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Finding errors in machine learning applications requires a thorough exploration of their behavior over data.
Existing approaches used by practitioners are often ad-hoc and lack the abstractions needed to scale this process.
We present TorchQL, a programming framework to evaluate and improve the correctness of machine learning
applications. TorchQL allows users to write queries to specify and check integrity constraints over machine
learning models and datasets. It seamlessly integrates relational algebra with functional programming to allow
for highly expressive queries using only eight intuitive operators. We evaluate TorchQL on diverse use-cases
including finding critical temporal inconsistencies in objects detected across video frames in autonomous
driving, finding data imputation errors in time-series medical records, finding data labeling errors in real-
world images, and evaluating biases and constraining outputs of language models. Our experiments show that
TorchQL enables up to 13x faster query executions than baselines like Pandas and MongoDB, and up to 40%
shorter queries than native Python. We also conduct a user study and find that TorchQL is natural enough
for developers familiar with Python to specify complex integrity constraints.
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1 INTRODUCTION

Machine learning models can fail in unexpected and harmful ways. Examples include fatalities
caused by self-driving vehicles [Wakabayashi 2018], vision models performing worse on people
with darker skin [Wilson et al. 2019], language models producing text containing offensive stereo-
types [Abid et al. 2021], and medical diagnosis models degrading in performance when used in
new hospitals [Zech et al. 2018]. Identifying and avoiding such behaviors is crucial to ensuring
performance, reliability, and trustworthiness of machine learning applications.

Finding and characterizing these behaviors is difficult. As a running example, consider Figure 1a,
which depicts three consecutive video frames from the Cityscapes self-driving dataset [Cordts et al.

Authors’ addresses: Aaditya Naik, University of Pennsylvania, Philadelphia, USA, asnaik@seas.upenn.edu; Adam Stein, Uni-
versity of Pennsylvania, Philadelphia, USA, steinad@seas.upenn.edu; Yinjun Wu, University of Pennsylvania, Philadelphia,
USA, wuyinjun@seas.upenn.edu; Mayur Naik, University of Pennsylvania, Philadelphia, USA, mhnaik@seas.upenn.edu;
Eric Wong, University of Pennsylvania, Philadelphia, USA, exwong@cis.upenn.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/4-ART124
https://doi.org/10.1145/3649841

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 124. Publication date: April 2024.

HTTPS://ORCID.ORG/0000-0002-3100-0455
HTTPS://ORCID.ORG/0000-0003-1887-100X
HTTPS://ORCID.ORG/0000-0002-9770-5765
HTTPS://ORCID.ORG/0000-0003-1348-8618
HTTPS://ORCID.ORG/0000-0002-8568-6659
https://doi.org/10.1145/3649841
https://orcid.org/0000-0002-3100-0455
https://orcid.org/0000-0003-1887-100X
https://orcid.org/0000-0002-9770-5765
https://orcid.org/0000-0003-1348-8618
https://orcid.org/0000-0002-8568-6659
https://doi.org/10.1145/3649841


124:2 Aaditya Naik, Adam Stein, Yinjun Wu, Mayur Naik, and Eric Wong

Video Frames

(a) Model fault visualization.

Query('temporal_consistency', base='preds')
.join('preds', key=fid_plus1, fkey=fid)
.join('preds', key=fid_plus2, fkey=fid)
.project(match_three_bboxes)
.project(zip_adj_preds).flatten()
.filter(lambda sid, frames, lb, bx: (

lb[0] == lb[1] and lb[2] == "No Match"
and is_center(bx[0])))

(b) Integrity constraint as a query.

Fig. 1. (a) shows three consecutive frames in a video from the Cityscapes self-driving object-detection dataset.

OneFormer, a state-of-the-art model, detects pedestrians in the center of the first two frames but not in the

third. We formalize this fault as a violation of an integrity constraint. (b) shows a TorchQL query to find all

such violations over a dataset named ‘preds’ consisting of video frames along with the model’s predictions.

2016]. A state-of-the-art vision model, OneFormer [Jain et al. 2022], fails to predict a pedestrian in
the third frame. This is a safety-critical issue since predicted objects should not suddenly disappear,
especially not pedestrians. This model failure, however, is difficult to find since the error occurs
sparsely within the 15K validation samples and it has minimal impact on most numeric evaluation
metrics, so even the highest-performing models exhibit such faults.

Similar to the above example, errors often exhibit sparsely in model predictions over vast datasets.
As such, in order to identify and characterize these errors, one must sift through large numbers of
correct predictions. Moreover, simply identifying the errors may not be enough; oftentimes we
must identify the underlying cause of these errors. In general, erroneous model predictions can be
cast as violations of certain properties. For instance, the error in Figure 1a violates the property of
object permanence across three adjacent frames in a video sequence.

We desire a general mechanism for specifying and checking such properties over data. Integrity
Constraints, originally studied in the context of databases [Godfrey et al. 1998], constitute such a
mechanism. As such, we can cast the problem of detecting and avoiding these errors as the problem
of specifying appropriate integrity constraints and evaluating them over model predictions. For
example, the error in Figure 1a can be cast as the violation of the constraint: for every sequence of
three consecutive frames, a person detected in the first two frames should be detected in the third.

Existing machine learning frameworks lack adequate abstractions to support integrity constraints.
Writing such constraints from scratch in Python typically also requires writing the infrastructure
code needed to execute them. This places a burden on the user who may not know the constraint a
priori and may want to test out multiple candidate constraints. Furthermore, once these constraints
are specified, executing them over large scale data may require further optimizing the code, which
is another burden on the user.
While frameworks such as Pandas and MongoDB can potentially abstract away some of the

required infrastructure, they either have ad-hoc support for Python or come with complex interfaces
and strict schema requirements. Furthermore, they may not naturally support the vast number of
possible modalities that machine learning models operate over, from bounding boxes over video
frames to unstructured text or audio data. This is also a challenge for systems such as LMQL
[Beurer-Kellner et al. 2023] that seek to enforce integrity constraints over model outputs at runtime
but are only applicable to the domain of language modeling.

We therefore observe that any effective framework for programming integrity constraints must
address the following challenges:

(1) Scalability: it must be able to check integrity constraints in large-scale machine learning settings,
(2) Interactivity: it must support interactive testing and inspection of constraint violations, and
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(3) Expressivity: it must be able to support integrity constraints specified over a diverse landscape
of models, datasets, and use-cases.

In this paper, we present TorchQL, a framework that satisfies the above criteria. TorchQL
enables users to specify integrity constraints as queries. For this purpose, it introduces a query
language that seamlessly integrates relational algebra with functional programming. Figure 1b
shows an example query that specifies the constraint that detects the error in Figure 1a. TorchQL
executes the queries over a database representing datasets and model predictions to find violations
of the corresponding integrity constraints. This allows developers to quickly and scalably test
potential bugs on large datasets and models. Furthermore, the compositionality of TorchQL queries
enables the rapid refinement of previous iterations to interactively prototype new potential issues
and reduce false alarms among discovered faults.

TorchQL queries are easy to write yet highly expressive, capable of representing complex faults
with only eight operators and simple user-defined functions. For example, the query in Figure 1b
uses only four table operators—join, project, filter and flatten—along with three user-defined
functions to search for violations of the object permanence constraint. This query finds only 627
frames containing such errors out of 15,000, allowing it to effectively detect errors in large-scale
machine learning tasks, while systems like Python require considerable optimizations to do so
without timing out. We discuss this example in more detail in Section 6.1.

We demonstrate how TorchQL enables the use of integrity constraints for detecting and fixing
correctness problems in a diverse set of machine learning tasks—object detection, data imputation,
image classification, text generation, and natural language reasoning—across domains involving
self-driving videos, time-series medical records, and large language models (LLMs). We show
the effectiveness of TorchQL on these tasks and domains through five extensive case studies.
Moreover, our evaluation shows that TorchQL enables faster query executions (up to 13x best-case
speed-ups) than baseline systems such as Pandas and MongoDB, and more concise queries (up
to 40% shorter) than native Python. We also conduct a user study with 10 users to evaluate the
usability of TorchQL. We find that they were able to quickly learn TorchQL to program integrity
constraints and find model mispredictions.

We summarize the contributions of the paper:

(1) We propose integrity constraints as a means for discovering and characterizing faults in general
machine learning tasks.

(2) We develop TorchQL1, a framework for programming and checking integrity constraints over
models and datasets in a manner that is scalable, interactive, and expressive. At its core, TorchQL
provides abstractions to specify and evaluate integrity constraints as database queries.

(3) We perform extensive experiments that demonstrate the efficiency and conciseness of TorchQL
for integrity constraint queries in a multitude of use-cases across a variety of domains.

(4) We also complement our experiments with a user study and multiple case studies to validate
the usability and expressiveness of TorchQL.

2 ILLUSTRATIVE OVERVIEW

In this section, we illustrate how TorchQL is used to iteratively discover and check integrity
constraints to detect model faults, and contrast with programming the same constraints in native
Python. This process is done offline, once the model is trained, but before it is deployed. In Section 6,
we discuss other use-cases, such as using the constraints to detect model faults at runtime.

1The TorchQL system is currently available at https://github.com/TorchQL/torchql/.
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Query('people_count', base='preds')
.filter(lambda p:
count_people(p['labels']) != 0)

(a) TorchQL

people_count = []
for p in preds:

if count_people(p['labels']) != 0:
people_count.append(p)

(b) Native Python

Fig. 3. Queries for finding individual frames in which at least one pedestrian is predicted.

Query('changing_people', base='preds')
.join('preds', key=fid_plus_1, fkey=fid)
.filter(lambda f1, f2:

count_people(f1['labels']) !=
count_people(f2['labels']))

(a) TorchQL

changing_people = []
for p in preds:

for q in preds:
if fid_plus_1(p) == fid(q):
if count_people(p['labels']) !=

count_people(q['labels']):
changing_people.append([p, q])

(b) Native Python

Fig. 4. Queries for finding pairs of consecutive frames with different predicted pedestrian counts.

Consider the error in Figure 1 where a self-driving object detector fails to detect a pedestrian in
the third frame of a video sequence. Since this is a critical bug, a machine learning practitioner
would want to find other instances of this error, both within the training data as well as when the
model is deployed. We therefore seek to characterize this error as an integrity constraint violation.
Before we can accomplish this, however, we must first discover the integrity constraint itself.

preds = ... # frames and predictions
db = Database()
db.register(preds, 'preds')
q = Query(...) # creating a query
result = q(db) # running the query

Fig. 2. Initializing a TorchQL database

and running queries over it.

We first initialize a TorchQL database db as shown in Fig-
ure 2 and populate it with a table named ‘preds’ containing
predictions of OneFormer over 15,000 frames. Any query q
we write can then be evaluated over this table by invoking it
over db.
Since we do not know the constraint beforehand, we start

with a simple initial constraint: frames in which at least
one pedestrian is predicted. This can be written as a simple
TorchQL query as shown in Figure 3a. Here, we specify the
query name (people_count) and the table over which the query operates (preds). Each prediction
consists of the bounding boxes and their corresponding labels for each frame. We supply a user-
defined function to the filter operator, which executes it over each frame when the query is run,
and keep the predictions that satisfy the condition.

