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Abstract
Practical programs share large modules of code. However,
many program analyses are ineffective at reusing analysis re-
sults for shared code across programs. We present POLYMER,
an analysis optimizer to address this problem. POLYMER
runs the analysis offline on a corpus of training programs and
learns analysis facts over shared code. It prunes the learnt
facts to eliminate intermediate computations and then reuses
these pruned facts to accelerate the analysis of other programs
that share code with the training corpus.

We have implemented POLYMER to accelerate analyses
specified in Datalog, and apply it to optimize two analyses
for Java programs: a call-graph analysis that is flow- and
context-insensitive, and a points-to analysis that is flow- and
context-sensitive. We evaluate the resulting analyses on ten
programs from the DaCapo suite that share the JDK library.
POLYMER achieves average speedups of 2.6× for the call-
graph analysis and 5.2× for the points-to analysis.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification

Keywords Optimization, Program Analysis, Declarative
Analysis, Modular Summaries

1. Introduction
Many static analyses face the challenge of analyzing large
programs efficiently. Such programs often share large mod-
ules of code. For example, Java programs heavily use the Java
standard library, and Android applications extensively use the
Android framework. As a result, a compelling approach to
improve the performance of an analysis is to reuse its results
on shared code across programs.

A common technique to realize this approach is modular
or compositional analysis [7, 8, 11, 14, 28]. The theory
of such analyses is well-studied [10] but designing and
implementing them for realistic languages is challenging.

Complex data- and control-flow resulting from language
features such as dynamically allocated memory and higher-
order functions hinder key aspects of modular analysis, such
as accounting for all potential calling contexts of a procedure
in a sound and precise way using summaries, representing
the summaries compactly, and instantiating them efficiently.
As a result, many practical static analyses reanalyze entire
programs from scratch. Popular frameworks for such analyses
(e.g., [9, 20, 23]) have been integrated into analysis tools such
as SLAM [4], Soot [5], WALA [12], and Chord [18]. While
easier to design and implement, however, the performance of
such analyses is hindered by their inability to reuse analysis
results for shared code across programs. For instance, a flow-
and context-insensitive points-to analysis of a simple “Hello
World" Java program requires analyzing over 3,000 classes
in the Java standard library.

There are many challenges to reusing results of such an
analysis on shared code in a manner that achieves speedup
while ensuring correctness. First, the vocabulary of base
facts is different across programs. Second, not all analysis
facts about shared code are amenable to unconditional reuse
across programs which share that code; certain facts may
be conditional on facts that differ across programs. Third
and most importantly, to maximize speedup, we must prune
intermediate analysis facts about shared code, but preserve all
externally visible analysis facts. Pruning is thus a precarious
balancing act: under-pruning curtails performance gains
whereas over-pruning produces unsound results.

To enable different analyses to take advantage of prun-
ing, we propose a pruning-based framework POLYMER for
arbitrary analyses specified in Datalog, a logic programming
language. Datalog is a popular choice for expressing many
analyses [6, 15, 24, 26, 27]. In POLYMER, besides specifying
the analysis as a set of inference rules, the analysis writer
also specifies which classes of analysis facts to prune.

The POLYMER framework comprises an offline phase and
an online phase. In the offline phase, it takes as input a corpus
of training programs and a specification of what constitutes
shared code. It computes analysis facts for the shared code,
prunes them as directed by the pruning specification, and
stores them in a persistent database. In the online phase, it
uses the pruned analysis facts in a sound manner to acceler-
ate the analysis of a new program. POLYMER addresses the



challenge of reusing analysis facts in a uniform and analysis-
agnostic manner by generating a condition to ensure sound-
ness for every analysis fact that is slated for reuse. A pruned
analysis fact is reused only if its associated soundness condi-
tion is satisfied.

We instantiate POLYMER on two analyses for Java
programs: a call-graph analysis that is flow and context-
insensitive, and a points-to analysis that is flow and context-
sensitive. We employ two popular variants of the points-to
analysis: one that uses a pre-computed call-graph and another
that constructs the call-graph on-the-fly. We evaluate the
resulting analyses on ten programs from the DaCapo suite.
These programs are of size 208-419 KLOC each and share the
JDK library. By picking each of these programs in turn as the
test program while the remaining programs form the training
corpus, POLYMER achieves average speedups of 2.6× for the
call-graph analysis and 5.2× for the points-to analysis. Our
experiments also provide insights into the extent and limits
on speedup by varying the training corpus.

We summarize the contributions of this work:
1. We introduce the concept of using pruned analysis facts,

learnt over the analysis of a corpus of training programs,
in order to accelerate the analysis of a new program.
These learnt analysis facts are over code shared across
the training corpus and the new program.

2. We develop a framework POLYMER that applies this
approach to arbitrary analyses specified in Datalog. If
POLYMER is provided with a sound pruning specification,
the accelerated analysis is guaranteed to be sound and
produces the same result as the original.

3. We demonstrate significant performance gains using POLY-
MER for two fundamental static analyses on a set of realis-
tic Java benchmark programs.

2. Example
POLYMER aims to accelerate the analysis of programs that
share large modules of code. For this purpose, POLYMER
needs the analysis to be specified in Datalog. It also needs
the specification of two analysis-specific functions called
PickGoodPre and PickGoodPost. These functions guide
POLYMER in terms of what to learn from the analysis of
a program (or programs), and how to apply the learnt results
to accelerate the analysis of another program (or programs).
In this section, we explain our approach using a graph reacha-
bility analysis. In the example that follows, POLYMER trains
on the analysis of a single graph and applies the learnt results
to the analysis of another graph that has some subgraph in
common with the training graph.

Figure 1 shows two example graphs A and B with a shared
subgraph L. Figure 2 shows the Datalog specification required
by POLYMER to learn from the analysis of graph A and apply
the learnt results to accelerate the analysis of graph B. Each
graph is a directed graph consisting of two kinds of nodes:
application nodes (labeled A0, ..., A2 and B0, ..., B3) and
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Figure 1: Example graphs A and B with shared subgraph L.
POLYMER trains on the analysis of graph A and accelerates
the analysis of graph B.

library nodes (labeled L1, ..., L11). The subgraph formed
with only library nodes is common for both graphs. Graph
A comprises the application nodes A0, ..., A2, the library
nodes, and all the edges over those nodes. Likewise, graph
B comprises the application nodes B0, ..., B3, the library
nodes, and all the edges over those nodes. Intuitively, each
graph represents a program: application nodes encode the
application-specific facts, while the library nodes encode
the facts of the shared library. The nodes A0 and B0 are
distinguished nodes encoding the facts that hold at the entry
of each program.

Problem Description. The goal of the graph reachability
problem is to compute the set of application nodes that are
reachable from node A0 for graph A, and from node B0 for
graph B. We solve this problem using a Datalog program
comprising two rules (1) and (2) as shown in Figure 2. Input
relation edge contains the set of edges in the given graph
while relation app contains the set of application nodes in
the given graph. Output relation reachable contains the set of
nodes that are reachable from the distinguished entry node
m0 of the graph being analyzed. Rule (1) is the base case,
which states that m0 is reachable. Rule (2) is the inductive



Graph Reachability Analysis:
Domains:
N is a set of nodes.

Input relations:
edge(m : N, n : N) // Edge from node m to n.
app(m : N) // Node m is an application node.

Output relations:
reachable(m : N) // Node m is reachable from m0.

Rules:
reachable(m0). (1)
reachable(m) : - reachable(n), edge(n,m). (2)

Specification for POLYMER:
PickGoodPre = { {n} | ¬app(n) ∧ ∃m.

(app(m) ∧ reachable(m) ∧ edge(m,n)) }
PickGoodPost = λ(N,M). (post, check)
where M is the set of all library nodes reachable from nodes in N
using only edges in the library, and

naive pruned
post M { p | p ∈M ∧ ∃q. (edge(p, q) ∧ app(q)) }
check true ∀p ∈M \ post. @q. (edge(p, q) ∧ app(q))

Figure 2: Inputs to POLYMER: (1) The analysis in Data-
log, (2) a function PickGoodPre to compute suitable pre-
conditions, and (3) a function PickGoodPost to compute
suitable post-conditions, shown with two alternate definitions:
(i) naive, without pruning and a trivial checking function, and
(ii) pruned, with maximal pruning.

step, which states that if n is reachable, and there exists an
edge from n to m, then m is also reachable. Henceforth, we
will denote reachable(n) as r(n), and edge(n,m) as e(n,m)
for brevity.

Executing the Datalog program produces the reachable
relation as { r(Ai) | i ∈ [0, 2] } ∪ { r(Li) | i ∈ [1, 8] } for
graph A and { r(Bi) | i ∈ [0, 3] } ∪ { r(Li) | i ∈ [1, 8] } for
graph B. Although both the graphs share the same library
subgraph, the Datalog program recomputes the entire reacha-
bility information for both the graphs. It is desirable to avoid
repeatedly computing the library reachability information
across Datalog runs. Moreover, to maximize speedup, we
should avoid deriving library facts such as r(L2) as it is not
necessary to our above-stated goal of deciding reachability
of application nodes.

Existing Approaches. One solution to this problem is to
compute library reachability information independent of the
application, similar to modular program analyses. However,
this is impractical as the library subgraph can be very large,
making the computation an expensive process. Moreover, in
most cases, large parts of the library are irrelevant for the
application under consideration. For example, in Figure 1,
the subgraph over the nodes L9, L10 and L11 is not involved
in the reachability computation for either of the two graphs.
This is in line with the observation that, while it is expensive
to compute a precise summary for all calling contexts of

a given library method, only a few calling contexts are
often encountered in applications, whose summaries can be
efficiently computed.

Our Approach POLYMER. POLYMER trains on the analysis
of graph A and learns summaries over those parts of the
library subgraph reachable from the application nodes. It then
accelerates the analysis of graph B by applying these learnt
summaries in a sound manner. We refer to the training phase
as the offline phase and the reuse phase as the online phase.
We next explain these two phases in detail.

Offline Phase of POLYMER. To train on the analysis of
graph A, POLYMER first runs the original Datalog program
on A and produces library facts r(L1) through r(L8) as well
as application facts r(A0) through r(A2). Next, POLYMER
analyzes the Datalog run to construct summaries. A summary
is of the form tuplespre ⇒ tuplespost, where each of tuplespre
and tuplespost is a set of tuples (i.e., analysis facts), and has
the meaning: “if all tuples in tuplespre can be derived, then
all tuples in tuplespost can be derived". In this example, by
analyzing the Datalog run, POLYMER concludes that (1) if
r(L1) is derived, then r(L2) through r(L4) will also be derived
and (2) if r(L5) is derived, then r(L6) through r(L8) will also
be derived. As a result, POLYMER constructs the following
two summaries:

{r(L1)} ⇒ {r(L2), r(L3), r(L4)},
{r(L5)} ⇒ {r(L6), r(L7), r(L8)}.

