both
sequential and OpenMP versions, and ported to C by the Omni project11), and
ebarnes, a Barnes-Hut particle simulator. The parallel ebarnes code builds its
oct-tree in parallel using locks, while the sequential version uses a divide-and-
conquer approach. We note that mg is typical of many SPMD-style scientific
programs: it basically exhibits only parallel read-sharing. Such programs are
deterministic, and easy to translate to Yada.

The pbzip2 utility parallelises compression and decompression of bzip2 files.
It uses a single file-reading and file-writing thread, and n compression threads
to both parallelise the compression work and overlap I/O and computation. We
use the regular bzip2 utility as the reference sequential implementation.

The parallel versions of sample sort, cholesky and ebarnes are ports of Split-
C [19] programs.

5.1. Parallelisation with Yada

Table 1 compares the size of sequential, Yada and parallel versions of our
benchmarks. We omit the sequential size for bzip2 as it is not directly compa-
rable to the parallel or Yada versions.

Generally, Yada code is close in size to the sequential code and in some cases
(bzip2, quick sort, merge sort, sample sort) significantly smaller than the parallel
code. For bzip2, this is mostly due to the removal of the parallel version’s work
queue and synchronisation logic. The difference in the three sorting algorithms
is due to a combination of relative verbosity of code built using the TBB library

11Retrieved from http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp in November
2009.
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Figure 8: Speedups vs sequential implementations. Solid line: Yada, dotted line: Parallel.

and, for merge and quick sort, the inclusion of a sequential version of the sorting
algorithm to handle the base case of the recursive sorts efficiently. The Yada
code is able to avoid this extra copy by conditionally selecting between parallel
and sequential execution of its loops — when sequential execution is selected
the code and performance is essentially identical to the sequential code in these
benchmarks.

Table 2 presents statistics on the number of parallel loops (and parallel
statement sequences) and sharing types used in the Yada version. All the ap-
plications and half of the algorithms need to use at least one sharing type,
and all the sharing types are used in at least two benchmarks. This provides
reasonable evidence that our sharing types capture styles of deterministic data
sharing commonly found in parallel programs. It is worth noting that for most
benchmarks, as we saw with radix sort in Section 2, the Yada version is very
similar to the sequential version. The two exceptions are bzip2, where the Yada
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code is based on the parallel version and merge sort, where the parallel merge
algorithm is completely different than the sequential one. The same similarity
with the sequential code holds for the OpenMP-based parallel codes.

We next briefly describe the changes and annotations required to convert
each benchmark to Yada. Quick sort parallelises both the step of splitting the
array around the pivot and performing the two recursive sorts in parallel. The
natural sequential code to split an array A around a pivot, leaving the results in
array B, is:

int j = 0, k = n;

for (i = 0; i < n; i++) {

if (A[i] < pivot) B[j++] = A[i];

else if (A[i] > pivot) B[--k] = A[i];

}

This loop is paralleliseable in Yada using two scan sharing types because
the updates to j and k can easily be separated from the reads by an andthen
pseudo-label, in a similar fashion to the examples for radix sort in Section 2:

int scan(+) j = 0, k = n;

for (i = 0; i < n; i++) {

if (A[i] < pivot) j++;

else if (A[i] > pivot) --k;

andthen:

if (A[i] < pivot) B[j - 1] = A[i];

else if (A[i] > pivot) B[k] = A[i];

}

This pivot-splitting loop is only run in parallel at the outermost levels of
the quick sort recursion because using scans has significant overheads and only
makes sense when other sources of parallelism are not available.

Radix sort was examined in detail in Section 2.
Merge sort parallelises both the recursive calls to merge sort, and the sub-

sequent merge. The parallel calls touch independent data so no sharing types
are required.

Sample sort can be viewed as a generalisation of quick sort: a small, fixed-
size sample of the array is sorted and used to split the array according to k

pivots. These k sub-arrays are sorted in parallel then combined back into a
single array. The Yada version parallelises all these steps except the array
sampling and selection of the pivots. In particular, the splitting of the array
into k buckets is very similar to the last loop of radix sort (line 16 of radix C in
Figure 1) and also directly translatable into a Yada forall loop using an array
of int scan(+) variables.

The shell and bitonic sorts contain loops that can easily be rewritten to
touch independent data and are therefore simple to parallelise.

The cholesky matrix decomposition uses writeonce busy variables to track
whether each matrix element’s value has been computed — these essentially
correspond to the presence booleans in the parallel version.
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The parallelisation of the oct-tree construction in ebarnes is based on the
sequential divide-and-conquer version, and simply parallelises the conquer step.
Attempts to parallelise the divide step failed to give any parallel speedup, as the
changes required swamped any gains from parallelism: the sequential version of
the Yada code ran approximately 8x slower than the original sequential divide-
and-conquer oct-tree construction. The particle updates are easily parallelised
as they are independent of each other.