We also show the same constraint implemented in native Python in Figure 3b. The lack of query
abstractions in Python means that we need to write a for loop, an if condition, and manually add
satisfying predictions to the data structure (people_count). As such, the lack of query abstractions
often necessitates one to implement both what the constraint is, as well as how to evaluate it.

Evaluating this constraint gives us 4,591 frames out of the total 15,000 frames, many of them false
positives. This means that the constraint is too broad and must be refined further. A subsequent
hypothesis may look for two consecutive predictions which differ in the number of people detected.
In such a case, it is possible that some people predicted in the first frame are missed in the second.
We can construct the query in Figure 4a to represent this hypothesis by chaining more table

operators to the original query. First, we use a join operator to join the table of pedestrians with the
same table shifted forward in time by one frame to get a new table containing pairs of consecutive
predictions. Here too, we use user-defined functions to specify the key and foreign key of the join.
This gives us a table of consecutive predictions. Observe that TorchQL allows its queries to directly
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Query('temporal_consistency', base='preds')
.join('preds', key=fid_plus_1, fkey=fid)
.join('preds', key=fid_plus_2, fkey=fid)
.project(match_three_bboxes)
.project(zip_adj_preds)
.flatten()
.filter(lambda sid, frames, lb, bx:

lb[0] == lb[1] and
lb[2] == "No Match" and
is_center(bx[0]))

(a) TorchQL

temporal_consistency = []
for p in preds:

for q in preds:
for r in preds:
if fid_plus_1(p) == fid(q) and

fid_plus_2(p) == fid(r):
bboxes = match_three_bboxes(p, q, r)
bboxes = zip_adj_preds(*bboxes)
for box in bboxes:
for (sid, frames, lb, bx) in box:
if lb[0] == lb[1] and

lb[2] == "No Match" and
is_center(bx[0]):

temporal_consistency.append(box)

(b) Native Python

Fig. 5. Queries for finding sequences of three consecutive frames where a pedestrian is detected in the center

of the first two frames but not in the third.

run on the objects being queried themselves. This allows us to seamlessly integrate relational
algebra with lambda functions, as queries can contain and execute arbitrary Python functions (e.g.,
fid and fid_plus_1) over these objects without needing to define an explicit schema.
We can then apply another filter operator to select only pairs of predictions with a differing

number of pedestrians. This now reduces the number of filtered frames to 3,638 from the 4,591
that were filtered out in the initial query. As was the case with the previous iteration, however, the
Python implementation (Figure 4b) requires writing multiple looping and conditional statements
to mimic the join and filter operators.

Our latest query produced a table of consecutive predictions with a differing number of people.
However, such predictions also include people that did not go missing, such as those exiting or
entering the second frame. We therefore need to identify the exact persons that have eluded the
object detector. This requires converting our latest table of consecutive predictions into a table of
consecutive persons. We also wish to do so over three frames instead of two to avoid even more
false positives, and restrict our constraint to predictions in the center of the frame to avoid issues
with people leaving or entering the frame.

The TorchQL query identifying all such sequences of three consecutive frames is shown in
Figure 5a. Here, the sequences are such that the pedestrian is detected in the center of the first
frame, detected again in the second frame, but not in the third.
Our first step is to join an additional ‘preds’ table to get a set of three consecutive predictions

instead of two. We again use the join operator, similar to how we used it in the previous query.
Although we have a set of three consecutive predictions, each prediction contains an unordered
list of detected objects. As a result, it is not immediately obvious which bounding boxes refer to
the same person. We therefore use a well-developed tool from object detection for aligning the
bounding boxes between frames [Bolya et al. 2020]. We can apply this complex function, denoted as
match_three_bboxes to all of our prediction sequences using the project table operator, which
applies a function to every row in a table to create a new table.

We further use a combination of other user-defined functions, table operators, and a final filter to
extract consecutive objects where the object is detected as a person in the first two frames but not
in the third. This final constraint refines our search of critical errors from 3638 to 627 frames out
of 15,000. In contrast, the Python implementation shown in Figure 5b requires the additional join
to be explicitly set up as a nested loop, and more loops to mimic the flatten operator. Moreover,
the Python implementation now fails to scale to the 15,000 frames, timing out after 10 minutes,
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Table 1. Comparison of querying systems.

Querying Systems Data Representation Flexible
Schema

User-Defined
Functions

Querying
Abstractions

Pandas numpy.array tables ✗ ✓ ✓

MongoDB [Banker et al. 2016] key-value stores ✓ ✗ ✓

TorchQL object collections ✓ ✓ ✓

Python, OMG [Kang et al. 2018] arbitrary objects ✓ ✓ ✗

while the TorchQL query executes in around 43 seconds. While the Python implementation can be
optimized, doing so adds 24 more lines of code, imposing additional user burden.

We thus show that throughout this process, TorchQL allowed us to quickly and easily execute
and iterate over prototype queries on not only the original dataset but also on intermediate tables
produced while trying to program the constraint to detect temporal inconsistencies. On the other
hand, iterating over constraints in Python is accompanied by setting up the infrastructure to
scalably execute the constraint, an issue prevalent in machine learning codebases such as the ones
mentioned in Appendix B.1. Our final query involves the composition of 4 unique table operators,
each of which is parameterized by a custom lambda function to handle various data types. This
process is representative of how the scalability, interactivity, and expressivity of TorchQL allows
us to program integrity constraints to discover errors in machine learning applications.

3 THE TORCHQL FRAMEWORK

This section presents the TorchQL framework. We first describe the underlying data model that
queries operate over and then present the syntax and semantics of queries.

3.1 Data Model

While integrity constraints can be programmed using existing systems like Pandas or native Python,
as we illustrated in Section 2, they are ill-equipped for our needs. If arbitrary Python objects are
needed for a debugging task, Python is preferable to Pandas, since the latter does not support
querying over arbitrary objects. Conversely, if the objects adhere to a rigid structure or can be easily
flattened into a table of primitive datatypes, it is more efficient to take advantage of Pandas querying
abstractions. Other candidates include NoSQL database systems like MongoDB and its in-memory
counterpart, ArangoDB. However, they are designed to store and query over key-value pairs and
do not support user-defined functions (UDFs) that allow users to leverage external modules and
express arbitrarily complex queries. We summarize these tradeoffs in Table 1.
In order to be usable, TorchQL must support queries over arbitrary Python objects without

requiring much data wrangling. TorchQL therefore uses an object-relational representation to
represent the data being queried. It inherits Python’s data model and considers an object (𝑜) to
be a fundamental abstraction of data. As such, each object may either be a Python primitive or
instantiation of a Python class, a list or set of other objects, or a collection of key-value pairs.
These objects may be further organized into lists with other similar objects, referred to as

tables (𝑇 ). Objects in the same table are oftentimes related with each other, but need not conform
to any schema, like frames from a video, or prompts for a large language model. Tables can be
further assigned names and organized into a collection called a database (𝐷). We show the semantic
domains for objects, tables, and databases used by TorchQL in Figure 6a.

An object-relational representation has several advantages over other common representations.
First, while it requires objects being queried to be contained within a collection, it has no restrictions

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 124. Publication date: April 2024.



TorchQL: A Programming Framework for Integrity Constraints in Machine Learning 124:7

(object) 𝑜 ::= 𝑝

| [𝑜1, . . . , 𝑜𝑛 ]
| {𝑜1, . . . , 𝑜𝑛 }
| {𝑝1 : 𝑜1, . . . , 𝑝𝑛 : 𝑜𝑛 }

(table) 𝑇 ::= [𝑜1, . . . , 𝑜𝑛 ]
(database) 𝐷 ::= [𝑛1 → 𝑇1, . . . , 𝑛𝑘 → 𝑇𝑘 ]

(a) Semantic Domains.

(name) 𝑛

(function) 𝑓

(query) 𝑄 ::= 𝑛 | 𝑄.𝑎

(statement) 𝑆 ::= register(𝑛,𝑇 )
| 𝑛←𝑄

(program) 𝑃 ::= 𝜖 | 𝑆 ; 𝑃

(operator) 𝑎 ::= join (𝑛, 𝑓1, 𝑓2)
| filter (𝑓 ) | flatten ()
| project (𝑓 )
| order_by (𝑓 )
| group_by (𝑓 )
| unique () | reduce (𝑓 )

(b) Abstract syntax.

Fig. 6. Core language of TorchQL.

on the structure of the objects being queried. This allows for the flexibility to query over models and
datasets without the associated overhead of converting the data into a compatible representation.

Moreover, storing these objects within collections allows for enough structure within each table
to provide succinct yet powerful querying abstractions over them akin to their relational algebra
counterparts. Operations such as joining tables or grouping rows turn into single-line specifications
without the need for setting up low-level infrastructure that would otherwise be required.

An object-relational representation also allows for the support of executing UDFs over the objects
within each table. TorchQL supports this by allowing users to supplement each relational algebra
abstraction with one or more UDFs if needed. This also allows the user to leverage external libraries,
machine learning models, and other tools to write their queries within the TorchQL framework.

3.2 TheQuery Language

We now describe TorchQL’s query language. We first present its syntax, shown in Figure 6b,
followed by the operational semantics, shown in Figure 7.

3.2.1 Syntax. A TorchQL program comprises a sequence of statements each of which defines
a named base table or a named query. Each query is a chain of table operators that define a
sequence of transformations to apply to one or more tables in the database. TorchQL provides
eight unique table operators. These operators, with the exception of flatten and unique, are
empowered by user-defined functions (UDFs). UDFs are arbitrary Python functions that enable
powerful transformations over each object of a given table, or in the case of reduce, over the entire
table. Note that since UDFs are arbitrary functions, they may result in potentially non-terminating
queries depending on their definitions. We discuss these operators in more detail in Section 3.2.3,
after describing the program semantics.

