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Abstract

Sample re-weighting strategies provide a promising mecha-
nism to deal with imperfect training data in machine learning,
such as noisily labeled or class-imbalanced data. One such
strategy involves formulating a bi-level optimization problem
called the meta re-weighting problem, whose goal is to opti-
mize performance on a small set of perfect pivotal samples,
called meta samples. Many approaches have been proposed
to efficiently solve this problem. However, all of them assume
that a perfect meta sample set is already provided while we
observe that the selections of meta sample set is performance-
critical. In this paper, we study how to learn to identify such
a meta sample set from a large, imperfect training set, that
is subsequently cleaned and used to optimize performance in
the meta re-weighting setting. We propose a learning frame-
work which reduces the meta samples selection problem to
a weighted K-means clustering problem through rigorously
theoretical analysis. We propose two clustering methods
within our learning framework, Representation-based clus-
tering method (RBC) and Gradient-based clustering method
(GBC), for balancing performance and computational effi-
ciency. Empirical studies demonstrate the performance ad-
vantage of our methods over various baseline methods.

Introduction
Recently, with the advent of the data-centric AI era [Mi-
randa 2021, Polyzotis and Zaharia 2021, Hajij et al. 2021],
there is an increasing concern about the quality of data for
training neural network models. How to construct and main-
tain a high-quality data set is extremely challenging due to
the existence of various defects in real-life data, e.g., im-
perfect labels or imbalanced distributions across classes. To
tackle these issues, various techniques have been explored.
One such example is the sample re-weighting strategy [Shu
et al. 2019, Ren et al. 2018, Hu et al. 2019, Jiang et al. 2018,
Chang, Learned-Miller, and McCallum 2017], which targets
jointly learning to obtain re-weighted training samples and
training neural nets upon them.

One promising strategy for learning to re-weight train-
ing samples is to leverage the framework of meta learning
[Hospedales et al. 2021, Andrychowicz et al. 2016, Thrun
and Pratt 2012] by formulating this problem as a bi-level
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optimization problem [Shu et al. 2019, Ren et al. 2018,
Hu et al. 2019]. In this approach, the weights of training
samples are learned so that the performance of the models
learned on the re-weighted training samples is maximized
on a small set of perfect samples—referred to as meta sam-
ples. Existing works mainly focus on designing computa-
tionally efficient algorithms for solving this bi-level opti-
mization problem. For example, [Shu et al. 2019] propose
a meta re-weighting algorithm which alternates between up-
dates to the model parameters and the sample weights. These
algorithms, however, rely on the assumption that the meta
sample set is given, and they construct this set by random
sampling in their empirical studies. However, as the toy ex-
ample in Figure 1 shows, randomly selected meta samples
may perform worse than carefully selected ones by using
our methods (62.9% vs. 87.1% on test accuracy), which we
further verify in Section “Experiments”.

In this paper, we study how to learn to identify a set of
meta samples from a large, imperfect training set such that
the meta re-weighting performance is optimized. Specifi-
cally, we propose a framework which reduces the problem
of selecting such meta samples to a weighted K-means clus-
tering problem through rigorous theoretical analysis. This
derivation basically transforms the formula for iteratively
updating sample weights from the meta re-weighting algo-
rithm into a weighted K-means clustering objective func-
tion. We can show that optimizing this objective function can
aid in effectively distinguishing high-quality training sam-
ples from low-quality ones by giving them more confident
sample weights (i.e. weights close to 0 or 1). This objec-
tive function, however, requires the gradients of each indi-
vidual training sample as input, which is computationally
expensive. To facilitate efficient evaluation of this objec-
tive function, we propose two methods, i.e. Representation-
based clustering method (RBC) and Gradient-based cluster-
ing method (GBC), which balance performance with com-
putational efficiency. Specifically, by assuming that the gra-
dients of the bottom layers of the neural nets are insignifi-
cant, RBC only utilizes the gradient of the last layer, which
is efficiently calculated through feed-forward passes. In con-
trast, GBC samples model parameters such that the estima-
tion of the objective function in the above K-means problem
is unbiased. Due to the necessity of explicitly (but partially)
computing sample-wise gradients, GBC is slower than RBC,
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RBC (73.3% Acc.) GBC (92.0% Acc.) Random (56.3% Acc.)

Figure 1: We produce a toy two-dimensional dataset by drawing 1000 samples from a mixture of four Gaussian distributions
over two variables where the distributions are centered at the four vertices of the 2-dimensional hypercube. The upper two
distributions are labeled green while the lower two are labeled red and 1% of the labels are flipped to introduce a small amount
of noise to the ground truth. We visualize all the samples with their ground-truth labels in this figure. This toy dataset is then
divided into 600 training, 240 testing, and 160 validation samples using a random partition, and a randomly selected 60% of the
training labels are flipped. To learn a robust model (which is a neural network with two hidden layers in this example) on this
noisy training set, we employ the meta-reweighting algorithm with 6 cleaned meta samples. We then show the selected meta
samples (outlined with stars) and the learned decision boundaries (shaded regions) from our methods and the random selection
method. The expected classifier, i.e., the learned classifier (black dotted line) on the “clean” training set is also visualized. By
examining the learned classifier from these methods, we see that the one learned by random selections deviates farther from the
expected classifier, thus leading to worse prediction performance than our methods (56.3% vs. 92.0%).

but can lead to better model performance in most cases.
We further explore whether our methods select reason-

able meta samples for re-weighting noisily labeled data and
class-imbalanced data by conducting experiments on re-
weighting MNIST, CIFAR, and Imagenet-10 datasets in the
presence of noisy labels or imbalanced class distribution.
The results show that with the same meta re-weighting algo-
rithm, our methods outperform other sample selection strate-
gies in most cases.

Related Work
Sample re-weighting The problem of re-weighting train-
ing samples for a neural network model has been exten-
sively studied in the literature. Sample re-weighting can be
beneficial for constructing robust neural network models in
the presence of many defects in training data, such as cor-
rupted labels [Han et al. 2018, Ren et al. 2018, Shu et al.
2019], biased distributions [Khan et al. 2017, Dong, Gong,
and Zhu 2017], low cardinalities [Hu et al. 2019] and adver-
sarial attacks [Holtz, Weng, and Mishne 2021]. Other than
solving this problem within the meta-learning framework
(e.g., [Shu et al. 2019, Ren et al. 2018, Hu et al. 2019]),
various strategies have been proposed for deriving sample
weights. For example, in [Wang, Kucukelbir, and Blei 2017],
the sample weights are modeled as a Bayesian latent vari-
able and inferred through probabilistic models. In [Jiang
et al. 2018], a mentor network is designed to derive the sam-
ple weights such that the target model does not overfit on
samples with noisy labels, which falls within the curriculum
learning [Bengio et al. 2009] framework. In [Kumar, Packer,
and Koller 2010], the weights of training samples are de-
termined by their training loss during the training process.
However, as [Shu et al. 2019] suggests, these re-weighting

techniques all perform worse than the meta re-weighting al-
gorithm in the presence of label noise and distribution im-
balance in training data.
Data efficiency As mentioned in Section “Introduction”,
it is critical to obtain large amounts of high-quality training
samples for deep neural nets. However, this can be expensive
and time consuming since labeling typically requires non-
trivial work from human annotators, especially in scientific
domains (see e.g, [Karimi et al. 2020, Irvin et al. 2019]).
High labeling cost is thus a strong motivator for studies on
various label efficiency techniques, e.g., active learning (see
a survey in [Ren et al. 2021] and some recent works [Mirza-
soleiman, Bilmes, and Leskovec 2020]), semi-supervised
learning (see [Van Engelen and Hoos 2020]), and weakly-
supervised learning (see Snorkel [Ratner et al. 2017]) in the
past few years. All of these studies aim at minimizing hu-
man labeling effort while maintaining relatively high model
performance. Note that for the meta re-weighting problem,
the construction of perfect meta samples also requires hu-
man labeling effort when label noise exists. Therefore, our
framework shares the same spirit as the traditional label ef-
ficiency research.
Data valuation In the literature, other than active learn-
ing, there exists many techniques to quantify the impor-
tance of individual samples, e.g., influence function [Koh
and Liang 2017] and its variants [Wu, Weimer, and David-
son 2021], Glister [Killamsetty et al. 2021], HOST-CP [Das
et al. 2021], TracIn [Pruthi et al. 2020], DVRL [Yoon, Arik,
and Pfister 2020] and Data Shapley value [Ghorbani and Zou
2019]. However, among these methods, Data Shapley value
[Ghorbani and Zou 2019] is very computationally expensive
while others rely on the assumption that a set of “clean” val-
idation samples (or meta samples) are given, which is thus



not suitable for our framework (we have more detailed dis-
cussions on Data Shapley value and its extensions in Ap-
pendix “Appendix: more related work”). We therefore do
not include these solutions as baseline methods.

Background: the meta re-weighting algorithm
In this section, we present some necessary details on the
meta re-weighting algorithm from [Shu et al. 2019].