The OpenMP version of the ammp molecular dynamics simulation uses locks
to protect concurrent updates to the force and potential fields of multiple atoms.
However, it turns out that these concurrent updates all take the form of addi-
tions and subtractions and are thus easily expressed in Yada by declaring twelve
fields in the ATOM structure with reduce(+). With these annotations and the
elimination of some redundant assignments, the Yada ammp code deterministi-
cally expresses the same parallelism as the OpenMP version.

The parallelisation of mg is straightforward: it involves only independent
updates, except for two scalar variables of type double reduce(+) and double

reduce(max).
Bzip2 is a data compression algorithm. Its compression code reads a file into

equally-sized blocks, which are then compressed separately and concatenated
together into an output file. The Yada pseudocode for compression is shown
below; decompression behaves similarly.

struct buffer {
char * writeonce sleepy buf;

unsigned int writeonce sleepy bufSize;

} *in, *out;

void compress() {
for (int i = 0; i < numBlocks; i++)

... read parts of the file into in[i] ...

|; | // in parallel with...

forall (int i = 0; i < numBlocks; i++)

... compress in[i] and write it into out[i] ...

|; | // in parallel with...

for (int i = 0; i < numBlocks; i++)

... write out[i] into a file ...

}

The middle loop operates on independent data and can easily be parallelised. To
overlap the I/O with compression, our Yada code uses two writeonce locations
within an array. As soon as the first chunk has been read and written into the
in array, the corresponding forall loop iteration can compress it in parallel
with the rest of the file reads. Similarly, once a chunk has been compressed and
written into the out array, it can be written to a file. This simple structure
replaces pbzip2’s work-queue (about 360 lines of code), used to communicate
between the reader and the compressor, and its array+busy-wait communication
(about 110 lines) between the compressors and the writer. Furthermore, testing
of the Yada version revealed that performance was significantly more stable
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when the writer ran sequentially after the readers and compressors, which we
accomplished by replacing the last |; | with a normal ;.

5.2. Performance

Our tests were performed on a dual quad-core Intel R©Xeon R©X5570 machine
with 6GB of memory, running Linux 2.6.24, gcc 4.1.2 (which includes OpenMP
support) and version 2.2 of Intel’s R©TBB library. The performance of Yada on
our benchmarks is summarised in Figure 8. The graphs report the performance
of the Yada and parallel code for 1, 2, 4, 6 and 8 threads as a speedup relative
to the sequential version. Each benchmark is run 10 times and its execution
time averaged. The error bars (when visible) show the speedups of the fastest
and slowest of the 10 parallel executions (always computed with respect to the
average sequential time, but the sequential time is a lot less variable than some
of the parallel times).

The inputs for the programs were as follows: the sorting algorithms sorted an
array of 50 million (225 for the pure bitonic sort) randomly generated 32-bit in-
tegers, cholesky decomposition was applied to a 2048x2048 matrix, ebarnes sim-
ulated 220 particles distributed on a sphere over 4 time steps (oct-tree construc-
tion took significant time on this input, speedups reach 6x on other distribu-
tions), bzip2 compressed a 50 million byte tar ball composed of text files, ammp
was run on the SPEC2000 training input and mg was run on its 256x256x256
“class B” input.

Yada achieves a speedup on all benchmarks. Furthermore, in most cases, and
in all our test applications, Yada’s performance is comparable to the parallel
version. In two cases, radix sort and cholesky, Yada has significantly worse
performance than the parallel code. For cholesky, the difference is due to the
fact that our writeonce busy-based presence booleans take two bytes vs the
one byte in the parallel version. For radix sort, the parallel version is very
similar to a hand-optimised version of the Yada code. A better Yada compiler
should be able to match the performance of the parallel code.

We also investigated what input sizes are required to get parallel speedups
with Yada. Figure 9 shows the speedup vs sequential code of four of our sorting
algorithms. For quick, merge and sample sorts, sorting 10,000 elements or more
provides significant speedups. Unsurprisingly given its poor scaling on large
inputs, the Yada radix sort only breaks even at one million elements.

Finally, it is worth noting that the parallel speedups on several of the bench-
marks are around 3 on 8 cores. This is comparable to the 2.5x speedup (from
10 GB/s on one core to 25GB/s on eight cores) obtained on the Stream [23]
bandwidth-testing benchmark. This suggests that these benchmarks’ sequential
and parallel performance is mostly bandwidth limited, and hence their parallel
speedup cannot much exceed the ratio of the maximum parallel bandwidth to
the maximum sequential bandwidth.
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Figure 9: Speedup vs input size of sorting algorithms on 8 cores.

