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Abstract—Software APIs exhibit rich diversity and complexity
which not only renders them a common source of programming
errors but also hinders program analysis tools for checking
them. Such tools either expect a precise API specification, which
requires program analysis expertise, or presume that correct API
usages follow simple idioms that can be automatically mined
from code, which suffers from poor accuracy. We propose a new
approach that allows regular programmers to find API misuses.
Our approach interacts with the user to classify valid and invalid
usages of each target API method. It minimizes user burden by
employing an active learning algorithm that ranks API usages by
their likelihood of being invalid. We implemented our approach
in a tool called ARBITRAR for C/C++ programs, and applied it to
check the uses of 18 API methods in 21 large real-world programs,
including OpenSSL and Linux Kernel. Within just 3 rounds of
user interaction on average per API method, ARBITRAR found
40 new bugs, with patches accepted for 18 of them. Moreover,
ARBITRAR finds all known bugs reported by a state-of-the-art
tool APISAN in a benchmark suite comprising 92 bugs with a
false positive rate of only 51.5% compared to APISAN’s 87.9%.

I. INTRODUCTION

Modern software is composed of APIs. They provide a
modular interface encapsulating rich semantic information,
rendering them challenging to use in practice. According to a
recent study [25], 17% of bugs stem from API misuses. These
misuses can have serious security impact [18], [27], [46].

Various program analysis techniques have been proposed
to check API misuses. However, API misuse errors still
remain widespread [35], [70]. Existing tools for checking API
misuses can be broadly classified into two categories. The first
category comprises tools that check for violations of given
API specifications, such as IMChecker [24], Semmle [19], and
Sys [8]. The effectiveness of these tools depends on the quality
of the specifications. However, writing precise specifications
requires program analysis expertise, making it challenging even
for experienced users. Moreover, these specifications must be
written in Domain Specific Languages (DSLs) that vary with
tools, e.g., Yaml for IMChecker, CodeQL for Semmle, and
LLVM IR and Lisp for Sys, which further burden users.

The second category of tools, such as APISAN [69] and
JADET [63], presume that correct API usages follow simple id-
ioms which can be automatically mined from code. Specifically,
given a large corpus of code using the API, the majority usage
pattern is considered as the valid usage, and all deviations from
it are regarded as misuses. These tools presume the availability
of a large corpus of code using the API and that the majority
of its uses are valid. Unfortunately, these two assumptions
may not always hold, especially for less commonly used but

critical APIs. Furthermore, as shown by recent work [25],
these approaches fail to capture common API usage patterns.
Additionally, state-of-the-art tools such as APISAN result in
many false alarms when there are multiple valid usage patterns
of an API.

In general, automatically detecting valid API usage patterns
is hard [31], especially without sufficient usage examples. On
the other hand, it is unlikely that developers are able and
willing to write precise API specifications. However, given
a program path representing an API usage, developers can
easily determine the validity of the usage. In other words,
distinguishing between a real and a false API misuse requires
far less effort. Consider the snippet of code in Listing 1 with two
calls to the target API png_destroy_write_struct, on Lines
6 and 13. The corresponding program paths (i.e., sequences
of instructions or traces), denoted by P@6 and P@12, consist
of Line 1, 2, 3, 4, 6; and 1, 2, 3, 4, 12 respectively. When
presented with the two traces, developers with knowledge
of png_destroy_write_struct can recognize that P@6 is valid
and P@12 is invalid. Can we use this feedback to create
effective API misuse checkers?

There are four challenges to realize this objective:

1) Efficient trace generation: Given a target API within a
codebase, we need a mechanism to efficiently generate all
paths or traces to all call-sites of the API. Furthermore, we
need a way to reduce each trace, as not all instructions are
relevant to an invocation of the API (e.g., those denoted by
ellipses at Line 10 in Listing 1).

2) Generic trace representation: Unlike other approaches such
as APISAN, which only works for APIs with simple usage
patterns [25], we seek a generic method to represent a trace
that is capable of handling all classes of APIs with varying
complexities and with multiple valid usages.

3) Real-time user interaction: Irrespective of the size and
complexity of the traces or the API’s semantics, we need
to learn from user feedback quickly and be responsive, i.e.,
respond to user feedback in a short time span.

4) Accurate alarm identification: We must accurately identify
API usages that are most likely to be buggy so that users can
confirm an API misuse within a few rounds of interaction.
The longer this process draws out, the less likely users are
to stay engaged, resulting in a rather low utility of this
approach in practice.

In this paper, we present ARBITRAR, an interactive tool
for finding API misuse bugs based on Maximum Discrepancy



Kernel Density Estimation (MD-KDE), a novel active learning
methodology. Unlike existing approaches, ARBITRAR requires
neither the API’s specification nor a large code corpus with
majority valid uses. Given a target API method to be checked
within a codebase, ARBITRAR uses under-constrained symbolic
execution [51] to generate inter-procedural program traces
for all call-sites to the API method. We minimize traces by
backward slicing from the API call-site. These optimized traces
are converted into a set of feature vectors. Finally, we use MD-
KDE on such vectorized traces to detect those representing the
invalid usages of the API. Specifically, in each round of MD-
KDE, a trace of the API usage with the highest probability of
being invalid is presented to the user.

We evaluate ARBITRAR by applying it to check the uses
of 18 target API methods in 21 C/C++ programs, including
security-critical codebases like OpenSSL and Linux Kernel.
ARBITRAR discovered 40 new bugs, out of which 18 were
reported, confirmed, and patched. In addition, we demonstrate
that ARBITRAR is highly efficient, taking only 3 rounds of
user interaction to discover an API misuse on average. We
also conduct a head-to-head comparison between ARBITRAR
and APISAN, a state-of-the-art API misuse detector. On a
benchmark suite comprising 92 bugs, ARBITRAR finds all
known bugs reported by APISAN with a significantly lower
false positive rate of 51.5% than APISAN’s 87.9%.

We summarize the contributions of our work:

• We present ARBITRAR, a user-guided API misuse detection
tool that is precise (i.e., yields low false positive rates),
efficient (i.e., requires few rounds of user interaction), and
scalable (i.e., finds bugs in large-scale codebases).

• We propose MD-KDE, a novel active learning algorithm
based on kernel density estimation. In particular, MD-KDE
picks an unlabeled trace of an API usage that achieves the
maximum discrepancy in estimated probability from the
correct usage traces of the API.

• We perform an extensive evaluation of ARBITRAR. When
applied to check uses of 18 API methods within 21 C/C++
programs, ARBITRAR found 40 new bugs in 3 rounds of
user interaction on average per API method.

• The source code of ARBITRAR is made publicly available
at https://github.com/petablox/arbitrar.

II. MOTIVATION

In this section, we motivate our approach with an erroneous
usage of png_destroy_write_struct found by ARBITRAR.
This API takes two arguments, each as a pointer to a pointer,
first to a png structure (png_ptr_ptr) and second to an info
structure (info_ptr_ptr) as shown below:
void png_destroy_write_struct(
png_structpp png_ptr_ptr, png_infopp info_ptr_ptr);

This function is used to free the memory associated with
the png structure (png_ptr_ptr), which holds information
for writing a PNG file, and the associated info structure
(info_ptr_ptr). The info_ptr_ptr can be NULL in which case
only the png structure will be freed.

1 png_ptr = png_create_write_struct(...);
2 if (png_ptr == NULL) return(2);
3 info_ptr = png_create_info_struct(png_ptr);
4 if (info_ptr == NULL) {
5 // Valid usage
6 Ëpng_destroy_write_struct(&png_ptr, NULL);
7 return(2);
8 }
9 ...

10 // Invalid usage resulting in memory leak.
11 // The second argument should be &info_ptr.
12 
png_destroy_write_struct(&png_ptr, (png_infopp)NULL);

Listing 1: Example showing valid (Ë) and invalid usages (
) of
png_destroy_write_struct as found by ARBITRAR.