Suppose the meta re-weighting algorithm is conducted on
a large imperfect training set, Dtrain = {(xj , yj)}Nj=1 and a
small perfect meta set Dmeta = {(xmeta,i, ymeta,i)}Mi=1. Imag-
ine that we want to learn a model parameterized by Θ, and
the loss evaluated on a training sample (xj , yj) and a meta
sample (xmeta,i, ymeta,i) is denoted as fj(Θ) and fmeta,i(Θ)
respectively. We further denote the weight of each training
sample j as wj (between 0 and 1). Following [Shu et al.
2019], the meta re-weighting algorithm jointly learns the
weights W = {wj}Nj=1 and the model parameter Θ by solv-
ing the following bi-level optimization problem:

min
W

1

M

∑M

i=1
fmeta,i(Θ

∗(W)),

s.t. Θ∗(W) = argminΘ

1

N

∑N

j=1
wjfj(Θ),

(1)

in which Θ∗(W) denotes the learned model parameters on
the training set weighted by W. This problem can be effi-
ciently solved by the meta re-weighting algorithm proposed
by [Shu et al. 2019], which can be abstracted with the fol-
lowing formulas 1:

Meta re-weighting:

Θ̂(Wt) = Θt −
αt

N

∑N

j=1
wj,t∇Θfj(Θ)|Θ=Θt

wj,t+1 = wj,t −
ηt
M

∑M

i=1
∇wjfmeta,i(Θ̂(Wt))|W=Wt

Θt+1 = Θt −
αt

N
·
∑N

j=1
wj,t+1∇Θfj(Θ)|Θ=Θt

(2)

(3)

(4)

The above formulas show how to update the model pa-
rameter and sample weights at the tth iteration. Among
these formulas, Equation (2) tries to update the model
parameter Θt given the current sample weights Wt =
[w1,t, w2,t, . . . , wN,t], which is then employed for updating
the sample weights in Equation (3). Afterwards, in Equa-
tion (4), the updated sample weights, Wt+1, are inserted into
Equation (2) to obtain the model parameters for the next it-
eration, i.e., Θt+1. This process is then repeated until the
convergence.

1Note that these formulas are slightly different from the ones
in [Shu et al. 2019] since the sample weights in [Shu et al. 2019]
are produced by another neural net. But its learning algorithm is
also applicable to the case where the sample weights are updated
directly. We therefore start from this simple case. Further note that
[Ren et al. 2018] and [Hu et al. 2019] solve Equation (1) in a sim-
ilar manner. Therefore, although we develop our methods mostly
based on [Shu et al. 2019], they are also potentially applicable to
the solutions in [Ren et al. 2018] and [Hu et al. 2019]. We therefore
discuss how it can be extended to [Ren et al. 2018], in Appendix
“Generalization of our methods for [Ren et al. 2018]”

Method
Unlike [Shu et al. 2019, Hu et al. 2019, Ren et al. 2018]
where the meta set Dmeta is assumed to be given, our goal
is to select this set from Dtrain. Once this meta set is se-
lected and possibly cleaned by humans (when noisy la-
bels exist), the meta re-weighting algorithm can be used.
We hope that the resulting model performance is optimized
with respect to the sample selection strategy. We observe
that one critical property of such Dmeta is that it needs to
produce “significant” cumulative gradient updates (rather
than near-zero gradient) in Equation (3) for every training
sample j(= 1, 2, . . . , N) and every iteration t in the meta
re-weighting algorithm. This can thus guarantee that good
training samples are efficiently up-weighted while bad train-
ing samples are efficiently down-weighted. Therefore, our
goal is to maximize the magnitude of the sum of the gra-
dient in Equation (3) evaluated for each training sample j,
across all iterations:

max
Dmeta

∣∣∣∣∑Θ̂(Wt)
1/M ·

∑M

i=1
∇wjfmeta,i(Θ̂(Wt))

∣∣∣∣ ,
for all j = (1, 2, . . . , N),

(5)

which we rewrite as follows according to [Shu et al. 2019]
(the constant coefficients are ignored below):

max
Dmeta

∣∣∣∣∣∣
∑

Θ̂(Wt),Θt

M∑
i=1

〈∇Θfmeta,i(Θ)|Θ=Θ̂(Wt),∇Θfj(Θ)|Θ=Θt〉

∣∣∣∣∣∣ ,
(6)

which thus represents the Frobenius inner product of the
gradient of the loss between the meta sample i and the train-
ing sample j. If the above inner product is large enough, the
weight of this sample will be significantly updated. Since we
want to maximize the updates of the weight of each training
sample, we sum up the above formula over all training sam-
ples, leading to:

max
Dmeta

N∑
j=1

∣∣∣∣∣∣
∑

Θ̂(Wt),Θt

M∑
i=1

〈∇Θfmeta,i(Θ)|Θ=Θ̂(Wt),∇Θfj(Θ)|Θ=Θt〉

∣∣∣∣∣∣,
which can be further approximated as follows by leverag-

ing the fact that Θ̂(Wt), is very close to Θt:

max
Dmeta

N∑
j=1

∣∣∣∣∣
M∑
i=1

∑
Θt

〈∇Θfmeta,i(Θ)|Θ=Θt ,∇Θfj(Θ)|Θ=Θt〉

∣∣∣∣∣ (7)

Equation (7) can be further rewritten as the following
Meta-Sample Search Objective (MSSO):

MSSO := Equation (7) = max
Dmeta

N∑
j=1

∣∣∣∣∣
M∑
i=1

〈Gj , Gmeta,i〉

∣∣∣∣∣ , (8)

in which, we define Gj =
[
G

(1)
j , . . . , G

(t)
j , . . .

]
and

Gmeta,i =
[
G

(1)
meta,i, . . . , G

(t)
meta,i, . . .

]
as block matri-

ces formed by concatenating the gradients, G(t)
meta,i :=

∇Θfmeta,i(Θ)|Θ=Θt
and G

(t)
j := ∇Θfj(Θ)|Θ=Θt

, from
each iteration into one matrix.



Note that the meta sample set, Dmeta, needs to be selected
from the training set, Dtrain. Thus, explicitly solving MSSO
is computationally intractable since there are

(
N
M

)
possible

selections of a meta set of size M . In what follows, we
present an approximation to MSSO with rigorous guaran-
tees, which can be effectively solved with a weighted K-
means clustering algorithm.

Approximating MSSO
We show that with reasonable assumptions, solving MSSO
is approximately equivalent to searching for a set of cluster
centroids, C = {Ci}Mi=1, i.e.,:

MSSO ≈ max
C

∑N

j=1

∣∣∣∑M

i=1
〈Gj , Ci〉

∣∣∣
which can be approximated by solving the following M -

clustering objective (MCO)

MSSO ≈ MCO := max
C

∑N

j=1

∑M

i=1
|〈Gj , Ci〉| , (9)

where MSSO is approximated by moving the absolute
value to the inside of the sum. The approximation above can
be justified by the following Theorem.
Theorem 1. Suppose that for each sample i, the positive
terms in the innermost sum of Equation (8) are dominant
over the negative terms or vice versa, i.e.:

|
∑
〈Gj ,Ci〉>0〈Gj , Ci〉|

|
∑
〈Gj ,Ci〉<0〈Gj , Ci〉|

> D � 1,

or
|
∑
〈Gj ,Ci〉<0〈Gj , Ci〉|

|
∑
〈Gj ,Ci〉>0〈Gj , Ci〉|

> D � 1, for all i,

then solving MCO is a D−1
D+1 -approximation to solving

MSSO, i.e., D−1
D+1 ≤

MSSO
MCO ≤ 1

The proof is included in Appendix “Proof of Theorem
1”. Intuitively, we can see that our approximation is per-
fect when each inner product in (8) is positive, and we have
less of a guarantee of the effectiveness when a cluster is less
homogeneous in the sign of the inner products between its
members and centroid. Indeed, we found that the assump-
tions in the above theorem hold in most cases (see Appendix
“Supplemental experiments”). Therefore, due to the close-
ness of MSSO and MCO, we focus on solving MCO rather
than MSSO.

Solving MCO
MCO resembles the K-means clustering objective, so it is
promising to solve it with the K-means clustering algorithm.
As the first step toward this, MCO is transformed to the fol-
lowing form:

MCO = max
C

N∑
j=1

‖Gj‖
M∑
i=1

‖Ci‖ · |cosine(Gj , Ci)|, (10)

which can be regarded as a weighted K-means clustering
objective function. Specifically, the norm of each Ci is used
for re-weighting the cosine similarity between each train-
ing sample j and each cluster centroid i, which is followed

by re-weighting the overall similarity of each training sam-
ple j to all cluster centroids with the norm of Gj . Further
details on how to tailor the vanilla K-means clustering al-
gorithm to solve MCO are presented in Appendix “Supple-
mental materials on the weighted K-means algorithm”.
After C = {Ci}Mi=1 is identified by this weighted K-means
algorithm, the samples closest to each cluster centroid are
returned as the selected meta samples, Dmeta

2.
Note that in Equation (9), collecting all Gj is very ex-

pensive. This is because j is over all training samples which
can be very large, and Gj depends on all Θt, i.e., the model
parameters at all iterations (see Equation (8)).

