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Abstract—Real-Time Calculus (RTC) is a powerful framework
for modeling and worst-case performance analysis of networked
systems. GPC and AND are two fundamental components in
RTC, which model priority-based resource arbitration and syn-
chronization operations, respectively. In this paper, we revisit
GPC and AND. For GPC, we develop tighter output arrival
curves to more precisely characterize the output event streams.
For AND, we first identify a problem in the existing analysis
method that may lead to negative values in the output curves,
and present corrections to the problem. Then we generalize AND
to synchronize more than two input event streams. We implement
our new theoretical results and conduct experiments to evaluate
their performance. Experiment results show significant improve-
ment of our new methods in analysis precision and efficiency.

I. INTRODUCTION

Real-Time Calculus (RTC) [1], [2] is a theoretical frame-
work for performance analysis of networked embedded sys-
tems, which is rooted in the Network Calculus theory [3].
RTC uses variability characterization curves (called curves
for short) [4] to model workload and resource, and analyzes
workload flows through a network of processing and com-
munication resources to bound the worst-case performance of
the system. Comparing to the traditional real-time scheduling
theory, RTC uses much more general workload and resource
models, and thus can model a much wider range of realistic
systems. At the same time, its closed-form analytical bounds
also provide much higher analysis efficiency compared to
state-based modeling and analysis techniques such as model
checking [5], [6]. Due to these advantages, RTC has drawn
considerable attention from both academia and industry in
recent years, and has been successfully applied to solve many
realistic problems.

RTC uses different abstract components to model different
resource arbitration schemes or operational semantics. Two
fundamental abstract components in RTC are GPC [2] and
AND connector [4]. GPC (Greedy Processing Component)
essentially models priority-based resource arbitration among
multiple workload streams sharing the same hardware plat-
form. GPC is the most widely used building block in RTC
due to the universal use of fixed-priority scheduling in practice.
AND connector is another important component in RTC,
which models synchronization of events from two streams.

AND is widely used in many application domains such as
sensor networks and IoT, where the states of different parts
of the system with the same time stamp should be fused to
derive useful information about the system.

This paper makes a revisit to GPC and AND in RTC. We
present new results to fix problems in existing RTC theory,
improve the analysis precision as well as make it more general.
Due to the wide usage of GPC and AND, our new results are
significant to the whole RTC framework. More specifically,
we make the following contributions in the paper.

For GPC, we derive tighter output arrival curves to more
precisely bound the timing behavior of output event streams.
The original output arrival curves of GPC were developed
about 15 years ago [1], [2], as a major foundational result
of the RTC framework. Since then, no improvement has ever
been made, although it is widely known that these bounds are
not tight. This paper for the first time makes these bounds
tighter. The key idea is to utilize the remaining service curve
to refine the information about how much resource can be
actually consumed, and exclude the unused resource when
computing the output arrival curves.

For AND connector, we make contributions in two aspects:

• We identify and fix a problem in the existing analysis
method for AND in [4] that may lead to negative values
in the lower output curves. We present new lower output
curves to fix the problem.

• We generalize AND to support synchronization of more
than two input event streams. The original AND only has
two input ports. A straightforward way for the general-
ization is to model a multi-input AND as several dual-
input AND connectors cascaded together. However, this
straightforward generalization is both imprecise and inef-
ficient. We present a more elegant way to generalize AND
to multiple inputs, which outperforms the straightforward
generalization approach in terms of both precision and
efficiency.

Finally, we conduct experiments to evaluate our new results
in different aspects, with randomly generated system models
under different configurations. Experiment results show signif-
icant improvement of our new methods in analysis precision
and efficiency.



II. RELATED WORK

There has been previous efforts to improve the analysis
accuracy of the RTC theory. The first direction models the
system using a state-based model, such as timed automata [7]
or event count automata [5], which can then be analyzed using
standard verification techniques. These approaches can provide
tight bounds; however, as is with verification, they suffer from
the state explosion problem. To solve this efficiency issue,
prior work has developed interfacing techniques [8], [9] that
combine RTC with state-based approaches. Our improved RTC
analysis can be transparently integrated into these interfacing
techniques to analyze the RTC components, thus improving
their overall analysis results.

Beyond state-based approaches, the trajectorial approach
has been developed [10] to bound the end-to-end analysis of
distributed systems. This approach gives better accuracy than
RTC does, but its fixed point computation is also much more
expensive than RTC.

Within the RTC context, Bouillard [11] has developed a
tighter analysis for blind multiplexing and FIFO networks
using linear programming. Our work focuses on improving
the output bound of a single component (GPC and multi-input
AND), and thus it is orthogonal to the work in [11].