Consider the code in Listing 1 that creates png_ptr at
Line 1 and the associated info_ptr at Line 3. If the
creation of info_ptr fails (i.e., info_ptr == NULL evalu-
ates to true at Line 4), the png_ptr is freed by call-
ing png_destroy_write_struct at Line 6, where NULL is
passed as the argument for info_ptr_ptr.

The Bug: If the creation of both png_ptr and info_ptr

succeeds, i.e., both png_ptr == NULL at Line 2 and
info_ptr == NULL at Line 4 evaluate to false, then it is
expected that both pointers will be released in the end.
However, at Line 12, the function png_destroy_write_struct

is incorrectly called with &png_ptr and NULL but supposed to
be called with &png_ptr and &info_ptr. This causes leakage of
the memory allocated to the info_ptr and could have security
implications such as Denial-of-Service [15].

We examine what it takes for the two state-of-the-art
tools — Semmle (adopting a manual approach based on API
specifications) and APISAN (adopting an automated approach
based on anomaly detection) — to find the bug in Listing 1.

A. Semmle

Semmle finds bugs using manually written semantic patterns.
To isolate this bug, we need to write a pattern that at least
captures the following:
a) The presence of png_destroy_write_struct(&X, NULL),

denoted by C1.
b) The existence of a non-NULL info_ptr, the second argument

of C1, meaning, there exists a call Y = png_create_info_

struct(X), denoted by C2, and Y == NULL is false.
c) The existence of a path from C2 to C1, specifically, Y, the

return value of C2 is passed as the second argument to C1.
It took a graduate student adept at logic programming and

experienced in analyzing security bugs two hours to write a
pattern for this task in CodeQL. The query itself consists of
40 lines and involves Semmle library calls to data-flow and
control-flow analysis. The majority of time was spent in the
edit-run-debug loop where the user was constantly suppressing
false positives by adding new predicates. In the end, this checker
is able to isolate the bug among 18 usages across 4 projects,
although it is worth noting that it still fails to capture the full
specification of the API1. When misuses of an API manifest

1The source code of this checker is provided in Appendix 5.

https://github.com/petablox/arbitrar


LLVM
Bitcode

Symbolic
Traces

OR

Trace
Generation

(Section III.A)

API Method
Name

Trace
Encoding

(Section III.B)

Active
Learning

(Section III.C)

Feedback

Program Trace
with API usage

Vectorized
Traces

	kzalloc	
kzalloc

Fig. 1: Overview of ARBITRAR.

in multiple ways, the task becomes even more challenging,
requiring one to either craft a small bug-isolation checker for
each individual bug pattern or write a larger and comprehensive
specification checker.

This example highlights the difficulty of writing precise API
specifications and illustrates why developers loathe writing
them. In fact, GitHub awards a bounty for each valid specifi-
cation of a security vulnerability written in CodeQL [20].

B. APISAN

APISAN adopts an automated approach to finding API
misuse bugs based on majority usage patterns. At a technical
level, APISAN employs individual checkers, and each checker
is responsible for a specific type of usage pattern, such as return
value check, argument relation, causally related APIs, and pre-
or post-conditions. To find the bug in Listing 1, APISAN must
combine the return value with the argument checker to infer
the two correct usage patterns of png_destroy_write_struct.
Since APISAN does not consider the composition of different
types of usage patterns, it will be unable to differentiate our bad
use-case from the good one, unless it finds another unrelated sig-
nal. In fact, with its condition checker, APISAN flags our good
use case as the only alarm of png_destroy_write_struct,
while other checkers do not report any.

As we show in Section III-C, ARBITRAR finds the bug
in Listing 1 within just 4 rounds of user interaction.

III. FRAMEWORK

In this section, we present our ARBITRAR framework, whose
overall workflow is depicted in Figure 1. Given a set of
C/C++ program(s) and a target API method to check, we
first compile the programs to LLVM bitcode, and then generate
symbolic traces of all the uses of the API (Section III-A).
These symbolic traces are then encoded into feature vectors that
capture information relevant to classifying valid and invalid uses
of the API (Section III-B). Finally, using our active learning
algorithm, we interact with the user by presenting a potentially
buggy trace and learning from the feedback (Section III-C) to
identify anomalies.

A. Trace Generation

The goal of trace generation is to generate all program paths
with calls to an API method in order to precisely capture
different usage scenarios of the API method. However, it is

infeasible to enumerate all program paths on large real-world
software such as the Linux Kernel because of path explosion
and engineering limitations. We overcome this problem by
performing under-constrained symbolic execution [51] on the
contexts around target API calls.

1) Finding Execution Contexts: We use execution context
(s) to define the entry point and scope for under-constrained
symbolic execution. This is controlled by a parameter called
context-depth (d) which represents the maximum distance from
a call site k of the target API method. Formally, we define
execution context (s) to be a pair s = (g, ϕ), where g is the
entry point function and ϕ = {g1, ..., gn} is the scope— a set
of functions that are allowed to be explored. Given (i) a call site
k of the target API method in a function f ; (ii) call graph G of
the program; and (iii) context-depth d, we compute the set of
execution contexts (Sk) by following the steps in Algorithm 1.
We first perform reverse breadth first search (ReverseBFS)
on G from f to find all the functions (F ) within distance d
(Line 3). Then for each function g in F , we find all the
reachable functions (ϕg) in G within depth 2 ∗ d using BFS

(Line 5). Note that on Line 6, we remove the target API method
from each computed scope because we only wish to check how
it is used, not how it is implemented. The set of all (g, ϕg)
pairs is considered as the possible execution contexts for k.

Algorithm 1: Finding execution contexts.
Input: CallSite k, CallGraph G, ContextDepth d

1 Sk ← ∅
2 f ← Function(k)
3 F ← ReverseBFS(G, f, d)
4 for g ∈ F do
5 ϕg ← BFS(G, g, 2 ∗ d)
6 Remove target of k from ϕg
7 Sk ← Sk ∪ { (g, ϕg) }
8 return Sk

2) Under-Constrained Symbolic Execution: Given an exe-
cution context (g, ϕ) for a call site k, we symbolically execute
from the entry-point function, g, by using fresh symbols as the
arguments. At function calls, we step into the corresponding
function h if h ∈ ϕ; otherwise we ignore the call instruction
and create a new symbol as the return value of the call.
a) Memory model: We use a simple hash map based memory

model where the address (symbolic or concrete) is used as a
key into the map. We initialize each byte of memory using a
fresh and unconstrained symbolic value. Our memory model
follows that in recent works [14], [52] which have shown its
effectiveness at finding bugs.
b) Handling loops and recursion: We unroll each loop once

and do not step into recursive function calls to avoid path
explosion. This is based on the intuition that a single run of
the loop body can capture an API’s usage. Nonetheless, we
record loop entry (BEG LOOP) and exit (END LOOP) events as
they can be helpful to identify a bug or suppress a false alarm.



TABLE I: Interaction Example. We show step-by-step how our active learning model guides the user to find the two invalid
usages. In each iteration, the user inspects the trace, and provides binary feedback. The 2D TSNE Plot row shows the
distribution of trace encodings projected onto a 2D plane. We represent the positive, negative, unlabeled, and selected datapoints
using +, é, ×, and H respectively. The Trace Acquisition row provides the intuition for why the trace marked in H is picked.
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The result of under-constrained symbolic execution on each
execution context is a set of program paths or symbolic traces,
i.e., {ρ1, ..., ρn}. Each symbolic trace (ρ) represents a sequence
of program events operating on symbolic or concrete values
and has the format as shown in Figure 2. Note that, we ignore
infeasible paths (i.e., path constraint is unsatisfiable) and all
paths that do not contain our call site k. Every trace contains
the event representing target call site k and indicate it by tk.
Hereafter, we will use k to indicate the index of the program
event representing the target API call.