When r(L1) is derived during the analysis of an unseen
graph, instead of deriving r(L2) through r(L4) by applying
Rule (2) multiple times, POLYMER applies this summary to
derive them at once. We say POLYMER applies a summary
when it suppresses derivations initiated by the pre-condition
{r(L1)} and inserts all the tuples in the post-condition, that
is, {r(L2), r(L3), r(L4)}.

Note that in this example, it is intuitive to construct library
summaries with {r(L1)} and {r(L5)} as the pre-conditions
since nodes L1 and L5 represent the boundary between the
application and the library nodes. But POLYMER could also
have constructed {r(L2)} ⇒ {r(L4)} as a valid library sum-
mary. Such a summary, however, would lead to lower compu-
tational savings since deriving r(L2) before the summary can
be applied would require an additional application of Rule (2).
In general, there is a large space of possible pre-conditions to
use for summary construction, and POLYMER requires a func-
tion PickGoodPre that specifies the form of pre-conditions
to use. For our graph reachability analysis, the PickGoodPre
function specified in Figure 2 exactly captures the intuition
of using library nodes at application-library boundary in the
pre-conditions.

To further reduce the computation cost, we observe that,
in the first summary, only r(L4) is directly used in deriving
application facts. POLYMER takes advantage of this to prune
away the other tuples and produce a pruned summary as:
{r(L1)} ⇒ {r(L4)}. When applying the pruned summary in



the online phase, POLYMER will prevent deriving intermedi-
ate library facts such as r(L2) and r(L3). This example is just
illustrative, and typically libraries often have a lot of internal
facts that can be pruned away.

However, it is not always sound to apply the pruned
summary on a given graph. Consider the second summary
learnt by POLYMER: {r(L5)} ⇒ {r(L6), r(L7), r(L8)}. The
corresponding pruned summary is: {r(L5)} ⇒ {r(L8)} since
r(L8) is the only fact directly used in deriving application
facts for A. Applying the pruned summary in B will cause the
analysis erroneously conclude that B2 is unreachable from
B0. This is because the fact r(L6) has been pruned away and
e(L6, B2) can no longer join with r(L6) to conclude that B2
is reachable from B0.

To solve this problem, while pruning away the intermedi-
ate facts from the summary, POLYMER generates a checking
function that ensures the sound application of the summary
in the online phase. The checking function takes the input
relations of the online phase and returns whether it is sound
to apply the pruned summary. We make the notion of sound
pruning precise in Section 4.2. For the graph reachability
example, we observe that a reachable tuple can only derive
another tuple by joining with edge tuples via Rule (2). Since
the library subgraph is the same for all graphs, applying the
pruned summary will only become unsound if there exists an
edge from any pruned library node to an application node. As
a result, POLYMER generates a checking function for each of
the pruned summaries as below:

∀i ∈ {2, 3}. @n. edge(Li, n) ∧ app(n) (1)
∀i ∈ {6, 7}. @n. edge(Li, n) ∧ app(n) (2)

In general, in the offline phase, it is impossible to predict what
facts to prune away from a given summary. We need to ensure
that an intermediate library fact that is pruned away is not ex-
posed to the application facts in the online phase. Therefore,
POLYMER requires the specification of a PickGoodPost func-
tion that specifies what facts to prune away from any given
summary and how to generate the corresponding checking
function required to ensure the soundness of pruning. Figure
2 includes two different specifications of PickGoodPost for
the graph reachability example. In general, PickGoodPost
takes as input the pre-condition N and corresponding post-
condition M of an unpruned summary. The naive version
of PickGoodPost in Figure 2 corresponds to the case when
no pruning is performed and thus, it just returns M as the
post-condition without any pruning. Further, in this case, the
checking function check always returns true, implying that it
is sound to apply such an unpruned summary on any given
graph. The pruned version of PickGoodPost returns a post-
condition containing only those library nodes that directly
interact with application nodes. Moreover, the checking func-
tion captures our intuition that a pruned summary is unsound
for a given graph if there exists an edge in this graph from
any pruned library node to an application node.

(analysis)C ::= {c1, ..., cn} (argument) α ::= v | d
(constraint) c ::= l0 : - l1, ..., ln (variable) v ∈ V = {x, y, ..}

(literal) l ::= r(α1, ..., αn) (constant) d ∈ N = {0, 1, ..}
(relation name) r ∈ R = {a, b, ..} (tuple) t ∈ T = R× N∗
(analysis input) i ∈ I ⊆ T (analysis output) o ∈ O ⊆ T

Figure 3: Syntax of a Datalog analysis.

JCK ∈ 2I → 2T

JcK ∈ 2T → 2T

JlK ∈ Σ→ T, where Σ = V→ N
JCK(I) = lfp λT.T ∪ I ∪

⋃
c∈CJcK(T )

Jl0 : - l1, ..., lnK(T ) = {Jl0K(σ) |
∧

1≤k≤nJlkK(σ) ∈ T ∧ σ ∈ Σ}
Jr(α1, ..., αn)K(σ) = r(sub(α1), ..., sub(αn)),where

sub(α) =

{
σ(α), if α ∈ V
α, if α ∈ N

Gr(C, T ) = {Jl0K(σ) : -Jl1K(σ), ..., JlnK(σ) |
l0 : - l1, ..., ln ∈ C
∧
∧

1≤k≤n σ(lk) ∈ JCK(T ) ∧ σ ∈ Σ}

Figure 4: Semantics of a Datalog analysis.

Online Phase of POLYMER. We discuss how POLYMER
uses the pruned summaries learned from the offline phase to
accelerate the execution of the Datalog program on graph B.
POLYMER first applies the checking function on the edge
and app relations to see if it is sound to apply each available
summary. For the first summary, the checking function returns
true as there is no edge from any pruned library node (i.e.,
L2 or L3) to application B’s nodes. For the second summary,
the checking function returns false as e(L6, B2) exists. As
a result, POLYMER concludes it is unsound to apply the
second summary. Since it can reuse only the first summary,
POLYMER executes the Datalog program on graph B with
the modification that blocks the rule r(L2) : - r(L1), e(L1, L2).
By running the Datalog program with this blocking in effect,
POLYMER derives r(B0) and r(L1). At this point, as the pre-
condition of the first pruned summary is satisfied, it adds
r(L4) to the set of derived tuples and continues the Datalog
execution. It does not use the second summary and instead re-
derives the facts r(L6), r(L7), and r(L8). Finally, it concludes
that application nodes B0 through B3 are reachable. Thus,
POLYMER computes the same result as the original Datalog
program without re-analyzing parts of the library.

3. Preliminaries
In this section, we introduce the syntax and semantics of
program analyses specified in Datalog. We also extend the
standard Datalog so that POLYMER is able to avoid re-
computing certain analysis results for a given program.

Figure 3 shows the syntax of a Datalog analysis. A Datalog
analysis C consists a set of constraints {c1, ..., cn}. Each
such constraint c ∈ C consists of a head literal l0, and a
body {l1, . . . , ln} which is a set of literals. A literal consists
of a relation name r and a list (α1, . . . , αn) of variables or



(blocking set) B ⊆ 2T

(instrumented analysis) CB , (C,B)

JCBK ∈ 2I → 2T

J(c,B)K ∈ 2T → 2T

J(C,B)K(I) = lfp λT.T ∪ I ∪
⋃

c∈CJ(c,B)K(T )
J(l0 : - l1, ..., ln, B)K(T ) = {Jl0K(σ) |

∧
1≤k≤nJlkK(σ) ∈ T ∧

∀b ∈ B : (∃k ∈ [1..n] : JlkK(σ) /∈ b)
∧ σ ∈ Σ}

Figure 5: Semantics of an instrumented Datalog analysis.

constants. We call a literal containing only constants a tuple
or grounded literal. The input to a Datalog analysis is a set of
tuples e ∈ I which we refer to as analysis input. The output of
a Datalog analysis is also a set of tuples. To enable avoiding
the re-computation of certain analysis results, we designate a
subset of output tuples o ∈ O that we are interested in, and
we refer to this subset as analysis output.

Figure 4 shows the semantics of a Datalog analysis. It
derives the output tuples as the least fixpoint (lfp) of the
analysis constraints with respect to the input tuples. This
derivation starts with the input tuples and repeatedly applies
each constraint as follows until no further tuples can be
derived: under a certain substitution σ which maps variables
to constants, if the tuples in the body are present in the current
set of derived tuples, then the head tuple is added to the set.
The constraint resulting from such a substitution contains
only constants and is called a grounded constraint. We use
Gr(C, T ) to denote all grounded constraints used in applying
Datalog analysis C to analysis input tuples T .

Figure 5 shows the syntax and semantics of our modified
Datalog analysis. This instrumented Datalog analysis takes
a set B = {T1, ..., Tn} along with a set of input tuples, and
derives a set of output tuples. The difference between the se-
mantics of the original and the instrumented Datalog analyses
is that the latter avoids applying grounded constraints all of
whose body tuples are in any Ti ∈ B, 1 ≤ i ≤ n. We refer to
B as the blocking set.

4. The POLYMER Framework
POLYMER consists of an offline phase and an online phase.
In the offline phase, it runs a given analysis on a training
program corpus and computes facts about the shared library
code; in the online phase, it runs the same analysis on a test
program and reuses the analysis facts learnt in the offline
phase to speed up the analysis.

4.1 The Offline Phase
Algorithm 1 describes the offline phase of POLYMER, which
we refer to as OFFLINE. The input to OFFLINE is a Datalog
analysis, and a set of input tuples. The output of OFFLINE is
a set of summaries.

We store the learnt analysis facts in summaries. A sum-
mary is of the form of (Tpre, Tpost,Γ), which represents that
if Tpre is derived by C on a given set of input tuples, Tpost
will also be derived. The checking function Γ maps a set of in-

Algorithm 1 OFFLINE phase of POLYMER.
INPUT C, a Datalog analysis; Itrain, analysis input tuples.
OUTPUT A set of summaries.

1: preSet := PickGoodPre(C, Itrain)
2: sumSet := ∅
3: for each Tpre ∈ preSet do
4: Tpost := JCK(Tpre)
5: (T

′

post,Γ) := PickGoodPost(C, Tpre, Tpost)
6: sumSet := sumSet ∪ {(Tpre, T

′

post,Γ)}
7: end for
8: return sumSet

put tuples to either true or false, which represents whether the
corresponding summary can be applied in the online phase
with the given input tuples.

