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Abstract stracted byt* andt® may deadlock by waiting to acquire
a pair of locksz; andz, ati¢ and}, while already hold-

We present an effective static deadlock detection algo-ing locks z, and z; at ¢ andi%. Our key idea is to ex-
rithm for Java. Our algorithm uses a novel combination of press the complex property of deadlock freedom for a pair
static analyses each of which approximates a different nec-of threads/locks—a problem that no existing static analysis
essary condition for a deadlock. We have implemented thecan directly solve effectively—in terms of six problems that
algorithm and report upon our experience applying it to a can be solved effectively using existing static analyses:
suite of multi-threaded Java programs. While neither sound
nor complete, our approach is effective in practice, finding
all known deadlocks as well as discovering previously un-
known ones in our benchmarks with few false alarms.

e reachable In some execution of the program, can a
thread abstracted by reachi{ and, after acquiring a
lock atl{, proceed to reaclj while still holding the
lock (and similarly fort®, 1%, 15)?

¢ aliasing In some execution of the program, can a lock
1 Introduction acquired at{ be the same as a lock acquired’atand
similarly for 1g, 1%)?

A deadlock in a shared-memory multi-threaded program
is an unintended condition in which a set of threads blocks
forever because each thread in the set is waiting to acquire
a lock already held by another thread in the set. Today’s
concurrent programs are riddled with deadlocks—a prob- e parallel: In some execution of the program, can dif-
lem further exacerbated by the shift to multicore proces- ferent threads abstracted by andt® simultaneously
sors. For instance, roughly 6500/198,0803%) of the bug reachi andl}, respectively?
reports in Sun’s bug databasehatt p: / / bugs. sun. com )
involve the keyword “deadlock”. Moreover, fixing other ~ ® Non-reentrantIn some execution of the program, can
concurrency problems like races often involves introduc- a thread abstracted b acquire a lock atj it does
ing new synchronization, which in turn can introduce new not already hold and, while holding that lock, proceed

deadlocks. Hencastatic deadlock detectiois valuable for to acquire a lock atf it does not already hold (and
testing and debugging such programs. similarly fort®, 1%, 15)? If the thread acquires the same

Previous static deadlock detection approaches are based  |0ck it already holds then the second lock acquisition
on type systems [3,4], dataflow analyses [1,7,12,13,17,19, cannot cause a deadlock as locksraentrantin Java.
21], or model checking [5, 6, 11] (Section 7). The annota-
tion burden for type-based approaches is often significant
while model checking approaches currently do not scale to
beyond a few thousand lines of code. Approaches based on
dataflow analysis, on the other hand, have been applied to
large programs but are highly imprecise.

In this paper, we present an effective static deadlock de-Each of these six necessary conditions is undecidable.
tection algorithm for Java (Section 3). Conceptually, our Thus, any solution to each of them is necessarily unsound or
algorithm considers every tupl(e®, 1{,15,t°,15,15), where  incomplete. Our algorithm soundly approximates the first
te, t* denote abstract threads atfd 14, (%, 15 denote lock  four conditions using well-known static analyses, namely,
acquisition statements, and checks if any pair of threags ab call-graph analysisa may-alias analysisa thread-escape

e escapingIn some execution of the program, can a lock
acquired at{ be accessible from more than one thread
(and similarly for each ofg, 13, andi$)?

e non-guarded In some execution of the program, can
different threads abstracted by andt’ reachi¢ and
1%, respectively, without holding@eommorlock? If the
two threads already hold a common lock then we call
it a guarding lock(also called ayate lock{10]).



analysis and amay-happen-in-parallel analysigespec- | ass Harness {

tively. Soundly approximating the last two conditions, how static void mai n(S}t1 ring[] args) {
ever, requires aust-alias analysiswhich is much harder 11 Thr\e/g;’d"rluim?f‘;" I{Thfead() {
than may-alias analysis_. We address this prob_lem using_a13: Logger . get Logger (. ..):
common unsound solution: we use our may-alias analysis 1}
_ali e vl.start();
to.masquerade as a must-alias analysis—as a result, we may_. Thread v2 = news Thread() {
fail to report some real deadlocks. void runms() {
We may also report false deadlocks, either due to im- 18: LogManager . manager . addLogger (... );
precision in our approximation of the six conditions, or V2 2;”()_

because the deadlock is prevented by some condition not
considered by our algorithm (Section 6). However, our ap- }
proach is extensible: additional conditions, perhapsifipec  /; snjppet of java/util/l oggi ng/ Logger.j ava
to the language or even the application at hand, can easilycl ass Logger {

be added. In fact, theon-guardecandnon-reentrantcon- ~ 226: static sync™ Logger getlLogger(String name) {
.. . .. . LogManager | m = LogManager. manager;
ditions specifically target Java programs. These idioms, if 5og. Logger | = | m get Logger (name);
not identified, cause any static deadlock detector for Java t if (I ==null) {
; I = new Logger(...);
report overvvhelmmgly many false degdlocks [10, 2_1]. 231 | m addLogger (1)
Our algorithm, while unsound and incomplete, is effec- }
tive in practice. We have implemented it in a toelDE return |;
(Section 4) and applied it to a suite of multi-threaded Java }

programs comprising over 1.5 MLOC. Our approach found

all known deadlocks as well as discovered previously un-// Snippet of java/util/logging/ LogManager. | ava
cl ass LogManager ({

known ones in the suite, with few false alarms (Section 5). static final LogManager manager =
155: new"s LogManager () ;
Hasht abl e |1 oggers = new Hashtabl e();
2 Example 280: sync™ bool ean addLogger (Logger 1) {
String nane = |.get Nane();
. . if (!loggers.put(name, 1))
We first illustrate our approach on a real-world case: return fal se;

the JDK'’s logging facilities from packaggava. util . 4/ ensure |'s parents are instantiated
| oggi ng. These facilities are provided as a library whereas Orsg'ri' hé éname -
our approach uses whole-program static analyses and thugi4: Logger . get Logger ( pnane) ;

requires alosed programi.e., a complete program with a

main method. So the first step in applying our approach to }

anopen progransuch as a library is to build lsarnesghat 420: sync™ Logger get Logger (String name) {
simulates clients exercising the interface of the program. return (Logger) |oggers.get(name);
Currently, we construct harnesses manually. Our algorithm
is not path-sensitive and it ignores the values of primitive
data. Hence, it neither requires a detailed, fully concrete
harness nor test input data.

