CalFuzzer: An Extensible Active Testing

Framework for Concurrent Programs
Pallavi Joshi!, Mayur Naik?, Chang-Seo Park!, and Koushik Sen'

1 University of California, Berkeley, USA
{pallavi,parkcs,ksen}@eecs.berkeley.edu
2 Intel Research mayur.naik@intel.com

Abstract. Active testing has recently been introduced to effectively test
concurrent programs. Active testing works in two phases. It first uses
predictive off-the-shelf static or dynamic program analyses to identify
potential concurrency bugs, such as data races, deadlocks, and atomicity
violations. In the second phase, active testing uses the reports from these
predictive analyses to explicitly control the underlying scheduler of the
concurrent program to accurately and quickly discover real concurrency
bugs, if any, with very high probability and little overhead. In this paper,
we present an extensible framework for active testing of Java programs.
The framework currently implements three active testers based on data
races, atomic blocks, and deadlocks.

1 Introduction

Multi-threaded programs often exhibit incorrect behavior due to unintended in-
terference between threads. These concurrency bugs—such as data races and
deadlocks—are often difficult to find using conventional testing techniques be-
cause they typically happen under very specific thread interleavings. Testing
done in a particular environment often fails to come up with interleavings that
could happen in other environments, such as under different system loads. More-
over, testing depends on the underlying operating system or the virtual machine
for thread scheduling—it does not try to explicitly control the thread schedules;
thus, it often ends up executing the same interleaving repeatedly.

Numerous program analysis techniques [2,4, 1] have been developed to pre-
dict concurrency bugs in multi-threaded programs by detecting violations of
commonly used synchronization idioms. For instance, accesses to a memory lo-
cation without holding a common lock are used to predict data races on the loca-
tion, and cycles in the program’s lock order graph are used to predict deadlocks.
However, these techniques often report many false warnings because violations of
commonly used synchronization idioms do not necessarily indicate concurrency
bugs. Manually inspecting these warnings is often tedious and error-prone.

Recently, we have proposed a new technique for finding real bugs in concur-
rent programs, called active testing [7,5,3]. Active testing uses a randomized
thread scheduler to verify if warnings reported by a predictive program anal-
ysis are real bugs. The technique works as follows. Active testing first uses an
existing predictive off-the-shelf static or dynamic analysis, such as Lockset [6,

4], Atomizer [1], or Goodlock [2], to compute potential concurrency bugs. Each
such potential bug is identified by a set of program statements. For example, in
the case of a data race, the set contains two program statements that could po-
tentially race with each other in some execution. For each potential concurrency
bug, active testing runs the given concurrent program under random schedules.
Further, active testing biases the random scheduling by pausing the execution
of any thread when the thread reaches a statement involved in the potential
concurrency bug. After pausing a thread, active testing also checks if a set of
paused threads could exhibit a real concurrency bug. For example, in the case of
a data race, active testing checks if two paused threads are about to access the
same memory location and at least one of them is a write. Thus, active testing
attempts to force the program to take a schedule in which the concurrency bug
actually occurs. In previous work, we have developed active testing algorithms
for detecting real data races, atomicity violations, and deadlocks.

In this paper, we describe an extensible tool for active testing of concurrent
Java programs, called CALFUZZER. CALFUZZER provides a framework for im-
plementing both predictive dynamic analyses and custom schedulers for active
testing. We elaborate upon each of these next.

CALFUZZER provides a framework for implementing various predictive dy-
namic analyses to obtain a set of program statements involved in a potential
concurrency bug. We have implemented three such techniques in CALFUZZER: a
hybrid race detector [4], the Atomizer algorithm [1] for finding potential atom-
icity violations, and iGoodlock [3] which is a more informative variant of the
Goodlock algorithm [2] for detecting potential deadlocks. More generally, CAL-
FUzzER provides an interface and utility classes to enable users to implement
additional such techniques.

CALFUZZER also provides a framework for implementing custom schedulers
for active testing. We call these custom schedulers active checkers. We have
implemented three active checkers in CALFUZZER for detecting real data races,
atomicity violations, and deadlocks. More generally, CALFUZZER allows users to
specify an arbitrary set of program statements in the concurrent program under
test where an active checker should pause. Such statements may be thought of
as “concurrent breakpoints”.

We have applied CALFUZZER to several real-world concurrent Java programs
comprising a total of 600K lines of code and have detected both previously known
and unknown data races, atomicity violations, and deadlocks. CALFUZZER could
easily be extended to detect other kinds of concurrency bugs, such as missed
notifications and atomic set violations.

2 The Active Testing Framework

In this section, we give a high-level description of our active testing frame-
work. We consider a concurrent system composed of a finite set of threads. Given
a concurrent state s, let Enabled(s) denote the set of transitions that are enabled
in the state s. Each thread executes a sequence of transitions and communicates

Algorithm 1 CALFUZZER with user defined analyze and check methods
1: Inputs: the initial state sg and a set of transitions breakpoints
2: paused = ()
3: s:= 5
4: while Enabled(s) # () do

5: t:= arandom transition in Enabled(s) \ paused
6: analyze(?)