To address the above efficiency concerns, we firstly
propose two methods, i.e., Representation-based cluster-
ing method (RBC) and Gradient-based clustering method
(GBC) in Section “Representation-based clustering
method (RBC)” and Section “Gradient-based clustering
method (GBC)” respectively, for addressing the first con-
cern. We further discuss how to sample from all Θt(t =
1, 2, . . . ) in Section “Sampling model parameters from
history” to handle the second concern.

Representation-based clustering method (RBC) RBC is
built upon the assumption that the gradient of the model pa-
rameters on the bottom layers (i.e. those layers closer to the
input) is less significant than the ones in the last layer. Due
to the vanishing gradient problem, this assumption usually
holds in practice. As a consequence, we only consider the
gradients from the last layer in Equation (9), leading to the
following approximations on Gj :

Gj = Aj(Θt)x̃j(Θt)
>, (11)

in which x̃j(Θt) represents the input to the last linear layer
in the neural network model produced by the training sample
j, while Aj(Θt) is defined as follows:

Aj(Θt) = softmax(Θ
(−1)
t x̃j(Θt))− onehot(yj) (12)

in which Θ
(−1)
t represents the model parameters in the last

layer. The detailed derivation of Equation (11) is included in
Appendix “Derivation of Equation (11)”. Equation (11)-
(12) shows that to obtain Gj , only forward passes on the
models are needed, which makes this method very efficient.

Gradient-based clustering method (GBC) Unlike RBC,
GBC is applicable to general cases where the gradients gen-
erated by the bottom neural layers may be significant. To
facilitate efficient evaluations of MCO, we importance sam-
ple the network layers from the model, such that we can ob-
tain an unbiased estimation of Equation (9). ThenGj is con-
structed by concatenating the gradients calculated in those
sampled layers.

Specifically, first of all, the blue part of Equation (7)
(which is the essential part of Equation (9)) can be rewritten
in terms of a sum over the model parameters at each layer
l ∈ [1, 2, . . . , L], i.e.:
〈∇Θfmeta,i(Θ)|Θ=Θt ,∇Θfj(Θ)|Θ=Θt〉

=
[∑L

l=1
〈∇Θ(l)fmeta,i(Θ)),∇Θ(l)fj(Θ))〉

]
Θ=Θt

,
(13)

2We notice that other strategies, e.g., [Auvolat et al. 2015], can
be employed to solve MCO, which, however, do not perform well
and are thus ignored.



Figure 2: Overview of our methods, RBC and GBC. We use→ (green colored arrow) and→ (purple colored arrow) to denote
the data flow of RBC and GBC respectively. Specifically, at each sampled time step tk, for each input training sample (xj , yj),
RBC combines its feature vector from the input to the last layer of the model, x̃j , and the coefficient, Aj(Θtk) (defined in
Equation (12)) while GBC concatenate the gradients from the sampled layers in the model. We then concatenate the above
calculated results from all the time steps t1, t2, . . . to compose the input to weighted K-means clustering algorithm, Gj (see the
red dotted box), which is then used for determining the meta samples.

in which Θ(l) represents the model parameters at the lth
layer. Then the above formula could be rewritten as follows:

Equation (13)

= A ·

[
L∑

l=1

A(l)

A
〈∇Θ(l)fmeta,i(Θ)√

A(l)
,
∇Θ(l)fj(Θ)√

A(l)
〉

]
Θ=Θt

,
(14)

in which, A(l) = ‖ 1
N

∑N
j=1∇Θ(l)fj(Θ)‖2F and A =∑L

l=1A
(l)

Then we can conduct importance sampling (with replace-
ment) on the L innermost sums in Equation (14) for several
times (say 5 times)3, in which the probability of selecting the
lth(l = 1, 2, . . . , L) term is A(l)/A. This leads to an unbi-
ased estimation of Equation (14) and significant speed-ups.

Sampling model parameters from history It is worth
noting that Θt is unknown before we obtain all meta sam-
ples (see Equation (2)-(4)), but it is essential for determining
the meta samples (see Equation (7)). Therefore, we propose
to cache the model parameter Θ̃t(t = 1, . . . , T ) during the
training process without any available meta samples, which
is regarded as an approximation of Θt.

In addition, as mentioned above, Gj depends on the
model parameters from all the time steps, which is thus very
expensive to evaluate. We uniformly sample several time
steps, instead of using all Θ̃t, to get an unbiased estimation
of MCO.

In the end, we visually present both RBC and GBC
equipped with this sampling technique in Figure 2 and in-
clude their pseudo-code in Algorithm 3 in Appendix “De-
tails of the adapted K-means algorithm”.

Applications
We demonstrate the effectiveness of our methods for two
applications, i.e., re-weighting a training set with noisy la-

3we conduct the importance sampling once for all the samples
so that the dimension of Gj is the same among all the samples.
Although it is not rigorously correct, the empirical studies show
that this approximation could achieve good performance

bels and re-weighting an imbalanced training set. In what
follows, we discussed how to tailor RBC and GBC to these
two applications.

Re-weighting a training set with noisy labels

To re-weight a noisily labeled training set, we can select a
subset of meta samples from the training set and obtain their
clean labels from human annotators. Note that for RBC and
GBC, the evaluation of the gradients depend on the clean
labels of the meta samples while these clean labels are ob-
tained from human annotators after RBC or GBC is invoked.
To address this chicken or the egg issue, we observe that if
the loss function is the cross-entropy loss, then the sample-
wise gradient, ∇Θfj(Θ), can be broken into two parts, the
label-free part and the label-dependent part. Due to the un-
availability of the clean labels, we therefore only leverage
the label-free part as the input to RBC and GBC.

Although we only use the label-free part, in Appendix
“Analysis of the gradient with and without label-free
part” (see Theorem 2), we theoretically analyze under what
conditions the label-dependent part is insignificant to deter-
mining which cluster each training sample belongs to af-
ter the weighted k-means clustering algorithm is invoked.
Those conditions are satisfied by a large portion of the train-
ing samples through our empirical studies (see Appendix
“Supplemental experiments”), thus justifying the effec-
tiveness of discarding the label-dependent part.

Re-weighting a training set with a class-imbalance

As indicated by [Shu et al. 2019], the meta re-weighting
algorithm can also be leveraged for re-weighting class-
imbalanced training sets. Unlike the case where the labels
are noisy, we assume clean labels in the class-imbalanced
training set. As a consequence, we evaluate the sample-
wise gradient∇Θfj(Θ) as a whole rather than removing the
label-dependent part from it.
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Figure 3: Test performance on MNIST dataset with varied
noisy rate

Experiments
We demonstrate the effectiveness of our methods for training
deep neural nets on image classification datasets, MNIST
[Deng 2012], CIFAR-10 [Krizhevsky, Hinton et al. 2009]
and CIFAR-100 [Krizhevsky, Hinton et al. 2009], and
Imagenet-10 [Russakovsky et al. 2015]4. By following [Shu
et al. 2019] and [Ren et al. 2018], we consider the occur-
rence of noisy labels and class imbalance respectively on
the training set. All the code is publicly available5.

Experimental set-up
For the MNIST dataset, we train a LeNet model [LeCun
et al. 1998] and for CIFAR-10, CIFAR-100 and Imagenet-
10 dataset, we train a ResNet-34 model [He et al. 2016]. All
the hyper-paremters are reported in Appendix “Supplemen-
tal experiments”.

Noisy label experiments
We first study how our methods perform in the presence of
two types of label noise, i.e., uniform noise and adversarial
noise:
• uniform noise: all labels can be uniformly flipped at ran-

dom to any other label with probability p/100, in which p
is a percent specified by users. This has been explored in
[Shu et al. 2019] and [Ren et al. 2018];

• adversarial noise: the labels for a subset of samples, cho-
sen at random, are determinisitcally mapped to another la-
bel (e.g., selected samples with label 0 are all given label
1). This is meant to simulate an extreme case where the
labels are adversarially flipped and has been explored in
some prior works (e.g., [Li et al. 2022])
We present the results with one fixed noise rate, p = 60,

for both types of noise on MNIST, CIFAR and Imagenet-10
and the effect of varied p is also explored on the MNIST
dataset (see Figure 3). Surprisingly, we found that 60% uni-
form noise only reduces the model accuracy on MNIST
by a few percent. We therefore only report the results on
MNIST with adversarial noise. Throughout this experiment,

4Imagenet-10 is a subset of ImageNet and produced by follow-
ing [Li et al. 2021]

5https://github.com/thuwuyinjun/meta sample selections

we compare RBC and GBC against the following baseline
methods:
• Random selection (Random): We uniformly at random

select meta samples from the training set;
• Fine-tuning: We fine-tune the model using only the se-

lected meta samples, selected by Random;
• Active learning: We select meta samples using 1) Un-

certainty based selection (Uncertain) [Lewis and Gale
1994] by selecting the most uncertain training samples, 2)
Certainty based selection (Certain) by selecting the most
certain training samples and 3) two state-of-the-art active
learning solutions, Task-Aware Variational Adversarial
Active Learning (TA-VAAL) [Kim et al. 2021] and craige
(craige) [Mirzasoleiman, Bilmes, and Leskovec 2020]