Figure 3 shows an example code snippet and two traces that
are generated to capture usages of an API method kzalloc.

B. Trace Encoding

The goal of trace encoding is to convert the set of program
traces into fixed-dimensional feature vectors that will be used
later in our active learning algorithm. Based on an analysis
of various API misuse bugs [25], we define a list of features
used to encode each trace as shown in Table II. These features
are extensive and cover most of the behaviors related to API
usage. As such, users are not required to define any features.
Nonetheless, ARBITRAR provides a uniform and extensible
interface to define features using Datalog rules over relational
representations of program traces. Datalog [2], a declarative
logic programming language, is popularly used to specify a
variety of program analyses (e.g., [55], [64]). Many variants
exist in the literature including PQL [43], CodeQL [4], and
LogiQL [23].

(symbolic variable) α
(function name) f

(integer) c
(boolean) b ::= true | false

(arithmetic operation) ⊕ ::= + | − | × | ÷ | %
(symbol type) τ ::= arg | local | global | symbol

(symbolic expression) e ::= c | ατ
(relational operation) p ::= = | 6= | ≥ | > | ≤ | <
(i-th program event) ti ::= CALL (i, er, f, ēa)

| ASSUME (i, e1, p, e2, b)
| STORE (i, el, er)
| LOAD (i, er, el)
| GEP (i, er, el)
| BINARY (i, er,⊕, e1, e2)
| RET (i, e)
| BEG LOOP(i)
| END LOOP(i)

(target event) tk ≡ CALL(k, êr, f̂ , ¯̂ea)

(symbolic trace) ρ ::= [t1, . . . , tk, . . . , tn]

Fig. 2: Symbolic trace format.

We illustrate feature definitions in ARBITRAR using the
example from Figure 3 which contains an API misuse bug that
is exhibited along Trace 1: the return value of the target API
kzalloc is dereferenced after it is assumed to be zero. This
bug motivates the need for two boolean features: one capturing
whether the return value of the target API is assumed to be zero
(called ret.assumed zero), and another capturing whether it
is dereferenced (called ret.derefed).



Source Trace 1 (ρ1) Trace 2 (ρ2)

void *make_copy(void *b, size_t s){
(ρ1, ρ2) void *p;
(ρ1, ρ2) p = kzalloc(s, GFP_KERNEL);
(ρ1, ρ2) if(!p){

(ρ1) 
 *p = 0;
(ρ1) goto err;

}
(ρ2) memcpy(p, b, s);

(ρ1, ρ2) err: return p;
}

CALL(1, αsymbol, kzalloc, [γarg, GFP KERNEL]).
ASSUME(2, αsymbol,=, 0, true).
STORE(3, αsymbol, 0).
RET(4, αsymbol).

Feature vector:
ret.checked = true


 ret.assumed zero = true
ret.assumed not zero = false

ret.used in call = false

 ret.derefed = true
ret.returned = true

CALL(1, αsymbol, kzalloc, [γarg, GFP KERNEL]).
ASSUME(2, αsymbol,=, 0, false).
CALL(3, , memset, [αsymbol, βarg, γarg]).
RET(4, αsymbol).

Feature vector:
ret.checked = true

ret.assumed is zero = false
ret.assumed not zero = true

ret.used in call = true
ret.derefed = false

ret.returned = true

Fig. 3: Example traces and features generated to check usages of kzalloc. In both traces, p is checked and returned: Trace 1
assumes p to be zero whereas Trace 2 assumes p to be non-zero. Furthermore, p is dereferenced in Trace 1, whereas it is used
as an argument to memset in Trace 2. This information is captured in the return value features of their respective feature vectors.
Note that the two arguments void *b and size_t s are assigned symbolic variables βarg and γarg in our symbolic traces.

We can define the feature ret.assumed zero using the
following three Datalog rules:

assumed zero(i, e) :− ASSUME(i, e,=, 0, true ). (R1)
assumed zero(i, e) :− ASSUME(i, e, 6=, 0, false). (R2)
ret.assumed zero :− assumed zero( , êr). (R3)

A Datalog rule is an “if-then” rule read from right to left. Rules
(R1) and (R2) compute the binary relation assumed zero as
the set of all tuples (i, e) such that the i-th event in the given
trace assumes symbolic expression e to be zero. Likewise, Rule
(R3) computes the nullary relation (i.e., a boolean feature)
which is true if and only if there exists a tuple in relation
assumed zero wherein the symbolic expression is the return
value of the target API call in the trace, denoted êr.

The feature ret.derefed is defined similarly. The complete
set of features used in ARBITRAR is presented in Table II.
Commonly used relations, such as assumed zero defined by
Rules (R1) and (R2) above, are presented in Figure 4. The
features deal with different aspects of an API: return value,
arguments, causality relations, and control flow. We briefly
describe each of these sets of features:

1) Return value. Return value features are related to how the
return value is used. We generate this set of features if the
target function has a non-void return type.

2) Arguments. Argument features correspond to the symbol
type and pre- and post-condition of the arguments. If the
target API method has m arguments, we generate m sets
of argument features, one per argument.

3) Causality relations. Causal relations arise when the target
API method belongs to a “group” of functions that should
be invoked together. Examples include lock/unlock and
fopen/fclose. Given a target API method g, we infer
such functions as those that are invoked most frequently,
across the collected traces. Specifically, we find the top-K
occurring functions before and after the target API call, and
construct two causality dictionaries D[1,k) and D(k,n]. The
value of K is configurable and is set to 5 as default. We
then generate one set of causality features for each function
g in Dr where the scope r is either [1, k) or (k, n].

4) Control flow. This set of features is not specific to any API.
We include these loop-related features because they are
indicative of the trace structure, and can serve as valuable
signals to isolate the bug or suppress false alarms.

ARBITRAR’s features are extensible and could conceivably
even be automatically generated from examples of valid and
invalid API usages, using program synthesis techniques [50],
[34]. Datalog, ARBITRAR’s language for defining features, is
expressive enough and even supports recursion. For instance,
the binary relation belongs to ptr is recursively defined
(in Figure 4), and enables us to define boolean feature
ret.indirectly returned (in Table II) which captures
whether the return value of the target API call is returned from
the given trace’s execution context indirectly via an arbitrary
chain of element pointers.

We encode each symbolic trace into a boolean vector of
features. For instance, Figure 3 shows the vectors of return
value features for the two traces in the example. Finally, we
apply binary encoding to the boolean vectors to produce fixed-
dimensional binary vectors.

C. Active Learning and User Interaction

In this section, we propose a novel active learning solution
for the API misuse problem. We first formulate the problem as
an interactive anomaly detection problem in machine learning,
where the goal is to identify anomalies by interacting with
a human expert. Then we present our human-in-the-loop
algorithm, MD-KDE, to learn from expert feedback and
accurately identify a suspicious data point that will be evaluated
by the human expert in each round. Finally, we show that MD-
KDE is highly efficient as it can be updated in linear time per
round.

1) The Interactive Anomaly Detection (IAD) Problem:
Traditional Anomaly Detection (AD) [29], [10] methods operate
in a batch mode, i.e., a machine learning model trained on
a dataset with zero or only a few labeled data points is
responsible for predicting a set of anomaly candidates. This
setting is particularly challenging due to the sparsity of positive
signals—confirmed misuses of the target API in our case—and
therefore these methods usually rely on additional distributional



TABLE II: Features Used in ARBITRAR and Their Definitions in the Datalog Language.

