
Compiling with Code-Size Constraints

Mayur Naik
Purdue University

Department of Computer Science
West Lafayette, IN 47907

mnaik@cs.purdue.edu

Jens Palsberg
Purdue University

Department of Computer Science
West Lafayette, IN 47907

palsberg@cs.purdue.edu

ABSTRACT
Most compilers ignore the problems of limited code space in
embedded systems. Designers of embedded software often
have no better alternative than to manually reduce the size
of the source code or even the compiled code. Besides being
tedious and error-prone, such optimization results in obfus-
cated code which is diÆcult to maintain and reuse. In this
paper, we present a code-size-directed compiler. We phrase
register allocation and code generation as an integer linear
programming problem where the upper bound on the code
size can simply be expressed as an additional constraint.
Our experiments show that our compiler, when applied to
two commercial microcontroller programs, generates code as
compact as carefully crafted code.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors|code gen-
eration

General Terms
Algorithms, Measurement, Performance

Keywords
register allocation, integer linear programming, space opti-
mization, banked architecture

1. INTRODUCTION

1.1 Background
In an embedded system, it can be challenging to �t the

needed functionality into the available code space. Eco-
nomic considerations often dictate the use of a small and
cheap processor, while demands for functionality can lead
to a need for considerable code space. Thus, the designer of
the software must both implement the desired functionality
and do it with a limited code-space budget. There are at
least two options for handling such a task:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’02–SCOPES’02, June 19-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006 ...$5.00.

� Write the software in assembly language; this gives
good control over code size but makes programming,
maintenance, and reuse hard; or

� Write the software in a high-level language; this gives
poor control over code size but makes programming,
maintenance, and reuse easier.

The reason why the latter option gives poor control over
code size is that most compilers ignore the problems of lim-
ited code space in embedded systems. Typically, a compiler
places primary emphasis on the execution speed of the com-
piled code, and much less emphasis on the size of the com-
piled code. In some cases, optimizations for execution speed
con
ict with optimizations for code size. For example, loop
unrolling tends to make code faster and bigger. Another
example is the use of procedures which tends to make code
slower and smaller. In this paper, we focus on combining
programming in high-level languages with control over code
size.

Question: can we get the best of both
worlds? Can we get both the 
exibility of pro-
gramming in a high-level language and the con-
trol over code size that is possible when program-
ming in assembly?

This question has been studied in the past decade by many
researchers who have shown that good data layout can lead
to reduced code size, see Figure 1. For example, in a sem-
inal paper, Liao, Devadas, Keutzer, Tjiang, and Wang [10]
demonstrated that on many contemporary digital signal pro-
cessors, good data layout increases opportunities for using
autoincrement/autodecrement addressing modes which in
turn reduces code size signi�cantly. In this paper, we present
a code-size-directed compiler that generates code as compact
as carefully crafted code on architectures in which the reg-
ister �le is partitioned into banks, with a Register Pointer
(RP) specifying the \working" bank.
Park, Lee, and Moon [13] have studied register alloca-

tion for an architecture with two symmetric banks. They
perform per-basic-block register allocation in one bank and
per-procedure register allocation in the other, and they gen-
erate instructions for moving data between the banks and
for moving RP. In this paper, we present three new tech-
niques, namely, we handle interrupts; we do whole-program
register allocation; and we enable saving RP on the stack by
generating instructions such as:

120



Authors Architecture Good data layout increases
the opportunities for using:

� Liao, Devadas, Keutzer, contemporary digital autoincrement/autodecrement
Tjiang, and Wang [10] signal processor addressing modes

� Leupers and Marwedel [9]
� Rao and Pande [14]
� Sudarsanam and Malik [18] two memory units parallel data access modes
� Sj�odin and von Platen [16] multiple address spaces pointer addressing modes
� Park, Lee, and Moon [13] two register banks RP-relative addressing
� this paper multiple register banks RP-relative addressing

Figure 1: Good data layout can signi�cantly reduce code size

push RP
srp b // set RP to bank b

: : :

pop RP

The idea of saving RP on the stack is particularly useful
when an interrupt handler is invoked, but can also be useful
when a procedure is called from several call sites.

1.2 The Problem: Compiling for the Z86E30
We address the problem of code-size-directed compilation

on Zilog's Z86E30 processor [3] from ZIL to Z86 assembly
language. ZIL is an intermediate language we have designed
that strongly resembles Z86 assembly language except that
it uses variables instead of registers. The grammar of ZIL
along with some notes on the semantics and an example
program is presented in Appendix A.
We have access to two proprietary microcontroller pro-

grams that were carefully handwritten in Z86 assembly
language. We have assessed the quality of our code-size-
directed compilation by rewriting these programs in ZIL,
compiling them back to Z86 assembly language using our
code-size-directed compiler, and comparing the size of the
generated code to that of the original handwritten code.
The Z86E30 has 256 8-bit registers organized into 16 banks

of 16 registers each. Of these, 236 are general-purpose, while
the rest, namely, the �rst 4 registers in the 0th bank and
the 16 registers in the 15th bank, are special-purpose. All
special-purpose registers in the 0th bank and 12 of the 16
special-purpose registers in the 15th bank are visible to the
ZIL programmer. The RP is itself a special-purpose register
in the 15th bank that is invisible at the ZIL level.
The Z86E30 lacks a data/stack memory; all variables must