The algorithm OFFLINE stats by generating the set of
Tpre’s by invoking PickGoodPre on the analysis C and the
input tuple set Itrain (line 1). Then for each Tpre, it constructs
the corresponding Tpost and Γ as follows: OFFLINE computes
the initial Tpost by applying Datalog analysis C on Tpre (line
4); to further improve the computation savings enabled by the
summary, it invokes PickGoodPost to prune away a subset
of tuples in Tpost, and generates the final Tpost (denoted
by T

′

post in the algorithm) and the corresponding checking
function Γ (line 5).

When instantiating POLYMER for a specific analysis, we
require the analysis writer to provide the implementation for
PickGoodPre and PickGoodPost. Intuitively, PickGoodPre
returns the library facts that can be used to derive other facts
in the library. On the other hand, PickGoodPost is crucial
to the soundness and effectiveness of applying a summary,
which we elaborate next.

4.2 Pruning Analysis Facts Soundly and Effectively
The main and interesting challenge of the offline phase is the
implementation of PickGoodPost such that it is both sound
(that is, applying the pruned summaries does not change the
output of the analysis) and effective (that is, it prunes away
as many tuples as possible).

For a given Tpre, firstly, note that we cannot remove any
tuple t from JCK(Tpre) that is an output tuple (t ∈ O) as this
may directly change the analysis output.

For the rest of tuples, our key observation is: if tuple t does
not directly participate in the derivation of any tuple outside
JCK(Tpre) in the online phase, it can be safely ignored.
We call such t an intermediate tuple of the summary for
the input tuples used in the online phase. An intermediate
tuple can only directly derive a tuple in the pre-condition or
post-condition of the unpruned summary. In other words, an
intermediate tuple is not necessary for deriving tuples outside
the summary. In general, we cannot predict whether a tuple is
intermediate as the offline phase lacks the knowledge about
the online phase. Our solution to address this challenge is to



Algorithm 2 ONLINE phase of POLYMER.
INPUT C, a Datalog analysis; Itest, analysis input tuples;
{(T 1

pre, T
1
post,Γ1), ..., (Tn

pre, T
n
post,Γn)}, summaries.

OUTPUT O, a set of output tuples.
1: sumSet := {(T i

pre, T
i
post) | i ∈ [1, n] ∧ Γi(Itest)}

2: blockSet := {Tpre | ∃ Tpost.(Tpre, Tpost) ∈ sumSet}
3: Tout := J(C, blockSet)K(Itest)
4: while sumSet 6= ∅ do
5: hasSummaryApplied := false
6: for all (Tpre, Tpost) ∈ sumSet do
7: if Tpre ⊆ Tout then
8: Tout := Tout ∪ Tpost
9: sumSet := sumSet \ {(Tpre, Tpost)}

10: hasSummaryApplied := true
11: end if
12: end for
13: if ¬hasSummaryApplied then
14: (Tprei , Tpost) := Anyof(sumSet)
15: sumSet := sumSet \ {(Tpre, Tpost)}
16: blockSet := blockSet \ {Tpre}
17: end if
18: Tout := J(C, blockSet)K(Tout)
19: end while
20: return {t | t ∈ Tout ∧ t ∈ O}

remove the tuples that are likely intermediate from JCK(Tpre)
and generate a checking function Γ in the offline phase, and
then perform the soundness check using Γ in the online phase.
If the check passes, the summary can be soundly applied in
the online phase.

Definition 1 states the specification of PickGoodPost that
captures the above observations. In Section 5, we show the
instantiations of PickGoodPost for two different analyses that
satisfy the specification.

Definition 1 (Sound Pruning). For a given Tpre, let
(Tpost,Γ) = PickGoodPost(C, Tpre, JCK(Tpre)). We say
PickGoodPost is a sound pruning function, if the following
condition holds:

∀ t ∈ JCK(Tpre) \ Tpost . t /∈ O ∧ (∀I ⊆ I . Γ(I)⇒
(∀ t0 : - t1, ..., tn ∈ Gr(C, I), where t ∈ {t1, ..., tn} .

t0 ∈ JCK(Tpre))).

4.3 The Online Phase
Algorithm 2 describes the online phase of POLYMER,

which we refer to as ONLINE. The input to ONLINE is a
Datalog analysis, a set of input tuples, a set of summaries.
The output of ONLINE is a set of analysis output tuples.

The ONLINE algorithm starts by applying each checking
function on the input tuples and constructs sumSet, which
is the set of summaries that can be soundly applied (line
1). Then it constructs blockSet which is the set of Tpre’s in
sumSet (line 2). Next, it computes the initial set of derived
tuples Tout by running the instrumented analysis on Itest with

C and blockSet such that all grounded constraints covered
by the summaries in sumSet are blocked (line 3). Next, it
iterates until every summary in sumSet is either applied or
discarded (line 4-19). In each iteration, the algorithm applies
every summary whose Tpre is contained in Tout by adding
its Tpost to Tout (line 6-12). If no summary can be applied, to
make the analysis proceed, it removes an arbitrary summary
from the sumSet and unblocks the grounded constraints
covered by it (line 13-17). Here we only discard one summary
instead of all, as with new tuples derived in the next iteration,
some summaries might become applicable.

To understand why discarding a summary is sometimes
necessary, consider the following example. Let S be a sum-
mary, where S is ({t0, t1, t2}, {t3, t4},Γ). Here, {t0, t1, t2}
is the pre-condition of summary S, and {t3, t4}, the post-
condition. Then, sumSet is {({t0, t1, t2}, {t3, t4})} (line 1).
Suppose currently only tuple t0 is derived and there is an
applicable grounded constraint t3 : - t0 (meaning tuple t0 de-
rives tuple t3). The pre-condition of summary S belongs to
blockSet (line 2). Therefore the above grounded constraint
is not applied and tuple t3 is not derived. The check on line
13 is true because summary S is not applicable. At this point,
no summary is applicable and tuple t3 is not yet derived. The
online phase is not able to make progress. The algorithm
avoids this problem by shrinking the blocking set (lines 14-
16). Now, the pre-condition of summary S, {t0, t1, t2}, no
longer belongs to blockSet. Therefore, the constraint t3 : - t0
will apply, deriving tuple t3. In general, when no summary is
applicable, one arbitrary summary is removed from sumSet
to unblock the grounded constraints covered by it.

At the end of the iteration, the algorithm updates Tout by
rerunning the instrumented analysis with Tout as the input
(line 18). Finally, it returns the set of analysis output tuples
in Tout (line 20).

We now state the soundness of POLYMER, that is, by
applying the summaries computed in the offline phase, the
online phase produces the same result as the original analysis.

Theorem 2 (Soundness). Let summaries =
OFFLINE(C, Itrain), where C is a Datalog analysis and
Itrain is a set of analysis input tuples. If PickGoodPost ap-
plied in OFFLINE is a sound pruning function, then

∀Itest ⊆ I : ONLINE(C, Itest, summaries)
= JCK(Itest) ∩ O.

Though we have only discussed the case of applying
summaries learnt from one program in the online phase, it is
easy to see that POLYMER can apply sets of summaries learnt
from multiple programs by providing their union as an input
to ONLINE.

5. Instances of POLYMER

We instantiate two different analyses using POLYMER: a
context- and flow-insensitive Call-Graph Analysis similar to
a class hierarchy analysis, and a context- and flow-sensitive



Domains:
M is a set of methods.
I is a set of method call sites.
T is a set of class types.

Input relations:
dispatch(m1 : M, t : T,m2 : M) // Method m2 in type t

overrides method m1.
body(m : M, i : I) // Method m contains call site i.
binding(i : I,m : M) // Call site i resolves to method m.
receiver(i : I, t : T) // The receiver of call site i has type t.
subtype(t1 : T, t2 : T) // Type t1 is a subtype of type t2.

Output relations:
rMethod(m : M) // Method m is reachable.
rInvoke(i : I) // Call site i is reachable.
target(i : I,m : M) // Method m is invoked at i.
callGraph(i : I,m : M) // The call-graph, same as target.

Rules:
rMethod(mmain). (1)
rInvoke(i) : - rMethod(m), body(m, i) (2)
target(i,m2) : - rInvoke(i), receiver(i, t1), binding(i,m1),

subtype(t1, t2), dispatch(m1, t2,m2). (3)
rMethod(m) : - target(_,m). (4)
callGraph(i,m) : - target(i,m). (5)

Figure 6: Call-Graph Analysis in Datalog.

// The constants N are divided into application specific constants
A and library constants L.

N = A ] L

// lib(t) = true when t is a library tuple.
lib = λr(d1, .., dn).

∧
1≤i≤n di ∈ L

// conT (t, t′) = true when t and t′ are involved in the same
grounded rule applied when executing C on T .

conT = λ(t, t′).∃ t0 : - t1, ..., tn ∈ Gr(C, T ).
{t, t′} ⊆ {t0, t1, .., tn}

// reachT (t, t′) = true when t and t′ are reachable from each
other on the derivation graph of executing C on T .

reachT = λ(t, t′).(t, t′) ∈ R+, where
R = {(t, t′) | conT (t, t′)}

// collectPre(T1, T2) returns tuples in T1, and tuples in T2 that
reach them on the derivation graph of executing C on T1 ∪ T2.

collectPre = λ(T1, T2).T1 ∪ {t | t ∈ T2 ∧
∃ t′ ∈ T1.reach(T1∪T2)(t, t

′)}
Figure 7: Auxiliary definitions for defining PickGoodPre for
an analysis C.

interprocedural Points-To Analysis. These analyses are spec-
ified in Datalog but they analyze programs written in Java.
Instantiating POLYMER on an analysis requires defining the
PickGoodPre and PickGoodPost functions. We next describe
the two analyses and the instantiations of POLYMER for these.

PickGoodPre = λI.{collectPre({t}, Ilib) | t ∈ Ts}, where
Ts = {t | t ∈ JCK(I) ∧ t.r = rMethod ∧ lib(t)} and Ilib =

{t | t ∈ I ∧ lib(t)}.

PickGoodPost = λ(T1, T2).(T3,Γ), where T3 = {t | t ∈
T2 ∧ t.r = callGraph} and Γ = λI. ∀subtype(t1, t2) ∈
T2.(∀ subtype(t1, t3) ∈ I.subtype(t1, t3) ∈ T2).

Figure 8: Specification of PickGoodPre and PickGoodPost
for Call-Graph Analysis.