7. if t € breakpoints then

8: paused := check(t, paused)

9: end if

10: if t & paused then

11: s := Execute(s,t)

12: end if

13: if paused = Enabled(s) then

14: remove a random element from paused
15: end if

16: end while

17: if Alive(s) # () then

18: print “ERROR: system stall”
19: end if

with other threads through shared objects. We assume that each thread termi-
nates after the execution of a finite number of transitions. A concurrent system
evolves by transitioning from one state to another state. If s is a concurrent state
and ¢ is a transition, then Execute(s,) executes the transition ¢ in state s and
returns the updated state.

The pseudo-code in Algorithm 1 describes the CALFUZZER algorithm. The
algorithm takes an initial state so and a set of transitions (denoting a potential
concurrency bug), called breakpoints, as input. The set of transitions paused is
initialized to the empty set. Starting from the initial state sg, at every state,
CALFUZZER randomly picks a transition enabled at the state and not present
in the set paused. It then calls the user defined method analyze to perform
a user defined dynamic analysis, such as Lockset, Atomizer, or Goodlock. The
analyze method can maintain its own local state; for example, the local state
could maintain locksets and vector clocks in the case of hybrid race detection. If
transition ¢ is in the set breakpoints, CALFUZZER invokes the user defined method
check, which takes ¢ and the paused set as input and returns an updated paused
set. The check method could be used to implement various active checkers. A
typical implementation of the check method could add ¢ to the paused set and
remove some transitions from the paused set. After the invocation of check,
CALFUZZER executes the transition ¢ if it has not been added to the paused
set by the check method. At the end of each iteration, CALFUZZER removes a
random transition from the paused set if all the enabled transitions have been
paused. The algorithm terminates when the system reaches a state that has no

enabled transitions. At termination, if there is at least one thread that is alive,
the algorithm reports a system stall.

Algorithm 2 The check method for active testing of data races
1: Inputs: transition ¢ and a set of transitions paused

2: if 3’ € paused s.t. t and t' access same location and one is a write then

3: print “Real data race between ¢ and "7 (* next resolve race randomly
to check if something could go wrong due to the race *)

4: if random() then

¥ add t to paused and remove t’' from paused

6: end if

7: else

8: add t to paused

9: end if

10: return paused

3 An Example Instantiation of the Framework

CALFUZZER takes two user defined methods: analyze and check. In order to
implement an active testing technique, one needs to define these two methods.
For example, an active testing technique for data races [7] would require us to
implement the hybrid race detection algorithm [4] in the analyze method and
a check method as shown in Algorithm 2. Recall that the check method takes
an enabled transition ¢ in breakpoints and the set of paused transitions, paused,
as input. If there exists a transition ¢’ in paused such that both ¢ and ¢’ access
the same memory location, and one of them is a write to that location, then we
have exhibited a thread schedule which has a real race, namely the race between
transitions ¢ and t’. In principle, we could stop at this point, but we go further
and determine if this race is benign or harmful (e.g. causes an exception). For
this purpose, we randomly decide whether we want ¢’ to execute before t, or vice
versa. If random() returns true, then we let ¢’ to execute before t, by adding ¢
to paused and removing t’ from it. Otherwise, we let ¢ to execute before t’. Since
t' is already paused, we keep it paused, and let ¢ execute.

4 Implementation Details

We have implemented the CALFUZZER active testing framework for Java. CAL-
Fuzzer (available at http://srl.cs.berkeley.edu/~ksen/calfuzzer/) in-
struments Java bytecode using the SOOT compiler framework [8] to insert call-
back functions before or after various synchronization operations and shared
memory accesses.” These callback functions are used to implement various pre-
dictive dynamic analyses and active checkers. Each predictive dynamic analysis

3 We decided to instrument bytecode instead of changing the Java virtual machine or
instrumenting Java source code because Java bytecode changes less frequently than
JVM and Java source may not be available for libraries.

implements an interface called Analysis. The methods of these interface im-
plements the analyze function in Algorithm 1. Likewise, each active checker is
implemented by extending a class called ActiveChecker which implements the
check functions in Algorithm 1. The methods of these two classes are called by
the callback functions.

The framework provides various utility classes, such as VectorClockTracker
and LocksetTracker to compute vector clocks and locksets at runtime. Methods
of these classes are invoked in the various callback functions described above.
These utility classes are used in the hybrid race detection [4] and iGoodlock [3]
algorithms; other user defined dynamic analyses could also use these classes.