be stored in registers. As a result, whole-program register
allocation must be performed, as opposed to per-procedure
register allocation. Moreover, distributing global variables
among the various banks in a manner that reduces the space
cost of the whole program is a major challenge.
A Z86 assembly instruction can address a register using

an 8-bit or 4-bit address. In the former case, the high nibble
of the 8-bit address represents the bank number and the low
nibble represents the register number within that bank. In
the latter case, RP represents the bank number and the 4-
bit address represents the register number within that bank.
We shall refer to registers addressed using 4 and 8 bits as
working and non-working registers respectively.
The space cost of certain Z86 assembly instructions de-

pends upon whether they address registers using 4 or 8 bits.
For instance, the cost of the unary decrement instruction

dec v or the binary add instruction add v; c (c is a con-
stant) is independent of the value of RP. But the cost of the
unary increment instruction inc v or the binary add instruc-
tion add v1; v2 depends upon the value of RP: the cost of
the former is 1 or 2 bytes depending on whether RP points
to the bank in which v is stored or not, while the cost of
the latter is 2 or 3 bytes depending on whether RP points
to the bank in which v1 and v2 are stored or not.
Nearly 30-40% of the instructions in our benchmark pro-

grams occupy one fewer byte if they address registers using 4
bits. Thus, the key to optimizing the size of the target code
generated for a ZIL program is optimal register allocation
of the variables that are referenced by such instructions in
the ZIL program.

1.3 Our Results
We have designed and implemented a code-size-directed

compiler from ZIL to Z86 assembly language. We phrase
register allocation as an integer linear programming (ILP)
problem whose objective is to minimize the size of the target
code. Our experiments show that our compiler, when ap-
plied to the two microcontroller programs, generates code
that is as compact as the original handwritten code.
Our fully-automated approach is depicted in Figure 2.

For a given ZIL program, we �rst perform model extrac-
tion to derive a control-
ow graph. We then use the AMPL
tool [6] to generate an ILP from the control-
ow graph and
an ILP formulation. Every variable in the ILP ranges over
f0; 1g. The ILP is solved using an o�-the-shelf ILP solver
like CPLEX [1]. Once a solution has been obtained, a code
generator produces a target Z86 program.
Our ILP formulation allows introducing srp immediately

before any instruction in the model extracted from the ZIL
program, and push (pop) RP immediately before the en-
try (exit) point of any procedure and interrupt handler.
(Throughout the paper, when we speak of introducing an
RP-manipulating instruction i immediately before an in-
struction i0, we assume that any label at i0 is moved to i.)
We designate this ILP formulation SetRP + Full PuPoRP.
We have experimented with three other ILP formulations,
namely, SetRP + PuPoRP that allows introducing push
(pop) RP for interrupt handlers but not for procedures,
SetRP that does not allow introducing push (pop) RP at
all, and Cheap that allows introducing just one srp at the
start of the program. Our experiments show that SetRP +
PuPoRP o�ers the best tradeo� between ILP solution time
and code-space savings.

121



   Model
ExtractorProgram

ZIL Program
 Model

ILP
Formulation

Target
Program

CPLEXAMPL ILP ILP Solution

(values of all variables
in the ILP)

Code Generator

Figure 2: Overview

1.4 Related Work on ILP-based Compilation
In the past decade, there has been widespread interest

in using ILP for compiler optimizations such as instruction
scheduling, software pipelining, data layout, and, particu-
larly, register allocation.
Goodwin and Wilken [7] pioneered the use of ILP for

register allocation. Their approach is applicable only to
processors with uniform register architectures. Kong and
Wilken [8] present an ILP framework for irregular register
architectures (architectures that place restrictions on reg-
ister usage). Appel and George [4] partition the register
allocation problem for the Pentium into two subproblems:
optimal placement of spill code followed by optimal register
coalescing; they use ILP for the former. Stoutchinin [17]
and Ruttenberg et al. [15] present an ILP framework for
integrated register allocation and software pipelining in the
MIPS R8000 microprocessor. Liberatore et al.[11] perform
local register allocation (LRA) using ILP. Their analysis
shows that their approach is superior to a dynamic pro-
gramming algorithm that solves LRA exactly but takes ex-
ponential time and space, as well as to heuristics that are
fast but sub-optimal.
ILP has been widely used to perform register allocation

for general-purpose programs on stock microprocessors but
we are not aware of any ILP-based technique that has been
used to perform register allocation for interrupt-driven pro-
grams on embedded microprocessors. The only ILP-based
memory allocation techniques for embedded processors we
are aware of are Sj�odin and Platen's technique [16] which
models multiple address spaces of a certain processor using
ILP, and that of Avissar, Barua, and Stewart [12] which
uses ILP to optimally allocate global and stack data among
di�erent heterogeneous memory modules.

1.5 Rest of the Paper
In the following section, we explain model extraction. In

Section 3, we present our ILP formulation, namely, SetRP +
Full PuPoRP. In Section 4, we discusse code generation. In
Section 5, we present alternate ILP formulations. In Section
6, we show our experimental results and, �nally, in Section
7, we conclude with a note on future work.

2. MODEL EXTRACTION
Model extraction proceeds in four steps.
First, we add an unlabeled skip instruction at the entry

point of each routine to ensure that there are no jumps to
it. The one introduced at the entry of MAIN is called iroot.
Secondly, we conservatively estimate at each instruction

in the program, which interrupt handlers are enabled, i.e.,
the value of the interrupt mask register (IMR). We use a
technique closely related to the one described in [5].