6. Related Work

There has been a significant amount of work on deterministic and mostly
deterministic parallel languages. One approach to guaranteeing determinism is
to forbid side-effects, i.e. program in a pure functional language. This is the
approach taken most notably by NESL [4] and SISAL [24], and in some recent
languages [9, 17]. We believe that providing determinism in imperative lan-
guages provides many of the benefits of parallel functional programming while
being more familiar to most programmers. Data-parallel languages, such as
High Performance Fortran [16] and ZPL [10], are also deterministic by con-
struction. They achieve good performance on regular problems, but make it
difficult or impossible to express less structured parallelism, e.g. the overlapped
I/O and computation in the parallel bzip2 benchmark. As we discussed in the
introduction, a number of parallel languages [6, 7, 1, 31, 2] were designed to
“feel sequential”. However, they mostly only allow parallel read sharing, or re-
lax determinism to allow more general programs. They would thus have trouble
ensuring that many of our benchmarks execute deterministically.

Several previous languages and systems have concentrated on restricting
sharing to ensure determinism. Terauchi and Aiken’s capability calculus [33]
uses splittable capabilities to statically ensure determinism in programs with
message queues, Kahn networks and shared locations. Fortran M [11] uses a
similar capability-based approach to check accesses to shared locations, and also
includes deterministic message queues and writeonce variables. C**’s reduction

assignments [21] and MSA’s accumulate arrays [13] provide similar functional-
ity to our reduce() shared types. The Galois system [20] focuses on unordered
(non-deterministic, but still sequential) loop execution with potentially concur-
rent updates to shared objects. Conflicts are automatically detected (based on
method commutativity annotations) and lead to rollback of one of the iterations.
In contrast, Yada focuses on checking that iterations do not conflict (and hence
that the loop will execute in parallel). More generally, Yada supports sharing
types not expressible using the commutativity annotations provided by Galois,
DPJ and Jade.
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Some techniques check determinism in existing code. Dynamic analysis [15,
32] can be used to check whether an execution of a program is determinis-
tic. Burnim and Sen [8] allow programmers to write assertions that specify the
exact amount of determinism required (which may be somewhat relaxed) and
check these assertions through testing. Static analysis [30] techniques can check
sequential programs for commutativity and parallelise them if all of their oper-
ations commute. These approaches work on existing code, but they can only
report errors, not ensure that programs always execute deterministically.

Another approach is to force repeatability onto programs. Record and re-
play techniques record the thread interleavings of an execution and allow de-
terministic replays. Recent advances [25] have reduced the overheads of such
approaches, but they still incur significant slowdowns compared to normal ex-
ecution. DMP [14] requires processes to hold tokens when accessing memory
and pass them deterministically. It requires hardware support to be efficient.
Kendo [27] achieves good performance without specialized hardware by con-
structing a deterministic logical time, but it only guarantees a deterministic
order of lock acquisitions and so requires a race detector to achieve true deter-
minism. While all of these approaches achieve some level of determinism, none
help programmers understand their programs: small changes in a program can
lead to large changes in its execution.

Finally, decoupled software pipelines [29] are an alternate way of parallelising
our two-part parallel loops separated by andthen: one thread can run the first
part, communicating the partial results of scan() locations via special hardware
support to a second thread executing the second part of the loop. However, this
provides only a maximum two-fold speedup, unlike Yada’s two-stage loops that
allow parallelism up to the number of loop iterations n. Conversely, decoupled
software pipelines support parallel execution even when the updates are not
performed with an associative operator (and extend to k-way parallelism if the
loop can be split into k independent parts). Adding speculation to decoupled
software pipelines [34] can introduce extra parallelism when certain dependence
edges are rarely realised.

7. Conclusion and Future Work

Our experience with Yada has shown that it is practical to express re-
alistic algorithms and applications in a deterministic programming language
while still getting speedups that are competitive with implementations in non-
deterministic programming environments. We believe that this style of parallel
programming that feels much closer to sequential programming, and which al-
lows programs to be debugged sequentially, will be much more approachable to
mainstream programmers.