3.2.2 Semantics. A TorchQL program is interpreted as a sequence of database transformations
induced by its constituent statements. Statement register(𝑛,𝑇 ) adds base table 𝑇 with the name
𝑛 to the database whereas statement 𝑛 ← 𝑄 runs query 𝑄 over tables in the database to result in a
new table which is added to the database with the name 𝑛. In particular,𝑄 is comprised of the name
𝑛 of an existing table and a chain of zero or more table operators 𝑎1.𝑎2 . . . 𝑎𝑘 . When executing 𝑄
over database 𝐷 , table 𝑇0 = 𝐷 [𝑛] is first retrieved and then the table operations specified in 𝑄

sequentially transform the table. Starting from table𝑇0, operation 𝑎𝑖 transforms table𝑇𝑖−1 into𝑇𝑖 to
eventually produce the output table 𝑇𝑘 .
These semantics are vital for TorchQL to be effective at interactively programming integrity

constraints. Iterating over previous hypotheses requires the results of executed queries to be stored
and usable across programming sessions. Moreover, since the TorchQL language allows a single
query to be arbitrarily complex, these semantics allow for simpler queries by decomposing complex
operations into multiple queries. Queries can also act as preprocessors, allowing for features to
be extracted from unstructured data before using those features to program integrity constraints.
Sequentially executing and storing results of previous statements allows for these use cases.
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Program semantics

𝐷 ⊢ 𝜖 ⊲ 𝐷
[Program_E]

𝐷 ⊢ 𝑄 ⊲ 𝑇 𝐷,𝑇 ⊢ 𝑎 ⊲ 𝑇 ′

𝐷 ⊢ 𝑄.𝑎 ⊲ 𝑇 ′
[Query_Op]

𝐷 ⊢ 𝑛 ⊲ 𝐷 [𝑛]
[Query_n]

𝐷 [𝑛 ↦→ 𝑇 ] ⊢ 𝑃 ⊲ 𝐷 ′

𝐷 ⊢ register(𝑛,𝑇 ) ;𝑃 ⊲ 𝐷 ′
[Program_Reg]

𝐷 ⊢ 𝑄 ⊲ 𝑇 𝐷 [𝑛 ↦→ 𝑇 ] ⊢ 𝑃 ⊲ 𝐷 ′

𝐷 ⊢ 𝑛 ← 𝑄 ;𝑃 ⊲ 𝐷 ′
[Program_Query]

Operator semantics

𝑓 : O→ O, 𝑠 : O→ Bool, 𝑔 : T→ T,
𝜎𝑠 : T→ T, · ⊲⊳𝑓k,𝑓fk · : T→ T, · ++ · : T→ T

𝐷,𝑇 ⊢ join(𝑛, 𝑓k, 𝑓fk ) ⊲ 𝑇 ⊲⊳𝑓k,𝑓fk 𝐷 [𝑛] [Join]

𝐷,𝑇 ⊢ project(𝑓 ) ⊲ 𝑇 ′

𝐷, 𝑡 : 𝑇 ⊢ project(𝑓 ) ⊲ 𝑓 (𝑡 ) : 𝑇 ′
[Project1]

𝐷, [ ] ⊢ project(𝑓 ) ⊲ [ ] [Project2]

𝐷,𝑇 ⊢ reduce(𝑔) ⊲ 𝑔 (𝑇 ) [Reduce]
𝐷,𝑇 ⊢ filter(𝑠 ) ⊲ 𝜎𝑠𝑇

[Filter]

𝐷,𝑇 ⊢ filter(𝜆𝑥.𝑓 (𝑥 ) ≤ 𝑓 (𝑡 ) ) ⊲ 𝑇≤𝑥
𝐷,𝑇 ⊢ filter(𝜆𝑥.𝑓 (𝑥 ) > 𝑓 (𝑡 ) ) ⊲ 𝑇>𝑥

𝐷,𝑇≤𝑥 ⊢ order_by(𝑓 ) ⊲ 𝐿

𝐷,𝑇>𝑥 ⊢ order_by(𝑓 ) ⊲ 𝑅

𝐷, 𝑡 : 𝑇 ⊢ order_by(𝑓 ) ⊲ 𝐿++[𝑡 ]++𝑅 [Order1]

𝐷,𝑇 ⊢ filter(𝜆𝑥.𝑓 (𝑥 ) = 𝑓 (𝑡 ) ) ⊲ 𝑇=

𝐷,𝑇 ⊢ filter(𝜆𝑥.𝑓 (𝑥 ) ≠ 𝑓 (𝑡 ) ) ⊲ 𝑇≠

𝐷,𝑇≠ ⊢ group_by(𝑓 ) ⊲ 𝑇 ′

𝐷, 𝑡 : 𝑇 ⊢ group_by(𝑓 ) ⊲ (𝑓 (𝑡 ), 𝑡 : 𝑇= ) : 𝑇 ′
[Group1]

𝐷, [ ] ⊢ order_by(𝑓 ) ⊲ [ ] [Order2 ]
𝐷, [ ] ⊢ group_by(𝑓 ) ⊲ [ ] [Group2]

𝐷,𝑇 ⊢ filter(𝜆𝑥.𝑥 ≠ 𝑡 ) ⊲ 𝑇≠ 𝑇≠, 𝐷 ⊢ unique( ) ⊲ 𝑇 ′

𝐷, 𝑡 : 𝑇 ⊢ unique( ) ⊲ 𝑡 : 𝑇 ′
[Uniqe1]

𝐷, [ ] ⊢ unique( ) ⊲ [ ] [Uniqe2]

𝐷,𝑇 ⊢ flatten( ) ⊲ 𝑇 ′

𝐷, 𝑡 : 𝑇 ⊢ flatten( ) ⊲ [𝑡 ]++𝑇 ′
[Flatten1]

𝐷, [ ] ⊢ flatten( ) ⊲ [ ] [Flatten2]

Fig. 7. Operational semantics of TorchQL.

3.2.3 Operators. We now describe the operator semantics of TorchQL. The eight table operators
are largely drawn from relational algebra and natively support complex operations over tables. In
general, each operator takes as input a table, and produces a table as output. With the exception of
flatten and unique, users can supplement these operators with UDFs. However, the operators
differ in how these supplied UDFs are executed over the objects within each table.

(1) Join. This operator composes objects from two tables into a single table. The composition is
achieved through the supplied UDFs 𝑓K : O→ O and 𝑓FK : O→ O, as shown in Join in Figure 7:

𝑇𝑖 ⊲⊳𝑓k,𝑓fk 𝑇𝑗 = [[𝑜𝑖 , 𝑜 𝑗 ] |𝑜𝑖 ∈ 𝑇𝑖 , 𝑜 𝑗 ∈ 𝑇𝑗 , 𝑓k (𝑜𝑖 ) = 𝑓fk (𝑜 𝑗 )]

Here, O denotes the domain of all objects. Since the key-foreign key pairs for the tables are defined
by the results of UDFs, one can join tables based on values that can be results of arbitrarily complex
operations not existing within the tables. An example of this is in the join of the query in Figure 1,
where the function fid_plus_1 returns the frame ID of the next frame, while fid returns the frame
ID of the current frame. Using these functions allows one to join the table containing all the frames
with itself to produce a table containing pairs of consecutive frames.

This join is a form of equijoin, and can thus be implemented as a hash join, where we use a
hash table to join the objects from table 𝑇𝑖 to those of 𝑇𝑗 . Using a hash join algorithm allows us to
achieve this with a complexity of 𝑂 (𝑚 + 𝑛), where𝑚 = |𝑇𝑖 | and 𝑛 = |𝑇𝑗 |, as opposed to typical join
algorithms that perform with complexity 𝑂 (𝑚𝑛).
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(2) Project. This operator transforms each object in a table according to the supplied UDF 𝑓 :
O→ O as described in Project1 and Project2 in Figure 7. This allows us to perform powerful and
flexible transformations on the rows of the table, such as including image transformations using
image processing libraries, or analyzing the inferences made by external models as shown in the
query in Figure 10b where the project function is used to generate prompts for the LLMs.

(3) Filter. This operator uses the supplied UDF 𝑠 : O→ Bool to filter out rows from a table. This
is depicted in Filter in Figure 7 using the selection operator 𝜎 from relational algebra.
(4) Order By. This operator reorders the objects of the table 𝑇 according to the supplied UDF

𝑓 : O→ O as shown in Order1 and Order2 in Figure 7. Again, the UDF allows the reordering of
objects without the need to explicitly populate the table with the values to order the objects by.

(5) Group By. This operator allows grouping objects of a table into subtables, where each subtable
contains the objects that produce the same value when passed to the UDF 𝑓 : O→ O. This operator
is unique in the sense that its result contains nested tables that can be further manipulated using
table operators. This allows us to perform powerful group-by operations on the table, such as
grouping by the hour of the day or the sequence ID as shown in the query in Figure 14a.

(6) Flatten. This operator flattens each object 𝑜 𝑗 ∈ 𝑇 where 𝑜 𝑗 is a collection [𝑜 𝑗1, 𝑜 𝑗2, 𝑜 𝑗3, . . .] to
produce table 𝑇 ′ such that each element 𝑜 𝑗𝑚 ∈ 𝑇 ′. If 𝑜 𝑗 is not a collection, then it is left unchanged.

(7) Unique. This operator returns a table 𝑇 ′ where duplicate rows from 𝑇 are removed.
(8) Reduce. This operator is different from the previously discussed operators in that it runs the

supplied UDF 𝑔 : T→ T over the entire table rather than over individual objects within that table.
Here, T is the domain of tables. This not only allows for general aggregation functions like count,
length, min, max, and others, but also for recursive functions over tables to be run as a part of a
TorchQL query without having to switch to native Python.

The use of UDFs within these operators enables a versatile querying system. First, since the
UDFs can be specified directly over objects, users do not need to wrangle the data to fit a schema
in order to efficiently query a model’s predictions. Second, unlike in other querying systems,
extracting features necessary for building these queries now becomes integrated into the query
writing process, rather than being a separate component that practitioners independently refine.
Finally, since UDFs can be arbitrary Python code, TorchQL is Turing complete.

4 IMPLEMENTATION

TorchQL has been implemented in Python which is the primary language used for machine
learning pipelines. The underlying database system is designed to be in-memory. This design choice
eliminates the overhead of storing and retrieving objects from disk while executing queries, thereby
reducing the turnaround time for each query. As such, all tables being queried over are permanently
loaded in the main memory for as long as the programming session lasts. While the data for the
tables may be stored to disk and retrieved, they need to be loaded into memory before writing
queries over them.

When writing queries, the tables that they access must exist in the database before they can be
executed. Therefore, when a database is newly initialized, as is the casewhen starting a programming
session for a new task, it must be populated with these tables using the register function. This is
typically used for loading in the training, validation, or test datasets, after which model predictions
can be obtained over them via TorchQL queries.

The TorchQL database engine compiles each TorchQL query, comprising a pipeline of operators,
into an executable sequence of table operations. The engine applies relevant optimizations while
compiling the query. TorchQL relies on hash data structures to performmost of these optimizations,
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though batch-driven optimizations are also discussed later. One example where hashing allows
for TorchQL to optimize queries is in the join operation. Since TorchQL joins are analogous to
SQL equijoins, they are implemented as hash joins, where the results of the key and foreign key
functions are hashed. This results in a complexity of 𝑂 (𝑀 + 𝑁 ), where𝑀 and 𝑁 are the number
of rows in the tables being joined, as opposed to 𝑂 (𝑀𝑁 ) in the naive implementation. Hashing
similarly allows TorchQL to optimize the grouping and unique operations.
In order to seamlessly integrate the data-loading process, as well as the interaction between

TorchQL queries and machine learning models, we design TorchQL to support conventional
machine learning frameworks, specifically PyTorch. To do so, TorchQL tables inherit the base
PyTorch Dataset class. In other words, TorchQL tables are instantiations of PyTorch Datasets.
This has a few advantages while working with PyTorch machine learning pipelines.

train_data = datasets.MNIST(
root = 'data', train = True,
transform = ToTensor(),
download = True,

)
db = Database("mnist")
db.register(train_data, "train")

Fig. 8. Loading a PyTorch dataset.