Third, we construct a control-
ow graph, denoted CFG,
of the program. Let Instr be the set of all occurrences
of instructions in the program. CFG is a directed graph
whose set of nodes is Instr and each edge (i1; i2) is such
that i2 can be executed immediately after executing i1 in a
program run. Note that there will be edges corresponding
to interrupt handler invocations and returns, as determined
by the IMR estimates.
Finally, we build an abstraction of CFG, denoted CFGabs,

by eliminating those nodes and edges in CFG that are irrel-
evant to register allocation. Let Instrabs be the subset of
Instr such that each instruction in the former satis�es at
least one of the following two conditions:

� The instruction is a ret, iret, call, an instruction im-
mediately following a call, a skip at the entry point
of a routine, or djnz.

� The space cost of the instruction depends upon the
value of RP, namely, upon whether RP points to the
bank in which its operand(s) are stored or not.

CFGabs is a directed graph whose set of nodes is Instrabs
and each edge (i1; i2) is such that i2 is reachable from i1
in CFG along a path which does not contain any other node
in Instrabs, i.e., i2 can be executed after i1 but before any
other instruction in Instrabs in a run of the original pro-
gram.

3. ILP FORMULATION

3.1 Set Declarations

� Bank = f0; : : : ; 12; 15g is the set of banks in the reg-
ister �le of the Z86E30. Banks 13{14 are reserved for
the run-time stack.

� Edge � (Instrabs � Instrabs) is the set of edges in
CFGabs.

� ProcQuad � (Edge � Edge) is the set of quadruples
(i1; i2; i3; i4) such that i2 and i3 are the skip and ret
instructions at the entry and exit of a procedure while
edges (i1; i2) and (i3; i4) correspond to a call to the
procedure and the corresponding return from it, re-
spectively.

� PuInstr is the set of the skip instructions at the entry
point of each routine (except MAIN) and PoInstr is
the set of the ret/iret instructions at the exit point of
each routine.

� ProcPair = f (i2; i3) j (i1; i2; i3; i4) 2 ProcQuad g.
IntrPair is de�ned analogously for interrupt handlers.

122



ILP Formulation Seconds to solve ILP Code Size
SetRP 0.43 32
SetRP + PuPoRP 10.57 29
SetRP + Full PuPoRP 132.21 29

Figure 3: Results for example.zil

� CallPair = f (i1; i4) j (i1; i2; i3; i4) 2 ProcQuad g.
Also, EdgeOrCallPair = Edge [ CallPair.

� PRetEdge = f (i3; i4) j (i1; i2; i3; i4) 2 ProcQuad g.
IRetEdge is de�ned analogously for interrupt handlers.
Also, MiscEdge = Edge � (PRetEdge [ IRetEdge).

� Var is the set of all variables in the ZIL program. We
assume that variables that are local to di�erent rou-
tines and have the same name are renamed to eliminate
name clashes in Var.

� PDV0 � Var and PDV15 � Var are the sets of the prede-
�ned variables for which special-purpose registers have
been alloted in the 0th and 15th bank, respectively.
We also de�ne PDV = PDV0 [ PDV15 as the set of all
prede�ned variables and UDV = Var� PDV as the set of
all user-de�ned ones.

� Bin2Instr � (Instrabs�Var�Var) is the set of triples
(i; v1; v2) such that i is a binary instruction with source
and destination operands v1 and v2, respectively. The
cost of every binary instruction with both variable
operands in Z86E30's instruction set depends on the
value of RP.

� Bin1Instr � (Instrabs � Var) is the set of pairs (i; v)
such that (i) i is a binary instruction with the same
source and destination operand v, and (ii) the cost of
i depends on the value of RP. The cost of only cer-
tain binary instructions with one variable operand de-
pends on the value of RP. For instance, the cost of the
load instruction ld v; c is 2 or 3 bytes depending upon
whether RP points to the bank in which v is stored
or not, but the cost of the add instruction add v; c is
independent of the value of RP.

� IncrInstr � (Instrabs � Var) is the set of all incre-
ment instructions. We also de�ne Bin1orIncrInstr =
Bin1Instr [ IncrInstr.

� DjnzInstr � (Instrabs � Var) is the set of all \decre-
ment and jump if non-zero" instructions.

3.2 0–1 Variables

� The variables rv;b are de�ned such that for each v 2
Var and b 2 Bank, the ILP solver sets rv;b to 1 if it is
desirable to store v in (any register in) bank b.

� The variables RPVali;b are de�ned such that for each
i 2 Instrabs and b 2 Bank, the solver sets RPVali;b to
1 if it is desirable for the value of RP to be b whenever
i is executed.

� The variables Di�RPi1;i2 are de�ned such that for each
(i1; i2) 2 EdgeOrCallPair, Di�RPi1;i2 is 1 if 9b 2
Bank: RPVali1;b 6= RPVali2;b.

� The variables SetRPi are de�ned such that for each
i 2 Instrabs, the solver sets SetRPi to 1 if it is desir-
able to introduce srp b immediately before i.

� The variables PuRPi are de�ned such that for each
i 2 PuInstr, the solver sets PuRPi to 1 if it is desirable
to introduce push RP immediately before i.