• RBC-k: We use the original K-means clustering algo-
rithm rather than the weighted version proposed in Section
“Solving MCO” to determine the meta samples in RBC.
Note that for both of our methods and the above baseline

methods, the labels of the selected meta samples are cleaned
by human annotators, which is simulated by replacing their
noisy labels with ground-truth labels. This thus justifies the
use of the perfectly labeled benchmark datasets (rather than
real datasets with unreliable labels). As a result, for fair
comparison, our methods and the above baseline methods
share the same labeling budget, which is set as 20, 50, 200
and 50 for MNIST, CIFAR-10, CIFAR-100 and Imagenet-
10 respectively (which includes the labeled samples in the
pre-training phase). We pre-train the models by running the
meta re-weighting algorithm with small amount of randomly
selected meta samples (10 for MNIST, 10 for CIFAR-10,
50 for CIFAR-100 and 10 for Imagenet-10) since selecting
those meta samples one time leads to sub-optimal perfor-
mance6, which is applied to all the baseline methods for fair
comparison.
Overall performance We present the test accuracy in Table
17 after running the meta re-weighting algorithm with meta
samples selected by different methods. As indicated by this
table, the clustering-based methods, RBC-k, RBC and GBC
can significantly outperform other methods in most cases
and the performance gains are up to 6% (see the perfor-
mance difference between GBC and Certain in column “ad-
versarial” of CIFAR-100 dataset). Furthermore, RBC con-
sistently outperforms RBC-K, which suggests the weighted
K-means algorithm is capable of identifying a better set of
meta samples than the original K-means algorithm.
Efficiency of RBC We also observe a trade-off between
performance and speed when comparing GBC and RBC.
According to Table 1, GBC performs better than RBC in
most cases while the former is slower than the latter (2.5
hours VS 3 mins) to construct Gj . Note that the running
time of RBC is negligible in comparison to the running time
of the meta re-weighting algorithm, which is around 4 mins
per epoch and there are hundreds of epochs in total.
Robustness against varied noise rate As indicated by Fig-
ure 3, both RBC and GBC outperform all the baseline meth-

6We empirically show this in Appendix “Supplemental
experiments”

7We report the validation accuracy for Imagenet-10 since the
ground-truth labels of test samples are invisible



Table 1: Test accuracy on MNIST, CIFAR-10 and CIFAR-100 dataset with noise rate 60%

Dataset MNIST CIFAR-10 CIFAR-100 Imagenet-10
Noise type adversarial uniform adversarial uniform adversarial uniform adversarial
Base model 51.74±1.52 77.74±1.22 40.24±0.39 43.63±2.30 27.15±0.40 72.22 38.00
Random 85.67±0.90 73.56±0.40 76.02±2.01 42.30±4.68 45.33±1.70 93.33 59.77
Certain 81.84±0.89 74.76±1.07 70.78±5.00 45.95±4.20 47.06±2.10 91.20 58.22
Uncertain 76.38±0.54 73.83±0.24 74.45±6.10 36.67±0.20 44.65±0.65 85.22 51.00
Fine-tuning 53.39±1.22 78.46±2.10 23.07±7.58 25.28±1.13 24.88±1.10 70.44 35.67
TA-VAAL 79.31±0.23 72.89±0.82 61.46±4.65 31.07±2.56 38.79±0.86 86.34 43.26
craige 92.84±0.14 78.77±0.86 78.55±1.03 39.85±1.23 44.61±1.21 88.90 61.00
RBC-K 93.78±0.61 77.91±1.43 75.71±1.22 49.32±0.35 49.51±0.43 91.33 54.67
RBC 93.00±1.01 80.15±0.25 79.20±0.64 49.56±0.53 50.60±1.51 94.22 63.67
GBC 94.26±0.24 80.36±0.96 80.88±1.46 50.88±1.90 53.14±1.33 94.00 63.67

Dataset CIFAR-10 CIFAR-100
BaseModel 61.45±0.60 28.14±0.57
Random 65.96±1.74 29.29±0.46
Uncertain 64.46±1.20 28.39±0.21
Certain 66.05±1.19 28.52±0.15
Fine-tuning 60.04±1.69 29.73±0.06
TA-VAAL 61.58±1.21 30.89±1.09
craige 66.60±0.89 29.56±1.46
RBC-K 65.96±1.02 30.77±1.23
RBC 68.18±1.58 31.78±1.10
GBC 67.37±1.51 33.87±0.66

Table 2: Test performance on imbalanced CIFAR-10 and
CIFAR-100 dataset with imbalanced factor 200

Table 3: The AUC score of the sample weights on MNIST
with noise rate 80%

Method All Boundary
Random 0.922 0.589
RBC 0.958 0.775
GBC 0.949 0.854

ods across all the noise rates and the performance gains be-
come even larger with more samples being noisily labeled
(up to 2%). This indicates the robustness of our methods
against a varied level of label noise.
Sample weight distributions Recall that our methods de-
pend on the assumption that larger updates to the sam-
ple weights will more effectively result in the weights of
the noisy and clean samples approaching 0 and 1 respec-
tively. We therefore empirically verify this assumption by
inspecting the sample weights learned by Random, RBC
and GBC. Specifically, we calculate the AUC between the
learned sample weights and the cleanness of the sample la-
bels (1 for clean while 0 for corrupt). We report this quantity
for MNIST with 80% noisy labels in Table 3 for the entire
training set and for the 1000 samples nearest to the decision
boundary8. As Table 3 shows, the AUC of RBC and GBC
are significantly higher than that of Random, especially for

8We measure the distance between each sample and the deci-
sion boundary by utilizing the metric proposed by [Elsayed et al.
2018]

those samples near the boundary, thus suggesting the capa-
bility for RBC and GBC to better distinguish between clean
and noisy samples. This could thus explain why RBC and
GBC achieve superior performance according to Table 3,
thereby verifying our assumption.

Class imbalance experiments
For evaluating our method on class imbalanced data, we
follow [Cui et al. 2019] to produce the long-tailed CIFAR
dataset. Specifically, we down-sample some classes so that
the ratio between the number of training samples in the
largest class and that in the smallest one (which is denoted
the imbalance factor) is large. In Table 2, we report the re-
sults with imbalance factor 200 on CIFAR-10 and CIFAR-
100 dataset. As shown in Table 2, our method, RBC, outper-
forms all the baseline methods for CIFAR-10 and CIFAR-
100 and the performance gain is up to 3.10%.

Other experimental results
Due to the space limit, all other experimental results are
presented in Appendix: “Supplemental experiments”, in-
cluding the experiments with real labeling noise on CIFAR
dataset, the effect of the pre-training phase, the effect of var-
ied number of meta samples, the effect of the number of
sampled gradients in RBC and GBC (recall that both approx-
imate Equation (10) through sampling according to Section:
“Solving MCO”), and some qualitative studies.

Conclusion
In this work, we propose a clustering-based framework for
selecting pivotal samples to improve performance of meta
re-weighting in the presence of various defects on training
data. Based on our theoretical analysis, we show that select-
ing pivotal samples can be reduced to a weighted K-means
algorithm under reasonable assumptions. To efficiently eval-
uate this algorithm we propose two methods, RBC and GBC,
which can balance the computational efficiency and predic-
tion performance. Through empirical studies on noisily la-
beled and class-imbalanced image classification benchmark
datasets, we can demonstrate that our technique could se-
lect a better set of pivotal samples for meta re-weighting
algorithm than other sample selection techniques, thereby
resulting in better model performance.
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Appendix: more related work
Extra related work on Shapley-value based data valuation
Due to the space limit of the main paper, we provide here a more extensive discussion on the existing data valuation literature,
in particular, the works based on Data Shapley value [Ghorbani and Zou 2019]. We notice that [Sim et al. 2022] summarized
the recent progress in this area. However, as noted by [Sim et al. 2022], these solutions are not scalable to large datasets due to
the high computational overhead of data Shapley. It is worth noting that although these solutions, e.g., [Xu et al. 2021b, Sim
et al. 2020, Xu et al. 2021a], claim that they are applicable to realistic large datasets, they only study the data Shapley value of
several “partitions” of the entire dataset and the number of partitions is typically smaller than 10. In contrast, to identify meta
samples for the meta re-weighting algorithm, we need to compute the value of each individual training sample and thus the
number of “partitions” is equivalent to the number of training samples, which is typically very large. This thus indicates that
all the existing data Shapley dependent solutions are computationally intractable for our problem. Although there have been
many recent attempts to approximately but efficiently compute data Shapley values, e.g., [Jia et al. 2019, Yan and Procaccia
2021, Jia et al.], they are still far from being practical solutions since they either explicitly assume that the models have certain
properties, which may not hold for general neural nets (e.g., [Jia et al. 2019, Jia et al.]), or still require repetitive training (e.g.,
[Yan and Procaccia 2021]). As a consequence, it is still an open challenge to efficiently compute data Shapley values for each
sample in large datasets for general neural nets [Sim et al. 2022].

In addition, note that [Xu et al. 2021b] proposes a data valuation metric without relying on the performance on the validation
set, which, however, is built upon the data Shapley value, thus suffering from the efficiency issue as mentioned above.