A snippet of our harness for this example is shown in ««« Stack trace of thread <Harness.java: 11>:
classHar ness in Figure 1. For brevity, we omit access LogManager.addLogger (LogManager.]ava: 280)
qualifiers on classes, methods, and fields. Also, we label - this allocated at <LogManager.java: 155>

. . . . - waiting to lock {<LogManager.java: 155>}
object allocation site$;—h3, synchronized methodsi;— Logger . get Logger (Logger . j ava: 231)
ms3, and threadrun methodsm, and ms. The harness - holds lock {<Logger.java: 0>}
creates and starts two threads which we identify by their Harness$1. run (Harness.j ava: 13)
object allocation site$; and h,. _Threadhl calls StQtIC «ex Stack trace of thread <Harness. | ava: 16>:
method Logger. get Log_ggr, which returns the unique _ Logger . get Logger (Logger . j ava: 226)
logger having the specified name, creating the logger if - waiting to |ock {<Logger.java: 0>}
it does not already exist in the global logger manager. Log'\/fﬂégeri ?ddL?Qgeft(LEQWNgagef-l ava: 31‘5‘)5

. . . - Is allocated at <LogManager.] ava: >
This manager, allocated at'slt@. and storgq in static fleI.d - hol ds I ock {<LogNanager.]j ava: 155>}
LogManager . manager , maintains all existing loggers in Harness$2. run (Har ness. j ava: 18)

a hashtable. On the other hand, thréadcalls instance
methodLogl\/Hnager. addLogger, which adds the Speci_— _ Figure 2. Example deadlock report.
fied logger to the global logger manager’s hashtable if it

return true;

Figure 1. Example Java program.



does not already contain a logger with that name.

Our algorithm reports thecounterexampleshown in (lé?jt\?;g) mv E gﬂ = {mmain, Merars, .}
Figure 2 for this program. It is similar to a thread stack (alloc. site) h e H
dump output by a dynamic tool except that it is produced (list) [hy ... he] € H”
by a static tool and hence may denote a false deadlock.
To improve usability we provide additional details to help (abstractobject) o € O=H'UH'UH’U...
users determine whether the counterexample denotes areal ~ (abstractcontext) c,t,l € C=0xM

deadlock or a false positive. First, although we cannot (Synchronized argument)sync : C —V
provide concrete addresses of threads, we can identify

their allocation sites. For instance, the counterexample i ( oints-tg:?grg::)?:z?s)) C‘:‘: % Eg i g)x 0)
Figure 2 reports a deadlock between threagsand h;, P (thread-escape) esc c (C x V)
identified by allocation sitesHar ness. j ava: 11> and (may-happen-in-parallel) mhp c (Cx CxC)

<Har ness. j ava: 16>, respectively. Likewise, instead
of providing concrete addresses of locks, we provide
abstract locks. An abstract lock is a setadsistract objects
where each abstract object is a site at which the lock
may be allocated. More generally, abstract objects maymany similar ones resulting from parts of the program not
be sequences of multiple such sites, allowing different shown here) contain the same last call in the stack trace of
objects allocated at the same site to be distinguished (Secthreadh,, namely, codeLogger . get Logger ( pnane) at

tion 3.1). In Figure 2,{<LogManager.java: 155>} LogManager . j ava: 314. Indeed, the fix for this deadlock
denotes the lock on the.ogManager object allo- is to replace this code by the inlined body of method
cated at site h3 at LogManager.java: 155 and Logger . get Logger without its synchronization so that it
stored in static field LogManager. manager while does not hold the lock onogger . ¢l ass.

{<Logger. java: 0>} denotes the lock on the implicitly

allocated; ava. I ang. O ass object stored in the implicit 3 Algorithm

static fieldLogger . cl ass.

Finally, each instance method called in each stack trace Our algorithm is based on sound and unsound approxi-
is coupled with an abstract object denoting the site at which y5i0ns of our six necessary conditions (Section 3.2). Ef-
the distinguished hi s variable of that method is allocated. fectively approximating these conditions needs precitie ca

Figure 3. Notation.

In Figure 2, instance methdbgManager . addLogger in graph and points-to information—we use a form of com-
either stack trace is called in a context in whichtitsi s bined call-graph and may-alias analysis calledbject-
variable is allocated at site; atLogManager . j ava: 155. sensitive analysi§l4] (Section 3.1). Finally, to improve

In more complex programs, the same method may be anaygapility, our algorithm generates and groups counter-
lyzed in multiple contexts (Section 3.1). examples to explain the deadlocks it detects (Section 3.3).

It is easy to see that the above counterexample de- Before presenting our algorithm, we summarize our no-
notes a real deadlock: thread waits to acquire the tation (Figure 3). Our algorithm takes as input a closed
lock on LogManager . manager while holding the lock program with a main method denoted,,.;,. We use
on Logger . cl ass, whereas thread, waits to acquire M to denote the set of all method implementations that
the lock on Logger. cl ass while holdlng the lock on may be reachable frommmmn_ M may be a crude
LogManager . manager . over-approximation, e.g., one computed by Class Hier-

Our algorithm reports another counterexample for archy Analysis (CHA). We useng,,; € M to denote
the above program; the only difference is that the top- the start () method of clasg ava. | ang. Thr ead, the
most call in the stack trace of thredad is to method method used to explicitly spawn a thread. We Vst de-