� The variables PoRPi are de�ned such that for each
i 2 PoInstr, the solver sets PoRPi to 1 if it is desirable
to introduce pop RP immediately before i.

� The variables Bin2Costi are de�ned such that for each
(i; v1; v2) 2 Bin2Instr, Bin2Costi is 1 if 9b 2 Bank:
RPVali;b 6= rv1;b _ RPVali;b 6= rv2;b.

� The variables Bin1orIncrCosti are de�ned such that
for each (i; v) 2 Bin1orIncrInstr, Bin1orIncrCosti
is 1 if 9b 2 Bank: RPVali;b 6= rv;b.

3.3 Constraints
The general form of an integer linear constraint is

C1V1 + : : :+ CnVn � C

where C1; : : : ; Cn; C are integer constants, V1; : : : ; Vn are in-
teger variables, and � is one of <, >, �, �, and =. Our ILP
formulation uses the following variants of the above form:

V = 0

V = 1

V = V
0

V � V
0

V1 + : : : + Vn = 1

V1 + : : : + Vn � C

V � V
0 + V

00

where V; V 0; V 00; V1; : : : ; Vn are variables ranging over f0; 1g.
It is straightforward to show that it is NP-complete to decide
solvability of a �nite set of constraints of the above forms.
We will use the abbreviation

jV 0 � V
00j � V

to denote the two constraints

V
0 � V + V

00

V
00 � V + V

0

3.3.1 Assigning Variables to Banks
Constraints (1{4) state that all prede�ned variables must

be stored in their respective banks:

8v 2 PDV0: rv;0 = 1 (1)

8v 2 PDV0: 8b 2 Bank� f 0 g: rv;b = 0 (2)

8v 2 PDV15: rv;15 = 1 (3)

8v 2 PDV15: 8b 2 Bank� f15g: rv;b = 0 (4)

123



Constraint (5) states that a user-de�ned variable must be
stored in exactly one bank:

8v 2 UDV:
X

b2Bank

rv;b = 1 (5)

The number of user-de�ned variables must not exceed the
number of general-purpose registers. Since the 0th bank has
12 such registers, the 15th bank has none, and the rest have
16 each, we have:

P
v2UDV

rv;0 � 12 (6)

8v 2 UDV: rv;15 = 0 (7)

8b 2 Bank� f0; 15g:
P

v2UDV
rv;b � 16 (8)

3.3.2 Introducing RP-manipulating instructions
Constraint (9) states that RP must be set to exactly one

bank at every instruction:

8i 2 Instrabs:
X

b2Bank

RPVali;b = 1 (9)

Constraint (10) states that if 9b 2 Bank: RPVali1;b 6=
RPVali2;b, then Di�RPi1;i2 = 1:

8(i1; i2) 2 EdgeOrCallPair: 8b 2 Bank:

jRPVali1;b �RPVali2;bj � Di�RPi1;i2 (10)

For (i1; i2) 2 Edge where Di�RPi1;i2 = 1, we introduce an
RP-modifying instruction in the following way, depending
on the kind of edge:

1. For (i1; i2) 2 MiscPair where Di�RPi1;i2 = 1, we in-
troduce srp immediately before i2:

8(i1; i2) 2 MiscPair: Di�RPi1;i2 � SetRPi2 (11)

2. For (i1; i2) 2 PRetEdge where Di�RPi1;i2 = 1, we in-
troduce either pop RP immediately before i1 or srp
immediately before i2 (or both):

8(i1; i2) 2 PRetEdge:

Di�RPi1;i2 � PoRPi1 + SetRPi2 (12)

3. For (i1; i2) 2 IRetEdge where Di�RPi1;i2 = 1, we in-
troduce pop RP immediately before i1:

8(i1; i2) 2 IRetEdge: Di�RPi1;i2 � PoRPi1 (13)

In this case we do not have the option of introducing
srp immediately before i2; Figure 4 illustrates a sce-
nario in which doing so results in incorrect behavior of
the target program.

For (i1; i4) 2 CallPair, the motivation behind computing
Di�RPi1;i4 is as follows. There is an additional constraint on
introducing pop RP in item (2) above, namely, for (i3; i4) 2
PretEdge such that (i1; i2; i3; i4) 2 ProcQuad, the value of
RP at the call instruction i1 must be equal to the value of
RP at instruction i4 following it, i.e., Di�RPi1;i4 = 0.

8(i1; i2; i3; i4) 2 ProcQuad: PoRPi3 +Di�RPi1;i4 � 1
(14)

Figure 5 elucidates why the above constraint is needed
on introducing pop RP immediately before i3 for (i3; i4) 2
PRetEdge but not for (i3; i4) 2 IRetEdge.

...
srp b2

iret

...

...

...

RP will be b2 (instead of b1) at Iy if the handler is invoked
       immediately after the execution of srp b1

skip

RP = b2

i1

Ix
srp b1
Iy

iret

Ix

RP = b1

RP = b1

Iy i2

...

...

Interrupt
 Handler

Procedure

Figure 4: Scenario

Constraint (15) states that srp cannot be introduced im-
mediately before iroot.

SetRPiroot = 0 (15)

Constraint (16) states that whenever we introduce pop
RP, we must also introduce the matching push RP.