Feature Rule Description
Return value features

ret.checked checked( , êr) Return value is checked
ret.assumed zero assumed zero( , êr) Return value is assumed to be zero
ret.assumed not zero assumed not zero( , êr) Return value is assumed to be non-zero
ret.stored STORE( , , êr) Return value is stored to an existing location
ret.derefed derefed( , êr) Return value is dereferenced
ret.returned RET(n, êr) Return value is returned to the outer context
ret.indirectly returned STORE( , êr, e1), belongs to ptr(e1, e2), RET(n, e2) Return value is stored into another pointer and returned
ret.used in binary used in binary( , êr) Return value has been used in a binary operation
ret.used in call CALL( , , , ēa), êr ∈ ēa Return value has been used as an argument of a call

Argument features
arg.is constantx

¯̂ea[x] = c x-th argument is a constant
arg.is argx

¯̂ea[x] = αarg x-th argument is a trace argument
arg.is localx

¯̂ea[x] = αlocal x-th argument is a local variable
arg.is globalx

¯̂ea[x] = αglobal x-th argument is a global variable
arg.pre.checkedx i < k, checked(i, ¯̂ea[x]) x-th argument is checked before target call
arg.pre.assumed zerox i < k, assumed zero(i, ¯̂ea[x]) x-th argument is assumed to be zero before target call
arg.pre.assumed not zerox i < k, assumed not zero(i, ¯̂ea[x]) x-th argument is assumed to be non-zero before target call
arg.pre.used in callx i < k, CALL(i, , , ēa), ¯̂ea[x] ∈ ēa x-th argument is used in a call before target call
arg.post.checkedx i > k, checked(i, ¯̂ea[x]) x-th argument is checked after target call
arg.post.derefedx i > k, derefed(i, ¯̂ea[x]) x-th argument is dereferenced after target call
arg.post.returnedx i > k, RET(n, ¯̂ea[x]) x-th argument is returned to outer context
arg.post.used in callx i > k, CALL(i, , , ēa), ¯̂ea[x] ∈ ēa x-th argument is used in a call after target call

Causality relation features
invoked(g,r) i ∈ r, CALL(i, , g, ) Function g is called during scope r
invoked multi(g,r) i ∈ r, j ∈ r, i 6= j, CALL(i, , g, ), CALL(j, , g, ) Function g is invoked multiple times during scope r
share arg with target(g,r) i ∈ r, CALL(i, , g, ēa), ēa ∩ ¯̂ea 6= ∅ Function g is called with at least one common argument as target call
target uses g ret(g,r) i ∈ r, CALL(i, er, g, ), er ∈ ¯̂ea The result of a call to g is used as an argument in the target call
g uses target ret(g,r) i ∈ r, CALL(i, , g, ēa), êr ∈ ēa The result of target call is used as an argument in a call to g
g ret checked(g,r) i ∈ r, CALL(i, er, g, ), checked(i, er) The result of a call to g is checked
g ret assumed zero(g,r) i ∈ r, CALL(i, er, g, ), assumed zero(i, er) The result of a call to g is assumed to be zero
g ret assumed not zero(g,r) i ∈ r, CALL(i, er, g, ), assumed not zero(i, er) The result of a call to g is assumed to be non-zero

Control flow features
cf.has loop BEG LOOP( ) The trace contains a loop

cf.target inside loop
num beg loop before k(a),
num end loop before k(b), a− b > 0

The target call is inside a loop

checked(i, e) :− ASSUME(i, e1, , e2, ), e1 = e or e2 = e.
assumed zero(i, e) :− ASSUME(i, e,=, 0, true) or

ASSUME(i, e, 6=, 0, false).
assumed not zero(i, e) :− ASSUME(i, e,=, 0, false) or

ASSUME(i, e, 6=, 0, true) or
ASSUME(i, e, >, 0, true) or
ASSUME(i, e, <, 0, true).

derefed(i, e) :− STORE(i, e, ) or LOAD(i, , e) or GEP(i, , e).
used in binary(i, e) :− BINARY(i, , , e1, e2), e1 = e or e2 = e.

belongs to ptr(e1, e2) :− e1 = e2.
belongs to ptr(e1, e2) :− GEP(i, e1, e), belongs to ptr(e, e2).

num beg loop in range(i, j, 0) :− i > j.
num beg loop in range(i, j, c) :− i ≤ j, ENTER LOOP(i), c′ = c+ 1,

num beg loop in range(i+ 1, j, c′).
num beg loop in range(i, j, c) :− i ≤ j,

num beg loop in range(i+ 1, j).
num end loop in range(i, j, 0) :− i > j.
num end loop in range(i, j, c) :− i ≤ j, EXIT LOOP(i), c′ = c+ 1,

num end loop in range(i+ 1, j, c′).
num end loop in range(i, j, c) :− i ≤ j,

num end loop in range(i+ 1, j).
num beg loop before k(c) :− num beg loop in range(0, k − 1, c).
num end loop before k(c) :− num end loop in range(0, k − 1, c).

Fig. 4: Datalog rules defining relations commonly used in
defining features (Table II). The ‘:−’ operator is implication
(from right to left), ‘ ’ is projection, and comma is conjunction.

assumptions on anomalies and/or normal data points, such
as the “one-class” assumption [53], [57]. However, such an
assumption is unrealistic in our case, as it amounts to assuming
a single valid usage pattern of every target API. To address

this issue, we provide more signals to the machine learning
algorithm by allowing it to communicate with a human expert in
an iterative fashion. We define the interactive anomaly detection
problem below.

Definition 1 (Interactive Anomaly Detection): Given a dataset
X = {x1, x2, · · · , xn} of n data points, and an expert oracle
f : X 7→ {0, 1} that maps a data point from X to 0 (normal) or
1 (anomaly), the learner can query f using one data point x(i)

in each round, for a total number of T rounds. The objective
of the Interactive Anomaly Detection (IAD) problem is to
maximize the total number of identified anomalies, i.e.,

max
{x(i)}Ti=1, s.t. x(i) 6=x(j) ∀i6=j

T∑
i=1

I[f(x(i)) = 1], (1)

where I[·] is the indicator function.
In the setting of API misuse detection, the data points are

the trace encodings generated by the method described in
Section III-B. The goal is to identify as many anomalous
traces as possible by querying a human expert for up to T
rounds. In each round, the learner selects one unlabeled data
point from the dataset and presents it to the human expert, who
provides binary (anomaly or not) feedback to the algorithm.
The overall performance is measured by the percentage of true
anomalies among the T queries, i.e., the overall precision.

Remark. Our problem formulation is different from another
existing formulation of AD under the interactive mode [22],



[1], [21]. Instead of optimizing the precision within the T
queries, their setting focuses on obtaining a better classifier,
which is measured by the final prediction AUC scores on the
entire dataset. This objective is a reasonable choice for some
AD applications where false positives are tolerable. However
in the setting of API misuse detection, false positives are not
tolerable and every anomalous case needs to be confirmed by
a developer. Therefore these extra queries should be counted
as part of the querying budget in our IAD formulation.

2) A Kernel Density Estimation based Active Learning
Algorithm: We present a novel kernel density estimation (KDE)
based active learning algorithm for the IAD problem. The
proposed algorithm follows the active learning framework in
Algorithm 2. In each round, given the current labeled dataset,
the learner first computes the ranking score for each unlabeled
data point using the acquisition function, and then asks the
expert to evaluate the unlabeled data point with the maximum
score. Intuitively, such a data point corresponds to the trace
that the algorithm believes is the most likely to be a misuse of
the target API, based on the labels provided by the developer
thus far.