Appendix: Extra algorithmic details
Supplemental materials on the weighted K-means algorithm
In section “Solving MCO”, we discussed adapting the vanilla K-means clustering algorithm for solving MCO, which is pre-
sented in details in this section.

Algorithm 1: A weighted K-means clustering algorithm for solving MCO
Input: A set of gradient vectors {Gj}Nj=1

output: A set of cluster centroids {Ci}Mi=1

1: Randomly initialize {Ci}Mi=1
2: while not converged do
3: Assignment step: Assign the sample j to the cluster î such that î = argmaxi{‖Ci‖cosine(Gj , Ci)}Mi=1.
4: Update step: Update the cluster centroid j by Equation (S2).
5: end while

Algorithm 2: K-means clustering based meta sample selection
Input:A training set Dtrain = {(xi, yi)}Ni=1, the total number of training iterations, T , the number of the randomly sampled
meta samples in the warm-up phase, M0, and a model with model parameter Θ
Output:A set of meta samples Dmeta

Initialize Dmeta = {}
/* Warm-up phase */
Randomly sample M0 meta samples and add them into Dmeta

Run meta re-weighting algorithm with Dmeta as the meta sample set, resulting in a list of model parameters {Θ̃t}Tt=1 at each
iteration.
while more validation samples are needed do

Remove those training samples that are close to Dmeta (the similarity measure is the weighted cosine similarity defined in
Equation (S1))
Repetitively run Algorithm 1 until there is no empty clusters, in which {Gj}Nj=1 is computed with RBC or GBC, and
parameterized by {Θ̃t}Tt=1. Suppose this results in cluster centroids {Ci}Mi=1
For each Ci(i = 1, 2, . . . ,M), add the closest training sample to this centroid into Dmeta
Run meta re-weighting algorithm with Dmeta as the meta sample set, resulting in a list of model parameters {Θt}Tt=1 at
each iteration.
{Θ̃t}Tt=1 := {Θt}Tt=1

end while



Algorithm 3: RBC and GBC
Input:A set of model parameters {Θt}Tt=1, the epoch t∗ with best validation performance
Output:{Gj}Nj=1

Uniformly sample K models from {Θt}Tt=t∗+1, resulting in {Θtk}Kk=1 where t∗ < t1 < t2 < · · · < tK
Initialize {Gj}Nj=1 so that Gj = [] for all j.
for k = 1 to K do

if RBC then
for j = 1 to N do

Append Aj(Θtk)x̃j(Θtk)> to Gj according to Equation (11)
end for

else if GBC then
Compute A(l)(Θtk) and A(Θtk) for all l(l = 1, 2, . . . , L) as described in Section “Gradient-based clustering method
(GBC)”
for j = 1 to N do

Conduct importance sampling from [∇Θ(1)fj(Θtk) . . .∇Θ(L)fj(Θtk)] with sampling probabil-

ity [
A(1)(Θtk

)

A(Θtk
) ,

A(2)(Θtk
)

A(Θtk
) , . . . ,

A(L)(Θtk
)

A(Θtk
) ], resulting in a list of gradients from R layers: Gradj =

[∇Θ(l1)fj(Θtk),∇Θ(l2)fj(Θtk), . . . ,∇Θ(lR)fj(Θtk)]
Append Gradj to Gj

end for
end if

end for
for j = 1 to N do

Organize Gj as a block matrix
end for

Details of the adapted K-means algorithm We tailor the vanilla K-means clustering algorithm to efficiently solve Equation
(10). Note that the K-means clustering algorithm is composed of two steps, i.e., the assignment step and the update step,
which are conducted alternatively until convergence. In the assignment step of the modified K-means clustering algorithm,
we follow the same principle of the vanilla K-means clustering algorithm. Specifically, we assign each training sample to its
nearest cluster centroid, where the similarity between each training sample j and each cluster centroid i is the cosine similarity
weighted by the norm of the centroid Ci:

‖Ci‖ · |cosine(Gj , Ci)| (S1)

After each training sample j is assigned to a certain cluster centroid Ci, we proceed to update the cluster centroids in the
update step given their assigned training samples. Indeed, according to Equation (10), we conduct clustering on the normalized
gradients, Gj

‖Gj‖ , rather than Gj itself. Plus, since the overall similarity between each training sample j and all clustering
centroids is weighted by the norm of Gj , we therefore update the cluster centroids by leveraging the following formula:

Ci ←
∑

j∈cluster i

‖Gj‖ · Gj

‖Gj‖∑
j∈cluster i ‖Gj‖

=
∑

j∈cluster i

Gj∑
j∈cluster i ‖Gj‖

, (S2)

in which, the cluster centroid Ci is updated as the weighted mean of all the normalized samples that are assigned to this
cluster.

The value of each Gj is computed based on if RBC or GBC is used. The details are summarized in Algorithm 3.
In the end, we summarize this adapted K-means clustering algorithm in Algorithm 1.

Determining number of clusters and continuously adding meta samples In this section, we further discuss how to deter-
mine the number of clusters and how to continuously add meta samples while the meta re-weighting algorithm is repetitively
invoked.

First of all, we assume that the number of clusters, M , could be provided by the users. However, we observe that given an
inappropriately large M , empty clusters are often generated, meaning that no samples are assigned to these clusters. Suppose
that there are Mempty empty clusters in total, we therefore restart the K-means clustering algorithm with the number of clusters
as M −Mcluster. This process is repeated until there are no empty clusters. We then identify meta samples with the resulting
clusters, which are used in the meta re-weighting algorithm. Suppose we get model parameters Θt(t = 1, 2, . . . , T ) from the
meta re-weighting algorithm, we can also optionally run RBC or GBC again by leveraging Θt so that we can add more meta



samples. This process is summarized in Algorithm 2. Note that in the subsequent invocation of RBC or GBC, we remove a
certain portion of training samples (e.g., half of them) that are closest to the existing meta samples and only cluster the remaining
training samples to discover new meta samples.

Appendix: Mathematical details
Derivation of Equation (6)
First of all, we compute the partial gradient of Equation (2) with respect to wj , i.e.:

∂Θ̂(Wt)

∂wj
=

∂

∂wj
[Θt − αt ·

1

N

∑N

r=1
wr,t∇Θfr(Θ)|Θ=Θt ]

= −αt

N
∇Θfj(Θ)|Θ=Θt ,

(S3)

which utilizes the fact that except for wj,t∇θfj(Θ), all the other terms in Equation (2) do not depend on the weight wj,t.
In addition, we utilize chain rule on the gradient of Equation (3), leading to:

∇wjfmeta,i(Θ̂(Wt)) = 〈∇Θfmeta,i(Θ)|Θ=Θ̂(Wt),
∂Θ̂(Wt)

wj
〉

= −αt

N
〈∇Θfmeta,i(Θ)|Θ=Θ̂(Wt),∇Θfj(Θ)|Θ=Θt〉

(S4)

Derivation of Equation (11)
In the main paper, we have used 〈, 〉 to denote the Frobenius inner product between matrices. But in the following analysis,
the inner products between vectors will also appear, which are also conventionally denoted as 〈, 〉. Therefore, to distinguish
between these two types of inner products in what follows, we use 〈, 〉F rather than 〈, 〉 to represent the Frobenius inner product
between matrices while 〈, 〉 is used for representing the inner product between vectors.

First of all, suppose the loss function is cross-entropy loss, then we could have the following lemma for this loss:

Lemma 1. For cross-entropy loss, we can write it as the following form:

L(x, y) = log(
exp−xj∑m
k=1 exp−xk

), (S5)

in which we assume that y = j (j ∈ {1, 2, . . . ,m}) and x = [x1, x2, . . . , xm] is a vector of length m. Then the gradient of
L(x, y) with respect to the input x could be split into two parts, i.e. the label-dependent part and the label-free part.

Proof. The gradient of L(x, y) with respect to x could be derived as follows:

∂L(x, y)

∂x
= [

∂L(x, y)

∂x1
,
∂L(x, y)

∂x2
, . . . ,

∂L(x, y)

∂xr
, . . . ,

∂L(x, y)

∂xm
]>,

in which,

∂L(x, y)

∂xr
=


exp−xr∑m

k=1
exp−xk

, r 6= y

exp−xr∑m
k=1

exp−xk
− 1, r = y

As a consequence, ∂L(x,y)
∂x could be written as:

∂L(x, y)

∂x
= [

∂L(x, y)

∂x1
,
∂L(x, y)

∂x2
, . . . ,

∂L(x, y)

∂xr
, . . . ,

∂L(x, y)

∂xm
]>

= [
exp−x1∑m

k=1 exp−xk
,

exp−x2∑m
k=1 exp−xk

, . . . ,
exp−xr∑m
k=1 exp−xk

, . . . ,
exp−xm∑m
k=1 exp−xk

]> − onehot(j)

= softmax(x)︸ ︷︷ ︸
label free part

− onehot(y)︸ ︷︷ ︸
label dependent part

(S6)



Note that when we only consider the gradient of the last layer, whose parameters are denoted as Θ(−1), fj(Θ) and fmeta,i(Θ)
could be represented as:

fj(Θ) = L(xlast out
j (Θ), yj) = L(Θ(−1)x̃j(Θ), yj), fmeta,i(Θ) = L(xlast out

meta,i (Θ), ymeta,i) = L(Θ(−1) ˜xmeta,i(Θ), ymeta,i).