Call-Graph Analysis. Figure 6 specifies the Datalog rules of
our Call-Graph Analysis. This analysis computes the call-graph
for a given program in the form of the relation callGraph.
This relation contains tuples (i,m) where m is any method
reachable from the main method, that could possibly be a
target of the call site i. Given that a method m, defined in
an object of type t, is called at a call-site i, to compute all
possible call targets for i, the analysis first gets all subtypes of
t. From these subtypes, it chooses the methods that override
the definition of m, as possible call targets of the call site i
(Rule (3) of Figure 6).

We next discuss the instantiation of functions
PickGoodPre and PickGoodPost for the Call-Graph Analy-
sis. Intuitively, if a method at the boundary of shared code
is reached, it is very likely that the call-graph rooted at this
method is the same across programs using the shared code.
Therefore, we direct POLYMER to generate summaries cap-
turing call-graphs rooted at such methods by appropriately
defining PickGoodPre.

The function PickGoodPre generates the pre-conditions
to capture such summaries. For each method m deemed
reachable in the shared code, the pre-condition includes the
fact reachable(m). It also includes all the constant analysis
facts that it might need to compute the call-graph rooted at
this method. Given the derivation graph of the analysis on a
training program, this computation is very straightforward.

Figure 7 defines function collectPre declaratively, which
is used to compute the set of constants required to compute
the call-graph rooted at any given method. Figure 8 gives
the actual definition of PickGoodPre. Here, the set Ts cap-
tures all the reachable library methods. Next, PickGoodPre
applies collectPre to compute the pre-condition for each
such method.

We next describe the instantiation of PickGoodPost given
in Figure 8. The main task of this function is to specify (1)
what tuples to prune away from a given summary, and, (2)
the checking function that will ensure that it is sound to use
the summary pruned this way. For the Call-Graph Analysis,
we observe that all derived tuples other than the tuples of the
relation callGraph represent intermediate computations and
therefore can be pruned away. We retain only the tuples of
relation callGraph in the post-condition of the summary, as
indicated by the definition of PickGoodPost in Figure 8.



Reusing a summary pruned as described above is sound
only if, whenever the method m in the pre-condition of
the summary is deemed reachable in the online phase
(reachable(m) is derived), the call-graph rooted at this
method is the same as the one in the post-condition of the
summary. Since the call-graph is entirely over the shared
code, the above condition will be only violated if an applica-
tion method is included in this call-graph during the online
phase. This will only happen if an application class overrides
a library method in this call-graph. To enforce such a con-
dition conservatively, PickGoodPost generates a checking
function that examines whether any application class in the
online phase overrides a library class whose method is in this
call-graph.

Points-To Analysis. Figure 9 specifies the Datalog rules of
our Points-To Analysis. This analysis is adapted from the
points-to analysis specified in [16], which computes the
points-to information at each program point. It is a summary-
based context- and flow-sensitive analysis that applies the
IFDS algorithm [20]. We instantiate two variants of this
analysis: one that uses a less precise pre-computed call-graph,
and another that uses a more precise call-graph constructed
on-the-fly. In both these variants, the computation of the
points-to information at all program points remains the same.
It differs only in the way in which the call targets of a method
call are determined. Figure 9 highlights the commonalities
and the differences. The light-gray boxes contain the parts of
the analysis specification present only when the call-graph is
pre-computed. The dark-gray boxes contain the parts present
only when the call-graph is constructed on-the-fly. The rest
is common to both.

The rules for both variants of Points-To Analysis are mostly
common. For simplicity, we elide the rules encoding the
concrete transfer functions and only show the rules related to
the IFDS algorithm in Figure 9: Rule (1) starts the analysis
at the entry of the main method with the initial abstract
state; Rule (2) applies a transfer function to compute the
outgoing abstract state from the incoming abstract state at
any given program point; Rule (3) computes the abstract state
at a method entry by transferring the points-to information
from the arguments of a method call to the formal parameters
of the target method definition; Rule (4) generates a method
summary which captures the relation between the abstract
state at the method entry and that at the method exit; Rule (5)
computes the abstract state after a call site by applying the
summary of the invoked method.

Rule (6) is present only when the call-graph is pre-
computed: it just copies the input relation call into relation cg.
Rule (7) is present only when the call-graph is constructed
on-the-fly: it computes the context-sensitive call-graph at
program point p. We explain this rule in more detail. Sup-
pose, the program point p contains a method call x.foo().
Then, the relation extract gives all possible allocation sites h,
pointed-to by x, in the abstract state s2. The corresponding

Domains:
P is a set of program points.
M is a set of methods.
S is a set of abstract states. For points-to analysis, they are points-to
information at each program point.

H is a set of allocation sites.
T is a set of class types.

Input relations:
head(m : M, p : P) // Program point p is the entry of method m.
tail(m : M, p : P) // Program point p is the exit of method m.
next(p : P, q : P) // The successor of program point p is q.
itrans(p : P,m : M, s1 : S, s2 : S) // Transfer function to pass

// parameters when m is called at p.
rtrans(p : P,m : M, s1 : S, s2 : S) // Transfer function for

// method return when m is called at p.
trans(p : P, s1 : S, s2 : S) // Transfer function for statement at p.

call(p : P,m : M) // Program point p invokes method m.

type(h : H, t : T) // An object allocated at site h
// has type t.

virtual(p : P,m : M) // Program point p invokes
// virtual method m.

dispatch(n : M, t : T,m : M) // Method m in type t overrides
// method n.

extract(p : P, s : S, h : H) // Allocation site h is pointed to
// by the receiver of the virtual method call at program point p.

Intermediate relations:
cg(p : P, s : S,m : M) // Call graph at program

// point p in abstract state s.
Output relations:
ppointsTo(p : P, s1 : S, s2 : S) // Path edges.
mpointsTo(m : M, s1 : S, s2 : S) // Summary edges.

Rules:
ppointsTo(p, sinit, sinit) : - head(mmain, p). (1)
ppointsTo(q, s1, s3) : - ppointsTo(p, s1, s2),

trans(p, s2, s3), next(p, q). (2)
ppointsTo(q, s3, s3) : - ppointsTo(p, s1, s2), cg(p, s2,m),

itrans(p,m, s2, s3), head(m, q). (3)
mpointsTo(m, s1, s2) : - ppointsTo(p, s1, s2), tail(m, p). (4)
ppointsTo(r, s1, s5) : - ppointsTo(p, s1, s2), cg(p, s2,m),

itrans(p,m, s2, s3), next(p, r),
mpointsTo(m, s3, s4),
rtrans(p,m, s4, s5). (5)

cg(p, s2,m) : - ppointsTo(p, s1, s2), call(p,m). (6)

cg(p, s2,m) : - ppointsTo(p, s1, s2), extract(p, s2, h),
type(h, t), virtual(p, n), dispatch(n, t,m). (7)

Figure 9: Points-To Analysis in Datalog. Domains, relations
and rules in light gray boxes are present only when call-graph
is pre-computed and the ones in dark gray boxes are present
only when the call-graph is constructed on-the-fly.



PickGoodPre = λI.{collectPre({t}, Ilib) | t ∈ Ts}, where
Ts = {t | t ∈ JCK(I) ∧ lib(t) ∧ t = ppointsTo(p, s, s)

where ∃ head(m, p).head(m, p) ∈ Ilib} and Ilib = {t | t ∈
I ∧ lib(t)}.

PickGoodPost = λ(T1, T2).(T3,Γ), where T3 = {t | t ∈
T2 ∧ t.r = mpointsTo} and Γ = λI. ∀call(p,m1) ∈
T2.(∀ call(p,m2) ∈ I.call(p,m2) ∈ T2).

Figure 10: Specification of PickGoodPre and PickGoodPost
for Points-To Analysis with pre-computed call-graph.

PickGoodPre = λI.{collectPre({t}, Ilib) | t ∈ Ts}, where
Ts = {t | t ∈ JCK(I) ∧ lib(t) ∧ t = ppointsTo(p, s, s)

where ∃ head(m, p).head(m, p) ∈ Ilib} and Ilib = {t | t ∈
I ∧ lib(t)}.

PickGoodPost =

λ(T1, T2).(T3,Γ), where T3 = {t | t ∈ T2 ∧ t.r = mpointsTo}
and Γ = λI. ∀ type(h, t1), dispatch(m, t1,m1) ∈ T2.

(∀ type(h, t2), dispatch(m, t2,m2) ∈ I.
type(h, t2), dispatch(m, t2,m2) ∈ T2).

Figure 11: Specification of PickGoodPre and PickGoodPost
for Points-To Analysis with on-the-fly call-graph construction.

types t for all these allocation sites, is given by relation type.
The fact that program point p invokes the virtual method
foo() comes from the input relation virtual. Finally, all pos-
sible call targets are the methods m that override foo() in
the types t: this comes from the input relation dispatch.

The instantiations of PickGoodPre and PickGoodPost for
the two variants of Points-To Analysis are given in Figures 10
and 11. The definition of PickGoodPre remains the same for
both variants and we discuss it below. Similar to the Call-
Graph Analysis, we observe that a given library method m
analyzed in a given abstract context, will likely produce the
same analysis facts during the analysis of an unseen program
if the analysis reaches m in the same abstract context. Based
on such observation, PickGoodPre constructs the set Ts by
taking all the ppointsTo tuples encoding the entry states
of all library methods. Similar to the Call-Graph Analysis,
PickGoodPre completes the pre-condition for each tuple in
Ts by applying collectPre to collect all the constants needed
to compute the analysis facts for the corresponding method.
Therefore, PickGoodPre constructs a pre-condition for each
abstract context in which a method is analyzed.

For each such pre-condition corresponding to a method,
say m, POLYMER constructs a post-condition. This post-
condition comprises all possible tuples that can be derived
by applying the rules of Figure 9 to the tuples in the pre-
condition. That is, such a post-condition will comprise
ppointsTo tuples at all program points in the method m,
and at all program points in all methods called transitively by

m. Secondly, it will comprise mpointsTo tuples associated
with method m, and all methods called transitively by m.
Lastly, it will comprise cg tuples associated with all program
points that are invoke statements in method m, and in all
methods called transitively by m. POLYMER then applies the
function PickGoodPost to prune such a post-condition.

We next discuss the definition of PickGoodPost in Fig-
ures 10 and 11. From rule (5) in Figure 9, it is clear that a
post-condition needs to retain only mpointsTo facts. This is
because only mpointsTo facts associated with a method m
are used after the analysis of method m is complete. The
definition of PickGoodPost captures this observation by prun-
ing away tuples belonging to other relations, and retaining
only the tuples of the mpointsTo relation. For both variants
of Points-To Analysis, the pruned summaries need to retain
only the mpointsTo tuples in the post-condition.