8(i1; i2) 2 (ProcPair [ IntrPair): PuRPi1 = PoRPi2

(16)

3.3.3 Measuring Code Size
Any instruction in Bin2Instr occupies 2 or 3 bytes de-

pending upon whether both operands are stored in work-
ing registers or not, respectively. The following constraints
characterize the space cost of such instructions:

8(i; v1; v2) 2 Bin2Instr: 8b 2 Bank:

jrv1;b �RPVali;bj � Bin2Costi (17)

8(i; v1; v2) 2 Bin2Instr: 8b 2 Bank:

jrv2;b �RPVali;bj � Bin2Costi (18)

Thus, for any (i; v1; v2) 2 Bin2Instr, v1 and v2 will be in
working registers when i is executed if Bin2Costi = 0.
Any instruction in Bin1Instr (IncrInstr) occupies 2 (1)

or 3 (2) bytes depending upon whether the operand is stored
in a working register or not, respectively. The following
constraint characterizes the space cost of such instructions:

8(i; v1; v2) 2 Bin1OrIncrInstr: 8b 2 Bank:

jrv;b �RPVali;bj � Bin1OrIncrCosti (19)

Thus, for any (i; v) 2 Bin1OrIncrInstr, v will be in a
working register when i is executed if Bin1OrIncrCosti = 0.

124



The operand of any unary instruction in Z86E30's instruc-
tion set can be stored in a working or non-working register,
with the exception of the djnz v; dst instruction: v must be
stored in a working register. (Program memory addresses
like dst are not treated as operands. So, djnz quali�es as a
unary instruction.) This condition is enforced as 
lows:

8(i; v) 2 DjnzInstr: 8b 2 Bank: rv;b = RPVali;b (20)

3.4 Objective Function
The objective of our ILP is to minimize the instruction

space cost of the target program. The space cost of each
instruction in Bin2Instr or Bin1OrIncrInstr depends upon
whether its operands are stored in working registers or not.
Also, the space cost of each of srp, push RP, and pop RP
is 2 bytes. Thus, the objective function is:

X

(i;v1;v2)2Bin2Instr

Bin2Costi +
X

(i;v)2Bin1OrIncrInstr

Bin1OrIncrCosti +

X

i2Instrabs

2 SetRPi +
X

i2PuInstr

2 PuRPi +
X

i2PoInstr

2 PoRPi

We could dispense with the variable PuRP in our ILP formu-
lation by eliminating constraint (16) and replacing PuRP in
the objective function by PoRP. However, our experiments
suggest that doing so increases ILP solution time signi�-
cantly.

4. CODE GENERATION
Given a solution to the ILP generated from a ZIL pro-

gram, we generate code for the Z86E30 as follows:

� If v 2 UDV and rv;b = 1, then we store v in (any regis-
ter in) bank b. Constraint (5) ensures that there is a
unique such b.

� If (i; v1; v2) 2 Bin2Instr, then the registers allocated
to both v1 and v2 are addressed using the 4-bit or 8-bit
addressing mode, depending upon whether Bin2Costi
is 0 or 1, respectively.

� If (i; v) 2 Bin1OrIncrInstr, then v is addressed using
the 4-bit or 8-bit addressing mode, depending upon
whether Bin1OrIncrCosti is 0 or 1, respectively.

� If (i; v) 2 DjnzInstr, then the register allocated to v

is addressed using the 4-bit addressing mode.

� If i 2 Instr�Instrabs and v 2 Var is an operand of i,
then the register allocated to v is addressed using the
8-bit addressing mode.

� If i 2 Instrabs, SetRPi = 1, and b is the bank such
that RPVali;b = 1, then we introduce srp b immedi-
ately before i. Constraint (9) ensures that there is a
unique such b.

� If i1 2 PuInstr, i2 2 PoInstr, PuRPi1 = 1, and
PoRPi2 = 1, then we introduce push RP and pop
RP immediately before i1 and i2, respectively. Con-
straint (16) ensures that push RP and pop RP are
always introduced in matching pairs.

� If RPValiroot;b = 1, then we replace iroot by srp b.
Constraint (15) ensures that there is no srp instruction
before iroot.

5. FOUR APPROACHES TO CODE-SIZE-
DIRECTED COMPILATION

We have measured the performance of four techniques for
register allocation and code-generation as follows.

5.1 SetRP + Full PuPoRP
This is the technique presented in Sections 2{4. It is the

most liberal in terms of the kind of RP-manipulating in-
structions allowed and the locations in which they can be
introduced.

5.2 SetRP + PuPoRP
This technique allows introducing push/pop RP only for

interrupt handlers. CFG abstraction is aggressive: we de�ne
Instrabs as the subset of Instr such that each instruction
in the former satis�es at least one of the two conditions:

� The instruction is iroot, an iret, a skip at the entry
point of an interrupt handler, or djnz.

� The space cost of the instruction depends upon the
value of RP.

5.3 SetRP
This technique does not allow introducing push/pop RP

at all. CFG abstraction is even more aggressive: we de�ne
Instrabs as the subset of Instr such that each instruction
in the former satis�es at least one of the two conditions:

� The instruction is iroot or djnz.

� The space cost of the instruction depends upon the
value of RP.

Moreover, srp cannot be introduced immediately before
an instruction in Instrabs that belongs to an interrupt han-
dler. This is because interrupt handlers, especially in large
programs, can be invoked immediately before executing dif-
ferent instructions that expect di�erent values of RP during
their respective executions. If RP is allowed to be modi�ed
within such a handler, it is not possible to restore its original
value using srp before returning from the handler.