For one, users can directly register PyTorch datasets into
TorchQL databases without needing to cast them as TorchQL
tables explicitly, allowing them to directly query their data. For
instance, we can download the training data for the MNIST
dataset using PyTorch’s API and directly load it into a TorchQL
database as shown in Figure 8.
This also allows TorchQL’s database engine to perform

batch-driven optimizations by leveraging PyTorch’s Dataloader
to efficiently iterate over batches of objects, as well as PyTorch’s
support for batch processing and vectorized tensor operations. This results in optimizing the exe-
cution of queries whose UDFs work with batched tensors.

5 EVALUATION SETUP

We now discuss the setup for evaluating the effectiveness of TorchQL as an integrity constraint
programming framework. As discussed in Section 1, we require TorchQL to be scalable, interactive,
and expressive. We therefore evaluate it by answering the following research questions:
RQ1. Expressivity: Can TorchQL be used to program integrity constraints in diverse settings?
RQ2. Performance: Are TorchQL queries concise and efficient on large-scale data?
RQ3. Usability: Is TorchQL intuitive and easy to use for users unfamiliar with the system?

For RQ1, we write queries for five machine learning tasks over domains such as self-driving
videos, time-series healthcare data, trap-camera images, and natural language text. Out of 182
queries that were written, we present and analyze 11 queries in-depth across five case studies in
Section 6. The tasks are summarized in Table 2 and the chosen queries are described in Table 3.
For RQ2, we implement seven of these queries in three baseline systems Python, Pandas, and

ArangoDB to compare their conciseness and efficiency over their corresponding datasets andmodels.
We present our findings in Section 7. For RQ3, we conduct a user study with 10 participants writing
three queries of increasing complexity in TorchQL. We present the results in Section 8.
In the rest of this section, we describe each machine learning task from Table 3 including the

chosen datasets and models, the correctness problems of interest, and the integrity constraints and
queries to address them. We then proceed to the sections that answer each research question.

5.1 Object Detection

Overview and Setup. In this task, the goal is to predict bounding boxes and their labels for
individual frames in self-driving videos. We consider the validation set of the Cityscapes dataset,
which contains 15,000 video frames, and use the OneFormer [Jain et al. 2022] model for predicting
bounding boxes and their labels for each video frame.
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Table 2. Summary of the datasets and models used in the experiments.

Task Dataset Dataset Size Model Application Domain

Object

Detection

Cityscapes validation set
[Cordts et al. 2016] 15K OneFormer

[Jain et al. 2022] Self-Driving Videos

Data

Imputation

Physionet-2012 Challenge
[Silva et al. 2012] 4000 SAITS

[Du et al. 2023] Time-Series Healthcare Data

Image

Classification

iWildCam training set
[Beery et al. 2020] 121K ResNet50

[He et al. 2016] Trap-Camera Images

Text

Generation

Alpaca
[Taori et al. 2023] 52K T5

[Raffel et al. 2020] Natural Language

Natural Language

Reasoning

GSM8K
[Cobbe et al. 2021]
Date Understanding

[et al. 2023]

1319

369
Mistral 7B

[Jiang et al. 2023] Natural Language

Correctness Problems. Object detection models, in general, are evaluated using metrics like mean
average precision (mAP). This metric considers a prediction correct if it has an Intersection over
Union (IoU) ratio of at least 0.5. It then aggregates the precision of all predictions over all the frames.
However, in cases where critical errors are rare and sparsely distributed over the predictions, this
may cause the accurate predictions to overshadow the severe errors.
Integrity Constraints. Given this issue with the mAP metric, we seek to discover critical model

faults by programming integrity constraints like the one shown in Figure 1b. We wrote a total of 57
queries to investigate various potential integrity constraints and analyze two such constraints in
Section 6.1. The first, denoted S-Q1 in Table 2, discovers all objects from all the 15K frames that
occur in the center of one frame, somewhere in the next consecutive frame, and are not detected
in the third consecutive frame. A similar query was also investigated by Kang et al. [2018]. The
second, S-Q2, aims to find vehicles with extremely high speeds across three frames. These objects
with outlier speeds are likely to indicate incorrect bounding box predictions since most objects
(including moving cars) have limited movement between frames.

5.2 Data Imputation

Overview and Setup. In this task, the goal is to predict missing values within time-series healthcare
data. We consider the Physionet-2012 Challenge’s [Silva et al. 2012] medical time-series dataset.
Each sample in this dataset is composed of multiple univariate time series, each of which includes
records of one feature across multiple time stamps, as illustrated in Figure 9. The dataset contains
4000 time-series samples and each sample consists of 35 lab values (features), collected hourly,
within a 48-hour time window. Overall, up to 80% of the values in the samples are missing. We use
the state-of-the-art model SAITS [Du et al. 2023] to impute these missing values.

Correctness Problems. Missing data in healthcare settings is prevalent due to irregular patient visits
or clinical errors [Lee et al. 2017]. Imputing this data is necessary to train models for downstream
use-cases. As a result, it is important that the imputed data is as accurate as possible. As discussed in
[You et al. 2018], medical data such as the sample in Figure 9 should respect domain knowledge, such
as the Glasgow Coma Scale’s range of 1 to 15, as well as common sense, such as the assumption of
smooth variations in univariate time series data (henceforth called the smoothness assumption). We
therefore aim to find imputed values that do not respect these assumptions. For instance, Figure 9
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Table 3. Queries written for evaluating TorchQL. Queries with an asterisk are only used in case studies.

Task Query Query Description Query Operators

jo
in

pr
oj
ec
t

fil
te
r

gr
ou
p

or
de
r

fla
tt
en

U
D
Fs

Object

Detection

S-Q1

Retrieve all sequences of three continuous frames from
the Cityscapes dataset in which an object appearing in
the first two frames, and the center of the first, is not
detected in the third frame by the OneFormer model.

2 2 1 0 0 1 3

S-Q2
Retrieve all vehicles predicted in three consecutive
frames of the Cityscapes dataset by the OneFormer
model and compute their speed across the frames.

1 1 1 0 0 0 2

Data

Imputation

T-Q1

Compute the difference between all non-missing pairs
of temporally consecutive feature values and compute
the 99th percentile difference by following [Naik et al.
2023], for each feature.

1 2 0 0 0 0 2

T-Q2
Compute the interquartile range of non-missing ground-
truth values across time for each feature and use it to
detect outliers in the SAITS model’s imputations.

1 2 0 0 0 1 1

T-Q3
Compute the interquartile range of all values (including
imputed ones) across time for each feature and use it to
detect outliers in the SAITS model’s imputations.

0 1 0 0 0 0 1

Image

Classification

I-Q1
Retrieve trap camera video sequences containing frames
with more than one unique ground-truth animal. 0 1 1 1 1 0 0

I-Q2*
Find empty trap camera frames where a ResNet model
predicts an animal. 0 1 0 1 0 1 1

Text

Generation

B-Q1 Retrieve adjectives used to describe the nouns ‘farmer’
and ‘engineer’ in the T5 Alpaca dataset. 0 2 0 1 0 0 2

B-Q2*
From sets of adjectives biased towards farmers and en-
gineers, find the adjectives which GPT-3.5 consistently
chooses to describe farmers or engineers.

1 5 0 0 0 2 3

Natural Language

Reasoning

L-Q1*
Use the Mistral-7B LLM to answer and provide chain-of-
thought reasoning for the GSM8K arithmetic reasoning
questions, guaranteeing that the answer is an integer.

0 6 1 1 0 1 2

L-Q2*
Use the Mistral-7B LLM to answer and provide chain-of-
thought reasoning for the Date understanding dataset,
guaranteeing that the answer is a valid date format.

0 6 1 1 0 1 2

shows an imputed temperature value (99) at the 4th hour, which significantly exceeds neighboring
non-missing temperature values and causes an erratic spike in the temperature values.

Integrity Constraints. We wrote a total of around 30 queries to find different violations of this
smoothness assumption. We investigate three of them T-Q1, T-Q2, and T-Q3 in Table 3, which
describe two variations of the smoothness assumption.

The first such variant is that the difference between two continuous entries along the temporal
dimension must be smooth and insignificant. One can use domain knowledge to determine a
threshold to filter out those consecutive values with large differences, such as the outlier highlighted
in Figure 9. In the absence of such domain knowledge, however, we formulate T-Q1 to collect all
pairs of non-missing consecutive values from the entire dataset, and compute their differences. We
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Fig. 9. A medical time series sample consisting of lab values of one patient over time. We show the original

data with missing values on the left and the values imputed by SAITS on the right in red. The imputed value

“99” for “Temperature” is an outlier since it deviates too far from other non-missing data for this feature.

then use the 99th percentile of all these gaps as the estimated threshold, in accordance with the
method outlined in [Naik et al. 2023].

The other variant of the smoothness constraint that we specify captures the closeness between
each imputed value and other entries within a time window. Specifically, we craft T-Q2 and T-Q3
to determine whether one imputed entry is an outlier or not with respect to other entries within a
univariate time series. We discuss T-Q2 and T-Q3 in more detail in Section 6.2.

5.3 Image Classification

Overview and Setup. In this task, the goal is to classify the animal present in individual frames of
videos captured by trap cameras. We evaluate the iWildCam dataset [Beery et al. 2020] and the
predictions of a ResNet model [He et al. 2016] trained on the iWildCam training dataset.

Correctness Problems. The iWildCam dataset poses several challenges to machine learning models.
We present two such problems that we investigate in more detail. First, models must have the ability
to classify a frame as empty when no animal is present. As such, it is necessary for empty frames
to be correctly labeled. However, there are several instances in iWildCam where empty frames are
mislabeled as containing an animal. Second, the model tends to be inconsistent in its predictions.
Over a sequence of frames, there is typically a single animal that moves around. However, the
model sometimes predicts different animals in different frames within the same sequence.

Integrity Constraints. Wewrote around 25 queries to capture various integrity constraints over the
model predictions including whether nocturnal animals were predicted during the daytime, whether
multiple animals were predicted across the same sequence of frames, and finding correlations
between mispredicted classes and the ground truths. We analyze two of these queries.
The first, query I-Q1, aims to find sequences where the predictions by the model vary across

frames, but the ground truth remains the same. The second, I-Q2, aims to find empty frames that
are mislabeled to contain animals. Since the ground truth cannot be relied on, we compute the
pixel differences between pairs of consecutive frames to determine frames that have no movement
and thus are likely empty. We investigate I-Q2 in more detail in Section 6.3.

