The Role of Interactivity in Local Differential Privacy

Matthew Joseph

Jieming Mao Seth Neel Aaron Roth
Q: How much does interaction matter in local differential privacy?
Q: How much does interaction matter in local differential privacy?

A: It depends.
Outline

1. Differential Privacy

2. Local Differential Privacy
 a. Result 1: Limits of full interaction
 b. Result 2: Power of full interaction
Outline

1. Differential Privacy

2. Local Differential Privacy
 a. Result 1: Limits of full interaction
 b. Result 2: Power of full interaction
Differential Privacy [DMNS06] in Words

Property of a randomized algorithm A

Small changes in input \Rightarrow small changes in output

Add noise to output to obscure any small changes in input
Differential Privacy in Math

Definition: Two databases X and X' are neighbors if they differ in at most one entry. Randomized algorithm $A: X \rightarrow Y$ is (ε, δ)-differentially private (DP) if, for all neighbors X and X', and for all $Y \subseteq Y$,

$$P[A(X) \text{ in } Y] \leq e^\varepsilon P[A(X') \text{ in } Y] + \delta.$$
Why is Differential Privacy “Private”?

Think of as X and X' “database with your data” and “database without your data”

If A is DP, then $A(X) \approx_{(\varepsilon, \delta)} A(X')$, so the computation is (almost) agnostic to your presence.
Central DP Learning From Data

Data → Learning → Noise → Output

Differential Privacy
Useful DP Properties

Composition: For \(A = (A_1, \ldots, A_k) \) where each \(A_i \) is \((\epsilon_i, \delta_i)\)-DP, \(A \) is \((\sum_i \epsilon_i, \sum_i \delta_i)\)-DP.
Useful DP Properties

Composition: For $A = (A_1, \ldots, A_k)$ where each A_i is $(\varepsilon_i, \delta_i)$-DP, A is $(\sum_i \varepsilon_i, \sum_i \delta_i)$-DP.

Robust to Post-Processing: If A is (ε, δ)-DP, then for any function f, $f(A)$ is also (ε, δ)-DP.
Key Takeaways About Differential Privacy

DP algorithms map similar databases to similar output distributions

Add randomness somewhere for privacy

Modular, can cut and paste
Outline

1. Differential Privacy

2. Local Differential Privacy
 a. Result 1: Limits of full interaction
 b. Result 2: Power of full interaction
Central DP Learning From Data

Data → Learning → Noise → Output

Local Differential Privacy
Local DP [DMNS06] Learning From Data

Data → Noise → Learning → Output

Local Differential Privacy
Local DP in Words

No more central database, users keep their data

Protocol A learns about the data through public communication with users

Users send responses through *randomizers*
Local DP in Math

Definition: Protocol A is (ε, δ)-locally differentially private (LDP) if the transcript of communications it generates is an (ε, δ)-DP function of the user data.
LDP: Pros and Cons

Pros:

✓ Data never leaves user device, only DP outputs
✓ Don’t have to store any private data
LDP: Pros and Cons

Pros:

✓ Data never leaves user device, only DP outputs
✓ Don’t have to store any private data

Cons:

✗ More noise → worse utility
✗ Don’t get to store any private data
Q: How much does interaction matter for local differential privacy?

A: It depends.
Types of LDP Interactivity

Definition: Protocol A is *noninteractive* if all users speak once, simultaneously and independently.
Types of LDP Interactivity

Definition: Protocol A is sequentially interactive [DJW13] if all users speak once (possibly in multiple rounds).
Types of LDP Interactivity

Definition: Protocol A is fully interactive if users may interact arbitrarily (possibly speak multiple times, in multiple rounds).

Local Differential Privacy
Types of LDP Interactivity

Noninteractive

Sequentially Interactive

Fully Interactive

Local Differential Privacy
Types of LDP Interactivity

Noninteractive

Sequentially Interactive

Fully Interactive

rounds = 1

rounds ≤ # users

rounds = ???

Local Differential Privacy
Types of LDP Interactivity

Noninteractive

Sequentially Interactive

Fully Interactive

$y_1 \rightarrow y_2 \rightarrow y_3$

$y_{1,1} \rightarrow y_{2,2} \rightarrow y_{3,4}$

[KLNR508]

[DF18]

Local Differential Privacy
Types of LDP Interactivity

Noninteractive

Sequentially Interactive

Fully Interactive

[KLNRS08]
[DF18]

This Work

Local Differential Privacy
Outline

1. Differential Privacy

2. Local Differential Privacy
 a. Result 1: Limits of full interaction
 b. Result 2: Power of full interaction
Result 1: Limits of Full Interaction

Theorem (Informal): Any fully interactive protocol A_F can be converted into an identical sequentially interactive protocol A_S, with a controlled increase in sample complexity.
Result 1: Limits of Full Interaction

Theorem (Informal): Any fully interactive protocol A_F can be converted into an identical sequentially interactive protocol A_S, with a controlled increase in sample complexity.

Increase is sometimes small, sometimes large. Depends on *compositionality*.
Compositionality

Composition: cut and paste randomizers together, privacy parameters add up

Any algorithm analyzed this way is 1-compositional

Not the only way to analyze!