5.4 Cheap
This technique causes a single srp to be introduced at

the start of the program; after that RP is not changed at
all. It is based on an ILP formulation that declares the
sets Var, PDV0, PDV15, Bin2Instr, Bin1OrIncrInstr, and
DjnzInstr as before; two kinds of variables: Bin2Cost, as
before, and the variable InCurrBank for each v 2 Var such
that InCurrBankv is set to 1 if it is desirable to store v in
the bank to which RP points; and the following constraints:

X

v2Var

InCurrBankv � 16

8v1 2 PDV0: 8v2 2 PDV0: InCurrBankv1 = InCurrBankv2

8v1 2 PDV15: 8v2 2 PDV15: InCurrBankv1 = InCurrBankv2

8v1 2 PDV0: 8v2 2 PDV15:

InCurrBankv1 + InCurrBankv2 � 1

8(i; v1; v2) 2 Bin2Instr: Bin2Costi + InCurrBankv1 � 1

8(i; v1; v2) 2 Bin2Instr: Bin2Costi + InCurrBankv2 � 1

8(i; v) 2 DjnzInstr: InCurrBankv = 1

125



skip

Procedure P1 Procedure P2 Interrupt 
 Handler

Procedure

iret i3

Since RP at i3 differs from RP at i4, constraint (12) allows pop RP or srp b3
to be introduced immediately before i3 and i4, respectively.

of b3) at Iy in the target code, which is incorrect.
The push RP is introduced by constraint (16).  Note that RP is b1 (instead

srp b2
...
ret

...
call P2
srp b3
Iy

In the presence of constraint (14), there is no choice but to introduce srp b3
immediately before i4, resulting in the following (correct) target code:

push RP
srp b2
...
pop RP
ret

...

call P2
Iy

...

This results in the following (correct) target code even if RP at i1
differs from RP at i4:

...
Ix
srp b3
Iy
...

push RP
srp b2

pop RP
iret

...

In the absence of constraint (14), the former choice results in the following
incorrect target code if RP at i1 differs from RP at i4:

Since RP at i3 differs from RP at i4, constraint (13) allows pop RP
to be introduced immediately before i3.

i1 to i4 by introducing srp b3 immediately before i4.
This is because constraint (11) accounts for the change in RP from

i1

...

i2

...

skip

RP = b2... ... RP = b2

i2

...

Iy i4

i1

...

i4

i3

Iy

call P2RP = b1

RP = b3

ret

Ix

RP = b3

RP = b1

Figure 5: Scenario

The objective function is to minimize:
X

(i;v1;v2)2Bin2Instr

Bin2Costi �
X

(i;v)2Bin1OrIncrInstr

InCurrBankv

6. EXPERIMENTAL RESULTS

6.1 Benchmark Characteristics
For our experiments, we have used the example program

in Appendix A (example.zil) and two proprietary micro-
controller programs, called serial.zil and cturk.zil, pro-
vided by Greenhill Manufacturing, Ltd. [2]. Greenhill has
over a decade of experience producing environmental con-
trol systems for agricultural needs. Some characteristics of
these programs are presented in Figure 6. For example.zil,
the number of nodes in CFGabs is more than that in CFG
because, during model extraction, 4 skip instructions are
introduced in the �rst step (skip insertion), and only one
instruction is eliminated in the fourth step (abstraction).

6.2 Measurements
Figure 7 presents our experimental results. The solution

time for the ILP-based techniques was measured on a 1.1
GHz Intel Pentium IV machine with 512 MB RAM (though
CPLEX was limited to use at most 128 MB).
The results for cturk.zil were obtained by reducing the

number of banks to 6, i.e., by de�ning Bank = f0::4; 15g,
in order to reduce the number of equivalent solutions ex-
plored by CPLEX. Since cturk.zil contains 55 user-de�ned
variables and the six chosen banks have 60 general-purpose
registers, increasing the number of banks would not have
reduced the size of the target code.
In Figure 7, in the row for the number of instructions ad-

dressing only working registers, the \upper bound" indicates
the number of instructions whose space cost depends on the
value of RP.

126



Number of: example serial cturk

Lines of ZIL (nodes in CFG) 14 181 850
Lines of ZIL after abstraction (nodes in CFGabs) 17 53 304
Edges in CFGabs 42 193 1287
Instructions in Bin2Instr 1 9 147
Instructions in Bin1Instr 2 41 126
Instructions in IncrInstr 1 2 20
Instructions in DjnzInstr 2 0 10
User-de�ned variables 5 9 55
Procedures (excluding MAIN) 2 6 37
Interrupt handlers 1 2 2

Figure 6: Benchmark characteristics

Number of: technique example serial cturk

Integer variables Cheap 23 33 187
SetRP 401 1035 2343
SetRP + PuPoRP 449 1275 2885
SetRP + Full PuPoRP 617 2009 6909

Constraints Cheap 225 239 525
SetRP 656 3132 8900
SetRP + PuPoRP 1052 6369 21426
SetRP + Full PuPoRP 1722 9953 35961