5.4 Text Generation

Overview and Setup. In this task, the goal is to generate text (as a sequence of tokens) given a
prompt. In particular, we consider the Alpaca instruction fine-tuning dataset [Taori et al. 2023]
(Alpaca for short), which consists of 52K prompts and their responses from LLMs. In this experiment,
we focus on the model responses from the GPT-3.5 (gpt-3.5-turbo) and T52 models.
2https://huggingface.co/lmsys/fastchat-t5-3b-v1.0
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Correctness Problems. Large language models (LLMs) are known to exhibit biases that can be
potentially harmful [Havaldar et al. 2023; Liang et al. 2021; Zhao et al. 2017]. This can occur when
the data they are trained over contain biases that the LLM may pick up on. However, typical metrics
for language generation, such as the Bleu score, do not have the ability to check for them.

Integrity Constraints. We investigate how integrity constraints can be programmed usingTorchQL
to detect and study biases in LLMs. We wrote a total of around 50 queries to investigate various
biases, and analyze two such queries in detail.
First, we write a query B-Q1 to discover the biases in the prompts of the Alpaca dataset by

identifying the adjectives that are highly correlated with the occupations of farmer and engineer.
This covers the class of adjective-profession biases [Kurita et al. 2019; Li et al. 2020; Nangia et al.
2020; Smith et al. 2022], where certain adjectives are biased towards certain professions (e.g. brilliant
scientists). Further details and examples of this bias are provided in Section 6.4. Second, we write a
query B-Q2 to quantify bias in the model response. Here, we take adjectives associated with farmers
and adjectives associated with engineers to construct prompts to determine how frequently an
LLM uses the farmer adjective to describe farmers and the engineer adjective to describe engineers.
More details are included in Section 6.4.

5.5 Natural Language Reasoning

Overview and Setup. In this task, the goal is to answer reasoning questions in natural language
text. We consider two reasoning tasks: date understanding, which involves reasoning over dates
and relative durations to determine the described date, and arithmetic reasoning, which involves
solving word problems using basic arithmetic to compute desired quantities. For date under-
standing, we use the BigBench benchmark’s date understanding task (Date) [et al. 2023] and for
arithmetic reasoning we use GSM8K [Cobbe et al. 2021]. We use the top performing 7B parameter
pretrained model from the Open LLM leaderboard which at the time of writing was Mistral-7B
(mistralai/Mistral-7B-v0.1) [Jiang et al. 2023]. The prompt used for both tasks is the same
prompt used by Lyu et al. [2023]. To decode the output of the LLM, we use a temperature of 0.4
along with the default parameters to the Huggingface generation API.

Correctness Problems. One of the major issues with LLMs is that the output generated is not
guaranteed to conform to the conditions of the ground truths. For example, LLMs should generate
valid dates in response to prompts in the date understanding task, and numbers for the arithmetic
reasoning task. There have been elaborate prompting mechanisms devised to improve the reliability
of LLMs such as chain-of-thought [Wei et al. 2022] and ReACT [Yao et al. 2023] and systems for
programming these prompting mechanisms [Chase 2022].

Integrity Constraints. TorchQL is useful for orchestrating language model prompting due to
its highly expressive user-defined functions. Placing language model inference calls inside user-
defined functions allows for queries which prompt language models and process the output. We
demonstrate the usefulness of this interface with a query to constrain the output of a language
model similar to LMQL [Beurer-Kellner et al. 2023]. We then evaluate our prompting technique
and show that TorchQL can be used to constrain LLM output while maintaining accuracy as well
as LMQL on two benchmark reasoning tasks.

In order to achieve this, we build a helper query, shown in Figure 10b, whose operation is shown
in Figure 10a. This query samples multiple responses from an LLM and filters out the responses
which violate the given constraints. The query uses four TorchQL operations and many of the
UDFs are single-lined lambda functions defined within the query specification, except for the
implementation of the prompting semantics which include some use of regular expressions.
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c_llm

Q: There are ...
A: [4]

Q: {Q}
A: [[A]]

James writes a 3-
page letter to 2

different friends
twice a week. How
many pages does
he write a year?

LLMDatasetPrompt

gen_k A: dog

k

A: 12

Constraint

lambda A:
  A.isdigit()

cond
A: year

A: 12

A: 1a

A: \12

(a) Constrained generation overview.

def gen_k(n, dataset, prompt, k=10):
return Query(n, base=dataset)

.project(parse_and_prepare_prompt)

.project(lambda prompts, togen: (llm(prompts, k),

togen), bs=10)↩→
.project(parse_outputs)
.flatten()

def c_llm(n, dataset, prompt, cond, ans, k=10):
return gen_k(n, dataset, prompt, ans, k)

.filter(lambda prompt, gen: cond(gen))

.group_by(lambda prompt, gen: prompt)

.project(lambda prompt, gens: ans(gens))

(b) Constrained generation with TorchQL.

Fig. 10. Using TorchQL to orchestrate prompting of language models with output constraints.

(a) (b) (c)

Fig. 11. A violation of the object consistency constraint. Figures 11a to 11c are three continuous frames from

the Cityscapes dataset. A large truck is detected in the first two frames but not in the third.

We use this helper query to write around 20 queries to enforce various constraints over the
Mistral-7B LLM. We analyze two of them in this paper. First, we write the query L-Q1, which
performs Chain-of-Thought (CoT) [Wei et al. 2022] prompting with constraints for the arithmetic
reasoning task. The second query L-Q2 similarly attempts to constrain the LLM for the date
understanding task. Both queries are explored in more detail in Section 6.5.

6 CASE STUDIES

In this section, we evaluate the expressivity of TorchQL through a series of case studies for each
of the above tasks. In each case study, we discuss the integrity constraints and queries from Table 3
and provide a detailed analysis of the issues discovered with those queries.

6.1 Case Study: Prediction Error Patterns in Self-Driving Object Detectors

Object Consistency Constraint. Section 2 describes a version of the object consistency constraint
(S-Q1) specialized over pedestrians. S-Q1 finds 6,264 objects that are detected in two consecutive
frames and disappear in the third. To evaluate the effectiveness of this query, we look at how well
it finds model mispredictions by focusing on the 500 frames with ground truth bounding box labels
provided by the Cityscapes dataset. Of the tuples of three frames (from S-Q1), where an object
disappears in the third frame, there are 113 frames with labeled ground truth bounding boxes. In
71 out of these 113 frames, the query successfully detects an object that was missed by the model.
Thus, this query has 62.83% precision. In total, there are 1388 mispredicted objects, so the query
has a recall of 5.12%.

Overall, S-Q1 has good precision but low recall since the violations of just this integrity constraint
alone cannot capture a large percentage of all the model failures. On the other hand, this constraint
does capture real safety-critical issues. For example, as Figure 11 shows, as the camera vehicle (i.e.,
the vehicle from which the video is recorded) gradually approaches the white van parked on the
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(a) (b)

Fig. 12. A violation of the high-velocity constraint where Figures 12a and 12b are two continuous frames

from the Cityscapes dataset. The predicted bounding boxes in these two frames are inconsistent in their

positions and sizes, thus exaggerating the speed of the object.

left, the object detector suddenly fails to detect it (see Frame 3) even though it is predicted in the
previous two frames. Considering the short distance between the two vehicles, such behavior by
an object detector deployed in an autonomous vehicle could potentially result in an accident.

High-velocity constraint. Building on top of S-Q1, we construct S-Q2 for computing the speed of
objects detected in three consecutive frames and filtering them. The speed of an object is calculated
by estimating the distance the object moves across consecutive frames. If an object has an unusually
high speed, it may indicate an inaccurate object detector prediction. For example, the bicycle shown
in Figure 12 is the object with the highest speed computed by S-Q2. This is primarily caused by
abrupt variations in the bounding box size in the two consecutive frames. As Figure 12 shows, the
bounding box in frame 1 only covers a fraction of the bicycle. On the other hand, the bounding box
in frame 2 correctly identifies the entirety of the bicycle. This results in the bicycle appearing to
move an abnormally large distance within the span of two frames. The following shows the full
TorchQL query to represent this integrity constraint.

Query('fast_vehicles', base = 'three_adj_matches')
.filter(get_vehicles)
.project(get_velocities)
.filter(lambda seq_id, frames, boxes1, boxes2, velo: velo > VELO_CUTOFF)
.group_by(seq_id_frame_id)

This query operates over the ‘three_adj_matches’ table which consists of objects found across three
consecutive frames. This table is constructed from the same query as ‘temporal_consistency’ from
Figure 5a, just without the last filter operation. The VELO_CUTOFF constant in the query is selected
based on the 99th percentile of speeds to be 51.62. This query selects 1,172 pairs of objects over 395
frames. Of these frames, 36 have labeled ground truth bounding boxes and each object selected in
the ground truth appears in the set of mispredictions. Thus, this query has a precision of 100% and
a recall of 2.59% over mispredictions.

6.2 Case Study: Imputed Value Monitoring for Time-Series Healthcare Data

We craft queries T-Q2 and T-Q3 to specify constraints on the smoothness assumptions in a univariate
time series. We only focus on T-Q2 in this section as T-Q3 just differs in the way the threshold
for detecting outliers is determined. T-Q2 joins the table containing imputation results with the
ground truth table to obtain all the non-missing values and imputed values. We then employ a
user-defined function to filter out imputation outliers over each univariate time series of every
sample. This is accomplished by leveraging a threshold determined through established statistical
methods for outlier detection [Tukey et al. 1977].

We illustrate this outlier detection method on a patient’s respiratory rate from the Physionet-2012
Challenge dataset shown in Figure 13. In this univariate time series, the non-missing respiratory
rate values are denoted by blue dots while the imputed values (including outliers) are denoted by
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Fig. 13. Finding imputation errors as outliers to the range of expected respiratory rates for a patient. Using

the non-missing values of respiratory rate, upper and lower bounds are calculated and all imputed values

outside the lower-to-upper bound range are selected as imputation errors (shown as red dots).

black or red dots. The outliers (denoted by red dots) are those imputed values outside the lower or
upper bound shown in Figure 13. To determine these two bounds, we first calculate the interquartile
range (IQR) of all the non-missing values, which is the range between the 25th percentile (LQ) and
75th percentile (UQ) of those values. They are then derived using the following formula:

Lower bound = 𝐿𝑄 − 1.5 · IQR, Upper bound = 𝑈𝑄 + 1.5 · IQR

As Figure 13 suggests, 24 outliers are identified from the imputed values with the constraint
specified by T-Q2, most of which are all visually far away from their nearest non-missing values.
We further report the recall of T-Q2 over 20% randomly held-out non-missing entries, i.e., the

portion of the entries with imputation errors covered by T-Q2. Ideally, T-Q2 covers a significant
proportion of the total imputation errors allowing us to find where the model makes its worst errors
and potentially allow for highly effective solutions. Hence, over the 20% held-out non-missing
entries, we evaluate the ratio of the imputation errors covered by T-Q2 to the total imputation
errors, denoted as imputation error. Six other queries were written to detect outliers over different
variables using similar smoothness assumptions, and so we do the same to evaluate the recall and
imputation error fall all seven queries.
Ideally, both recall and imputation error approach 100%. The recall and imputation error are

40.15% and 54.27% respectively for all seven smoothness assumption queries, while they are 26.14%
and 34.23% respectively just for T-Q2. The intermediate-level recall and imputation error of these
queries justifies their validity and usefulness.