Again, reusing such a pruned summary is sound only
if, for a given method whose entry state is captured by
the summary pre-condition, the abstract state computed at
the method exit in the online phase (mpointsTo fact) is
the same as the abstract state in the post-condition of the
pruned summary. This condition will be violated only if
the call-graph rooted at the method under consideration is
not the same in the online and the offline phases. In other
words, this condition means that for any given method m, all
other methods called transitively by m, must be the same
in the online and offline phases. In addition, a check on
this condition automatically excludes reusing summaries for
methods that contain application callbacks. This is because
the condition check will always fail while analyzing such
methods, since these methods (transitively) contain calls to
application methods that will never be the same in the offline
and online phases.

For each summary, PickGoodPost generates a checking
function that ensures this condition. Here, there is a difference
in the checking function generated for the two variants of
Points-To Analysis. When the call-graph is pre-computed,
the checking function examines the call relation used in the
online phase (Figure 10). When the call-graph is constructed
on-the-fly, we observe by looking at rule (7), that the set
of tuples of the type and dispatch relations used in that
rule completely determine the call-graph at that program
point. Therefore, the checking function examines the type
and dispatch relations in the online phase (Figure 11).

Discussion. Though we observe from these instantiations
of POLYMER that PickGoodPre and PickGoodPost are not
very difficult to specify, they do require some insight into
the analyses. POLYMER does not require the most optimal
definitions of these functions. More naive definitions will
only cause POLYMER to achieve more modest speedups.

Another point that these instantiations of POLYMER il-
lustrate is that POLYMER records summaries in the same
abstract domain as the original analysis. These summaries are
deduced from grounded facts encountered during the actual



brief description # classes # methods bytecode (KB) source (KLOC)
app total app total app total app total

antlr generates parsers and lexical analyzers 109 1,091 873 7,220 81 467 26 224
avrora AVR microcontroller simulator 78 1,062 523 6,905 35 423 16 214
bloat Java bytecode analysis/optimization tool 277 1,269 2,651 9,133 195 586 59 258
chart plots graphs and render them as PDF 181 1,756 1,461 11,450 101 778 53 366
hsqldb relational database engine 189 1,341 2,441 10,223 190 670 96 322
luindex document indexing tool 193 1,175 1,316 7,741 99 487 38 237
lusearch text searching tool 173 1,157 1,119 7,601 77 477 33 231
pmd Java source code analyzer 348 1,357 2,590 9,105 186 578 46 247
sunflow photo-realistic image rendering system 165 1,894 1,328 13,356 117 934 25 419
xalan XML to HTML transforming tool 42 1,036 372 6,772 28 417 9 208

Table 1: Benchmark characteristics. The “total" and “app" columns report numbers with and without counting shared code,
respectively. Shared code denotes the JDK library.

analysis of a training program. Since POLYMER processes
grounded facts to deduce summaries, it is not hindered by
higher-order functions or dynamically allocated memory.

6. Empirical Evaluation
We implemented POLYMER in a tool for accelerating analyses
specified in Datalog for Java programs. It uses Chord [18]
as the Java bytecode analysis front-end and bddbddb [29]
as the Datalog solver. POLYMER can be configured to run
in the Offline phase or the Online phase. In the Offline
phase, it takes as input a corpus of training programs and
a specification of what constitutes shared code. It learns
analysis facts over the shared code and stores them in a
persistent database. In the Online phase, it uses the learnt
facts to accelerate the analysis of the input program.

6.1 Experimental Setup
We evaluate POLYMER on the two analyses described earlier,
using ten programs from the DaCapo suite, shown in Table 1.

These ten programs are diverse, widely-used programs
whose shared code is primarily the Java standard library
(JDK). We therefore designate the JDK as shared code for
these programs. These programs are 9-96 KLOC and 208-419
KLOC in size, excluding and including the size of JDK code
reachable from them, respectively.

Our evaluation addresses two main questions:

1. How much can POLYMER speed up the analysis of a
program when provided with training data? (Section 6.2).

2. How sensitive is POLYMER’s acceleration to variations in
training data? (Section 6.3).

All results were obtained using Oracle HotSpot JVM 1.6 on
Linux machines with 3.0 GHz processors and 16 GB RAM.

6.2 Speedup Measurements
Methodology. To measure speedup, we compare POLY-
MER’s performance in three settings of varying training
data:
• Baseline: POLYMER analyzes the input program from

scratch. No training data is available. This execution is

the same as the standard formulation of the analysis (in
Datalog). We do not modify the analysis specification in
any way in order to compute Baseline metrics.
• Ideal: All possible learnt facts over shared code that are

sound for cross-program use are available to POLYMER. In
this setting, the perfect training data is available to POLY-
MER. Therefore, POLYMER is able to achieve maximum
acceleration while analyzing the input program, giving
an upper bound on the speedup achievable by POLYMER.
POLYMER simulates this setting by two steps:

training on a program and recording all learnt facts
for the shared code that can be reused soundly across
programs; and
reusing these learnt facts on the same program.

• Actual: Only facts learnt from the training corpus are avail-
able to POLYMER. This setting captures the real-life sce-
nario in which POLYMER is used. Therefore, our evaluation
compares POLYMER’s performance in this setting to that
in both the previous settings. The comparison between
Actual and Ideal settings gives an indication of how close
the speedup provided by real-life training data is to the
speed-up provided by ideal training data.

In our experiments, the training corpus used in the Actual
setting consists of all benchmarks in the same suite with the
exception of the benchmark being tested.

The results of our measurements are shown in Figure 12.
For each analysis, the figure shows two graphs:
• Speedup: The speedups in Ideal and Actual settings over

the running time in Baseline setting. The raw running time
in Baseline setting is shown at the top of the bars, for each
benchmark.
• Reduction in facts computed: The ratio of analysis tuples

computed in Ideal and Actual settings to that computed
in Baseline setting. The total number of analysis tuples
computed in Baseline setting is shown at the top of the
bars, for each benchmark.

Results. For Call-Graph Analysis, the Actual setting yields
speedups ranging from 1.9× to 3.4× with an average of
2.6×. For Points-To Analysis with a pre-computed call-graph,
these speedups range from 1.3× to 11× with an average
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Figure 12: Speedup achieved by POLYMER over Baseline and the corresponding reduction in analysis facts computed.



of 5.7×. For Points-To Analysis with call-graph constructed
on-the-fly, the speedups range from 1.2× to 9.1× with an
average of 4.7×. These numbers are corroborated by the
reduction in computed analysis facts plotted alongside the
speedup graphs for each analysis. Intuitively, the reduction in
computed analysis facts captures the reduction in work done.
While there is indeed a correlation between the reduction
in work done and speedup, however, the number of tuples
computed is not an exact measure of the work done. The
actual work done depends on the internals of the Datalog
solver.

All measurements of running time are averaged over three
runs and the variability across these measurements is minimal
(under 5%). Since the number of computed analysis tuples
is a count of tuples, it is exact and there is no variability in
these measurements.

The performance of POLYMER in the Actual case com-
pares favorably to that in the Ideal case in most cases. The
difference between the speedups observed in these two cases
is explained by the fact that not all learnt facts required by
the input program may be provided by the training programs.
On average, the drop in speedup from Ideal to Actual is
very minimal. This is expected as the DaCapo benchmarks
use the JDK for common features like containers and I/O.
Therefore, the likelihood of the training set providing the
necessary learnt facts is high. For pmd and bloat, absolute
speedups are modest because they have among the highest ra-
tios of application to library code, but the speedup for Actual
relative to Ideal is similar to other benchmarks.

The speedups produced for Points-To Analysis when
the call-graph is constructed on-the-fly are lesser than the
speedups produced when the call-graph is pre-computed.
Correspondingly, the decrease in the number of analysis
facts computed also shows a similar trend. The reason is
that fewer summaries get reused across programs. Since con-
dition checking is more involved for the points-to analysis
that constructs the call-graph on-the-fly, summaries are less
likely to match across programs. Another observation is that
the raw metrics in Baseline setting (running time and the
number of analysis facts computed) are smaller when the
call-graph is constructed on-the-fly. This is because lesser
code is analyzed since on-the-fly call-graph is more precise.

We observe that the speedup achieved by POLYMER is
better for Points-To Analysis than for Call-Graph Analysis. This
is because the complexity of Points-To Analysis is super-linear
in program size, and therefore it benefits more than Call-Graph
Analysis from available training data.

In conclusion, we expect Polymer to scale for any anal-
ysis that scales when expressed in Datalog. However, the
speedups achieved are contingent on appropriate definitions
for PickGoodPre and PickGoodPost as well as the availabil-
ity of suitable training data.

6.3 Robustness Measurements
This section evaluates the sensitivity of POLYMER’s accelera-
tion to variations in training data.

Methodology. For the analysis of a given program, the avail-
able training data could vary along two dimensions. In one
dimension, the training data covers specific modules but not
the entire breadth of the exercised shared code. In this case,
we say there is variation in the functionality of the training
data. To measure sensitivity to this kind of variation, we
make POLYMER analyze an input program multiple times,
each time using training data from a single other program
in the same benchmark suite. Since different training pro-
grams can exercise different modules of shared libraries, this
simulates the variation in functionality of the training data.

Libraries typically have many layers of abstraction, and
training data at different layers of the shared code may be
available to POLYMER, causing it to reanalyze the shared
code to different depths. This is the other dimension in which
available training data could vary; we refer to this as the
variation in abstraction layers. We give an example below
to illustrate the effect of summaries at different layers of
abstraction.

Suppose there is a program A that calls a library method
foo() which in turn calls another library method bar().
Suppose further that the summaries for library methods foo()
and bar() are available to the analysis of program A. At the
program point where method foo() is invoked, POLYMER
recognizes that a summary for method foo() is available and
uses it (assume that the summary passes the condition checks).
Thereby, POLYMER prevents the re-analysis of methods foo()
and bar(). Note that the summary for method bar() is never
used even though it is available. Now suppose, only the
summary for method bar() is available (in other words,
a summary at a deeper level of abstraction is available).
Then POLYMER will re-analyze method foo() and use the
summary for method bar(). In this case, POLYMER prevents
the re-analysis of only method bar().

To simulate the variation in abstraction layers, we make
POLYMER analyze an input program multiple times. The
first time, we provide POLYMER the original set of learnt
facts corresponding to the Ideal case in Section 6.2, but each
subsequent time, we remove all those analysis facts that were
used by POLYMER in the previous run.