Loghanager . get Logger from call site Logger. note the set of all local variables referenced by methods in
get Logger (Logger.java: 228) instead of to method M. We presume that each methede M may be synchro-
LogManager . addLogger from call site Logger. nized on any one of its arguments, specifiedyne((o, m))

get Logger (Logger.java: 231) . Both methods attempt (o is irrelevant but simplifies our notation), but does not con-
to acquire the same lock, arogManager . manager , and tain any other synchronized blocks in its body. If method
hence both counterexamples denote the same deadlocks not synchronized, then the partial functsymc is not de-

In our experience, our algorithm’s ability to report all fined at(o,m). It is easy to transform any Java program to
possible ways in which the same deadlock may occur satisfy this restriction (Section 4).

helps in determining the best fix for the deadlock. In the  Figure 3 also shows the relations produced by our four
above program, for instance, both counterexamples (andsound whole-program static analyses: call-graph analysis



(cg), may-alias analysispf), thread-escape analysiss¢),
and may-happen-in-parallel analysishp). These relations

are the ones we need to define our deadlock detector; inter{e.g., ([J, LogManager . <cl i ni t >)).

by deeming reachable the contexts of the main method
([}, Har ness. mai n) and of every class initializer method
As the analysis is

nally our analyses track information in greater detail (e.g flow insensitive, whenever a contéxt m) is reachable, ev-
the may-alias analysis tracks the contents of the heap ancry statement in the body af is reachable.

static fields). We outline howt andcg are computed in

The analysis presumes a positive integer associated with

Section 3.1; we reuse the thread-escape analysis and mayeach object allocation site, called thevalue of that site.

happen-in-parallel analysis from earlier work [15].
3.1 k-Object-Sensitive Analysis

k-object-sensitive analysis [14] is asbject sensitive
context sensitiveand flow insensitiveanalysis that com-
putes call-graph and points-to approximations.

The analysis ibject sensitiven that it can represent
different objects allocated at the same site by potentififty
ferent abstract objects. An abstract objeat O is a finite
sequence of object allocation sites dendted:: ... :: h,].
The first allocation sité; is the represented object’s allo-
cation site. The subsequent allocation sites:: ... :: h,]
represent the object denoted by the distinguished vari-
able of the method wherewas allocated—thus, thahi s
object was allocated at,, in a method whosehi s object
is represented by :: ... :: hy], and so on. For static meth-
ods, which lack the hi s variable, we represent théni s
object by[] (which represents no objects).

The analysis is alsaontext sensitivén that it can an-

alyze each method implementation in potentially multiple

abstract contexts. An abstract context C is a pair(o, m)
of an abstract objeetand a methodh such thab abstracts
thet hi s object ofm; as above, for static methods= |].
Finally, the analysis islow insensitiveas it computes
global (instead of per program point) points-to informatio

This, however, does not adversely affect the precisionef th
analysis on local variables as our implementation operate
on a Static Single Assignment (SSA) representation of the

program (Section 4).
The analysis produces the following relations:

e cg C (C x C), the context-sensitive call graph, con-

tains each tupl€(o1,m1), (02, m2)) such that method
my may call methodms, with its t hi s object ab-

stracted byo, when thet hi s object of m; is ab-

stracted by .

e pt C (C x V x 0), the points-to information for local
variables, contains each tuple v, o) such that local
variablev may point to abstract objeet in abstract
contexte.

We llustrate how k-object-sensitive analysis com-

putes these relations for our running example from Fig-
ure 1, concentrating on how object allocation sites and

method call sites are handled.

S

Consider any such site = new”..., whereh € H and

v € V, in a methodm that the analysis deems reach-
able in a contexto,m). Then, the analysis adds tuple
((o,m), v, h®y0) to relationpt, whereh @0 is a finite non-
empty sequence of object allocation sites whose head is
and whose tail comprises at most the 1 most significant
sites ino in order. Our deadlock detection algorithm auto-
matically chooses potentially differektvalues for differ-
ent sites (Section 4). For our running example, however, we
presumet = 1 for all sites. The initially reachable context
([, Har ness. mai n) contains object allocation statements:

vl =new" ... andv2 = new ...
and so the analysis adds the following tuplegtto

(([], Har ness. mai n),v1,[hy])
(([], Har ness. mai n),v2, [hy])

If n(...) is a static method call in a reachable context
(o, m), the analysis adds tupléo, m), ([],n)) to cg. Also,
the analysis henceforth deems contgktn) reachable.

If v.n(...) is an instance method call, then the target
method depends upon the run-time type of the object de-
noted byv. Every((o,m),v,[hy ::...:: hy]) € pt denotes
a target in a potentially different context. The analysissth
adds((o,m), ([hy :: ... it hyp],n’)) to cg, wheren' is the
target of a call ton for an object allocated at sitie;. We
must also add([hy :: ... i hy],n/), this, [hy oo hy))
to pt—this treatment of the hi s argument is key to pre-
cision [14]. Also, the analysis henceforth deems context
([h1 ...t hy],n') reachable. Furthermore,if = mgqpt
(a thread is started), the contéft :: ... :: by, ], n”) is also
deemed reachable, wheng is therun() method of the
class allocated 4t; .

For our running example, since the analysis has deemed
context([], Har ness. mai n) reachable andar ness. mai n
contains call¥1. start () andv2. start (), the analysis
adds the following tuples teg:

(([}, Har ness. mai n), ([h1], Mgtart))
(([], Har ness. mai n), ([h2], Mstart))

and deems contex{$h;], m4) and([h,], ms) of the respec-
tive run() methods reachable.