Recall that in Section “Representation-based clustering method (RBC)” and Section “Re-weighting a training set with
noisy labels”, we use xlast out

j (Θ) and x̃j(Θ) to denote the input of the last linear layer and the input of the softmax layer (i.e.
the output of the last linear layer) given the training sample j. Similarly, xlast out

meta,i (Θ) and ˜xmeta,i(Θ) represent the input and the
output of the last linear layer given the meta sample i.

Then we could derive the gradient of fj(Θ) (same for fmeta,i(Θ)) with respect to the vectorized Θ(−1) by leveraging the
chain rule, leading to:

∇vec(Θ(−1))fj(Θ) =
∂xlast out

j (Θ)

∂vec(Θ(−1))
·
∂L(xlast out

j (Θ), ỹj)

∂xlast out
j (Θ)

. (S7)

By leveraging Lemma 1, the above formula could be rewritten as:

∇vec(Θ(−1))fj(Θ) =
∂xlast out

j (Θ)

∂vec(Θ(−1))
· [softmax(Θ(−1)x̃j(Θ))− onehot(yj)]

and for
∂xlast out

j (Θ)

∂vec(Θ(−1))
, it could be further derived as follows by utilizing the calculus on block matrix:

∂xlast out
j (Θ)

∂vec(Θ(−1))
=
∂Θ(−1)x̃j(Θ)

∂vec(Θ(−1))
= [x̃j(Θ)⊗ I]> = [ ˜xj,1(Θ)I, ˜xj,2(Θ)I, . . . ˜xj,m(Θ)I]>

in which xj,r(Θ) denotes the rth entry of the vector xj(Θ) and ⊗ denotes the Kronecker product [Henderson et al. 1983] on
two matrices.

We then plug the above formula into Equation (S7), resulting in:

∇vec(Θ(−1))fj(Θ) = [ ˜xj,1(Θ)I, ˜xj,2(Θ)I, . . . ˜xj,m(Θ)I]> · [softmax(Θ(−1)x̃j(Θ))− onehot(yj)]

= vec(
[
softmax(Θ(−1)x̃j(Θ))− onehot(yj)

]
x̃j(Θ)>),

Recall that in Section “Representation-based clustering method (RBC)”, we use Aj(Θ) to denote softmax(Θ(−1)x̃j(Θ))−
onehot(yj). Therefore, the above formula could be rewritten as:

∇vec(Θ(−1))fj(Θ) = vec(Aj(Θ)x̃j(Θ)>)

Similarly, the following equation holds for the meta sample i:

∇vec(Θ(−1))fmeta,i(Θ) = vec(Ameta,i(Θ) ˜xmeta,i(Θ)>)

As a result, we can compute the inner product between ∇vec(Θ(−1))fmeta,i(Θ) and ∇vec(Θ(−1))fj(Θ) by leveraging the above
two formulas, leading to:

〈∇vec(Θ(−1))fmeta,i(Θ),∇vec(Θ(−1))fj(Θ)〉 = 〈vec(Aj(Θ)x̃j(Θ)>), vec(Ameta,i(Θ) ˜xmeta,i(Θ)>)〉

= 〈Aj(Θ)x̃j(Θ)>,Ameta,i(Θ) ˜xmeta,i(Θ)>〉F

We can then plug the above formula into Equation (8), i.e. MSSO, leading to:

MSSO = max
Dmeta

∑N

j=1

∣∣∣∑M

i=1
〈Gj , Gmeta,i〉

∣∣∣
= max

Dmeta

∑N

j=1

∣∣∣∑M

i=1

∑
Θt

〈∇Θfj(Θ)|Θ=Θt ,∇Θfmeta,i(Θ)|Θ=Θt〉
∣∣∣

= max
Dmeta

∑N

j=1

∣∣∣∑M

i=1

∑
Θt

〈∇vec(Θ)fj(Θ)|Θ=Θt ,∇vec(Θ)fmeta,i(Θ)|Θ=Θt〉
∣∣∣

≈ max
Dmeta

∑N

j=1

∣∣∣∑M

i=1

∑
Θt

〈∇vec(Θ(−1))fj(Θ)|Θ=Θt ,∇vec(Θ(−1))fmeta,i(Θ)|Θ=Θt〉
∣∣∣

= max
Dmeta

∑N

j=1

∣∣∣∑M

i=1

∑
Θt

〈Aj(Θt)x̃j(Θt)
>,Ameta,i(Θt) ˜xmeta,i(Θt)

>〉F
∣∣∣

This thus concludes the derivation of Equation (11).



Proof of Theorem 1
Proof. By utilizing the following property concerning the absolute values of the sum of two numbers [Stewart 2011]:

|a+ b| = ||a| − |b||, if a · b ≤ 0,

the inner most sum in Equation (8) could be rewritten as follows:

|
∑M

i=1
〈Gj , Ci〉|

= |
∑
〈Gj ,Ci〉>0

〈Gj , Ci〉+
∑
〈Gj ,Ci〉<0

〈Gj , Ci〉|

= ||
∑
〈Gj ,Ci〉>0

〈Gj , Ci〉| − |
∑
〈Gj ,Ci〉<0

〈Gj , Ci〉||

Also, by utilizing the following property concerning the sum of the absolute value of two numbers [Stewart 2011]:

|a|+ |b| = |a+ b|, if a · b ≥ 0

for the innermost sum in Equation (9) could be rewritten as follows:∑M

i=1
|〈Gj , Ci〉|

=
∑
〈Gj ,Ci〉>0

|〈Gj , Ci〉|+
∑

〈Gj ,Ci〉<0

|〈Gj , Ci〉|

= |
∑
〈Gj ,Ci〉>0

〈Gj , Ci〉|+ |
∑
〈Gj ,Ci〉<0

〈Gj , Ci〉|

Then we compute the ratio between the above two formulas, leading to:

|
∑M

i=1〈Gj , Ci〉|∑M
i=1 |〈Gj , Ci〉|

=
||
∑
〈Gj ,Ci〉>0〈Gj , Ci〉| − |

∑
〈Gj ,Ci〉<0〈Gj , Ci〉||

|
∑
〈Gj ,Ci〉>0〈Gj , Ci〉|+ |

∑
〈Gj ,Ci〉<0〈Gj , Ci〉|

=



|
∑
〈Gj,Ci〉<0〈Gj,Ci〉|

|
∑
〈Gj,Ci〉>0〈Gj,Ci〉|

−1

|
∑
〈Gj,Ci〉<0〈Gj,Ci〉|

|
∑
〈Gj,Ci〉>0〈Gj,Ci〉|

+1

= 1− 2
|
∑
〈Gj,Ci〉<0〈Gj,Ci〉|

|
∑
〈Gj,Ci〉>0〈Gj,Ci〉|

+1

if |
∑
〈Gj ,Ci〉<0〈Gj , Ci〉| > |

∑
〈Gj ,Ci〉>0〈Gj , Ci〉|

|
∑
〈Gj,Ci〉>0〈Gj,Ci〉|

|
∑
〈Gj,Ci〉<0〈Gj,Ci〉|

−1

|
∑
〈Gj,Ci〉>0〈Gj,Ci〉|

|
∑
〈Gj,Ci〉<0〈Gj,Ci〉|

+1

= 1− 2
|
∑
〈Gj,Ci〉>0〈Gj,Ci〉|

|
∑
〈Gj,Ci〉<0〈Gj,Ci〉|

+1

if |
∑
〈Gj ,Ci〉>0〈Gj , Ci〉| > |

∑
〈Gj ,Ci〉<0〈Gj , Ci〉|

(S8)

Then by leveraging the assumption of this Theorem, we know that:
|
∑
〈Gj,Ci〉>0〈Gj ,Ci〉|

|
∑
〈Gj,Ci〉<0〈Gj ,Ci〉|

> D if |
∑
〈Gj ,Ci〉<0〈Gj , Ci〉| > |

∑
〈Gj ,Ci〉>0〈Gj , Ci〉|

|
∑
〈Gj,Ci〉<0〈Gj ,Ci〉|

|
∑
〈Gj,Ci〉>0〈Gj ,Ci〉|

> D if |
∑
〈Gj ,Ci〉>0〈Gj , Ci〉| > |

∑
〈Gj ,Ci〉<0〈Gj , Ci〉|

Therefore, Equation (S8) could be bounded as follows:

Equation (S8) =


1− 2

|
∑
〈Gj,Ci〉<0〈Gj,Ci〉|

|
∑
〈Gj,Ci〉>0〈Gj,Ci〉|

+1

if |
∑
〈Gj ,Ci〉<0〈Gj , Ci〉| > |

∑
〈Gj ,Ci〉>0〈Gj , Ci〉|

1− 2
|
∑
〈Gj,Ci〉>0〈Gj,Ci〉|

|
∑
〈Gj,Ci〉<0〈Gj,Ci〉|

+1

if |
∑
〈Gj ,Ci〉>0〈Gj , Ci〉| > |

∑
〈Gj ,Ci〉<0〈Gj , Ci〉|

>

{
1− 2

D+1
if |
∑
〈Gj ,Ci〉<0〈Gj , Ci〉| > |

∑
〈Gj ,Ci〉>0〈Gj , Ci〉|

1− 2
D+1

if |
∑
〈Gj ,Ci〉>0〈Gj , Ci〉| > |

∑
〈Gj ,Ci〉<0〈Gj , Ci〉|

=
D − 1

D + 1

In Section “Supplemental experiments”, we will calculate the value of D empirically. Recall that the value of D needs
to be significantly larger than 1 so that solving MCO (i.e. Equation (9)) could end up with a reasonable approximation to the
solution of MSSO (i.e. Equation (8)), which could be empirically justified on MNIST and CIFAR dataset.