The results of the experiments to measure robustness along
the two dimensions discussed above, are shown in Figure 13.
For each analysis, graphs showing measurements along both
dimensions are placed beside one another.

Variation in functionality. We show measurements for this
dimension as box plots of the speedup achieved when POLY-
MER analyzes an input program with training data from dif-
ferent programs. We drill down to analyze the box plot in
the column labeled avrora for Points-To Analysis with a pre-
computed call-graph. It shows the speedup when avrora is
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Figure 13: (1) Variation in functionality: Speedup of Points-To Analysis on each program by using different training programs.
(2) Variation in abstraction layers: Reduction in speedup of Points-To Analysis with training data from successively deeper
abstraction layers of shared code, for one benchmark (sunflow).



analyzed with training data from each of the other nine Da-
Capo benchmarks. The box plot says that most training pro-
grams give a speedup between 8.2× and 10.3×. These num-
bers, indicated by the bottom and top boundaries of the box,
correspond to the first and third quartiles of all the speedups.
The whiskers mark the extremes: at the lower end is a training
program that provides 7.8× speedup and at the higher end
is one that provides 11× speedup. The red line within the
box indicates the median speedup. The blue dot on top, spec-
ified as cumulative, is the speedup when avrora is analyzed
using the training data from all the nine other benchmarks
combined. This speedup is the same as in the Actual setting
described in Section 6.2. In the case of avrora, the blue dot
coinciding with the top whisker indicates that the single best
training program is providing training data that is almost as
good as the cumulative training data.

These plots reveal that for a particular input program under
analysis, not all training programs are equivalent in terms of
the training data they provide and the speedup they enable.
Typically, there is some training program that stands out
due to similar library usage as the current program under
analysis. However, we also see that even if the best training
program were not available, there are other training programs
that would provide comparable, if not equal, speedup. These
measurements also indicate how far away the outlier training
programs are, in terms of the usefulness of the training
data they provide. They also give a quick estimate of the
contribution to the training data by individual programs,
compared to the cumulative contribution by all programs.

Variation in abstraction layers. The measurements for this
dimension are bar graphs of the speedup achieved by POLY-
MER when provided with training data for successively deeper
layers of abstraction of the shared code. The bar graphs in Fig-
ure 13 show the effect of summaries at different abstraction
layers. All the bar graphs show this for program sunflow
(they are similar for other programs). We see that the first
bar for iteration 1, corresponds to the speedup in Ideal set-
ting. In the subsequent iterations, the summaries available
to POLYMER are at deeper and deeper levels of abstraction.
The drop in speedup over these iterations shows that denying
POLYMER training data for the higher layers of abstraction in
the shared code dramatically diminishes performance gains
for all the analyses. Intuitively, retaining only analysis facts
for deeper abstraction layers of the shared code does not yield
significant speedup. This also highlights the value of pruning
in POLYMER because pruning increases the reusability of
summaries. Therefore, there is a greater chance that pruned
summaries at higher levels of abstraction get used.

7. Related Work
Most work on reusing analysis results is based on interproce-
dural analysis techniques, since procedures provide a natural
interface to summarize analysis results.

Complete summaries. Classical work on interprocedural
analysis [20, 23, 28] computes a complete summary of each
procedure in a program, and applies each summary to analyze
the procedure at each call site. For many analysis domains,
including relational domains, such summaries are difficult
to represent compactly or infer efficiently [27, 28]. Yorsh et
al. [32] generalize top-down summaries by replacing explicit
summaries with symbolic representations, thus increasing
reuse without losing precision. Ball et al. [4] generalize top-
down summaries by encoding the transfer functions using
BDDs. Other techniques generalize top-down summaries by
pruning irrelevant parts of the calling context for points-to
analysis [8] and shape analysis [21].

These approaches focus on high reusability but incur a
high cost for instantiating the summaries at the time of reuse.
In contrast, POLYMER achieves reusability of analysis facts
by descending deeper into shared code in the offline phase,
in return for incurring a negligible cost for instantiating the
summaries and re-analyzing the shallower parts of the shared
code in the online phase.

Partial summaries. Godefroid et al. [13] propose construct-
ing partial summaries to summarize program behaviors rele-
vant to a particular trace, that is a potential counterexample
to a property, under an abstraction maintained by the analysis.
The analysis facts that POLYMER learns are not computed in
response to a failure by an analysis, but instead are computed
to collect information from the completed run of a successful
analysis.

Zhang et al. [33] propose a framework to combine top-
down and bottom-up interprocedural analysis in order to
gain the benefits of efficient computation and instantiation
of top-down summaries with effective reuse of bottom-up
summaries. Their approach requires the analysis writer to
specify both the top-down and bottom-up analysis.

Partial transfer functions [17, 30] summarize the input/out-
put behavior for only a subset of a procedure or region to
speedup the analysis of the surrounding region or program.
Their motivation is to circumvent the drawbacks of construct-
ing complete summaries, especially in the presence of higher-
order functions and complex transfer functions.

In all of the above approaches, the summaries are not
reusable across programs, as they assume the same vocabu-
lary of base facts when building and applying summaries.

Summarizing libraries. Rountev et al. [22, 31] propose an
approach to summarize library code independent of any
client code. They address the general class of interprocedural
distributive environment (IDE) dataflow problems but use a
graph representation of dataflow summary functions that need
to be instantiated at every call site. Moreover, this approach
is only able to handle call sites with single target methods as
determined by a call-graph analysis.

Ali et al. [1, 2] propose a technique to over-approximate
library code. Their approach creates an application-only call-
graph in which the entire library is abstracted by a single



method denoted library. All calls in the application to the
library have a call-graph edge to this node. The call-graph
edges from the library node to the application nodes, that
represent callbacks, are determined precisely by analyzing
the points-to information for the library.

Pre-processing libraries. Smaragdakis et al. [25] propose an
optimization technique in which the source program is trans-
formed so that it is optimized for a flow-insensitive points-to
analysis. Analysis of the original and the transformed pro-
grams yields the same points-to facts. The source-level trans-
formation is done by a pre-analysis that reasons about the
flow of points-to facts. This approach makes it possible to
transform large libraries once and for all, thereby optimizing
subsequent whole-program points-to analyses.

Allen et al. [3] propose a demand- and query-driven ap-
proach for points-to analysis that also involves source pro-
gram transformation. They employ static program slicing and
compaction to reduce the input program to a smaller pro-
gram that is semantically equivalent for the points-to queries
under consideration. Whole-program flow-insensitive points-
to analysis is then performed on this smaller, transformed
program yielding the results for the points-to queries.

Oh et al. [19] propose using an existing codebase of pro-
grams to learn the the parameters to be used for a parametric
static analysis. These parameters affect the analysis precision-
cost tradeoff. They use Bayesian optimization to efficiently
learn these parameters which are then used when analyzing
unseen programs. In contrast, POLYMER uses the existing
codebases to learn the analysis summaries.

8. Conclusion
Scaling program analyses to large programs is an ongoing
challenge. In this paper, we proposed POLYMER, an analysis
optimizer that addresses this problem in the common scenario
where such programs share large modules of code. POLYMER
operates by reusing analysis results for shared code across
programs. POLYMER consists of two stages: an offline stage,
in which it learns analysis facts over shared code from a
corpus of training programs, followed by an online stage,
in which it reuses the learnt facts to accelerate the analysis
on new programs. Crucial to POLYMER’s effectiveness is a
pruning specification provided by the user that dictates how
to discard intermediate analysis facts about shared code in a
manner that yields performance gains without compromising
soundness. We demonstrated that POLYMER achieves average
speedups of 2.6× for a call-graph analysis and 5.2× for a
points-to analysis, when applied to Java programs containing
208-419 KLOC.
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A. Appendix
We provide the proof for Theorem 2 in this appendix. We
start with the definitions of some utility functions followed by
the proof of the theorem. The proof uses Lemmas 7, 8, 9, 10
and 11. The proofs for these lemmas follow the proof of the
theorem.

Definition 3 (Summary Accessors). If (Tpre, Tpost,Γ) is a
summary, then we define the following accessor functions:

pre(Tpre, Tpost,Γ) = Tpre
post(Tpre, Tpost,Γ) = Tpost
fpost(Tpre, Tpost,Γ) = JCK(Tpre)

chkfun(Tpre, Tpost,Γ) = Γ.

Definition 4 (Constraint Accessors). If c is a Datalog con-
straint of the form l0 : - l1, ..., ln, then we define cbody(c) =
{l1, ..., ln} and chead(c) = {l0}.
Definition 5 (Apply Functions). If aSet is a set of summaries
where each summary of the form (Tpre, Tpost,Γ), then we
define two functions:
blk(aSet) = {Tpre | (Tpre, Tpost,Γ) ∈ aSet}
load(aSet) =

⋃
{Tpost | (Tpre, Tpost,Γ) ∈ aSet}.

Definition 6 (Applicable Summary). If sum is a summary,
then we call it as an applicable summary if and only if
chkfun(sum)(Itest) ∧ pre(sum) ⊆ JCK(Itest) where
Itest ⊆ I.

We assume the following propositions and omit their proof
for brevity.

Bblk1 ⊆ Bblk2 ⇒ JC,Bblk2K(T1) ⊆ JC,Bblk1K(T1) (P1)
T1 ⊆ T2 ⇒ JC,BblkK(T1) ⊆ JC,BblkK(T2) (P2)
T1 ⊆ T2 ⇒ JCK(T1) ⊆ JCK(T2) (P3)
T1 ⊆ JC,BblkK(T1) (P4)
JC, ∅K(T1) = JCK(T1) (P5)
JC,BblkK(JC,BblkK(T1)) = JC,BblkK(T1) (P6)
T1 ⊆ JCK(T2)⇒ JCK(T1) ⊆ JCK(T2) (P7)
T1 ⊆ T2 ⇒ JCK(T2) = JCK(T2 ∪ T1) (P8)

Theorem 2. Let summaries = OFFLINE(C, Itrain), where
C is a Datalog analysis and Itrain is a set of analysis
input tuples. If PickGoodPost applied in OFFLINE is a sound
pruning function, then
∀Itest ⊆ I : ONLINE(C, Itest, summaries)

= JCK(Itest) ∩ O.

Proof. Let summaries = {sum1, ..., sumn} where each
element is of the form (Tpre, Tpost,Γ). Let Itest ⊆ I . Lines
1-2 of ONLINE define (1.1) sumSet0 = {sum | sum ∈
summaries ∧ (chkfun(sum))(Itest)} and (1.2) B0

blk =
blk(sumSet0).

By line 3 of ONLINE, we have (2) T 0
out = [C,B0

blk](Itest).
Let S be the set of summaries chosen by ONLINE to apply.
(3) S0 = ∅.