3.2 Deadlock Computation

Our deadlock detection algorithm represents thre&ds (

The analysis beginsby the abstract context of the thread’s entry method, and



(Reachability) ¢y — co > L iff In: ¢ —™ co > L wWhere:
(1) e—c>0
. LuU{c} if sync(c) defined
n+1 / . n ! __
(2) g =" o> L/ iff e, L: ¢ =" e>L A (c,c2) €Ecg A L —{ I otherwise

(Lock Aliasing) mayAlias(l1,l2) iff Jo: (I1,sync(l1),0) € pt A (l2,sync(l2),0) € pt
(Lock-set Aliasing) mayAlias(Ly, L) iff 31y € L1,ls € Ly : mayAlias(ly, )

Figure 4. Reachability, locks, and aliasing.

lock acquisitions{) by the abstract context of synchronized Our six necessary conditions are formally defined in Sec-
methods; the latter suffices as we presume that methods ddions 3.2.1-3.2.6 below.
not contain any synchronized blocks in their body. We rep-  For our running example, we focus on two potential
resent sets of held lockd.) by sets of abstract contexts of deadlocks:
synchronized methods that acquire the corresponding.locks di = (1,11, 12, t2,12,11)

Figure 4 defines some properties of threads, lock acquisi- dy = (tg, 11,15, t2,12,11)

tions, and lock sets that we derive frgmandcg and use in Each of these tuples denotes a possible deadlock between
the rest of our algorithm. We uge — c;> L todenotethat  apstract threads, andt,. In both tuples, threadh holds
contextc; may be reachable from context along some g |ock atl, (context ([hs], m2)) and is waiting to acquire
path in some thread, and, moreover, a thread executing thag |ock atl, (context([], m1)). Also, in both tuples, thread
path may hold set of locks upon reaching, (we elide>L t; holds a lock at;, but it is waiting to acquire a lock &t in

when the locks are irrelevant). We useyAlias(l1,(2) to tupled; and a lock at; (context([hs], m3)) in tupled,. As

denote that lock acquisitions &t andl; may acquire the e will see,d; andd, pass all six conditions and are thus
same lock. We extenalayAlias to lock sets as usual. contained irfinalDeadlocks.

We use reachability {) to approximate the set of
startable threads and reachable lock acquisitions:

(1>l

3.21 Computation of reachableDeadlock

threads = {z|3n: o € threads, } where For a tuple(t®, 19,12, t*,12,15) to be a deadlock oweach-

threadso = { ([], Mmain) } ablecondition must be satisfied: Can a thread abstracted by
threadsy, 1 = threads, U t reachl and, after acquiring a lock &, proceed to reach
{(o.run) |c € threads,, A — (0, Matart) } o \yhije still holding the lock (and similarly fot?, 12, i5)?
locks = {c|c’ & threads A ¢’ — ¢ A\ syne(c) defined} Our algorithm uses the reachability property (Figure 4)

For our running example, we have: to approximate this condition:
threads = { ([|, Mmain), t1,t2 } reachableDeadlock (%, 1§,14,t%,1%,15) if
|OCkS:{|17|2,|3} taﬁl?Altll_)lgAtbqll{/\lllj_)lg
t1 £ ([hi],ms) t2 2 ([ho], ms) i it |
N N A For our running example, it is easy to see that thread
= ([bm1) 12 = ([hs],m2) 13 = ([hs],ms) t; reached,, thenl; and subsequently, while t, reaches

I, and thenl;. Thus both tuplesd; and d, satisfy

A deadlock six-tuplel = (t,1¢,14,t%,1%,15) denotes a
reachableDeadlock.

deadlock involving a pair of locks, andz, such that thread
t* holds lockz; it acquired at synchronized methédand _ o
is waiting to acquire lock, atlg while threadt® holds lock ~ 3.22 Computation of aliasingDeadlock

z it f_;lcquired at synchronized methédand is waiting 0 Fora tuple {2, 12, 1, t°, 1%, 13) to be a deadlock oualias-
acquire lockz, atls. Conceptually, our deadlock detection g condition must be satisfied: Can a lock acquired¢at
algorithm simply filters all potential deadlocks througir ou be the same as a lock acquiredatand, similarly forig

six necessary conditions, computing the final set of poten-lzl,)? Our algorithm uses theayAlias property (Figure 4) to
tial deadlocks to be reported as: approximate this condition:

finaIDeadeocks = {dld= (tba’ lbf, g, 8", 15) A\ aliasingDeadlock (¢¢,1¢,14,t°,1%,18) if
t*,t” € threads A l‘f,lg,l.l,l-2 € locks A mayAlias(1%,15) A mayAlias(ig. ?)
reachableDeadlock d A aliasingDeadlock d A
escapingDeadlock d A parallelDeadlock d A For our running example, both tuples; and d»
nonReentDeadlock d A nonGrdedDeadlock d } satisfy aliasingDeadlock: predicatesmayAlias(ly,l;) and



mayAlias(l2, 12) hold trivially and hence tuple; satisfies
aliasingDeadlock; additionally, mayAlias(ls, l>) holds be-
cause abstract objefit;] satisfies the two conjuncts in the
definition of mayAlias, and hence tuplel, also satisfies
aliasingDeadlock.

3.23 Computation of escapingDeadlock

The JDK contains many classes (g.gva. util . Vect or)

with synchronized methods. When such objects cannot be
accessed by more than one thread, they cannot participate

in a deadlock. Thus, for a tuple?( ¢, 13, t*, 1%, 15) to be

a deadlock ouescapingcondition must be satisfied: Can a

We approximate these two conditions using a may-
happen-in-parallel analysis that computes relatiohp
which contains each tuplg;, (o, m), t2) such that a thread
abstracted by, may be running in parallel when a thread
abstracted by; reaches methoth in contexto. Our may-
happen-in-parallel analysis is simple and only models the
program’s thread structure, ignoring locks and other kinds
of synchronization (fork-join, barrier, etc). Oyarallel
condition is thus:

parallelDeadlock (t2,1¢,1%,t°,15,15) if
(t2,19,t%) € mhp A (t°,15,1%) € mhp

For our running example, clearly nothing prevents

(and similarly for each ofg, 1%, 15)?

We approximate this condition using a thread-escape

analysis. Our application of this analysis to static deekllo

detection appears novel and we quantify the need for it in

our experiments (Section 5).

parallelDeadlock.