It is also worth noting that queries written in TorchQL can reveal model prediction issues that
cannot be captured by standard model performance metrics such as the Mean Square Error (MSE).
For example, for the entry at hour 2 in Figure 13 whose ground truth is 38.95, the imputed value at
this entry is 38.98, which is marked as an outlier by T-Q2 since it is above the upper bound (38.97).
However, the MSE metric cannot differentiate the cases where the imputed value is 38.98 or 38.92
for this entry since the difference between either value and the ground truth is the same. On the
other hand, the imputed value 38.92 won’t be flagged as a violation of T-Q2. One can therefore use
T-Q2 to prefer an imputed value of 38.92 over 38.98, while the MSE is not fine-grained enough to
determine which value is better.

6.3 Case Study: Mislabeled Data in iWildCam

We notice that in the iWildCam dataset, there are several cases where animals are present in
the first few frames of a trap camera video, but then exit the frame. Once the animal exits, the
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db = Database()
db.register(train_data, 'wilds_train')

imvar = Query('imvar', base='wilds_train')
.group_by(lambda im, lb, m: m[1].item())
.project(lambda seqid, r: [(seqid,
i-1, r[i-1][0], r[i-1][1], r[i-1][2],
i, r[i][0], r[i-1][1], r[i][2],
diff(r[i-1][0], r[i][0], 0.1, 0.15)

) for i in range(1, len(r))])
.flatten()

imvar(db)

(a) Finding pixel differences between consecutive frames.

def is_empty(*row):
diff = row[-1]
mean = get_non_zero_mean(diff).item()
return mean <= 0.13 and mean > 0

nonempty = Query('nonempty', base='imvar')
.filter(lambda *args: not (
args[3] == 0 and args[7] == 0))

non_empty(db)

mislabeled = Query('mislabeled',
base='nonempty').filter(is_empty)

mislabeled(db)

(b) Finding mislabeled frames.

Fig. 14. Query to find mislabeled frames in the iWildCam dataset.

crax rubra crax rubracrax rubra crax rubra

Frame 1 Frame 4Frame 2 Frame 3

(a) An example of mislabeled data found while manually exploring the iWildCam training data.

puma concolor puma concolorpuma concolor puma concolor

meleagris ocellata meleagris ocellatameleagris ocellata meleagris ocellata

(b) Mislabeled data identified by the mislabeled query from Figure 14b. There are 280 such instances.

Fig. 15. Examples of mislabeled data from the iWildCam training dataset. Frames marked with a check are

correctly labeled. Frames marked with a cross are those without an animal but still labeled non-empty. The

correct label in such cases should be empty.

subsequent frames should be labeled as empty. However, in many cases, these frames are labeled in
the ground truth as if the animal is still present. We show an example of this in Figure 15a, where
the label for each frame is leopardis pardalis, despite the animal not being present in frame (d).
In most cases when animals are present in the frame, they tend to move around, creating a

significant difference between the pixel values of consecutive frames. We therefore program the
integrity constraint that any pair of consecutive frames with a small difference in their pixel values
are most likely empty, and should therefore be labeled as such.

We construct this integrity constraint over a sequence of three queries shown in Figure 14. We
begin by finding the difference in pixels over all pairs of two consecutive frames using the imvar
query (Figure 14a). The nonempty query is then used to filter to frames not labeled as empty. We
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Farmer Adjectives Engineer Adjectives
Prompt:  Answer with one word. The person is a farmer.

        Are they more likely calloused or ambitious?
GPT3.5:  calloused

Prompt:  Answer with one word. The person is a farmer.
        Are they more likely ambitious or calloused?

GPT3.5:  calloused

Prompt:  Answer with one word. The person is an engineer.
        Are they more likely calloused or ambitious?

GPT3.5:  ambitious

Prompt:  Answer with one word. The person is an engineer.
        Are they more likely ambitious or calloused?

GPT3.5:  ambitious

Biased Responses

Fig. 16. Visualizations of the adjectives associated with farmer and engineer from the Alpaca dataset are

shown on the left. Biased responses of GPT-3.5 when queried with the circled adjectives are on the right.

then determine a threshold to distinguish the pixel differences between frames with empty labels
and the ones with non-empty labels. We use this threshold (0.13) to build the mislabeled query
(Figure 14b) to detect visually empty frames incorrectly labeled as nonempty. More details about
the queries are provided in Appendix B.

Overall, we detected 280 instances in the training data out of 69,972 pairs of consecutive frames.
We show some examples of sequences containing such mislabeled data in Figure 15b. Since these
mislabels occur within the ground truth, we manually inspect 20 random instances and find three
false positives. In other words, there are only three cases out of the 20 where the frame satisfied
this condition but actually had an animal in it. This suggests the constraint is accurate in capturing
empty frames that are mislabeled as non-empty.

6.4 Case Study: Bias Discovery in LLMs

We write integrity constraints in TorchQL to discover adjective-profession biases in the Alpaca
instruction-tuning dataset [Taori et al. 2023].

Detecting Biases in Datasets. We first discover biases in the Alpaca dataset with query B-Q1:
Query('farmer_adj', base='alpaca')

.project(lambda instr, inp, outp: [instr, inp, outp, extract_noun_adj_pairs(outp)])

.filter(lambda instr, inp, outp, pairs: len(pairs) > 0)

.project(lambda instr, inp, outp, pairs: pairs)

.flatten()

.project(lambda noun, adj: [noun.lower(), adj.lower()])

.group_by(lambda noun, adj: noun)

.filter(lambda noun, adj: noun == "farmer")

Intuitively, this query finds all the adjectives used to describe the noun farmer in the Alpaca
dataset. We find nouns and adjectives using a natural language parsing model from the Spacy library
[Honnibal andMontani 2017]. This library is used by the extract_noun_adj_pairs function called
within the query. We then write a similar query to find adjective-profession biases for “engineer”.
We visualize adjectives associated with farmer and engineer in the Alpaca dataset in Figure 16.

The figure shows a clear difference between adjectives associated with farmers and engineers.
We see undesirable differences tied to factors like age, race, and economic status (old, African, and
poor for farmers), and variations in perception, such as engineers associated with responsible.

Monitoring Biases in Model Outputs. Now that we know the biases that exist in the Alpaca dataset,
we program integrity constraints for monitoring the biases in the outputs of LLMs. We do so by
building on top of the ‘farmer_adj’ and ‘engineer_adj’ queries. We specify that a language model
should not favor exclusively using adjectives associated with farmers when describing farmers,
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or adjectives associated with engineers when describing engineers. To do this, we prompt LLMs
like GPT-3.5 with the question “Answer with one word. The person is a farmer. Are they more
likely farmer_adj or engineer_adj?”, in which farmer_adj and engineer_adj are a pair of farmer and
engineer adjectives. We automate this process with the following TorchQL queries which prompt
GPT-3.5 in the above manner and then compute how often the biased answer is chosen:

Query('gpt35_bias_answers', base='farmer_adj')
.join('engineer_adj', key=lambda *args: 1, fkey=lambda *args: 1)
.project(lambda farmer_adj, engineer_adj: [

f"Answer with one word. The person is a farmer. \
Are they more likely {farmer_adj} or {engineer_adj}?" ... ])

.flatten()

.project(lambda prompt: gpt35(prompt))

.project(lambda prompt, answer: [*parse_prompt(prompt), parse_response(answer)])

.group_by(lambda target_job, adj1, adj2, ans: (target_job, frozenset({adj1, adj2})))

.project(lambda key, rows: [key[0], key[1], [row[3] for row in rows]])
Query('gpt35_bias_chosen', base='gpt35_bias_answers')

.project(lambda job, adjs, res: [[job, adjs, w] for w in res if w in adjs])

.flatten()

We collectively refer to the above queries as B-Q2. Note that the above queries were querying
the GPT-3.5 LLM within the query itself using the project function. We run a similar query for
the T5 language model as well, and then compare the biases exhibited by both models. Out of all
the model responses that contain an adjective correlated with farmers or engineers, T5 selects
the biased adjective 58.0% of the time and GPT-3.5 selects the biased adjective 59.6% of the time.
For GPT-3.5, these biased responses cover 23 of the 27 farmer-associated adjectives and 34 of the
40 engineer-associated adjectives. We show an example of this on the right of Figure 16, where
GPT-3.5 consistently generates biased adjectives. Similarly, the biased responses of T5 cover 11 of
the 14 farmer adjectives and 15 of the 20 engineer adjectives. Note that a perfectly unbiased model
would select the biased adjective 50% of the time. This indicates that this query is able to identify
biased responses from LLMs like GPT-3.5 and T5.

6.5 Case Study: Constraining the Output of Language Models

The query described and shown in Figure 10 implements a general constrained prompting interface.
Within the UDF parse_and_prepare_prompt, we implement a simple prompting interface based
on that of LMQL where text in a prompt surrounded by curly braces, such as “{question}”, is replaced
by elements from a table, and text appearing in double square brackets, such as “[[answer]]” is
generated by the language model. A benefit of using TorchQL in this case is that it provides
in-house support for batching. Since the language model takes batched inputs, as do most machine
learning models, we use a batch size of 10 shown in Figure 10b by passing the bs=10 argument to
TorchQL’s project operation for automatic batch-wise parallelism. Performing similar batching
with LMQL requires using Python’s asynchronous functionality and setting up a semaphore to
limit the number of concurrent processes.

Unlike LMQL, we cannot perform any constraint-specific optimizations, since TorchQL allows
constraints to be arbitrary Python functions. Despite this, we show that for the tasks of arithmetic
problem solving and date understanding, the TorchQL queries still improve constraint satisfaction
without hurting accuracy. Another benefit of our approach is that we can use black-box functions,
including other models or even the Python interpreter. Using the c_llm function, we define 2 queries
which perform constrained CoT prompting on the two tasks. The query performing constrained
CoT prompting on arithmetic reasoning is L-Q1 and the query performing constrained CoT on date
understanding is L-Q2 from Table 2. Query L-Q1 is shown on the right of Figure 17. L-Q2 is the
same query with a modified prompt for the date understanding task and the constraint:

lambda args: len(args['reasoning']) > 10 and re.match(r"\d\d/\d\d/\d\d\d\d", args['answer']).
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prompt = """Q: There are 15 trees ...
A: [There are 15 ...]. [6]

Q: {question}
A: [[reasoning]]. [[answer]]"""

cot = c_llm('gsm8k-results', 'gsm8k', prompt,
  lambda v: len(v['reasoning']) > 10
    and v['answer'].isdigit(),
  lambda vs: vs[0]['reasoning'], k=10)

@lmql.query()
async def gsm8k_lmql(example):
  '''lmql
  """Q: There are 15 trees ...
  A: [[There are 15 ...]]. [[6]]

  Q: {example}
  A: [[[reasoning]. [[[answer]"""
  where len(reasoning) > 10
  and stops_at(reasoning, "]")
  and stops_at(answer, "]")
  and REGEX(answer, "[0-9]+\]")
  '''

Jan has three times the number of pets as Marcia. Marcia has two more pets
than Cindy. If Cindy has four pets, how many total pets do the three have?

reasoning: Marcia has 2 more pets than
Cindy. So Marcia has 2 more than 4. 2 + 4 = 6.
Jan has 3 times as many pets as Marcia. So
Jan has 3 * 6 = 18 pets. Jan, Marcia, and
Cindy have a total of 18 + 6 + 4 = 28 pets

answer: 28

LMQL CoT TorchQL CoT

Fig. 17. Use of TorchQL for constrained generation on the GSM8K arithmetic reasoning task compared to

LMQL. The two methods can result in different responses on the same prompt. LMQL fails to produce any

constraint-satisfying output while TorchQL results in output which is a valid integer and the correct answer.