Generalization of our methods for [Ren et al. 2018]
As discussed in Section “Background: the meta re-weighting algorithm”, our methods mainly utilize the meta-reweighting
algorithm proposed in [Shu et al. 2019]. However, we can show that our methods can also support other meta-reweighting
algorithms, such as [Ren et al. 2018], which we illustrate in this section.

First of all, we notice that [Ren et al. 2018] and [Shu et al. 2019] mainly differ in how to update the sample weights at each
time step. Specifically, we reformulate Equation (2)-Equation (4) according to [Ren et al. 2018] as follows:

Meta re-weighting [Ren et al. 2018]:

Θ̂(Wt) = Θt − αt ·
1

N

∑N

j=1
wj,t∇Θfj(Θ)|Θ=Θt,wj,t=0

ŵj,t+1 = −ηt ·
1

M

∑M

i=1
∇wj,tfmeta,i(Θ̂(Wt))|wj,t=0

ŵj,t+1 = max{ŵj,t+1, 0}, wj,t+1 = normalize([ŵ1,t+1, ŵ2,t+1, . . . , ŵN,t+1])

Θt+1 = Θt − αt ·
1

N

∑N

j=1
wj,t+1∇Θfj(Θ)|Θ=Θt ,

(S9)

(S10)

(S11)

(S12)

Recall that the intuition of our methods is to find meta samples so that each sample weightwj is effectively updated during the
training process instead of staying close to its random initialization. Therefore, we hope to maximize the following cumulative
gradients across all the samples during the entire training process, i.e.:

max
Dmeta

∑
Θ̂(Wt)

1

M

∑M

i=1
∇wjfmeta,i(Θ̂(Wt)), for all j = (1, 2, . . . , N), (S13)

Note that different from Equation (5), no absolute value is calculated in Equation (S13). Then by following the same deriva-
tion as Equation (6), we can get the following formula which is similar to Equation (7):

max
Dmeta

∑N

j=1

∑
Θ̂(Wt),Θt

∑M

i=1
〈∇Θfmeta,i(Θ)|Θ=Θ̂(Wt),∇Θfj(Θ)|Θ=Θt〉

≈ max
Dmeta

∑N

j=1

∑M

i=1

∑
Θt

〈∇Θfmeta,i(Θ)|Θ=Θt ,∇Θfj(Θ)|Θ=Θt〉.
(S14)

Again, the only difference between Equation (7) and Equation (S14) is the existence of the absolute value computation. As
a result, when the meta-reweighting algorithm from [Ren et al. 2018] is used, our methods, including both RBC and GBC, can
be employed for selecting meta samples, except that the absolute value is not evaluated.

Analysis of the gradient with and without label-free part
According to Section “Re-weighting a training set with noisy labels”, in the presence of label noises, the sample-wise gradient
∇Θfj(Θ) could be split into label-free part and the label-dependent part, which are represented as follows:

∇Θfj(Θ) = [
∂xlast out

j (Θ)

∂Θ
· softmax(xlast out

j (Θ))︸ ︷︷ ︸
label-free gradient

−
∂xlast out

j (Θ)

∂Θ
· onehot(y)︸ ︷︷ ︸

label-dependent gradient

], (S15)

in which xlast out
j (Θ) represents the input of the softmax layer of the neural model. The derivation of Equation (S15) is discussed

in Lemma 1 in Appendix “Derivation of Equation (11)”.
Recall that in Section “Re-weighting a training set with noisy labels”, we only focus on the label-free part in the sample-

wise gradient, i.e.,∇Θf̃j(Θ). Therefore, by replacing∇Θfj(Θ) with∇Θf̃j(Θ) and∇Θfmeta,i(Θ) with∇Θ
˜fmeta,i(Θ) in Equa-

tion (9), the objective function becomes:

max
Dmeta

(

N∑
j=1

M∑
i=1

|〈G̃j , G̃meta,i〉|), (S16)

in which,

G̃j =
[
∇Θf̃j(Θ)|Θ=Θ1 · · ·∇Θf̃j(Θ)|Θ=Θt · · ·

]
, G̃meta,i =

[
∇Θ

˜fmeta,i(Θ)|Θ=Θ1 · · ·∇Θ
˜fmeta,i(Θ)|Θ=Θt · · ·

]
In what follows, i.e., Theorem 2, we are going to show that with some assumptions, solving Equation (S16) can produce

approximately the same clusters as the ones produced by solving Equation (9) where the sample labels are involved.
Theorem 2. Suppose solving Equation (11) with the weighted K-means algorithm, i.e., Algorithm 1, assigns the training sample
j to the cluster centroid c(j). Then if the following assumptions hold for the training sample i:



1. The similarity between the training sample j and the assigned centroid c(j), is greater than αj and the similarity between
each training sample j and any other cluster centroid i is smaller than βj (αj > βj), i.e.:

|〈G̃j , ˜Gmeta,c(j)〉| ≥ αj

|〈G̃j , G̃meta,i〉| ≤ βj , i 6= c(j)

2. The ratio between |〈G̃j , G̃meta,i〉| and |〈Gj , Gmeta,i〉| is lower bounded by Lj and upper bounded by Uj (The values of Lj
and Uj could depend on each training samples j).

then the following inequalities on |〈Gj , Gmeta,i〉| hold:

|〈Gj , Gmeta,c(j)〉| ≥ Ljαj

|〈Gj , Gmeta,i〉| ≤ Ujβj , i 6= c(j),

in which Gmeta,i involves the ground-truth labels of the meta sample i.

This theorem thus suggests that if Ljαj is greater than Ujβj , then the cluster centroid cj could be still the closest centroid
of the training sample j. In Appendix “More quantitative results”, we will empirically count how many training samples can
still be assigned to the same cluster centroid after we change the similarity measure from |〈G̃j , G̃meta,i〉| to |〈Gj , Gmeta,i〉|.

Supplemental experiments
In this section, we provide some extra experiments which could not be included in the main paper.

Details of all hyper-parameters in the experiments
To run meta re-weighting algorithm, we use SGD with initial learning rate 0.1, momentum 0.8, and weight decay 5× 10−4 for
the CIFAR experiments, and we use SGD with constant learning rate 0.1 for the MNIST experiments. We use a mini-batch size
of 4096 and 128 for MNIST and CIFAR respectively. Following [Shu et al. 2019], we also use a learning rate decay for CIFAR
experiments such that the learning rate is divided by 10 at epoch 80 and epoch 90 (100 epochs in total).

As indicated in Section “Sampling model parameters from history”, for both RBC and GBC, we need to sample certain
model parameters from each epoch of the warm-up phase, i.e. the meta re-weighting process with some randomly selected
samples as the meta samples. We therefore sample those model parameters every 20 epochs after the epoch t∗ where the best
model parameters occur. Plus, for GBC, as mentioned in Section “Gradient-based clustering method (GBC)”, we sample
several the model parameters at the granularity of network layers to estimate Equation (14) and the number of the sampled
network layers is set as 5. After collecting gradients of each training sample for RBC and GBC, we then run the weighted
K-means clustering algorithm (i.e. Algorithm 1) long enough. To guarantee the convergence, the number of epochs is set as
200.

More quantitative results
Empirical evaluations of Theorem 1 Note that Theorem 1 depends on the assumption that the positive part or the negative
part in the innermost sum of Equation (8) are dominant over the negative terms or vice versa. This assumption is not theoretically
analyzed, which is thus verified empirically in this section. Specifically, we calculate the ratio between the (dominant) positive
part and the negative part (or the dominant negative part with respect to the positive part), (denoted as Dj) for each training
sample j in the label noise experiments when RBC is used. Note that the value of D in Theorem 1 equals to the minimum of
all Dj . We therefore report the statistics of Dj in Table 4.

Table 4: The statistics of the value of Dj(j = 1, 2, . . . , ) in label noise experiments (RBC)

Dataset CIFAR-10 CIFAR-100
Noise type uniform adversarial uniform adversarial
minimum 1.70 inf 1.01 1.01
5%-quantile 4.38 inf 1.40 1.68

As indicated in Table 4, for both CIFAR-10 with different types of noises, the values of D are all significantly greater than
1 across all training samples, thus verifying the assumption of Theorem 1 (inf means that all the terms in the innermost sum
of Equation (8) have the same signs). Similar results are also observed in the class-imbalance experiments. For CIFAR-100,
although the minimum value ofDj is almost 1, there are less than 5% training samples with near-oneDj value. Therefore, after
removing this small portion of outlier samples, the assumption of Theorem (1) still holds.