3.25 Computation of nonReentDeadlock

In Java, a thread can re-acquire a lock it already holds.

The thread-escape problem is usually defined as follows: This reentrantlock acquisition cannot cause a deadlock.
“In some execution, is some object allocated at a given siteThus, for a tuplet®, ¢, 1%, t*, 13, 13) to be a deadlock our
h accessible from more than one thread?” To increase precifion-reentrancondition must be satisfied: Can a thread ab-

sion, we refine the notion of thread-escape to trabknan
object escapes. This allows thscapingcondition to elim-

stracted byt* acquire a lock at{ it does not already hold
and, while holding that lock, proceed to acquire a locKat

inate some deadlock reports on objects that later escape tét does not already hold (and similarly fét, 1%, 18)?

other threads. Formally¢, v) must be in relatioresc if ar-
gumentv of abstract context may be accessible from more
than one thread. Owscapingcondition is thus:

escapingDeadlock (t%,1¢,14,t°,1%,15) if
(19,sync(l§)) € esc A (15,sync(lg)) € esc A
(1%,sync(1%)) € esc A (15, sync(1})) € esc

For our running example,.ogManager . manager (I,
I3) andLogger . cl ass (I1), being static fields, clearly es-
cape everywhere, and so both tupkhs and d, satisfy
escapingDeadlock.

3.24 Computation of parallelDeadlock

For a tuple ¢, 1¢, 1, t*, 1%, 15) to be a deadlock oypar-
allel condition must be satisfied: Califferentthreads ab-
stracted by® andt® simultaneouslyeachl§ and}, respec-
tively? The motivation for checking this condition is two-
fold. First, it eliminates each tuplg, *, x, t, x, ) wheret

abstracts at most one thread in any execution. The mos

common example of such an abstract thread]isn,,.qin ),

but it also applies to any thread class allocated at most once
in every execution. The second motivation is that even if

different threads abstracted by and t* may be able to

Soundly identifying reentrant locks requires must-alias
analysis. Must-alias analysis, however, is much harder tha
may-alias analysis. Instead, we use our may-alias analysis
itself to unsoundly check that whenever a thread abstracted
by ¢ acquires a lock af; and, while holding that lock, pro-
ceeds to acquire a lock &t, then the lock it acquires at
or I may(soundness requirgsus) be already held by the
thread—a property approximated kentrant:

reentrant(t, l1,l2) iff 13 =1laV
(VLl : (t —hL>l, = mayAIias({ll, lg}, Ll))) V
(VLQ : (ll — o> Ly — mayAIias({lg},Lg)))

Intuitively, the first conjunct checks that the locks acqdir
atl/, andl, may be the same. The second conjunct checks
that when a thread abstractedtgeaches up to but not in-
cludingiy, the set of lockd.; it holds may contain the lock

it will acquire ati; or ls. The third conjunct checks that
when the thread proceeds frdimand reaches up to but not
including I, the set of locksl., it holds may contain the
jock it will acquire atl>. Next, we use theeentrant predi-
cate to approximate ounon-reentrantondition as follows:

nonReentDeadlock (¢¢,1¢,1%,t%,1%,18) if
—reentrant(t?,1¢,1$) A —reentrant(t®, 1%, 15)

reachl$ and (5, respectively, the thread structure of the The above approximation itself is sound but the approxima-

program may forbid them from doing simultaneously
namely, threads® andt® may be in a “parent-child” rela-
tion, causing$ to happen beforé} in all executions.

tion performed by thesentrant predicate it uses is unsound;
thus, a tuple that does not satisfynReentDeadlock is not
provably deadlock-free.



For our running example, the two locks acquired by ei-

Our algorithm also groups together counterexamples

ther thread do not alias, and no locks are acquired prior tolikely to be symptoms of the same deadlock. For each tuple

the first lock or between the first and second lock in either
thread, so tupled; andd, satisfynonReentDeadlock.

3.26 Computation of nonGrdedDeadlock

One approach to preventing deadlock is to acquire a com-

monguarding lockin all threads that might deadlock. Thus,
for a tuple (¢, 1%, 13, t*, 1%, 15) to be a deadlock oumon-

guardedcondition must be satisfied: Can threads abstracted

by t* andt® reachi§ andl}, respectively, without already
holding acommoriock?
Soundly identifying guarding locks, like reentrant locks,

java.util .l oggi ng. Logvanager).

(t2, 19,14, t*, 1%, 15) in finalDeadlocks, it computes a pair of
lock types(1, 72) as the least upper bounds of the types of
abstract objects in the points-to séls and O, of the two
locks involved in the deadlock where:

O1 = { o] (Iif,sync(if),0) € pt A (13,sync(l3), 0) € pt }
o = {o]|(1$,sync(l§),0) € pt A (1%,sync(1b),0) € pt }

Then, our algorithm groups together the counterexamples
reported for tuples ifinalDeadlocks that have the same pair

of lock types. For our running example, both tuplesand

d> have the same pair of lock typesafa. | ang. d ass,
Hence, our algo-

needs a must-alias analysis. We once again use our maygm groups their counterexamples together.

alias analysis to unsoundly check whether every pair of
threads abstracted by andt® may (soundness requires
mus) hold a common lock whenever they redéhand(®,
respectively—a property approximated dyarded:

guarded(t?,1%,t°,1°) iff VL, Lo :
(t* = 19>Ly A t* —1°>Ly) = mayAlias(Ly, Lo)

Then, we use thguarded predicate to approximate onon-
guardedcondition as follows:

nonGrdedDeadlock (¢, 1¢,1%,t°,15,15) if
— guarded(£?, 19, t, %)

The above approximation itself is sound but the approxima-
tion performed by thguarded predicate it uses is unsound;
thus, a tuple that does not satisfynGrdedDeadlock is not
necessarily deadlock-free.

For our running example, as we saw for
nonReentDeadlock, no locks are acquired prior to the
first lock, so tuplesl; andd, satisfynonGrdedDeadlock.