Result 1: Limits of full interaction
Compositionality Example

Each user i has private datum $x_i \in \{1, 2, \ldots, k\}$, operator wants to compute counts

Protocol: each user outputs $y_i \in \{0,1\}^k$ where

- $y_i^j \sim \text{Ber}(1/[e^\varepsilon+1])$ if $j \neq x_i$
- $y_i^j \sim \text{Ber}(e^\varepsilon/[e^\varepsilon+1])$ otherwise

Result 1: Limits of full interaction
Compositionality Example

Each user i has private datum $x_i \in \{1, 2, \ldots, k\}$, operator wants to compute counts

If $x_i = 4$, $Y_i =$

Result 1: Limits of full interaction
Compositionality Example

Protocol: each user outputs $y_i \in \{0,1\}^k$ where

- $y_i^j \sim \text{Ber}(1/(e^\epsilon+1))$ if $j \neq x_i$
- $y_i^j \sim \text{Ber}(e^\epsilon/(e^\epsilon+1))$ otherwise

Composition way: k total ϵ-randomizers

... so $k\epsilon$-LDP

Result 1: Limits of full interaction
Compositionality Example

Protocol: each user outputs $y_i \in \{0,1\}^k$ where

- $y_{ij} \sim \text{Ber}(1/\left([e^{\epsilon}+1]\right))$ if $j \neq x_i$
- $y_{ij} \sim \text{Ber}(e^{\epsilon}/\left([e^{\epsilon}+1]\right))$ otherwise

Direct way:

$$\frac{P[y_{ij} = y \mid x_i = x]}{P[y_{ij} = y \mid x_i = x']} \leq \frac{e^{\epsilon}/\left([e^{\epsilon}+1]\right)}{1/\left([e^{\epsilon}+1]\right)} = e^{\epsilon}$$

... so ϵ-LDP. Took advantage of histogram data structure.

Result 1: Limits of full interaction
Compositionality

Definition: The *compositionality* of an LDP protocol is the multiplicative factor by which its minimal composition privacy guarantee exceeds its overall privacy guarantee.

Previous algorithm is k-compositional.
Theorem: Any fully interactive ϵ-LDP k-compositional protocol A_F can be converted into an identical 3ϵ-LDP sequentially interactive protocol A_S on, w.p. $1-\beta$, $O(e^{\epsilon}(nk + \sqrt{nk \log(\frac{1}{\beta}))})$ samples.
Result 1: Limits of Full Interaction

Theorem: Any fully interactive ε-LDP k-compositional protocol A_F can be converted into an identical 3ε-LDP sequentially interactive protocol A_S on, w.p. $1-\beta$, $O(e^\varepsilon(nk + \sqrt{nk \log(\frac{1}{\beta})}))$ samples.

Is this tight?
Outline

1. Differential Privacy

2. Local Differential Privacy
 a. Result 1: Limits of full interaction
 b. Result 2: Power of full interaction
Result 2: Powers of Full Interaction

Yes! (up to log factors)

Theorem: There exists a fully interactive d-compositional ε-LDP protocol that solves *multi-party pointer jumping* in $\tilde{O}(d^2)$ samples, but any sequentially interactive (ε, δ)-LDP protocol requires $\tilde{\Omega}(d^3)$ samples.
Result 2: Powers of Full Interaction

Yes! (up to log factors)

Theorem: There exists a fully interactive d-compositional ϵ-LDP protocol that solves *multi-party pointer jumping* in $\tilde{O}(d^2)$ samples, but any sequentially interactive (ϵ,δ)-LDP protocol requires $\tilde{\Omega}(d^3)$ samples.

Can’t avoid compositionality dependence.
Q: How much does interaction matter for local differential privacy?

A: It depends on compositionality.
Takeaways

- Can convert full to sequential, sample complexity blowup proportional to compositionality
Takeaways

- Can convert full to sequential, sample complexity blowup proportional to compositionality
 - Full interaction can only beat sequential interaction when the solution is highly compositional
Takeaways

- Can convert full to sequential, sample complexity blowup proportional to compositionality
 - Full interaction can only beat sequential interaction when the solution is highly compositional
- Unavoidably highly compositional (but also highly specific) problems exist
Takeaways

- Can convert full to sequential, sample complexity blowup proportional to compositionality
 - Full interaction can only beat sequential interaction when the solution is highly compositional
- Unavoidably highly compositional (but also highly specific) problems exist
- Didn’t mention: local-central separation for simple hypothesis testing
Takeaways

• Can convert full to sequential, sample complexity blowup proportional to compositionality
 ○ Full interaction can only beat sequential interaction when the solution is highly compositional
• Unavoidably highly compositional (but also highly specific) problems exist
• Didn’t mention: local-central separation for simple hypothesis testing

arxiv.org/abs/1904.03564
References

1. [BBGN19] “The Privacy Blanket of the Shuffle Model”. Balle, Bell, Gascon, Nissim. CRYPTO.
5. [KLNRS08] “What Can We Learn Privately?”. Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith. STOC.