Algorithm 2: The active learning algorithm framework.
Input: Data points X = {x1, x2, · · · , xn}, expert

f : X 7→ Y , acquisition function g.
1 Initialize unlabeled data points U := X , labeled data

points L := ∅
2 for t← 1 to T do
3 Select x(i) ← argmaxx∈U g(x,L)
4 Evaluate y(i) ← f(x(i))
5 Update U ← U \ x(i)

6 Update L ← L ∪ {(x(i), y(i))}
7 return L

The acquisition function g is a scoring function for every
unlabeled data point in U using the labeled dataset L. Our
acquisition function is designed to choose the unlabeled data
point which achieves the maximum discrepancy between the
kernel density estimator of the positive (anomalous) and
negative (normal) data. More formally, with the labeled dataset
L represented using the positive and negative data points P
and N , the acquisition function is defined as follows,

g(x,L = (P,N )) = Eu∼P [K(u, x)]− Ev∼N [K(v, x)], (2)

where
K(u, v) =

1

(h
√
2π)d

e−
‖u−v‖2

2h

is a standard Gaussian kernel with bandwidth h. Here d is
the dimension of the feature space, i.e., u, v ∈ Rd. h is
a scalar hyperparameter selected by the leave-one-out cross
validation [59]. The expectation in Eq (2) can be estimated
using labeled data points in the following form,

g(x, (P,N )) =
1

|P|
∑
u∈P

K(u, x)− 1

|N |
∑
v∈N

K(v, x), (3)

which is used to derive an efficient update rule in Section III-C3.

We call the active learning algorithm using the above
acquisition function as the Maximum Discrepancy Kernel
Density Estimation (MD-KDE) algorithm. Intuitively, MD-
KDE behaves as follows, in an explore-then-exploit fashion:

1) At the beginning, when there is no positive data point
detected, the algorithm simply chooses one unlabeled data
point which is the farthest away from existing labeled
(negative) data points. This can be viewed as the exploration
stage, or model variance minimization [13] in classical
active learning. This strategy of diversifying the samples
accelerates the process of finding the first anomalous case.

2) When there are both positive and negative data points, the
algorithm favors a data point close to existing positive points
but far from existing negative points. In the presence of
multiple data points that satisfy these criteria, we pick a
random point from these data points. This can be viewed
as the exploitation stage with a KDE classifier. Since
anomalous cases of the same kind tend to be close to
each other in the feature space, we find that many similar
anomalous cases can be detected using this strategy.

Figure 5 illustrates an iteration in MD-KDE, including the
selection of the querying sample, and two possible evaluation
outcomes. We show the changes in the scoring landscape
(computed by the acquisition function in Eq (2)) after a
querying sample is evaluated. If the queried point is positive, it
will reinforce the current estimation of the acquisition scores.
Otherwise, the landscape will change abruptly to reflect the
new evidence.

MD-KDE is a novel algorithm designed for the IAD problem
setting where existing active learning-based anomaly detection
algorithms [22], [21] fail to perform well. These methods
optimize an one-class SVM [53], [57] like objective to classify
data points into positive and negative classes. In each round
of active learning, they query a data point on the decision
boundary to improve the classification model but do not aim
for discovering anomalous cases during the interaction with
an expert. We highlight another key difference next.

3) Efficient Update for MD-KDE: A major advantage of
MD-KDE over existing active learning-based anomaly detection
methods is its efficient update between rounds of queries.
Instead of training a new machine learning model using the
updated labeled dataset per round, which usually takes an hour
to several days depending on the size of the dataset and the
choice of the model, MD-KDE enjoys exact round-to-round
update using linear time proportional to the number of current
unlabeled samples. Even in large databases with more than
50,000 traces, the update takes only a few seconds. This allows
an expert to stay engaged with our system throughout an
interaction session.

Suppose we already computed the acquisition value for an



Fig. 5: The change of the (acquisition function) scoring landscape in one round of MD-KDE. We represent the positive, negative,
and the selected unlabeled data point(s) using yellow + signs, magenta × signs, and a green dot, respectively. Left: an unlabeled
data point is selected; Middle: the updated landscape when the point is evaluated to be positive; Right: the updated landscape
when the point is evaluated to be negative.

unlabeled x at time t using Eq (3):

g(x, (Pt,Nt)) =
1

|Pt|
∑
u∈Pt

K(u, x)− 1

|Nt|
∑
v∈Nt

K(v, x)

=
1

|Pt|
SPt

(x)− 1

|Nt|
SNt

(x),

where we use short-hand notations SPt
(x) and SNt

(x) to
denote the sums. Then at the next iteration, we can compute
g(x, (Pt+1,Nt+1)) in O(1) using,

g(x, (Pt+1,Nt+1)) ={
1

|Pt|+1 (SPt(x) +K(x(i), x))− 1
|Nt|SNt(x), if x(i) ∈ Pt+1

1
|Pt|SPt

(x)− 1
|Nt|+1 (SNt

(x) +K(x(i), x)), if x(i) ∈ Nt+1

Notice that after each round, a data point is added into either
P or N . For each unlabeled x, the mean of K(u, x) for u ∈ P
(or the mean of K(v, x) for v ∈ N ) can be updated in O(1).
Therefore the total update time is O(|U|), where U is the set of
the current unlabeled data points. The update operation could
be processed in batch to further optimize the constant factor
in the time complexity.

IV. IMPLEMENTATION

We implemented ARBITRAR in 3.5K and 2K Lines of Code
(LoC) of Rust and Python respectively. The trace generation
(under-constrained symbolic execution) and trace encoder
are implemented using Rust with 3.5K LoC. Our symbolic
execution is multi-threaded in order to achieve the performance
need for executing on large and complex code bases. Our
active learning framework, user interaction system and analysis
database system are implemented in Python.

A. Analysis setup

In our experience, making a program analysis ready, i.e.,
fetching the sources, configuring and converting it to LLVM
bitcode—which is often assumed to be easy—hinders the usage
of many tools by its end-users.

Inspired by the way in which package managers handle open-
source packages, we designed our system to be completely
automated. As a result, any program available as a Debian

package(s) can be checked by just specifying the package
name. Given the package name(s) for the program, ARBITRAR
automatically fetches and builds the program into LLVM
bitcode using Apt-tools [26].
% fetch and build the debian packages.
$ arbitrar collect --deb libpng --deb pngtools
% ---or---
% fetch all the packages in the provided json file.
$ arbitrar collect packages.json

The trace generation and feature encoding for an API method,
say binder_inner_proc_lock, of the built programs is done
by using the following command:
$ arbitrar analyze -i binder_inner_proc_lock

Finally, active learning through user interaction can be
commenced by using the following command:
$ arbitrar learn active binder_inner_proc_lock

B. Active learning

Our active learning technique interacts with the user by
presenting a trace at the source-code level, and the user
provides feedback by entering Y or N, which means whether
the presented trace is buggy or not. Figure 6 shows an
example of user interaction wherein the trace is presented by
highlighting the corresponding source lines. As the trace is path
sensitive, it is easy for the user to reason about the sequence
of corresponding program states and provide feedback.

V. EVALUATION

In this section, we evaluate ARBITRAR in terms of the
following aspects:
• Effectiveness: How effective is ARBITRAR compared to

APISAN, a state-of-the-art API misuse detection tool?
• Impact: Can ARBITRAR find previously unknown API

misuse bugs?
• Scalability: Does ARBITRAR scale to large real-world

codebases and still quickly learn from and respond to user
feedback?

• Extensibility: How extensible is ARBITRAR to other usage
scenarios?
Our experiments are conducted on a 40-core machine with

768 GB RAM. We set the context depth to be zero for all our



Fig. 6: The user interface of ARBITRAR showing a path
sensitive trace and requesting for user feedback.

experiments, i.e., d = 0. Symbolic trace generation and feature
encoding for a heavily-used API like kzalloc in Linux Kernel
takes 35 minutes and generates a database of size 2GB.