Table 4. Performance results for using TorchQL for language model prompting. Validity is the percent of all

samples with a constraint-satisfying answer and accuracy is the task accuracy.

Date Understanding Arithmetic Reasoning

Method Constraints Valid Accuracy Time (m) Valid Accuracy Time (m)

CoT No 96.75 52.85 2.6 81.88 37.83 9.35

LMQL CoT Yes 98.37 52.85 68.03 89.92 38.67 226.12
TorchQL CoT Yes 99.73 53.39 5.72 97.80 44.28 20.68

The full query is provided in Appendix B. We compare the TorchQL query L-Q1 with its LMQL
CoT counterpart in Figure 17. For the question shown in Figure 17, LMQL fails to produce any
valid response while our method with TorchQL produces a valid and correct response. This failure
of LMQL is potentially caused by the decoding algorithm which may sometimes generate long
streams of text without returning a valid answer.

The results for using TorchQL to prompt an LLM for the GSM8K and Date dataset are in Table 4.
The ‘Valid’ column shows the percent of samples where a constraint-satisfying answer is produced,
and the ‘Accuracy’ column shows the task accuracy of the results. We see that this LLM constraint
method with TorchQL successfully constrains the LLM, resulting in better generation validity
than LMQL for both tasks, as well as higher task accuracy. Finally, using TorchQL for constrained
generation is up to 11x faster than using LMQL even though we used the same batch size and
model, but only about 2x slower than unconstrained CoT.

7 QUANTITATIVE EVALUATION

The previous section studied the expressiveness of TorchQL across different use-cases. We now
conduct quantitative experiments to evaluate the efficiency and conciseness of TorchQL queries
compared to their counterparts in baseline systems.

7.1 Setup

We consider three baselines for this set of experiments: native Python, the standard language used
for machine learning applications; NumPy [The NumPy Team 2024], which is an efficient array
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Table 5. Running time (seconds) for each system (smaller is better). For each query, the quickest is marked in

bold, while the next quickest is underlined. All queries had a timeout set to 10 minutes.

Query Running time (seconds)

Python Numpy ArangoDB Pandas TorchQL

S-Q1 43.32±0.52 — — TO 44.51±0.42
S-Q2 11.27±0.87 — TO 32.89±0.20 16.83±0.97
T-Q1 0.11±0.02 0.12±0.02 TO 0.13±0.03 0.11±0.04
T-Q2 2.59±0.05 1.35±0.02 9.32±1.66 5.76±0.35 2.65±0.38
T-Q3 0.90±0.05 0.56±0.00 57.38±1.89 1.93±0.55 0.95±0.08
I-Q1 0.11±0.05 — 0.24±0.13 0.95±0.08 0.18±0.01
B-Q1 0.012±0.02 — — 0.085±0.03 0.016±0.01

Table 6. Conciseness comparison (smaller is better). For each query, we show the count of tokens of the query

in each system. The smallest number is marked in bold and the next smallest is underlined.

Query Conciseness (number of tokens)

Python Numpy ArangoDB Pandas TorchQL

S-Q1 183 - - 175 113

S-Q2 109 - 207 113 97

T-Q1 110 111 171 186 97

T-Q2 99 99 174 120 95

T-Q3 148 175 167 183 139

I-Q1 75 - 64 43 55
B-Q1 104 - - 98 89

manipulation Python library; ArangoDB [ArangoDB 2023], which is a document-oriented database
and effectively an in-memory version of MongoDB; and Pandas [pandas development team 2020],
an in-memory data-analysis Python library. Since the OMG [Kang et al. 2018] model assertion
system uses Python as its query language, our Python comparison also serves as a comparison
against OMG.

For each query in Table 2, with the exceptions of I-Q2, B-Q2, L-Q1, and L-Q2, we implement the
query in TorchQL as well as in each baseline system. Each query evaluated is deterministic and
returns the same results each time it is run across all baselines. We include all queries in Appendix C.
Note that it is infeasible to write certain queries in certain baseline systems. For instance, queries
S-Q1 and B-Q1 cannot be written in ArangoDB because the user-defined functions that ArangoDB
can support are quite limited. Also, only the T-Q1, T-Q2, and T-Q3 queries can be written using
NumPy operators. This is because the other queries largely involve string and list operations, which
are not supported by purely NumPy operators.
In order to ensure a fair evaluation, we made the best effort to optimize the code within the

style typical of each framework. For instance, we optimize the Python code so that its algorithmic
complexity matches that of TorchQL. We also attempt to use as few DataFrame operations in the
Pandas implementations and as few database operations in the ArangoDB versions as possible. We
compare the different implementations of each query to evaluate its efficiency (by measuring the
running time) in Table 5, and the conciseness (by measuring the number of tokens) in Table 6.

7.2 Results

Efficiency. In all cases, TorchQL queries are comparable or faster than their Python counterparts.
This is expected, since TorchQL itself is written in Python. Furthermore, each Python query is
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Table 7. Running time (in seconds) of each query operation for queries written in TorchQL and Python. For

each query, we report the total time taken for each type of operation to be executed while running the query.

Query Query Operators

joins projects filters groupings orderings flattens

S-Q1

TorchQL 0.28±0.01 43.15±0.26 0.14±0.01 — — 0.01±0.00
Python 0.10±0.02 41.91±0.08 0.13±0.01 — — 0.01±0.00

S-Q2

TorchQL 4.63±0.73 11.10±0.65 2.96±0.03 — — —
Python 0.64±0.02 7.87±0.42 3.54±0.03 — — —

T-Q1

TorchQL 0.01±0.00 0.11±0.01 — — — —
Python 0.00±0.00 0.11±0.03 — — — —

T-Q2

TorchQL 0.01±0.00 2.36±0.09 — — — 0.02±0.02
Python 0.01±0.00 2.32±0.03 — — — 0.02±0.02

T-Q3

TorchQL — 0.95±0.08 — — — —
Python — 0.90±0.05 — — — —

I-Q1

TorchQL — 0.02±0.00 0.01±0.00 0.08±0.01 0.01±0.00 —
Python — 0.02±0.00 0.00±0.00 0.08±0.01 0.01±0.00 —

B-Q1

TorchQL — 0.01±0.00 — 0.00±0.00 — —
Python — 0.00±0.00 — 0.00±0.00 — —

optimized to match the algorithmic complexity of the TorchQL version. The running time overhead
introduced by TorchQL’s querying abstractions is negligible for the most part, being less than one
second for all queries except S-Q2, where it is around five seconds. This is still a small difference
given the scale of the data for S-Q2. We further break down these running times by each query
operator in Table 7. There is a trade-off for optimizing the Python code to such an extent: doing so
drastically increases the required number of tokens, as evident from Table 6. This also results in
the process of iterative debugging becoming more cumbersome. On the other hand, TorchQL can
scale better than non-optimized versions of the Python queries. For instance, the non-optimized
S-Q1 query written in Python (Figure 5b), which is more representative of how users may write
Python queries to iteratively debug their models, times out after 10 minutes.
In the case of NumPy, the query for T-Q1 has almost the same running time as the Python and

TorchQL versions. On the other hand, the NumPy versions of T-Q2 and T-Q3 run faster than their
corresponding Python or TorchQL counterparts. This is due to the “quantile” operation needed for
defining those queries. For the Python and TorchQL versions, we use Pytorch’s “quantile”, while
we use its NumPy counterpart for queries written using NumPy. The NumPy implementation of
“quantile” is faster than the PyTorch implementation, resulting in a quicker running time for the
NumPy queries. However, like the Python queries, the NumPy ones require more tokens than the
TorchQL versions as Table 6 suggests.

Pandas times out on S-Q1 after 10 minutes due to the scale of the data, and is several seconds
slower than TorchQL in most other cases. The primary factor contributing to the inefficiency is the
rigorous schema requirement of Pandas. Pandas is optimized for cases where the DataFrames have
a fixed structure with primitive datatypes in cells. As a result, additional operations are needed to
explicitly produce new attributes essential for the downstream operations but not in the schema.
Since these operations tend to modify the DataFrame itself, they introduce substantial overhead.

ArangoDB is even slower and times out on S-Q2 and T-Q1. The reason is that for queries like S-Q2
which join two datasets on attributes that are not indexed, ArangoDB has to perform full nested
scans on the datasets for the join operations (see Figure 19d where the join is conditioned over
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item1.frames[0] == item2.frames[0] but frames[0] is not indexed). On the other hand, TorchQL
can construct indexes over such newly created attributes on the fly without extra operations.

Overall, TorchQL achieves at least a 13x and three order-of-magnitude speed-ups in with respect
to Pandas and ArangoDB respectively in the best case (S-Q1 for Pandas and T-Q1 for ArangoDB).
Note that Pandas timed out for S-Q1, which is why the 13x speed up in this case is a lower estimate.

Conciseness. Table 6 shows the conciseness metric evaluated on each query written in different
systems. TorchQL significantly reduces the number of tokens needed for writing a query (by up to
40%) with respect to native Python. This can substantially reduce users’ effort in the process of
iteratively writing and refining queries for specifying appropriate integrity constraints. Furthermore,
TorchQL is more concise than Pandas for all cases except I-Q1, and more concise than ArangoDB
in general. This is because these baselines require substantial data wrangling so that their rigid
schemas can support arbitrary Python objects, which is not needed for TorchQL.

8 USER STUDY

We conduct a small-scale user study with 10 participants to validate the usability of TorchQL for
programming integrity constraints over complex forms of data.

8.1 Setup

Participants. Of the total of 10 participants in the user study, one was a systems engineer, three
were undergraduate students, and sixwere graduate students. Eight participants had experiencewith
machine learning through research or classes and all ten were proficient in Python programming.
Only three had taken a course on databases or query languages. None of the participants were the
authors of this paper or involved in developing TorchQL in any way.