The instrumentor of CALFUZZER modifies all bytecode associated with a
Java program including the libraries it uses, except for the classes that are used
to implement CALFUZZER. This is because CALFUZZER runs in the same mem-
ory space as the program under analysis. CALFUZZER cannot track lock acquires
and releases by native code and can therefore go into a deadlock if there are syn-
chronization operations inside uninstrumented classes or native code. To avoid
such scenarios, CALFUZZER runs a low-priority monitor thread that periodically
polls to check if there is any deadlock. If the monitor discovers a deadlock, then
it removes one random transition from the paused set.

CALFUZZER can also go into livelocks. Livelocks happen when all threads of
the program end up in the paused set, except for one thread that does something
in a loop without synchronizing with other threads. We observed such livelocks
in a couple of our benchmarks including moldyn. In the presence of livelocks,
these benchmarks work correctly because the correctness of these benchmarks
assumes that the underlying Java thread scheduler is fair. In order to avoid
livelocks, CALFUZZER creates a monitor thread that periodically removes those
transitions from the paused set that are waiting for a long time.

5 Results

Table 1 summarizes some of the results of running active testing on several
real-world concurrency Java programs comprising a total of 600K lines of code.
Further details are available in [7,5,3]. Note that the bugs reported by the
active checkers (RaceFuzzer, AtomFuzzer, and DeadlockFuzzer) are real, whereas
those reported by the dynamic analyses (hybrid race detector, Atomizer, and
iGoodlock) could be false warnings. Although active testing may not be able
reproduce some real bugs, all previously known real bugs were reproduced, with
the exception of AtomFuzzer (see [5] for a discussion on its limitations).

The runtime overhead of CALFUZZER is from 1.1x to 20x. Normally, the
slowdown is low since only the synchronization points and memory accesses of
interest are instrumented. However, in some cases the slowdown is significant—
this is caused when CALFUZZER pauses redundantly at an event. We use precise
abstractions [3] to distinguish relevant events, which lessens redundant pauses.
6 Conclusion

CALFUZZER provides a framework for implementing predictive dynamic analyses
to find potential concurrency bugs and custom randomized schedulers, called ac-
tive checkers, to automatically verify if they are real bugs. We have implemented

Avg. runtime(s) Number of reported bugs
Benchmark LoC||Norm| RF| DF|AF||[HRD|RF|KR| iG|DF|KR|Az|AF|KR
moldyn 1,352|| 2.07(42.4 -l - 5/ 2| 0| O - - - - -
jspider 10,252|| 4.62(4.81 -1 51 29| 0] -] O O -|28/ 4| O
sor 17,718/ 0.163|0.23 -11.0 8 ol 0] o] -] of 0] O
hedc 25,024| 0.99|1.11 -1 1.8 9 1} 1| 0f 0] - 3] 0] 1
DBCP 27,194|| 0.60 - 1.4 - -l - 2 21 2 - - -
jigsaw 160,388 - - -l || 547| 36| -|283| 29| -[60| 2| 1
Java Swing|337,291|| 4.69 -128.1] - -l - - 1 1 1 - - -

Table 1. Average execution time and number of bugs reported for each checker imple-
mented with the CALFUZZER framework (LoC: Lines of Code, Norm: Uninstrumented
code, RF: RaceFuzzer, DF: DeadlockFuzzer, AF: AtomFuzzer, HRD: Hybrid Race De-
tection, KR: Previously known real bugs, iG: iGoodlock, Az: Atomizer)

three active checkers in this framework for detecting data races, atomicity viola-
tions, and deadlocks. We have shown the effectiveness of these checkers on several
real-world concurrent Java programs comprising a total of 600K lines of code.
We believe CALFUZZER provides a simple extensible framework to implement
other predictive dynamic analyses and active checkers.

Acknowledgements. This research was supported in part by a generous gift
from Intel, Microsoft and Intel funding (award #20080469), matching funding
by U.C. Discovery (award #DIG07-10227), and NSF Grant CNS-0720906.

References

1. C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for multi-
threaded programs. In 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 256-267, 2004.

2. K. Havelund. Using runtime analysis to guide model checking of java programs.
In 7th International SPIN Workshop on Model Checking and Software Verification,
pages 245-264, 2000.

3. P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized dynamic program analysis
technique for detecting real deadlocks. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’09) (to appear), 2009.

4. R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
167-178. ACM, 2003.

5. C.-S. Park and K. Sen. Randomized active atomicity violation detection in concur-
rent programs. In 16th ACM SIGSOFT International Symposium on Foundations
of software engineering, pages 135-145. ACM, 2008.

6. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. FEraser:
A dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst., 15(4):391-411, 1997.

7. K. Sen. Race directed random testing of concurrent programs. In PLDI ’08: Pro-
ceedings of the 2008 ACM SIGPLAN conference on Programming language design
and implementation, pages 11-21, New York, NY, USA, 2008. ACM.

8. R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java optimization framework. In CASCON 1999, pages 125-135, 1999.