A. Dataset

We use two API misuse bug benchmarks and 21 real-world
programs including Linux Kernel as our dataset.
a) Bug-benchmark: Our bug benchmark contains 92 API

misuse bugs, including 45 bugs found by APISAN in Linux
Kernel (denoted Bap) and 47 bugs in APIMU4C [25], a
recently proposed API misuse bug dataset (denoted Bmu).
We excluded bugs related to APIs which have less than five
occurrences (or call-sites) in the dataset to avoid unnecessarily
penalize APISAN as it is known to require more API call-sites
to be effective [25].
b) Real-world programs: We chose libpng (10 Debian

packages), libbluetooth (7 Debian packages), OpenSSL
(3 Debian packages) and Linux Kernel 5.7. These programs
have APIs with varying complexity and constitute a suitable
dataset to evaluate the generality of ARBITRAR.

B. Effectiveness

A traditional automated bug detection technique is expected
to give warnings or bug reports with high precision (i.e.,
few false positives and false negatives). However, ARBITRAR
does not have any prior knowledge about a bug and actively
learns from the user feedback. Consequently, there will be
non-buggy traces (or false positives) presented to the user so
that ARBITRAR can learn API misuses. However, an effective
technique will learn quickly from user feedback and should
present fewer non-buggy traces.
a) False positives and negatives: Based on this observation,

we define false positives of ARBITRAR, denoted by fpar, as
the number of non-buggy traces presented to the user. We also
define feedback tolerance (Arf ), as the upper bound on the
number of non-buggy traces or false positives tolerable for
the user. This enables us to measure false negatives (fnar).
For instance, if Arf = 2, then the user can tolerate only two
non-buggy traces. Consequently, if the trace containing the

1 // bug curl3
2 Missing return value check
3 
fp = BIO_new(BIO_s_file());
4 // if(fp == NULL) {
5 // failf(data,
6 // "BIO_new return NULL, " OSSL_PACKAGE
7 // " error %s",
8 // ossl_strerror(ERR_get_error(), error_buffer,
9 // sizeof(error_buffer)) );

10 // return 0;
11 //}

Listing 2: Bug found by ARBITRAR and missed by APISAN
in Curl of Bmu bug-benchmark.

bug is not presented within the first two interactions then we
consider the bug to be not found by ARBITRAR, and, therefore
a false negative. If Arf =∞, then the user can check all traces
and there will be no false negatives. Similarly, if Arf = 0,
none of the bugs will be found (i.e., false negatives = 100%)
as ARBITRAR gets no feedback and may fail to learn. Note that
Arf is not the total number of traces that should be analyzed
by the user but rather the number of false positive traces the
user is willing to tolerate. Specifically, if the user analyzed n
traces with Arf = k, this means there are at least n− k traces
that are true bugs.

Table III shows the results of running APISAN and
ARBITRAR (with Arf = 5).
b) Detection rate: Overall ARBITRAR’s detection rate

(89.1%) is substantially higher than APISAN (76.1%). Fur-
thermore, the detection rate of ARBITRAR is relatively similar
on all benchmarks but APISAN has a skewed detection rate
and fails to detect misuses of complex APIs. In fact, APISAN
found zero bugs in APIMU4C’s Curl dataset. Listing 2 shows
one such instance.
c) False positives: The false positive rate of APISAN (fpap)

at 87.9% is significantly higher than that of ARBITRAR
(fpar) at 51.5%. For instance, in the case of the OpenSSL
benchmark, APISAN produced 160 bug reports out of which
only 19 were true positives. This is also in line with the
observation of the APISAN authors (Fig 12 in [69]).

Although, fpar at 51.5% still seems large, in practice this
feels negligible because of active learning. Recall that, we
consider any non-buggy traces shown to the user as false
positives. The false positive rate of 51.5% means that we
showed two traces for every bug and one of them is non-buggy.
This means that ARBITRAR was able to learn the API misuses
from the feedback on just one trace.

Nonetheless, as indicated by the missed bugs (10.9%), there
are bugs that are not detected by ARBITRAR. As Arf = 5, this
means there are 10.9% of the bugs where the trace containing
the bug was not presented in the first 5 interactions. These are
the APIs that have complex specifications or multiple disjoint
but valid usage patterns. Consider the example in Figure 7,
which took 13 interactions to find. Here, whether the return
of BN_CTX_get need to be checked depends on previous calls
to the function using same ctx.

As mentioned before, false negatives are determined by
feedback tolerance (Arf ). Figure 8 shows the percentage of



TABLE III: Comparative Evaluation of ARBITRAR and APISAN on Bug-benchmarks.

Bug benchmark Programs # bugs
APISAN ARBITRAR (Arf = 5)

Bugs Detection (% of bugs) False positive
rate (fpap)

Bugs Detection (% of bugs) False positive
rate (fpar)Found Missed Found Missed

APISan Bugs (Bap) Linux Kernel 45 45 (100%) N/A* 71.9% 40 (88.9%) 5 (11.1%) 50.6%

APIMU4C (Bmu)
OpenSSL 32 19 (59.3%) 13 (40.7%) 88.1% 28 (87.5%) 4 (12.5%) 50.9%

Curl 9 0 9 (100%) 100% 8 (88.9%) 1 (11.1%) 57.9%
Httpd 6 6 (100%) 0 97.6% 6 (100%) 0 50%

Cumulative 92 70 (76.1%) 22 (23.9%) 87.9% 82 (89.1%) ↑ 10 (10.9%) ↓ 51.5% ↓

1 // OPENSSL:crypto/bn/bn_div.c:190
2 BN_CTX_start(ctx);
3 res = (dv == NULL) ? BN_CTX_get(ctx) : dv;
4 Ëtmp = BN_CTX_get(ctx);
5 Ësnum = BN_CTX_get(ctx);
6 Ësdiv = BN_CTX_get(ctx);
7 if (sdiv == NULL)
8 goto err;

1 ctx = BN_CTX_new();
2 if (ctx == NULL)
3 goto err;
4 BN_CTX_start(ctx);
5 Missing null check.
6 
tmp = BN_CTX_get(ctx);
7 // if (tmp == NULL)
8 // goto err; // bug 1ff7425d61

Fig. 7: The top listing shows a valid usage of BN_CTX_get: In
a sequence of consecutive calls to BN_CTX_get, only the return
value of last call needs to be checked. The bottom listing shows
a bug as the return value of the function BN_CTX_get is not
checked even though there are no previous calls to BN_CTX_get.
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Fig. 8: The percentage of bugs in bug-benchmarks detected
by ARBITRAR with varying feedback tolerance (Arf ).

bugs detected (Y-axis) as we increase the feedback tolerance
(X-axis). The line (Arf = 5) shows the result used in Table III.
There are several interesting observations: First, most (80%)
of the bugs can be found within the first two interactions
(Arf = 2). Second, almost all (99%) of the bugs can be found
within the first twelve interactions (Arf = 12). Finally, there
were only two bugs that require more than 12 interactions.
These bugs reveal a drawback of our extensive feature vector:

1 // All fields are uninitialized
2 struct hci_request rq;
3

4 memset is missing.
5 
memset(&rq, 0, sizeof(rq));
6 // Only few fields are initialized
7 rq.ogf = OGF_LINK_CTL;
8 rq.event = EVT_AUTH_COMPLETE;
9 rq.cparam = &cp;

10 rq.rparam = &rp;
11 rq.rlen = EVT_AUTH_COMPLETE_SIZE;
12 // uninitialized fields of rq may be
13 // be used by the method
14 if (hci_send_req(dd, &rq, to) < 0)
15 return -1;

Listing 3: Use of uninitialized memory found by ARBITRAR (in
3rd interaction) because of missing memset call that is present
in all other call-sites of hci_send_req.

any small change in the usage of an API could potentially
keep the traces far apart in the feature space and hence takes
more feedback to find the invalid usage.