Tasks. For the user study, each participant was provided with a tutorial of TorchQL in a Jupyter
notebook (an interactive Python environment) and then asked to write three TorchQL queries
(tasks T1, T2, and T3) of increasing complexity over the iWildCam dataset. All three tasks, detailed
in Appendix D.2, focused on finding model prediction errors. Task T1 required finding mispredicted
frames while referring to the labels, while T2 required finding the time of day when frames are
most and least likely to be mispredicted. For both these tasks, participants were allowed to make
use of the supplied ground-truth labels. Task T3, on the other hand, was more open-ended in
nature, requiring them to find sequences of frames with at least one misprediction without using
the supplied ground-truth labels. No time limit was enforced on any task, though we measured the
approximate time it took users to complete each task. We also measure the precision and recall of
the responses of the users for the third task.

8.2 Results

Table 8 shows the amount of time (in minutes) taken by each user to complete each task, as well as
the precision, recall, and F1 score of each user’s solution for task T3. Overall, users completed the
first two tasks in an average of 3.42 and 20.45 minutes respectively. A total of seven of the 10 users
completed the third and most complex task, where they had to find model mispredictions without
using ground-truth labels. Their queries had an average precision of 88.0% and recall of 71.0% for
finding model mispredictions, compared to our solution with a precision and recall of 91.0% and
78.0% respectively, and were written in an average of 54.33 minutes. The large difference in average
time taken for the three tasks reflects their differing complexity. These aggregate numbers show
the usability of TorchQL despite the users’ lack of prior familiarity.

Looking at individual users’ queries reveals where people had difficulty and general trends in the
use of TorchQL. The first task required a single filter operation and all users correctly utilized
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Table 8. User Study Results. For each participant, we show the amount of time (in minutes) taken by the user

to complete each task, as well as the precision and recall for their response to task T3.

Participant Tasks Performance Metrics

T1 T2 T3 Precision Recall

P1 2 60 90 1.0 0.7
P2 5 35 55 — —
P3 2 16.5 19 0.91 0.78
P4 5 15 45 0.91 0.78
P5 1 15 120 0.6 0.4
P6 9 12 15 — —
P7 2 10 45 0.91 0.78
P8 5 20 60 — —
P9 3 20 40 0.91 0.78
P10 0.16 1 5 0.91 0.78

Mean 3.42 20.45 49.4 0.88 0.71
Minimum 0.16 1 5 0.6 0.4
Maximum 9 60 120 1 0.78

this operation to perform the first task. The second task required the use of a group_by followed by
an order_by. Seven users successfully used these two operations and composed them in the correct
way. The other three correctly used the group_by operation, but resorted to manually iterating
through the table with a for loop to determine the largest and smallest element of the table.
Of the seven responses for the third task, five were equivalent to our solution. These solutions,

though syntactically different, were all programmed to catch violations of the same integrity
constraint: each sequence of images contains only one species of animal. We show a comparison
between one such solution from participant P4 (left) and our expected solution (right):

Query('T3_P4', base='wilds_pred')
.project(lambda img, label, md, pred:

[md[1].item(), img, md, pred])
.group_by(lambda seqid, img, md, pred: seqid)
.filter(lambda seqid, data:

len(set(e[3] for e in data)) > 1)

Query('T3_ours', base='wilds_pred')
.project(lambda img, label, md, pred:

[md[1].item(), pred])
.group_by(lambda seq, pred: seq)
.filter(lambda seq, preds:

len(set(preds)) > 1)

Both queries first project out the sequence ID of each image (corresponding to md[1]), then
group the objects of the resulting tables by the sequence IDs, and finally filter the instances with
more than one unique prediction. The differences occur in the definition of the filter lambda
function due to the structure of the intermediate table input to that operation. In our case, each
row in the grouped table contains just the sequence ID and the prediction of each image in that
sequence, while in P4’s case, it contains the image and metadata as well.
Among the two remaining queries, participant P1’s query achieved better precision than our

solution but had worse recall, while P5’s query performed worse over both metrics. We show
snippets of their queries here and their full versions in Appendix D.1:

def conflicting_pred(lst):
...

def get_sequence_preds(lst):
return [item[3] for item in lst]

Query('T3_P1', base='wilds_pred')
.group_by(lambda _1, _2, md, _3: md[1].item())
.filter(lambda seq, lst: conflicting_pred(

get_sequence_preds(lst)))

Query('T3_P5', base='wilds_pred')
.group_by(lambda _, __, md, ___: md[1].item())
.cols(lambda seqid, rows: (

seqid,
len([row for row in rows if ... ]) > 1,
len(rows), rows))

.filter(lambda seqid, has_incorrect, _, __:
has_incorrect)
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Participant P1’s query, shown above on the left, flagged instances where images in each sequence
have inconsistent predictions where no prediction is “empty”. As seen in Table 8, this query avoids
any false positives, i.e. only flags sequences with at least one erroneous prediction, but has more
false negatives than our expected solution. On the other hand, P5’s query flags sequences based on
the time, day, and month when those sequences were captured. This hypothesis is not ideal, since
it results in significantly more false positives and negatives compared to the expected solution.

9 RELATEDWORK

Databases for Machine Learning. Techniques from databases have been used to enhance various
aspects of machine learning. Ideas from operation scheduling have been used to select appropriate
hardware [Mirhoseini et al. 2017] or find semantically equivalent but more efficient operations to
optimize deep learning computations [Jia et al. 2019]. Recomputing and swapping techniques from
databases have been adopted to manage memory in deep learning frameworks [Pleiss et al. 2017;
Wang et al. 2018]. Compression techniques and communication frameworks have been proposed to
accelerate parameter servers in distributed training of large models [Goyal et al. 2017; Jiang et al.
2017]. These approaches focus on the speed and efficiency of deploying models.
Integrity Constraints in Machine Learning. Integrity constraints have been used in machine

learning for data analysis and cleaning, model debugging, verification, and data generation. For
instance, “unit testing” data [Schelter et al. 2019] is proposed to assess data quality in data analysis
and native Python assertions have been employed to capture model output bugs [Kang et al. 2018].
In addition, there has been extensive research in neural model verification [Liu et al. 2021], which
focuses on verifying whether a given input-output constraint holds for a neural network. Finally,
data generation languages such as Scenic [Fremont et al. 2019] construct data to test the integrity
of a machine learning system or to describe correct or incorrect model behaviors [Kim et al. 2020].

Finding Errors in Machine Learning Models. Various tools have been developed to identify errors
in the machine learning systems, which can be operated in either passive or active mode. In passive
mode, tools can either generate test samples to trigger model errors [Tian et al. 2018] or produce
explanations to assist users in understanding the model’s prediction process. These explanations
can be in various forms, such as the coefficients of the sparsified neural network layers [Wong
et al. 2021], extracted robust features [Singla and Feizi 2021; Singla et al. 2021], and influence
functions [Ilyas et al. 2022; Koh and Liang 2017; Salman et al. 2022], which can then be compared
against domain knowledge to discover model prediction errors. They can even be integrated into
the subsequent model debugging loop [Anders et al. 2022; Bhadra and Hein 2015; Cadamuro et al.
2016; Kulesza et al. 2015]. Apart from that, users can actively provide rules [Kang et al. 2018] based
on their knowledge to verify the correctness of model predictions. Except for the tools for finding
errors in general machine learning systems, some tools have emerged for specific settings such as
federated learning systems [Augenstein et al. 2019].

Query Languages in Other Domains. Query languages aim to interact with data in a declarative
manner, In the past few decades, people have dedicated to developing query languages for retrieving
and manipulating data from databases, such as SQL (Structured Query Language)[Codd 1970] for
relational databases, andMQL [Banker et al. 2016], SPARQL [Herman 2013] andXQuery [Kilpeläinen
2012] for non-relational databases. As data sizes continue to grow, distributing data across multiple
servers becomes imperative, driving the development of new programming interfaces for distributed
systems, such as MapReduce [Dean and Ghemawat 2008] and Spark [Zaharia et al. 2010]. In addition,
those query languages have also been extended to support streaming data. For instance, T-SQL[tsq
2022] extends SQL and supports streaming computations on relational databases while Spark
streaming [Salloum et al. 2016] processes streaming workloads in distributed systems. However,
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developing a programming language for capturing integrity constraints in machine learning
pipelines has not been extensively studied yet in literature.

Synthesizing Programs in Query Languages. It is worth noting that some prior works have studied
how to incorporate relational operators into imperative code for performance improvement. For
instance, [Cheung et al. 2013] automatically extracts relational operations and synthesizes SQL
queries from application code such that the underlying database optimizers can be utilized for
performance enhancement. In addition, [Mariano et al. 2022] proposed a neural-guided synthesis
algorithm to automatically incorporate the functional APIs into existing imperative code for
parallel computations in the distributed computing environment. A less relevant work along
this line is [Smith and Albarghouthi 2016], which proposed an efficient algorithm and tool for
automatically synthesizing MapReduce-style distributed programs from input–output examples.
Therefore, by borrowing ideas from these prior works, one future extension of TorchQL would be
automating the process of transforming existing Python queries to TorchQL ones, thus reducing
users’ programming efforts on characterizing integrity constraints in machine learning.

10 LIMITATIONS AND FUTUREWORK

We anticipate several venues to further optimize TorchQL. First, TorchQL does not take advantage
of multi-core systems with the exception of loading data into the database. However, since TorchQL
follows the general structure of map-reduce pipelines, the structure of the system makes it highly
amenable to parallelism by integrating multiprocessing components into TorchQL’s abstractions.
Second, TorchQL’s database is in-memory. This means that any data being queried over is

limited by the size of the RAM of the system, limiting the ability of TorchQL to query over larger
amounts of data. Traditionally databases are not in-memory to prevent this problem with scalability,
and load chunks of data as needed, but this results in a loss of performance during the I/O operations
associated with reading from and writing to disk.
Third, TorchQL is currently a new library and it is therefore harder to synthesize TorchQL

queries than typical Python. However, initial studies have shown some initial success for synthesiz-
ing TorchQL queries via few shot prompting using GitHub’s Copilot and GPT-4. To help with the
interactive nature of debugging, additional support for synthesis, such as the ability to synthesize
UDFs or just the query structure is an area of future work.

Finally, while TorchQL queries support recursive UDFs, supporting a fixed-point table operator
would allow for optimizations such as reusing materialized database views [Chirkova and Yang
2012]. Further research can investigate optimizations from the literature on object-relational data
models, like reordering query operators [Garcia-Molina et al. 2008], caching intermediate results
[Pirahesh et al. 1992], exploring column stores [Abadi et al. 2009], and building more advanced
indices [Lemire et al. 2010].

11 CONCLUSION

We introduced a new framework TorchQL for programming and checking integrity constraints
in machine learning applications. We showed that TorchQL is able to help find errors in several
tasks across various domains up to 13x faster than other querying systems while being up to 40%
more concise than regular Python programs. We also validated the usability of TorchQL via a user
study. In the future, we intend to extend TorchQL to further improve performance by parallelizing
operations and to support synthesizing queries from natural language descriptions.
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