The kth iteration, k ≥ 1, of the while loop (lines 4-19 of
ONLINE) computes (4),(5) and (6) as shown below.

(4) The kth iteration of the while loop chooses a subset
of sumSetk−1 to process. Let that subset be pSetk. By the
condition check on line 7 of ONLINE, either (4.1) or (4.2) be-
low hold but both compute pSetk = {sum1, ..., summ} ⊆
sumSetk−1.

(4.1) lines 7-11 of ONLINE compute: (4.1.1) T k
load =

load(pSetk), (4.1.2)Bk
blk = Bk−1

blk and (4.1.3) Sk = Sk−1∪
pSetk.

(4.2) lines 13-17 of ONLINE compute: (4.2.1) T k
load = ∅,

(4.2.2) Bk
blk = Bk−1

blk \ {{Tpre} | (Tpre, Tpost,Γ) ∈ pSetk}
and (4.2.3) Sk = Sk−1.
sumSet is updated as (5) sumSetk = sumSetk−1 \

pSetk and the tuples derived by the analysis as (6) T k
out =

[C,Bk
blk](T k−1

out ∪ T k
load).

We observe that the computation of Tout has the fol-
lowing structure in the kth iteration of the while loop: (7)
[C,Bk

blk](...([C,B1
blk]([C,B0

blk](Itest) ∪ T 1
load)...) ∪ T k

load).
Since the while loop executes lines 8-10 or 14-16 of

ONLINE, we have either (8) or (9) where: (8) Bk
blk =

Bk−1
blk ∧ T k

load 6= ∅ ∧ pSetk 6= ∅ and (9) Bk
blk ⊂

Bk−1
blk ∧ T k

load = ∅ ∧ pSetk 6= ∅.
(7) can be reduced to the expression (I) below by repeat-

edly applying Lemma 7 if (8) holds and Lemma 8 if (9) holds.
(I) T k

out = [C,Bk
blk](Itest ∪

⋃
1≤i≤k T

i
load).

From (1.2), (4.1.2) and (4.1.3), we have (10) if pSetk ⊆
Sk then blk(pSetk) ⊆ Bk

blk. From (4.2.2) and (4.2.3), we
have (11) if pSetk 6⊂ Sk then blk(pSetk) 6⊂ Bk

blk. From (10)
and (11), we have (12)Bk

blk = blk(Sk). From (4.1.1), (4.1.3),
(4.2.1) and (4.2.3), we have (13)

⋃
1≤i≤k T

i
load = load(Sk).

Substituting (12) and (13) in (I), we have (II) T k
out =

[C, blk(Sk)](Itest ∪ load(Sk)).
Since pSetk 6= ∅, and sumSet is finite, the while loop

eventually terminates. If the while loop exits after n iterations,
we need to prove (III) Tn

out ∩O = [C](Itest) ∩O.
From P1, we know that (14) T 0

out ⊆ [C](Itest). From
(4.1.1) and (4.1.3), we know that (15) load(Sk) ⊆ T k−1

out .
From (14), (15) and repeatedly applying P1 and P2 in (7),
we have (16) T k

out ⊆ [C](Itest). From (16) and the condition
check on line 7 of ONLINE, we have (17) ∀sum ∈ Sk :
pre(sum) ⊆ [C](Itest). From (1) and (17), we have (18) Sk

is a set of applicable summaries.
From (II), (18) and Lemma 9, we have (III), as required.

Lemma 7. JC,BblkK(JC,BblkK(T1)∪T2) = JC,BblkK(T1∪
T2).

Proof. To prove Lemma 7, it suffices to prove that:
(JC,BblkK(T1 ∪ T2) ⊆ JC,BblkK(JC,BblkK(T1) ∪ T2) ∧
JC,BblkK(JC,BblkK(T1) ∪ T2) ⊆ JC,BblkK(T1 ∪ T2)).
To prove:
(I) JC,BblkK(T1 ∪ T2) ⊆ JC,BblkK(JC,BblkK(T1) ∪ T2).
From P4, we have (1) T1 ⊆ JC,BblkK(T1). From (1), we
have (2) T1 ∪ T2 ⊆ JC,BblkK(T1) ∪ T2.



From (2) and P2, we have JC,BblkK(T1 ∪ T2) ⊆
JC,BblkK(JC,BblkK(T1) ∪ T2), as required.

To prove: (II) JC,BblkK(JC,BblkK(T1) ∪ T2) ⊆
JC,BblkK(T1 ∪ T2).

We know that (3) T1 ⊆ T1∪T2. From (3) and P2, we have
(4) JC,BblkK(T1) ⊆ JC,BblkK(T1 ∪ T2). From (4), we have
(5) JC,BblkK(T1) ∪ T2 ⊆ JC,BblkK(T1 ∪ T2) ∪ T2.

From (5) and P2, we have (6) JC,BblkK(JC,BblkK(T1) ∪
T2) ⊆ JC,BblkK(JC,BblkK(T1 ∪ T2) ∪ T2).

From P4, we have (7) T2 ⊆ JC,BblkK(T1 ∪ T2).
From (7), we have (8) JC,BblkK(T1 ∪ T2) ∪ T2 =

JC,BblkK(T1 ∪ T2). Substituting (8) in (6), we have (9)
JC,BblkK(JC,BblkK(T1)∪ T2) ⊆ JC,BblkK(JC,BblkK(T1 ∪
T2)).

From (9) and P6, we have JC,BblkK(JC,BblkK(T1) ∪
T2) ⊆ JC,BblkK(T1 ∪ T2), as required.

Lemma 8. IfBblk1 ⊆ Bblk2 then JC,Bblk1K(JC,Bblk2K(T1))
= JC,Bblk1K(T1).

Proof. To prove Lemma 8, it suffices to prove that: IfBblk1 ⊆
Bblk2 then (JC,Bblk1K(JC,Bblk2K(T1)) ⊆ JC,Bblk1K(T1) ∧
JC,Bblk1K(T1) ⊆ JC,Bblk1K(JC,Bblk2K(T1))).

Assume (1) Bblk1 ⊆ Bblk2.
To prove:
(I) JC,Bblk1K(JC,Bblk2K(T1)) ⊆ JC,Bblk1K(T1). From P1
and (1), we have (2) JC,Bblk2K(T1) ⊆ JC,Bblk1K(T1).
From P2 and (2), we have (3) JC,Bblk1K(JC,Bblk2K(T1)) ⊆
JC,Bblk1K(JC,Bblk1K(T1)). From (3) and P6, we have
JC,Bblk1K(JC,Bblk2K(T1)) ⊆ JC,Bblk1K(T1), as required.
To prove:
(II) JC,Bblk1K(T1) ⊆ JC,Bblk1K(JC,Bblk2K(T1)). From
P4, we have (4) T1 ⊆ JC,Bblk2K(T1). From (4), and P2,
we have JC,Bblk1K(T1) ⊆ JC,Bblk1K(JC,Bblk2K(T1)), as
required.

Lemma 9. If S = {sum1, ..., sumn} is a set of n appli-
cable summaries, then JC, blk(S)K(Itest ∪ load(S)) ∩O =
JCK(Itest) ∩O.

Proof. Let Itest ⊆ I . Let S = {sum1, ..., sumn}.
(1) Assume S is a set of applicable summaries. We prove

Lemma 9 by induction on |S|. Here the Inductive Hypothe-
sis is, JC, blk(S)K(Itest ∪ load(S)) ∩O = JCK(Itest) ∩O.

Proving the base case for n = 1. Let S = {sum1} where
sum1 = (T 1

pre, T
1
post,Γ1). From (1) of Definition 5, we

have, (2) blk(S) = T 1
pre. From (2) of Definition 5, we

have, (3) load(S) = T 1
post. From (2), (3) and the Induction

Hypothesis, we need to prove, (I) JC, T 1
preK(Itest ∪ T 1

post) ∩
O = JCK(Itest) ∩ O. (I) can be rewritten as, (II) JC, ∅ ∪
T 1
preK(Itest∪∅∪T 1

post)∩O = JCK(Itest)∩O. From (1) and
applying Lemma 10, we have (II) as required.

Proving the inductive case, the Induction Hypothesis
holds for n = k. To prove for n = k + 1. Let S =

{sum1, ..., sumk+1} where ∀i ∈ [1..k + 1] : sumi =
(T i

pre, T
i
post,Γi). We need to prove that, (III) JC, blk(S)K(Itest

∪ load(S)) ∩O = JCK(Itest) ∩O.

(4) Let S′ = {sum1, ..., sumk} where ∀i ∈ [1..k] :
sumi = (T i

pre, T
i
post,Γi). From (1) of Definition 5, we

have, (5) blk(S) = blk(S′) ∪ {T k+1
pre }. From (2) of Defi-

nition 5, we have, (6) load(S) = load(S′) ∪ T k+1
post . From

(5) and (6), (III) can be rewritten as, (IV) JC, blk(S′) ∪
{T k+1

pre }K(Itest ∪ load(S′) ∪ T k+1
post ) ∩ O = JCK(Itest) ∩ O.

From (4) and (1) of Definition 5, we have, (7) blk(S′) ∩
{T k+1

pre } = ∅. From (1) , (7) and Lemma 10, we have, (8)
JC, blk(S′) ∪ {T k+1

pre }K(Itest ∪ load(S′) ∪ T k+1
post ) ∩ O =

JC, blk(S′)K(Itest ∪ load(S′)) ∩O. From (8) and Induction
Hypothesis, we have (III), as required.

Lemma 10. If S = {sum1, ..., sumk} is a set of k ap-
plicable summaries and sum = (Tpre, Tpost,Γ) is an ap-
plicable summary such that sum /∈ S, then JC, blk(S) ∪
{Tpre}K(Itest∪ load(S)∪Tpost)∩O = JC, blk(S)K(Itest∪
load(S)) ∩O.

Proof. Let Itest ⊆ I . Let S = {sum1, ..., sumk}. (1)
Assume S is a set of applicable summaries. (2) Assume
sum is applicable. (3) Assume sum /∈ S. (4) Let Tfpost =
fpost(sum). (5) Let Tprune = Tfpost \ Tpost.

From (1), (2), (3) and Lemma 11, we have, (6)
JC, blk(S)K(Itest∪load(S)) = JC, blk(S)∪{Tpre}K(Itest∪
load(S) ∪ Tfpost). From (5) and (6), we have, (7)
JC, blk(S)K(Itest∪load(S)) = JC, blk(S)∪{Tpre}K(Itest∪
load(S) ∪ Tpost ∪ Tprune).