C. Impact

In this section, we evaluate the ability of ARBITRAR to find
new bugs in large real world programs. Table IV shows the
results of running ARBITRAR and APISAN on chosen programs.
In total, we found misuses of 18 APIs which resulted in a
total of 40 new bugs. Furthermore, our patches have also
been accepted for 18 of these bugs. All of these bugs have
a non-ignorable impact on the target program and a few of
them have security implications. Most of the bugs required
less than 5 interactions with average being ∼3. This indicates
that ARBITRAR is effective at finding new bugs with minimal
(just 3 interactions) user feedback. Consider the bug found
in ARBITRAR in libbluetooth as shown in Listing 3.
Here, calls to hci_send_req use memset to initialize all the
fields of the first argument (rq) to 0 to avoid using unini-
tialized stack data, i.e., the feature share arg with target

is true for the memset call. However, at the location shown
in Listing 3 there is no explicit memset, and is flagged by
share arg with target being false. Consequently, the
trace was presented in just 3rd interaction, and the bug was
found.

Unfortunately, irrespective of the huge number of reports
(2,084), APISAN did not find any of the above bugs. The main
reasons for this are:



TABLE IV: New Bugs Found By ARBITRAR but missed by APISAN. The column First Bug Warning indicate the number of
false warnings analyzed before finding the first bug. To avoid bloating the bug numbers, code smell issues and non-triggerable
bugs (highlighted rows) are counted as just one irrespective of the number of occurrences.

Program API Method Bug Description Impact ARBITRAR APISAN
WarningsTotal

Bugs
First Bug
Warning

Linux cdev_add cdev_init not called Uninitialized read 1 3 445
i2c_new_client_device Return value not stored Memory Leak 3 5
i2c_add_adapter Return value not checked Code Smell 1 (12*) 10
v4l2_ctrl_handler_setup Return value not checked Code Smell 1 (58*) 1
v4l2_m2m_get_vq Return value not checked System Crash 1 (41*) 2
vb2_plane_vaddr Return value not checked Code Smell 1 (118*) 2

SSL CRYPTO_zalloc Return value not checked System Crash 5 3 143

libpng

png_destroy_read_struct Double free Memory corruption 2 2

474png_destroy_write_struct Memory leak Memory corruption 1 4
png_create_info_struct Argument not checked Memory corruption 3 2
png_crc_read Argument not checked Memory corruption 1 1
png_malloc Return value not checked System Crash 7 1
png_calloc Return value not checked System Crash 1 1

libbluetooth

sdp_get_proto_port Return value not checked System Crash 1 1

1,022hci_get_route Return value not checked System Crash 2 3
sdp_data_get Return value not checked System Crash 4 1
hci_devba Return value not checked System Crash 4 2
hci_send_req Argument not memset-ted Uninitialized read 1 3

Total 40 Avg: 2.6 2,084

1 cdev = cdev_alloc();
2 if (!cdev) {
3 pr_err("Could not allocate cdev for minor %d, %s\n",
4 minor, name);
5 ret = -ENOMEM;
6 goto done;
7 }
8

9 cdev->owner = THIS_MODULE;
10 cdev->ops = fops;
11 kobject_set_name(&cdev->kobj, name);
12

13 missing call to cdev_init
14 
ret = cdev_add(cdev, dev, 1);

Listing 4: Missing initialization call bug found by ARBITRAR
(in 3rd interaction) in Linux Kernel: Here, there is a missing
call to cdev_init before cdev_add.

• Small number of call-sites of the API method: APISAN
requires a relatively large number of API call-sites to learn
semantic beliefs and consequently find misuses. But the
above APIs have a relatively small number (10-100) of oc-
currences. However, using active learning allows ARBITRAR
to overcome this limitation.

• Complex API Semantics: The semantics of certain APIs
functions is complex and cannot be handled by the different
checkers of APISAN. However, ARBITRAR can capture
these by using a large set of semantic features. Listing 4
shows a missing initialization bug found by ARBITRAR.
This bug requires understanding the causal relationship
between cdev_add and cdev_init, which APISAN failed
to infer.

D. Scalability

As mentioned in Section IV, execution of ARBITRAR occurs
in two independent steps, i.e., Trace generation (or Analysis
setup) and Active learning.

1) Trace generation: We use a multi-threaded implementa-
tion for our trace generation and feature extraction process to
achieve scalability. It takes ∼66 milliseconds to generate a trace
and for a fairly used API in Linux Kernel there are usually 500-
800 traces. Hence for an API, the trace generation and feature
extraction usually finish within a couple of minutes. Even for
a heavily used API such as kzalloc with 1,937 occurrences
and 31,704 traces, the generation and feature extraction take
only ∼35 minutes.

All the generated traces are stored in a database to be
inspected later using our active learning technique. Note that,
for a given API method and program, trace generation is a
one-time task.

2) Active learning: Irrespective of the number of traces, our
active learning technique is responsive with a response time of
milliseconds, i.e., after the user provides the feedback it takes
only milliseconds to learn and present the next most probable
bug trace This is because of our fast update mechanism using
MD-KDE. The traditional update mechanisms such as KDE
and KDE with caching have very high response time and are
not scalable to be used in a user-driven active learning setting
especially when we have a large amount of traces. Figure 9
shows the response time of our MD-KDE compared to the
existing techniques. As shown, the response time of the naı̈ve-ly
using the KDE model increases drastically with the number of
traces. However, our update mechanism, i.e., MD-KDE is only
experiencing linear growth. In reality, it stays in a relatively
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constant runtime, enabling the user to interact with the system
in real-time.

Separating our trace generation and active learning en-
ables ARBITRAR to be run in a two-phase mode. The trace
generation (automated but time consuming task) can be run
overnight with all the traces stored in a database. The user
can analyze these traces later using our fast active-learning
technique. This two-phase approach is indeed what developers
expect to see from a program analysis tool [12].

E. Extensibility

To demonstrate the extensibility and flexibility of our MD-
KDE learning framework, we conduct an experiment to answer
the following question: With one known bug, are we able to
utilize ARBITRAR to find the remaining bugs faster?

To handle this situation, we extend our tool to allow the
user to provide the labeled known bug at the beginning. The
other parts of our system remain the same, and the user will
interact with our system as usual. To perform the experiment,
we pick a few APIs from our previous experiments that satisfy
the following criteria: (a). there are multiple bugs, and (b).
there is room for improvement. With each API, we randomly
select one bug to be the known labeled bug.

We want to measure the improvements in terms of (1). the
number of iterations needed before we hit the first true bug
(xf ), and (2). the number of iterations needed to cover all the
remaining bugs (xl). Note that the selected sample bug will
not be counted anymore, therefore the number of bugs y′ in
the with-sample-bug setting will be off-by-1 from the original
number of bugs y.

Table V shows 4 APIs we choose, the number of bugs y, and
our measurement xl and xf in both the original setup and the
with-sample-bug setup. We can see a clear improvement when
one bug label is provided. Therefore, when a user already
possesses one bug pattern, they can leverage this and use
ARBITRAR to find bugs even faster and with higher precision.

F. Discussion on false positives

We want to emphasize that our notion of false positive rate is
fundamentally different from traditional bug finding tools. First,
ARBITRAR does not assume any pattern about API usage, and
has to learn from the user feedback from the ground up. The
false positives (or non-buggy traces) before the first bug serve
as feedback for ARBITRAR to learn a model for the API misuse
detection. Second, traditional bug finding tools cannot learn
from user feedback. As such, the false positive rate is fixed.
However, with ARBITRAR, as shown in Section V-E, each
false positive marked by the user contributes to improving
the accuracy of the model and consequently decreases the
false-positive rate.