Seconds to solve the ILP Cheap 0.00 0.01 0.10
SetRP 0.04 0.27 856
SetRP + PuPoRP 0.07 0.92 2478
SetRP + Full PuPoRP 0.14 3.39 59351

srp introduced Cheap 1 1 1
SetRP 1 2 19
SetRP + PuPoRP 1 2 21
SetRP + Full PuPoRP 1 2 18

push/pop RP introduced SetRP + PuPoRP 0 0 2
SetRP + Full PuPoRP 0 0 2

instructions addressing Cheap 4 29 50
only working registers SetRP 3 30 131

SetRP + PuPoRP 4 35 150
SetRP + Full PuPoRP 4 35 150
upper bound 4 52 293

Figure 7: Measurements

6.3 Assessment
As expected, the ILP solution time increases signi�cantly

and the space savings increases monotonically from SetRP
through SetRP + PuPoRP to SetRP + Full PuPoRP.
The space savings in SetRP + Full PuPoRP is the same as

that in SetRP + PuPoRP for all the benchmark programs
because none of the procedures in our benchmark programs
is both large and called from several sites having di�erent
RP values so as to o�set the high overhead associated with
introducing push/pop RP. Moreover, the former takes sig-
ni�cantly more time to solve than the latter. Thus, SetRP
+ PuPoRP o�ers the best trade-o� between solution time
and space savings.
Figure 8 compares the sizes of the Z86 programs generated

using SetRP + PuPoRP against the sizes of the handwritten
Z86 programs. For serial.zil, the code generated using
our technique is superior to the handwritten code. However,
for cturk.zil, the code generated using our technique is
bigger even though our technique performs superior register

allocation. This is because the handwritten cturk program
uses programming tricks such as jumping from one routine
to instructions within another routine. While that can lead
to more compact code, it is forbidden in ZIL.

7. CONCLUSION
We have explored four ILP-based approaches to code-size-

directed compilation. The SetRP + PuPoRP approach pro-
vides a good trade-o� between solution time and space sav-
ings. Our code-size-directed compiler generates code that
is as compact as carefully crafted code. Since ILP is NP-
complete, generating optimally-sized target code for large
programs can be prohibitively time consuming. However,
it is possible to simply state a desired upper bound on tar-
get code size and require the generated code to be small
enough; such code may have a chance of being generated in
reasonable time.

127



Size (in bytes) of: serial cturk

handwritten Z86 code 415 1789
Z86 code generated using SetRP + PuPoRP 382 1811

Figure 8: Code-size comparison

8. ACKNOWLEDGMENTS
We thank James Rose for rewriting the Z86 version of

cturk in ZIL and Matthew Wallace for writing an inter-
preter for ZIL. We thank Dennis Brylow for help in numer-
ous situations. Palsberg is supported by a National Science
Foundation Information Technology Research Award num-
ber 0112628.

9. REFERENCES
[1] CPLEX mixed integer optimizer.

www.ilog.com/products/cplex/product/mip.cfm.

[2] Greenhill Manufacturing. www.greenhillmfg.com.

[3] Zilog, Inc. www.zilog.com.

[4] A. Appel and L. George. Optimal spilling for CISC
machines with few registers. In C. Norris and
J. Fenwick, editors, Proceedings of the ACM SIGPLAN
'01 Conference on Programming Language Design and
Implementation (PLDI-01), ACM SIGPLAN Notices,
pages 243{253. ACM Press, June 2001.

[5] D. Brylow, N. Damgaard, and J. Palsberg. Static
checking of interrupt-driven software. In Proceedings of
ICSE'01, 23rd International Conference on Software
Engineering, pages 47{56, Toronto, May 2001.

[6] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL:
A Modeling Language for Mathematical Programming.
The Scienti�c Press, 1993. www.ampl.com.

[7] D. Goodwin and K. Wilken. Optimal and
near-optimal global register allocation using 0-1
integer programming. Software|Practice and
Experience, 26(8):929{965, Aug. 1996.

[8] T. Kong and K. D. Wilken. Precise register allocation
for irregular register architectures. In Proceedings of
the 31st Annual ACM/IEEE International Symposium
on Microarchitecture (MICRO-98), pages 297{307.
IEEE Computer Society, Nov. 30{Dec. 2 1998.

[9] R. Leupers and P. Marwedel. Algorithms for address
assignment in DSP code generation. In Proceedings of
IEEE International Conference on Computer Aided
Design, 1996.

[10] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang. Storage assignment to decrease code size.
ACM Transactions on Programming Languages and
Systems, 18(3):235{253, May 1996.

[11] V. Liberatore, M. Farach-Colton, and U. Kremer.
Evaluation of algorithms for local register allocation.
Lecture Notes in Computer Science, 1575:137{152,
1999.

[12] R. B. O. Avissar and D. Stewart. Heterogeneous
memory management for embedded systems. In
Proceedings of the ACM 2nd Int'l Conf. on Compilers,
Architectures, and Synthesis for Embedded Systems
CASES, Nov. 2001.

[13] J. Park, J. Lee, and S. Moon. Register allocation for
banked register �le. In C. Norris and J. Fenwick,

editors, Proceedings of the Workshop on Languages,
Compilers and Tools for Embedded Systems
(LCTES-01), volume 36, 6 of ACM SIGPLAN
Notices, pages 39{47. ACM Press, June 22{23 2001.

[14] A. Rao and S. Pande. Storage assignment
optimizations to generate compact and eÆcient code
on embedded DSPs. In Proceedings of the ACM
SIGPLAN '99 Conference on Programming Language
Design and Implementation, pages 128{138, May 1{4,
1999.