3.3 Post-Processing

Our algorithm reports @ounterexampldor each tuple
in finalDeadlocks. The counterexample reported for a tuple
(t, 19,13, tb, 1%, 18) in finalDeadlocks consists of a pair of
pathsP; and P, in the context-sensitive call graph denot-
ing possible stack traces of threads abstractetf andt®,
respectively, at the point of the deadlock. Specificafty,
is the shortest path fronf to [ via [{ and, similarly, P,
is the shortest path fromt to 15 via i%. Unlike stack traces
reported by a dynamic tool, however, pafisand P, may

be infeasible; we aid the user in comprehending them by

providing additional details such as the context in which

each instance method along each of those paths is called

4 Implementation

We implemented our deadlock detection algorithm in a
tool called ADE. JADE takes as input a closed Java pro-
gram in bytecode form and, optionally, as source code (the
latter is used only to report source-level counterexamples
It uses the Soot framework [18] to construct a 0-CFA-based
call graph to determine the skf of all methods that may
be reachable from the main method. It rewrites each syn-
chronized blocksynchroni zed (v) { s } asacallto
a fresh static method, synchronized on argumentith
bodys. It then converts the program into Static Single As-
signment (SSA) form to increase the precision of the flow-
insensitivek-object-sensitive analysis.

JADE then uses the results bfobject-sensitive analysis
to perform the thread-escape and may-happen-in-parallel
analyses. All three analyses are expressed in Datalog and
solved usingbddbddb [20], a Binary Decision Diagram
(BDD)-based Datalog solver. BDDs compactly represent
the input relations, such as those representing basic facts
about the program (e.g., functiagnc), as well as the rela-
tions output by these analyses (e, ,mhp, etc.). Finally,
JADE runs our deadlock detection algorithm which is also
expressed in Datalog and computes relafinasiDeadlocks
that approximates the set of tuples satisfying our six neces
sary conditions for a deadlock.

Our implementation ok-object-sensitive analysis is pa-
rameterized by three parameters:

e M C M containing each method that must be ana-
lyzed context-insensitively (i.e., in the lone contgxt

e V C V containing each local variable whose points-to
information must be maintained context-insensitively
(i.e., in the lone context).

and the set of abstract objects of each lock that is synchro-

nized along each of those paths. For our running example
Figure 2 shows the counterexample reported for tdple

e K : H — NT mapping each object allocation site to a
positive integer called its-value (Section 3.1).



For scalability, ourk-object-sensitive analysis uses an iter- The ‘0-CFA and ‘k-obj.’ columns give the size of
ative refinement-based approach: we run all three analysedinalDeadlocks after one and two iterations of our algorithm
and the deadlock detection algorithm in each iteration us- (Section 4)—finalDeadlocks is empty or starts to grow, and
ing increasingly refined\, V, andX. In the first iteration, JADE terminates, after at most two iterations for all our
the cheapest possibkeobject-sensitive analysis is run, us- benchmarks. The first iteration usestabject-sensitive
ingM =M,V = VandK = \h.1, which is effectively analysis that is essentially a 0-CFA-based analysis (@ecti
a 0-CFA-based analysis, affidalDeadlocks is computed.  4). The difference between the two columns, most notable
These deadlocks, however, typically contain many false for hedc, webl ech, j spi der, f t p, anddbcp, is the num-
positives due to the imprecision of 0-CFA-based analysis ber of extra false positives that would be reported by a O-
(Section 5). Hence, instead of being reported, they are usedCFA-based analysis overkaobject-sensitive one. All pre-

to refine parameter$1, V, andC and thek-object-sensitive  vious static deadlock detectors we are aware of employ a O-
analysis is re-run. The refinement algorithm considers eachCFA-based analysis or an even more imprecise CHA-based
tuple infinalDeadlocks as aneffectof imprecision and finds  analysis; moreover, they exclude checking one or more of
all its possiblecausesin terms of M, V, andK (e.g., a our six necessary conditions (Section 7).

certain method must be analyzed context-sensitively, the Figure 5 justifies the need for tlescapingparallel, non-
k-value of a certain site must be increased, etC.). Sincereentrant and non_guardedconditions_we consider the
the other analyses depend upoobject-sensitive analysis,  reachableandaliasingconditions fundamental to our dead-
they are also re-run, and finally the deadlock detection-algo |ock definition. We measure the effectiveness of a particu-
rithm itself is re-run to compute a nefimalDeadlocks. The  |ar condition by switching it off and observing the increase
process terminates eitheffifialDeadlocks is empty or if its in the size offinalDeadlocks. The graphs exclude bench-
size begins to grow; the latter termination criterion preégse  marksnol dyn, raytracer, sor, andcachedj as the size
overwhelming the user with too many reports denoting the of finaiDeadlocks is not noticeably affected for any of them

same deadlock. by switching off any single condition—these benchmarks
are relatively small and have a relatively simple synchro-
5 Experiments nization structure (indicated by the numbers in the ‘sync’

column in Table 1) and gain no significant benefit from any

We evaluated ADE on a suite of multi-threaded Java ©°N€ condition.

programs comprising over 1.5 MLOC. The suite includes ~ The left graph in Figure 5 shows the effectiveness of the
the multi-threaded benchmarks from the Java Grande suiteSoundescapingandparallel conditions. The bars are nor-
(mol dyn, mont ecarl o, andraytracer); from ETH, a malized to the number of deadlocks obtained by checking
Traveling Salesman Problem implementatioay), a suc-  Only the reachableand aliasing conditions. The ‘sound-
cessive over-relaxation benchmasio( ) and a web crawler ~ Deadlocks’ partition of each bar denotes the number of
(hedc); a website download and mirror tookgbl ech); deadlocks obtained by checking all four sound conditions.
a web spider enging §pi der); W3C's web server plat- The‘only Par. (resp. ‘only Esc.’) partition denotes themu
form (ji gsaw); and Apache’s FTP server t(p). The ber of deadlocks that are soundly filtered out exclusively
suite also includes open programs for which we manu- by parallel (resp.escaping. The ‘Esc. or Par.’ partition
ally wrote harnesses: Apache’s database connection pooldenotes the number of deadlocks that are filtered out by

ing library (dbcp); a fast caching library cache4j); both parallel and escaping The right graph in Figure 5
the JDK4 logging facilities I(oggi ng); and JDK4 im- shows the effectiveness of the unsour@h-reentrantand

p|ementations of lists, sets, and maps Wrapped in Syn-non'guardEdconditionS. The bar for each benchmark in

chronized collectionscpl | ections). All our bench-  this graph further partitions the ‘soundDeadlocks’ parti-
marks along with ADE’s deadlocks reports are available at tion of the bar for the corresponding benchmark in the left