By the definition of sound pruning in Definition 1, we
have, (8) ∀t ∈ Tprune : t /∈ O ∧ (∀g ∈ Gr(C, Itest) :
t ∈ cbody(g) ⇒ chead(g) ⊆ JCK(Tpre))). From (8) we
have, (9) ∀t ∈ Tprune : t /∈ O ∧ ∀g ∈ Gr(C, Itest) : t ∈
cbody(g)⇒ chead(g) ⊆ Tfpost).

From (1), (2), P7, Definition 5 and Definition 6, we
have, (10) load(S) ∪ Tfpost ⊆ JCK(Itest). From (10) and
P8, we have, (11) JCK(Itest) = JCK(Itest ∪ load(S) ∪
Tfpost). From P5, (11) and P1, we have, (12) JC, ∅K(Itest ∪
load(S)∪Tfpost) ⊇ JC, blk(S)∪{Tpre}K(Itest∪ load(S)∪
Tfpost). Since ∅ ⊆ blk(S) ∪ {Tpre} and from (9), P5,
(12), we have, (13) ∀t ∈ Tprune : t /∈ O ∧ (∀g ∈
Gr(C, blk(S) ∪ {Tpre}, Itest ∪ load(S) ∪ Tfpost) : t ∈
cbody(g)⇒ chead(g) ⊆ Tfpost).

From (5) and (13), we have, (14) ∀t ∈ Tprune : t /∈ O ∧
(∀g ∈ Gr(C, blk(S)∪Tpre, Itest∪load(S)∪Tpost∪Tprune) :
t ∈ cbody(g) ⇒ chead(g) ⊆ Tfpost). From (14), we
have, (15) JC, blk(S)∪{Tpre}K(Itest∪ load(S)∪Tfpost) =
JC, blk(S)∪{Tpre}K(Itest∪load(S)∪Tpost)∪Tprune. From
(6) and (15), we have, (16) JC, blk(S)K(Itest ∪ load(S)) =
JC, blk(S) ∪ {Tpre}K(Itest ∪ load(S) ∪ Tpost) ∪ Tprune.

By the definition of sound pruning in Definition 1,
Tprune ∩ O = ∅. Therefore, we have, JC, blk(S)K(Itest ∪



load(S)) ∩ O = JC, blk(S) ∪ {Tpre}K(Itest ∪ load(S) ∪
Tpost) ∩O, as required.

Lemma 11. If S = {sum1, ..., sumk} is a set of k appli-
cable summaries, sum = (Tpre, Tpost,Γ) is an applicable
summary such that sum /∈ S and Tfpost = fpost(sum),
then JC, blk(S) ∪ {Tpre}K(Itest ∪ load(S) ∪ Tfpost) =
JC, blk(S)K(Itest ∪ load(S)).

Proof. Let Itest ⊆ I. Let S = {sum1, ..., sumk}. (1)
Assume S is a set of applicable summaries. (2) Assume
sum is applicable. (3) Assume sum /∈ S. (4) Assume
Tfpost = fpost(sum). We extend the definition of the set of
grounded constraints for instrumented Datalog analyses.

Gr(C,Bblk, I1) = {Jl0K(σ) : -Jl1K(σ), ..., JlnK(σ) |
l0 : - l1, ..., ln ∈ C ∧∧

1≤k≤n(JlkK(σ) ∈ JC,BblkK(I1) ∧ σ ∈ Σ)}

We next define a function FC,Bblk
that defines the tuples

that can be derived in one step from a given set of tu-
ples. Let FC,Bblk

∈ 2T → 2T . FC,Bblk
(T ) = T ∪⋃

c∈C({Jc,BblkK(T )}). Let F i
C,Bblk

be i applications of
FC,Bblk

. That is, F i
C,Bblk

= FC,Bblk
(...(FC,Bblk

(T ))), i
times.

(5) Let T1 = Itest ∪ load(S). (6) Let Bblk = blk(S).
(7) Let B

′

blk = Bblk ∪ {Tpre}. (8) Let t ∈ JC,B
′

blkK(T1 ∪
Tfpost).

We state below that tuple t must be derived in some ith
application of FC,B

′
blk

. For some n ≥ 0, JC,B
′

blkK(T1 ∪
Tfpost) = Fn

C,B
′
blk

(T1 ∪ Tfpost). From (8), ∃i ∈ [1..n] : t ∈
F i
C,B

′
blk

(T1 ∪ Tfpost).
We first prove: (I) JC,Bblk ∪ {Tpre}K(T1 ∪ Tfpost) ⊆

JC,BblkK(T1) by induction on i. Here the Inductive Hy-
pothesis is: if (∃i ∈ [1..n] : t ∈ F i

C,B
′
blk

(T1 ∪ Tfpost)), then
t ∈ JC,BblkK(T1).

Proving the base case for i = 1, (9) t ∈ F 1
C,B

′
blk

(T1 ∪
Tfpost). From (9), we have, (9.1) ∃g ∈ Gr(C,B

′

blk, T1 ∪
Tfpost) : t ∈ chead(g) ∧ cbody(g) ∈ T1 ∪ Tfpost.
From P4, we have, (10) T1 ⊆ JC,BblkK(T1). From (5),
we have, (11) Itest ⊆ T1. From (2) and Definition 4, we
have, (12) Tpre ⊆ JCK(Itest). From (11) and (12), we
have, (13) Tpre ⊆ JCK(T1). From (3) and (6), we have,
(14) Tpre /∈ Bblk. From (13), (14) and the definition in
Figure 5, we have, (15) Tfpost ⊆ JC,BblkK(T1). From (9.1),
(10) and (15), we have, (16) cbody(g) ⊆ JC,BblkK(T1).
We know from (9) that t is not blocked by Bblk ∪ {Tpre}.
So, it is not blocked by Bblk. From this and (16), we have,
t ∈ JC,BblkK(T1), as required.

Proving the inductive case, the inductive hypothesis holds
for i = k. To prove it for i = k + 1. (17) t ∈ F k+1

C,B
′
blk

(T1 ∪

Tfpost). From (17), ∃g ∈ Gr(C,B
′

blk, T1 ∪ Tfpost) : t ∈
chead(g) ∧ cbody(g) ∈ F k

C,B
′
blk

(T1 ∪ Tfpost). By the
inductive hypothesis, cbody(g) ∈ JC,BblkK(T1). From (17),

we know that, g is not blocked by Bblk ∪ {Tpre}. Therefore,
it will not be blocked by Bblk. Therefore, t ∈ JC,BblkK(T1)
and, JC,Bblk ∪ {Tpre}K(T1 ∪ Tfpost) ⊆ JC,BblkK(T1), as
required.

Next, we prove, (II) JC,BblkK(T1) ⊆ JC,Bblk ∪ {Tpre}K
(T1 ∪ Tfpost) by induction on i. Here the Inductive Hy-
pothesis is: if ∃i ∈ [1..n] : t ∈ F i

C,Bblk
(T1)), then t ∈

JC,Bblk ∪ {Tpre}K(T1 ∪ Tfpost).
Proving the base case for i = 1, (18) t ∈ F 1

C,Bblk
(T1).

From (18), we have, (19) ∃g ∈ Gr(C,Bblk, T1) : t ∈
chead(g) ∧ cbody(g) ⊆ T1.

We prove by contradiction that, g ∈ Gr(C,Bblk ∪
{Tpre}, T1 ∪ Tfpost). Let g /∈ Gr(C,Bblk ∪ {Tpre}, T1 ∪
Tfpost). (20) Then g is blocked by Bblk ∪ {Tpre}. There are
two cases:

Case 1: g is blocked by Bblk. That is, ∃b ∈ Bblk :
cbody(g) ⊆ b. From (19) and the definition of an in-
strumented Datalog analysis, we conclude that if g had
been blocked by Bblk, then t could not have belonged to
F 1
C,Bblk

(T1). (21) Therefore, g is not blocked by Bblk. From
(21), we have, (22) t ∈ JC,Bblk ∪ {Tpre}K(T1 ∪ Tfpost).
Therefore, g ∈ Gr(C,Bblk ∪ {Tpre}, T1 ∪ Tfpost), as re-
quired.

Case 2: g is blocked by Tpre. That is, cbody(g) ⊆ Tpre.
From this and definition of Datalog semantics, we have, (23)
t ∈ JCK(Tpre) = Tfpost. From P4 and (23), we have, (24)
t ∈ JC,Bblk ∪{Tpre}K(T1∪Tfpost). Even if g is blocked by
Tpre, (24) holds. Therefore, g ∈ Gr(C,Bblk ∪ {Tpre}, T1 ∪
Tfpost), as required.

Proving the inductive case, inductive hypothesis holds for
i = k. To prove it for i = k + 1, (25) t ∈ F k+1

C,Bblk
(T1).

From (25), we have, (26) ∃g ∈ Gr(C,Bblk, T1) : t ∈
chead(g) ∧ cbody(g) ∈ F k

C,Bblk
(T1). By the Induction

Hypothesis, cbody(g) ⊆ JC,Bblk∪{Tpre}K(T1∪Tfpost). We
prove by contradiction that, g ∈ Gr(C,Bblk ∪ {Tpre}, T1 ∪
Tfpost). Let g /∈ Gr(C,Bblk ∪ {Tpre}, T1 ∪ Tfpost). (27)
Then g is blocked by Bblk ∪ {Tpre}. There are two cases:

Case 1: g is blocked by Bblk. That is, ∃b ∈ Bblk :
cbody(g) ⊆ b. From (26) and the definition of an in-
strumented Datalog analysis, we conclude that if g had
been blocked by Bblk, then t could not have belonged to
F k+1
C,Bblk

(T1). (28) Therefore, g is not blocked by Bblk. From
(28), we have, (29) t ∈ JC,Bblk ∪ {Tpre}K(T1 ∪ Tfpost).
Therefore, g ∈ Gr(C,Bblk ∪ {Tpre}, T1 ∪ Tfpost), as re-
quired.

Case 2: g is blocked by Tpre. That is, (30) cbody(g) ⊆
Tpre. From (30) and definition of Datalog semantics, we
have, (31) t ∈ JCK(Tpre) = Tfpost. From P4 and (31), we
have, (32) t ∈ JC,Bblk ∪ {Tpre}K(T1 ∪ Tfpost). Even if g is
blocked by Tpre, (32) holds. Therefore, g ∈ Gr(C,Bblk ∪
{Tpre}, T1 ∪ Tfpost), as required.

Therefore, as required by (II), JC,BblkK(T1) ⊆ JC,Bblk∪
{Tpre}K(T1 ∪ Tfpost).
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