[15] J. Ruttenberg, G. R. Gao, A. Stoutchinin, and
W. Lichtenstein. Software pipelining showdown:
Optimal vs. heuristic methods in a production
compiler. In Proceedings of the ACM SIGPLAN '96
Conference on Programming Language Design and
Implementation, pages 1{11, 1996.

[16] J. Sjdin and C. von Platen. Storage allocation for
embedded processors. In Proceedings of CASES 2001,
pages 15{23, 2001.

[17] A. Stoutchinin. An integer linear programming model
of software pipelining for the MIPS R8000 processor.
Lecture Notes in Computer Science, 1277:121{135,
1997.

[18] A. Sudarsanam and S. Malik. Simultaneous reference
allocation in code generation for dual data memory
bank ASIPs. ACM Transactions on Design
Automation of Electronic Systems., 5(2):242{264, Jan.
2000.

APPENDIX A: ZIL
The grammar for ZIL is shown in Figure 9. In ZIL, variables
can be declared global, local to the main program, or local to
any procedure or interrupt handler. There are 16 prede�ned
global variables: P0, P1, P2, and P3, which are allotted the
4 special-purpose registers in the 0th bank, and FLAGS,
T0, T1, P01M, P2M, P3M, TMR, PRE0, PRE1, IMR, IPR,
and IRQ, which are allotted 12 of the 16 special-purpose
registers in the 15th bank. Each ZIL routine (procedure or
interrupt handler) has a single entry point and a single exit
point. Each procedure has a single ret instruction and each
interrupt handler has a single iret instruction. Recursion,
both direct and indirect, and jumps from one routine to
an instruction within another routine are disallowed. The
ZIL instructions are, essentially, Z86E30 instructions except
that they operate on variables instead of registers. Figure 10
shows an example ZIL program.

128



Goal ::= ( GlobalDef )* "MAIN" MainBlock "PROCEDURES" ( ProcDef )*
"HANDLERS" ( HandlerDef )*

GlobalDef ::= ConstDef | VarDef

ConstDef ::= "static" "final" Type Id "=" Literal
VarDef ::= Type Variable

Type ::= "int" | "string" | "proc_label" | "jump_label"
ProcDef ::= Label "(" ")" ProcedureBlock

HandlerDef ::= Label "(" ")" HandlerBlock
MainBlock ::= "{" ( VarDef )* ( Stmt )* "}"

ProcedureBlock ::= "{" ( VarDef )* ( Stmt )* ( Label ":" )? "RET" "}"
HandlerBlock ::= "{" ( VarDef )* ( Stmt )* ( Label ":" )? "IRET" "}"

Stmt ::= ( Label ":" )? Instruction
Instruction ::= ArithLogic1aryOPC Variable

| ArithLogic2aryOPC Variable "," Expr
| CPUControl1aryOPC Expr

| CPUControl0aryOPC
| "LD" Variable "," LDExpr
| "DJNZ" Variable "," Label
| "JP" ( Condition "," )? LabelExpr
| "CALL" LabelExpr
| "preserveIMR" "{" ( Stmt )* ( Label ":" )? "}"

LDExpr ::= "@" Id | Expr | "LABEL" Label
Expr ::= "!" Expr | "(" Expr "&" Expr ")" | "(" Expr "|" Expr ")" | Prim
Prim ::= Id | IntLiteral

LabelExpr ::= Label | "@" Variable
Variable ::= Id

Label ::= Id

ArithLogic1aryOPC ::= "CLR" | "COM" | "DA" | "DEC" | "INC" | "POP" | "PUSH"
| "RL" | "RLC" | "RR" | "RRC" | "SRA" | "SWAP"

ArithLogic2aryOPC ::= "ADC" | "ADD" | "AND" | "CP" | "OR" | "SBC" | "SUB" | "TCM" | "TM" | "XOR"
CPUControl0aryOPC ::= "CLRIMR" | "CLRIRQ" | "EI" | "DI" | "HALT" | "NOP"

| "RCF" | "SCF" | "STOP" | "WDH" | "WDT"

CPUControl1aryOPC ::= "ANDIMR" | "ANDIRQ" | "LDIMR" | "LDIPR" | "LDIRQ"
| "ORIMR" | "ORIRQ" | "TMIMR" | "TMIRQ"

Condition ::= "F" | "C" | "NC" | "Z" | "NZ" | "PL" | "MI" | "OV" | "NOV" | "EQ"
| "NE" | "GE" | "GT" | "LE" | "LT" | "UGE" | "ULE" | "ULT" | "UGT" | "GLE"

Literal ::= IntLiteral | StrLiteral
IntLiteral ::= <HEX_H> | <BIN_B> | <DEC_D>

StrLiteral ::= <STRING_CONSTANT>
Id ::= <IDENTIFIER>

Figure 9: The ZIL grammar

int intrs PROCEDURES HANDLERS

MAIN T4() INTR()
f f f

int x int u inc intrs
int y ld u, 04h iret

START: L2: djnz u, L2 g
cp x, y ret
jp eq, L0 g
call T4

jp L1 T8()
L0: call T8 f
L1: jp START int v

ld v, 08h
g L3: djnz v, L3

ret
g

Figure 10: example.zil

129