Table 1 summarizes ADE’'S results. The ‘LOC’, finalDeadlocks. The ‘Only N.G. (reSp. ‘Only NR,) parti-
‘(jasses” ‘methods" and ‘Syncs’ columns show the num- tion denotes the number of deadlocks that are filtered out
bers of lines of code, classes, methods, and synchronize@Xclusively bynon-guardedresp.non-reentrant Finally,
statements deemed reachable from the main method byhe ‘N.R. or N.G." partition denotes the number of dead-
Soot's 0-CFA-based analysis. The ‘time’ column provides locks that are filtered out by bothon-guardedand non-
the total running time of ADE. The experiments were per- feentrant In summary, we see that each condition is impor-
formed on a 64-bit Linux server with two 2GHz Intel Xeon tant for some benchmark.
guad-core processors and 8GB memonpg), however, is Our algorithm generates a counterexample for each tu-
single-threaded and 32-bit, and hence utilizes only asingl ple infinalDeadlocks reported under column ‘k-obj.” in Ta-
core and at most 4GB memory. ble 1. These counterexamples are grouped by the pair of



benchmark benchmark size time finalDeadlocks | lock type pairs
LOC | classes| methods]| syncs 0-CFA [ k-obj. | total [ real

nol dyn 31,917 63 238 12 | 4m48s 0 0 0 0
nont ecarl o 157,098 509 3447 190 | 7mb53s 0 0 0 0
raytracer 32,576 73 287 16 | 4mbls 0 0 0 0
tsp 154,288 495 3335 189 | 7m48s 0 0 0 0
sor 32,247 57 208 51| 4m48s 0 0 0 0
hedc 160,071 530 3552 | 204 | 21mi15s| 7,552| 2,358 22 19
webl ech 184,098 656 4620 | 238 | 32m09s| 4,969 794 22 19
j spi der 159,494 557 3595 | 205 | 15m34s 725 4 1 0
j i gsaw 154,584 497 3346 184 | 15m23s 23 18 3 3
ftp 180,904 642 4383 | 252 | 35mb55s| 16,259 | 3,020 33 24
dbcp 168,018 536 3602 | 227 | 16m04s 320 16 4 3
cachedj 34,603 72 218 7| 4m43s 0 0 0 0
| oggi ng 167,923 563 3852 | 258 | 9mOils| 4,134| 4,134| 98 94
col l ections 38,961 124 712 55 5m42s 598 598 16 16

Table 1. Experimental results.
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Figure 5. Contributions of individual analyses.

types of the locks involved in the deadlock (Section 3.3). ported in benchmarkol | ect i ons are real and previously
The ‘total’ column in the table denotes the total number known. Strictly speaking, these are not bugs in the JDK col-
of such groups for each benchmark. The last ‘real’ col- lections per se but they indicate ways in which clients could
umn denotes the number of groups which contain at leasterroneously use those collections and trigger deadlocks. W
one real deadlock. We confirmed real deadlocks by creat-includedcol | ect i ons, studied in previous work on dead-
ing concrete test cases that were able to exhibit them. Thdock detection [21], to confirm that our unsound approach
deadlocks irhedc, webl ech, j i gsaw, andftp were not could find all known deadlocks.

in application code but in the JDK'’s logging facilities im-

plemented irj ava. uti | . | oggi ng. Thiswas our primary g [ imitations

motivation for studying the oggi ng benchmark; all the
deadlocks reported for the above benchmarks are also in-
cluded in those reported foroggi ng. Additionally, this
benchmark includes the previously known deadlock that is
explained in our running example (Section 2) but is not trig-
gered by any of the other benchmarks.

Our deadlock detection algorithm is unsound. We be-
gin by noting that it only reports deadlocks between two
threads and two locks. Deadlocks between more than two
threads/locks are possible and it is easy at least in pfacip
to extend our approach to detect such deadlocks. However,
We found three application-level deadlocksdincp of empirical evidence from bug databases of popular open-
which one was previously known. Finally, all deadlocks re- source Java programs, such s p: // bugs. sun. com



and http://issues. apache. org, shows that the vast lock. Jlint lies in the category of lightweight tools thatar
majority of deadlocks involve only two threads/locks (in unsound and incomplete but target common bug patterns
fact, we did not encounter a single deadlock involving more and scale well; another similar tool is LockLint for C [17].
than two threads/locks in perusing the above databases). Von Praun [19] presents an algorithm that performs
Our algorithm detects reentrant locks and guarding locks yyhole-program 0-CFA-based call-graph and may-alias
unsoundly (Sections 3.2.5 and 3.2.6). Two promising fu- analysis of Java programs to compute the static lock-order
ture directions are to check onon-reentrantondition us-  graph and reports cycles in it as possible deadlocks. Un-
ing the form of must-alias analysis used to check finiteestat |ixe our approach, his algorithm can report deadlocks in-
properties [8] and to check onbn-guardedtondition using  yolying more than two threads/locks. Like our approach,
the form of must-alias analysis used to check races [16].  however, his algorithm is unsound and incomplete, and it
The key source of false positives in our experiments is checks necessary conditions for a deadlock that amount to
the relatively imprecise thread-escape analysis used by oUgyr reachable aliasing andnon-reentrantconditions, but
algorithm. Existing work on this analysis was driven pri- not ourparallel, escapingandnon-guardectonditions.
marily by the need to eliminate redundant synchronization Williams et al. [21] present an algorithm that traverses