Yada’s design is not targeted at obtaining the absolutely best possible per-
formance from a parallel machine. However, when that is a goal, we still believe
that Yada is a useful tool. First, when targeting a shared-memory machine,
Yada should be a good first step in parallelization, as it allows exploration of
different parallelization strategies, easy detection of when and where parallel
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actions may step on each other’s data, and the use of the sharing types to han-
dle common ways of resolving these data sharing issues — reductions, scans,
and data-flow (easily expressed with writeonce). This Yada program can then
serve as the basis for a non-deterministic parallel program written, e.g., with
OpenMP. Second, even when targeting a distributed memory machine, where
the Yada version may be less obviously useful as a first step, Yada can still
serve as an exploratory tool for how to parallelize the algorithm. Finally, it
is worth repeating that Yada is actually quite expressive, as mentioned in the
introduction: any SPMD program that uses only barrier synchronization and
reduction and scan operators can easily be written in Yada. This includes all
the NAS 3.3 parallel benchmarks except UA.12

Yada is still a work in progress. From a language design perspective, we
have mostly concentrated on computational algorithms. Real programs often
have user interfaces, act as servers responding to outside requests, etc. We plan
to investigate whether Yada is suited to handling the concurrency often present
in such programs, possibly via new sharing types to support deterministic, par-
allel I/O. Similarly, as argued by Pingali et al [20], the best known approach
for parallelising some algorithms is non-deterministic. It would be desirable
for Yada to provide effective mechanisms for interacting with non-deterministic
code without losing its advantages of easy understanding and debugging. Fi-
nally, we will provide mechanisms to help detect determinism violations due to
interactions with external sequential and parallel libraries.

We will also continue working on Yada’s implementation to reduce the over-
heads of sharing types and of parallel loops and to optimise the performance
of the determinism checker, in particular to allow parallel execution. To help
programmers tune their Yada programs we need to provide feedback on per-
formance tradeoffs in switching between sharing type implementations and on
sequential vs parallel loop execution.

Finally, from a theoretical perspective, we aim to find a general proof frame-
work for showing how the restrictions on sharing types preserve determinism.
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[13] J. DeSouza and L. V. Kalé. MSA: Multiphase specifically shared arrays.
In LCPC’04.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic shared
memory multiprocessing. In ASPLOS’09, pages 85–96.

[15] M. Feng and C. E. Leiserson. Efficient detection of determinacy races in
Cilk programs. In SPAA’97, pages 1–11.

[16] H. P. F. Forum. High performance Fortran language specification, version
1.0. Technical Report CRPC-TR92225, Rice University, 1993.

[17] A. Ghuloum. Ct: channelling NESL and SISAL in C++. In CUFP’07,
pages 1–3.

29



[18] G. Kahn. The semantics of a simple language for parallel programming. In
Information processing, pages 471–475, Aug 1974.

[19] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta,
T. von Eicken, and K. Yelick. Parallel programming in Split-C. In Super-

computing ’93, pages 262–273.

[20] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P.
Chew. Optimistic parallelism requires abstractions. In PLDI’07, pages
211–222.

[21] J. R. Larus, B. Richards, and G. Viswanathan. LCM: Memory system
support for parallel language implementation. In ASPLOS’94, pages 208–
218.

[22] C. Lin and L. Snyder. Principles of Parallel Programming. Addison-Wesley,
2008. ISBN 978-0321487902.

[23] J. D. McCalpin. Sustainable memory bandwidth in current high
performance computers, Oct. 1995. http://www.cs.virginia.edu/ mc-
calpin/papers/bandwidth/bandwidth.html.

[24] J. McGraw, S. Skedziewlewski, S. Allan, R. Oldehoeft, J. Galuert,
C. Kirkham, and B. Noyce. SISAL: Streams and iteration in a single
assignment language, 1986. Memo M-146, Lawrence Livermore National
Laboratory.

[25] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo: A software-
hardware interface for practical deterministic multiprocessor replay. In
ASPLOS’09, pages 73–84.

[26] G. C. Necula, S. McPeak, and W. Weimer. CIL: Intermediate language
and tools for the analysis of C programs. In CC’04, pages 213–228.

[27] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deterministic
multithreading in software. In ASPLOS’09, pages 97–108.

[28] G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
1981.

[29] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. Decou-
pled software pipelining with the synchronization array. In PACT’2004.

[30] M. C. Rinard and P. C. Diniz. Commutativity analysis: A new analysis
technique for parallelizing compilers. ACM Trans. Program. Lang. Syst.,
19(6):942–991, 1997.

[31] M. C. Rinard, D. J. Scales, and M. S. Lam. Jade: A high-level, machine-
independent language for parallel programming. Computer, 26(6):28–38,
1993.

30



[32] C. Sadowski, S. N. Freund, and C. Flanagan. Singletrack: A dynamic
determinism checker for multithreaded programs. In ESOP’09, pages 394–
409.

[33] T. Terauchi and A. Aiken. A capability calculus for concurrency and de-
terminism. ACM Trans. Program. Lang. Syst., 30(5):1–30, 2008.

[34] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August. Speculative decoupled software pipelining. In PACT’2007.

31