Empirical evaluations of Theorem 2 Recall that due to the unavailable ground-truth labels when RBC or GBC are used
in the presence of label noises, we proposed to only employ the label-free part in the sample-wise gradients as the input to
our methods, which results in a label-free similarity measure, |〈G̃j , G̃meta,i〉|, and a label-free objective function in Equation
(S16). Theorem 2 explored under what conditions, by using the label-aware similarity, |〈Gj , Gmeta,i〉|, the sample j could still
be closest to the cluster centroid, c(j), which is determined by solving the label-free objective function, Equation (S16). This
type of samples are named as stable samples and we count how many such samples exist in the label noise experiments, which
is reported in Table 5.

Table 5: The number of stable samples (out of 25k) in the label noise experiments (RBC)

Dataset CIFAR-10 CIFAR-100
Noise type uniform adversarial uniform adversarial
count 23593 20517 20543 20547

Note that due to the existence of the meta samples from the warm-up phase, according to Algorithm 2, we only conduct
the weighted K-means clustering algorithm on the samples that are far away from the existing meta samples. As mentioned
in Appendix “Determining number of clusters and continuously adding meta samples”, the number of such samples is
around half of the entire training set, i.e., around 25k for CIFAR-10 and CIFAR-100 dataset. As indicated in Table 5, over 80%
of the training samples are stable samples for both CIFAR-10 and CIFAR-100 dataset. This thus suggests that clustering the
label-free part of the sample-wise gradients in our methods could lead to a reasonable approximation of the results produced by
clustering the ground-truth-label-aware gradients.

Table 6: Test accuracy on CIFAR-10 with noise rate 60% by repetitively adding meta samples

Meta sample count 20 30 40 50
Certain 66.15 81.03 81.65 81.57
TA-VAAL 66.73 68.63 60.63 61.47
RBC 78.95 82.10 83.36 81.76
GBC 76.46 80.58 81.96 81.93

Results with real label noise Note that so far we only studied the performance of our methods by polluting the labels of the
benchmark datasets in a synthetic manner, which may not occur in the real applications. We therefore follow [Wei et al. 2021] to
add real human labeling errors to CIFAR-10 and CIFAR-100 datasets and evaluate our methods in this setting. We include the
experimental results of CIFAR-100 in Table 7, which indicates that our methods can still outperform all the baseline methods in
the presence of realistic labeling errors. For CIFAR-10, it turns out that the real human labeling errors have very little influence
on the model performance and thus all of these methods only boost the performance marginally, which is thus not shown here.

Effect of the number of meta samples We further study the effect of the number of meta samples on the performance of our
methods by continuously adding more and more meta samples. Specifically, for CIFAR-10 dataset with 60% adversarial label
errors, we repetitively add 10 meta samples and run the meta re-weighting algorithm for 4 times after the warm-up phase. The
results are included in Table 6 and we only include the baseline methods which perform relatively better than other methods,
e.g., Certain and TA-VAAL. As this table shows, our methods can consistently outperform (with performance gains up to 13%
when 20 meta samples are selected) with respect to the baseline methods.

Effect of the number of sampled gradients for RBC and GBC Recall that in Section “Solving MCO”, it is not possible
to collect all the calculated gradients from all the iterations during the meta-reweighting training phase to evaluate MCO due to
limited GPU memory. This thus motivates the idea of randomly sampling calculated gradients in RBC and GBC. We therefore
studied the effect of the number of sampled gradients, i.e., the value of K, on the performance of our methods. Specifically,
we vary k between 4 and 100 on RBC and conduct meta-reweighting on MNIST dataset with 80% adversarial labeling errors
(with the same experimental setup as Section “Experimental set-up”). The results are summarized in Table 8. According to
this table, we can know that the test performance of extremely small K is significantly worse than that of large K (e.g, K = 4
VS K > 10), which thus indicates that more gradients would boost the model performance. However, when K is larger than
certain value, sayK > 10 in Table 8, no significant performance gains occur while more GPU memory is needed for containing
more sampled gradients. This thus indicates that with proper value of K, randomly sampling gradients could perfectly balance
the test performance and the GPU memory consumption.

Effect of pre-training phase We further studied the effect of the pre-training phase on the performance. When pre-training
phase is not executed, we select all samples once by using our methods or the baseline methods. We include the results on
CIFAR-100 dataset in Table 10, in which we compare our methods against Certain and Uncertain since they are two relatively



Table 7: Test accuracy of CIFAR dataset with real human labeling errors

CIFAR-100
Base model 49.33
Random 57.54
Certain 57.48
Uncertain 56.23
Fine-tuning 51.24
TA-VAAL 44.50
craige 57.92
RBC-K 59.24
RBC 59.25
GBC 59.25

better baseline methods in comparison to others. According to this table, we can tell that both our methods and baseline methods
can generally benefit from pre-training phase, thus demonstrating the benefit of the pre-training phase.

Table 8: Test accuracy of RBC on MNIST dataset with varied K

K Test Accuracy
100 93.01
50 93.32
10 93.10
6 91.48
4 91.68

Supplemental results on class-imbalanced + label noise experiments In addition to evaluating our methods on noisily
labeled and imbalanced data separately, we also look at the combination of the two in Table (9). In these experiments, we
perform an initial warmup step with 10 and 100 randomly selected meta samples and then select an additional 100 and 200
samples using the different methods for CIFAR-10 and CIFAR-100 respectively. With 40% uniform noise and class imbalance
levels of 200 and 100, our methods outperform all baselines for CIFAR-100 and CIFAR-10 with imbalance of 100.

Table 9: Test accuracy of ResNet-34 on imbalanced CIFAR-10 and CIFAR-100 dataset with 40% uniform noise

Dataset CIFAR-10 CIFAR-100
Imbalance 200 100 200 100
Base Model 27.3 31.92 6.97 9.13
Random 29.32 35.49 9.30 10.30
Uncertainty 27.91 35.59 9.16 10.62
Certainty 28.48 35.29 9.40 10.27
Finetune 28.97 36.76 8.07 7.93
TA-VAAL 29.77 36.89 9.00 10.33
RBC 27.73 38.01 9.99 11.02
GBC 28.44 35.75 8.17 11.24

Qualitative results
Figure 4 is a visualization using t-SNE [Van der Maaten and Hinton 2008] of the partial sample-wise gradients collected by
RBC as well as the cluster centroids generated by the weighted K-means clustering. As this figure shows, there exists obvious
clustering structure on the sample-wise gradients, thus justifying the use of the K-means clustering algorithm. In addition,
recall that in Section “Solving MCO”, we tailor the vanilla K-means clustering algorithm for solving MCO. Figure 4 thus
demonstrates the effectiveness of this tailored algorithm since the cluster centroids discovered in this manner cover all the
clusters very well.

Limitations of our work
Most of the theoretical results we present hold in a general setting except some dataset-dependent assumptions (e.g., the as-
sumption of Theorem 1). We therefore would love to explore whether those assumptions hold for general datasets or not.



Table 10: Test performance with and without pre-training with 60% label noise

Label noise type uniform adversarial
with

pretraining
without

pretraining
with

pretraining
without

pretraining
Certain 45.95 45.32 47.06 44.35

Uncertain 36.67 35.99 44.65 44.54
RBC-K 49.32 47.65 49.51 47.66

RBC 49.56 45.27 50.60 48.91
GBC 50.88 50.24 53.14 52.55
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Figure 4: Visualization of the partial gradients used in RBC on CIFAR-10 with imbalance factor 200 and the corresponding
cluster centroids identified by the weighted K-means clustering algorithm.

Also, our empirical claims are shown on just three standard datasets for the noisy label case and two datasets for the class
imbalance case. The datasets we use are MNIST, CIFAR-10, and CIFAR-100 which are benchmark image datasets, which,
however, do not include the datasets from other domains. Similarly, our empirical results use a ResNet model which is a
standard neural network model for vision. We leave the evaluation of our methods on other models like Transformers for future
work.

We also manually introduced label noise and a class imbalance into these datasets and have not yet evaluated on a dataset
which is known to contain label noise or a class imbalance. Additionally, we use two standard types of label noise in our
experiments, but our method may perform differently if the distribution of noise in another dataset is significantly different
from our uniform or adversarial noise.

Furthermore, the selections of meta samples or validation samples could occur in many different scenarios, e.g., general meta
learning framework [Andrychowicz et al. 2016] and the data valuation methods depending on a clean validation samples (see
the discussion in Section “Related Work”). Therefore, it would be interesting to explore whether the techniques proposed in
this paper could address the validation sample selection problem in more general set-up.

Discussions on societal impacts
Our framework can be useful for domains in which data is commonly noisy and imbalanced. In these settings, the sample labels
are usually manually cleaned. However, labelling in these domains is expensive and may suffer from the risk of getting incorrect
labels. As indicated by the experiments, our methods can perform very well when the labeling budget is very small. This thus
suggests that our methods can reduce the number of required perfect labels. As a consequence, more labeling effort can be
spent on the few pivotal samples to get high-quality labels, rather than a large amount of low-quality labels in these domains.
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