in Java programs and SUbS?ded in recent years after mOd(.arrt]he given Java program’s call graph bottom-up and builds a
JVMs diminished the run-time speedups achieved by thlslock-order graph summary per method. It then merges the

optlmlzanon. we hopg our appllcatlon Of. this analysis t_o summaries of thread entry methods into a global lock-order
static deadlock detection, and in our earlier work to static o L
. . S . graph by unifying may-aliasing lock nodes together, and
race detection [15], will renew advances in this analysis. oS . 4
. reports cycles in it as potential deadlocks. Unlike our ap-
Our algorithm only detects deadlocks due to lock-based . : . .
o X ..~~~ proach, their algorithm can report deadlocks involving enor
synchronization whereas other kinds of synchronization, : .
. . than two threads/locks. Also, unlike our unsound checking
notably wait-notify in Java, can cause deadlocks as well .
. . of the non-reentrantcondition, they handle reentrant locks
which our algorithm does not report. .
. . S soundly, but only detect them when lock expressions are lo-
Finally, our implementation ignores the effects of na- ; . . ) X
. L " ._cal variables (as opposed to fields). This coupled with their
tive methods and reflection in Java though we mitigate this ; : S
e N . CHA-based call-graph and may-alias analysis (which is less
problem by manually providing “stubs” for common native . .
) : . . _precise than a 0-CFA-based one) and the lack of checking
methods and annotations for statically resolving dynamic . o
. o ; of the parallel, escapingandnon-guardedtonditions leads
class loading sites in the JDK library. R . . . .
to significant imprecision which they address by applying
several unsound heuristics.

Engler and Ashcraft [7] present RacerX, a static tool that
_ _ performs flow-sensitive interprocedural analysis of C pro-
Previous work on deadlock detection for shared-memory o4 ms to compute the static lock-order graph and reports cy-
multi-threaded programs includes static approaches based|es in it as possible deadlocks. Their approach scales well
on type systems, dataflow analysis, or model checking, asyt js highly imprecise and employs heuristics for ranking
well as dynamic approaches. the deadlock reports in decreasing order of likelihood.

Masticola et al. [12, 13] present sound deadlock detec-
tion algorithms for various parallelism and synchroniaati
models mainly in the context of Ada. A key aspect of their
approach imon-concurrency analysighich may be viewed
as the counterpart of our may-happen-in-parallel analysis

7 Redated work

7.1 Type Systems

Boyapati et al. [3, 4] present an ownership type system
for Java that allows programmers to specify a partial order
among locks. The type checker statically ensures that well-
typed programs are deadlock-free. Our approach is unsound
and cannot prove deadlock freedom. On the other hand, it 3 NModel Checking
does not require annotations and scales to larger programs.

7.2 Dataflow Analysis The SPIN model checker has been used to verify dead-
lock freedom for Java programs by translating them into
Artho and Biere [1] augment Jlint, a static dataflow anal- Promela, SPIN’s modeling language [6,11]. Model check-
ysis based bug-finding tool for Java, with checks for severaling based on counterexample-guided abstraction refinement
patterns that could indicate deadlocks. It performsiqoat (  has also been applied to deadlock detection in message
class or per method) analyses and cannot, for instance, inpassing based C programs [5]. A general limitation of
fer that syntactically different expressions or synchzedi model checking approaches is that they presume that the
blocks in methods of different classes may hold the sameinput program has a finite and tractable state-space.



7.4 Dynamic Analysis

While deadlocks actually occurring in executions are

easy to detect, dynamic approaches such as Visual Threads

[9] monitor the order in which locks are held by each thread

in an execution and report cycles in the resulting dynamic

lock-order graph as potential deadlocks that could occar in
different execution. The Goodlock algorithm [2,10] extend

this approach to reduce false positives, namely, it tracks [8]
thread fork/join events and guarding locks that render cy-

cles infeasible; this is akin to checking quarallel andnon-
guardedconditions, respectively. Like any dynamic analy-

sis, these approaches are inherently unsound and cannot bel”l

applied to open programs and without test input data.

8 Conclusion

We have presented a novel static deadlock detection al-
gorithm for Java that uses four static analyses to approxi- [11]
mate six necessary conditions for a deadlock. We have im-

events, and deadlocks.Formal Aspects of Computing
17(4):461-483, 2005.

C. Demartini, R. losif, and R. Sisto. A deadlock detection
tool for concurrent Java programSoftware - Practice and
Experience29(7):577-603, 1999.

D. Engler and K. Ashcraft. RacerX: effective, static detec-
tion of race conditions and deadlocks. MPmoceedings of
the 19th ACM Symposium on Operating Systems Principles
(SOSP’03)pages 237-252, 2003.

S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective typestate verification in the presence of aliasing.
ACM Transactions of Software Engineering Methodo)ogy
17(2), 2008.

J. Harrow. Runtime checking of multithreaded applications
with Visual Threads. IfProceedings of the 7th International
SPIN Workshop on Model Checking and Software Verifica-
tion (SPIN’00) pages 331-342, 2000.

K. Havelund. Using runtime analysis to guide model check-
ing of Java programs. IRroceedings of the 7th Interna-
tional SPIN Workshop on Model Checking and Software Ver-
ification (SPIN’'00) pages 245-264, 2000.

K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java PathFind&TTT 2(4):366-381, 2000.

plemented and applied it to a suite of multi-threaded Java [12] S. Masticola. Static detection of deadlocks in polynomial
programs comprising over 1.5 MLOC. While unsound and
incomplete, our approach is effective in practice, finding [13] S. Masticola and B. Ryder. A model of Ada programs for
all known deadlocks as well as discovering previously un-
known ones in our benchmarks with few false alarms.
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