VI. LIMITATIONS

Although ARBITRAR is an effective API misuse detection
tool, it has the following limitations:
• Requirement of API method: Unlike APISAN, ARBITRAR

is API method-specific and requires the method name to be
provided. We provide a way [38] to enumerate the number
of call sites of an API method, which could be used to select
API methods with large occurrences. However, to be more
precise, a simple statistical analysis [32] can be made on the
codebase to determine the methods of interest, which can
be then provided to ARBITRAR.

• Incomplete trace generation: Similar to APISAN, we only
consider direct call sites to the API method. Consequently,
our trace generation technique may miss traces of the API
method invoked through function pointers. However, we
can use a points-to analysis [56] to resolve function pointer
targets and consider them during trace generation.

• Discrete user feedback: Our active learning algorithm allows
only one bit of user feedback, i.e., Yes or No. However,
in practice, the user may want to provide other kinds of
feedback, e.g., Yes with 80% confidence. Our current design
does not allow for such feedback. However, techniques like
ALPF [30] could be employed to handle such feedback.

• Sensitivity to user feedback: Our active learning algorithm
trusts all user feedback. However, a user might make a
mistake. In our experience, when given wrong feedback (i.e.,
marked a correct usage to be incorrect) for malloc, our
model was able to correct itself after a few correct answers.
However, this may not generalize to all APIs as the model
depends on the complexity of the API. An extensive study
is required to precisely assess the sensitivity of our model
to user feedback.

VII. FUTURE WORK

In our future work, we plan to extend ARBITRAR in the
following directions:
• Model interpretation and transfer learning: We believe

that models learned by our algorithm are interpretable and
transferable, i.e., a model built for malloc could work for
other allocator functions such as realloc and calloc. We
plan to explore this by testing a pre-trained model of an



TABLE V: Compare of our original setup vs. with example bug setup.

API Dataset Original With Sample Bug
y xf xl y′ x′f x′l

kmalloc APISAN 2 12 14 1 6 6
kthread_run APISAN 2 9 10 1 1 1
BN_CTX_get APIMU4C OpenSSL 3 13 15 2 1 2

i2c_add_adapter Ours (Kernel 5.7) 11 10 24 10 3 15

API method on other related API methods. We also plan
to generate a description for each trace explaining which
features contributed to selecting the trace.

• Prioritizing high severity bugs: It is important to prioritize
high severity API misuse bugs. For instance, API misuse
bugs that cause memory leaks and code smells are arguably
less important than those that cause memory corruption. It
is important to prioritize high severity bugs. To handle this,
we plan to allow the user to provide bug type feedback as
well (e.g., memory leak, memory corruption, etc.). We can
then use this feedback to train a bug type detection model
that can be used to prioritize traces indicating critical bugs.

VIII. RELATED WORK

The goal of bug-finding techniques is to detect violations of
a certain set of rules, e.g., memory corruption, information flow
from an untrusted source to a sensitive sink, integer overflow,
etc. Static tools for finding such violations are based on model
checking [5], data-flow analysis [62], [41], type inference [54],
[9], or symbolic execution [8]. The rules that can be checked
by a particular tool can be either fixed [41], configured via
annotations in the code [58], [62], or specified by the user
through a Domain-Specific Language (DSL) [17], [8].

API misuse bugs are violations of rules imposed by the spec-
ification of API functions. IMChecker [24] uses a YAML [67]
based DSL for specifying the behavior of API functions and
checks for its violations in lightweight static traces computed
over the program. Semmle [19] can find API misuses by
semantic patterns of correct or erroneous behavior specified
using CodeQL [4], a declarative logic programming language
based on Datalog, over a relational representation of programs.
Similarly, MOPS [11] uses a finite automata based specification
whose violations are checked using a model checker.

However, crafting a formal API specification is hard, and it is
unreasonable to expect developers to write precise specifications
(Section II). Consequently, many API specification inference
techniques have been proposed. These techniques compute
lightweight program traces and use static features such as
control-dependencies [45] or various mining techniques such
as FRECPO [47], [3], factor graphs [39], [33], semantics-
constrained mining [6], and frequent item sets [37] to infer
API specifications. These techniques usually require a large
corpus of programs covering all possible usages of the API.
As we show in Section V, however, this assumption does not
always hold in practice.

Another class of techniques is based on the intuition that bugs
are anomalous or deviant behavior [16]. JUXTA [44] identifies

common patterns in file system implementations and detects
semantic bugs in file systems as violations of these patterns
using lightweight symbolic reasoning. Similarly, JIGSAW [61]
targets resource access vulnerabilities. APISAN [69] is a generic
approach to find API misuse bugs by encoding common
patterns as semantic beliefs. However, APISAN fails to capture
certain common usage patterns [25]. Furthermore, as we also
show in Section V, APISAN has a high false positive rate for
complex APIs. Machine learning techniques such as Apriori
algorithm [60], [40], clustering [66], [65], and kNN [7] are also
used to find bugs as anomalous patterns. Similar to specification
mining techniques, the success of these bug finding techniques
depends on the availability of a large corpus of programs.
Other bug pattern learning techniques such as Vccfinder [48]
and Vuldeepecker [36] also require a large bug corpus and
hence are infeasible for API misuse detection. Unlike existing
approaches, ARBITRAR requires neither the specification nor
a large code corpus with majority valid uses. Furthermore,
our technique is general and can handle APIs of diverse use
cases and complexity. We avoid the need for a large code
corpus by actively learning from user feedback. Unlike other
active learning techniques [68], ARBITRAR learns quickly and
provides a responsive interface, even though we interact with
the user at a much finer level, i.e., program traces.

Employing user feedback for bug detection has been explored
in Eugene [42] and Ursa [71], but these systems need a client
analysis to be specified in Datalog. Similarly, other user-guided
techniques based on Bayesian inference [49], [28] also require
a client analysis. In contrast, ARBITRAR does not require any
analysis specification.

IX. CONCLUSION

We presented ARBITRAR, a user-guided approach for finding
API misuses. ARBITRAR interacts with the programmer to
classify valid and invalid uses of a target API. It employs a
novel active learning algorithm to minimize user burden. We
demonstrated the effectiveness of ARBITRAR by using it to
find new bugs in a rich set of target APIs in large real-world
C/C++ programs within a few rounds of user interaction.
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import cpp
import semmle.code.cpp.dataflow.DataFlow

class DestroyWriteCall extends FunctionCall {
DestroyWriteCall() {

this.getTarget().getName() = "png_destroy_write_struct"
}

}

class CreateInfoCall extends FunctionCall {
CreateInfoCall() {
this.getTarget().getName() = "png_create_info_struct"

}
}

predicate zeroComparison(EqualityOperation e, Variable v) {
exists (Expr zero |
zero.getValue() = "0" |
(zero = e.getLeftOperand() and

v = e.getRightOperand().(VariableAccess).getTarget())
or↪→

(zero = e.getRightOperand() and
v = e.getLeftOperand().(VariableAccess).getTarget()))

}

from
EqualityOperation e,
Variable info_ptr,
IfStmt control,
DestroyWriteCall destroy_write_call

where
zeroComparison(e, info_ptr) and
exists (AssignExpr assign |
assign.getEnclosingFunction() =

control.getEnclosingFunction() and
assign.getLValue().(VariableAccess).getTarget() =

info_ptr and
exists (CreateInfoCall info_call |

assign.getRValue() = info_call)) and
control.getControllingExpr() = e and
destroy_write_call.getArgument(1).getValue() = "0" and
destroy_write_call.getEnclosingFunction() =

control.getEnclosingFunction() and
not control.getThen().getBasicBlock()
.contains(destroy_write_call.getBasicBlock())

select e, control, destroy_write_call

Listing 5: Semmle checker for png_destroy_write_struct

Memory Leak Bug

APPENDIX

A. Semmle Checker

Listing 5 shows the Semmle Checker to find the occurrences
of bug similar to the bug in the Listing 1.
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