In [12], the analysis of AND was studied with the so-called
standard event models, which are special cases of the curves in
RTC. The analysis techniques in [12] cannot handle AND with
general curves as inputs. A hybrid framework was proposed
in [13] for analyzing real- time embedded systems combining
RTC and Timed Automata. In principle, the timed automata
component can be used to model synchronization operations.
However, this approach is still limited by the low efficiency
for model-checking the timed automata, although the state
space has already been significantly reduced comparing with
modeling the whole system with a timed automata network.

III. RTC BASICS

RTC models event stream flows through a network of
processing and communication resources by components con-
nected with their input and output ports. The workload and
resource are modeled by variability characterization curves
(curves for short) [4]. Each type of component models a
particular resource arbitrary policy or operational semantic,
supported by closed-form formula to transform the input
curves into the output curves, and the worst-case delay and
backlog bounds.
A. Arrival and Service Curves

RTC uses variability characterization curves (curves for
short) to describe timing properties of event streams and
available resource:

Definition 1 (Arrival Curve): Let R[s, t) denote the total
amount of requested capacity to process in time interval [s, t).
Then, the corresponding upper and lower arrival curves are
denoted as αu and αl, respectively, and satisfy:

∀s < t, αl(t− s) ≤ R[s, t) ≤ αu(t− s) (1)

where αu(0) = αl(0) = 0.

Definition 2 (Service Curve): Let C[s, t) denote the
amount of events that the resource can process in time
interval [s, t). Then, the corresponding upper and lower
service curves are denoted as βu and βl, respectively, and
satisfy:

∀s < t, βl(t− s) ≤ C[s, t) ≤ βu(t− s) (2)

where βu(0) = βl(0) = 0.
For simplicity of presentation, we use a curve pair f =

(fu, f l) to represent both the upper and lower curves.

B. GPC: Greedy Processing Component
A GPC processes events from input (described by arrival

curves αu and αl) in a greedy fashion, as long as it complies
with the availability of resources (described by service curves
βu and βl). Input events are backlogged in a FIFO buffer if
currently no resource is available. When the available resource
arrives, the first event in the buffer is processed and the
corresponding output event is generated (described by output
arrival curves α′u and α′l). If the buffer is empty, the resource
will be passed to the subsequent component (described by
remaining service curves β′u and β′l):

αu
′

= min((αu⊗βu)�βl, βu) (3)

αl
′

= min((αl�βu)⊗βl, βl) (4)

βu
′

= (βu − αl)�0 (5)

βl
′

= (βl − αu)⊗0 (6)

where

(f⊗g)(∆) , inf
0≤λ≤∆

{f(∆− λ) + g(λ)}

(f⊗g)(∆) , sup
0≤λ≤∆

{f(∆− λ) + g(λ)}

(f�g)(∆) , sup
λ≥0
{f(∆ + λ)− g(λ)}

(f�g)(∆) , inf
λ≥0
{f(∆ + λ)− g(λ)}

The amount of events in the input buffer, i.e., the backlog,
can be bounded by max(0, V (αu, βl)), where V (f, g) gives
the maximal vertical distance from curve f to curve g:

V (f, g) , max(0, sup
λ≥0
{f(λ)− g(λ)})

The delay of events can be bounded from above by H(αu, βl),
where H(f, g) gives the maximal horizontal distance from
curve f to curve g

H(f, g) , sup
λ≥0
{inf{ε ≥ 0 : f(λ) ≤ g(λ+ ε)}}

Multiple GPCs are connected into a network. The output
arrival and resource curves of one GPC are used as the input
for the analysis of the downstream nodes along the event and
resource flow.



(a) GPC (b) AND

Fig. 1. Schematic of GPC and AND.

C. AND Connector
Another useful abstract component is the AND connector

[4], which combines two input event streams into a single
combined stream. Data arriving on one input stream must be
buffered until partner events arrive on the other input stream.
Partnering events join together and immediately pass the AND
connector, and consequently either of the internal buffers is
empty at any point of time. The two input event streams are
characterized by arrival curves αu1 , α

l
1 and αu2 , α

l
2. In [4], the

following output curves αu1,2 and αl1,2 are used to upper and
lower bound the combined event streams at the output:

αu1,2 = max(min(αu1�αl2 +B1 −B2, α
u
2 )),

min(αu2�αl1 +B2 −B1, α
u
1 )) (7)

αl1,2 = max(min(αl1�αu2 +B1 −B2, α
l
2),

min(αl2�αu1 +B2 −B1, α
l
1)) (8)

where B1 and B2 denote the initial buffer levels of the two
input streams. Later in Section V, we will show that there is
a problem with the lower output bound in above, and also
present a correction for it.

The delay of events at two inputs is bounded by

d1 ≤ H(αu1 +B1, α
l
2 +B2)

d2 ≤ H(αu2 +B2, α
l
1 +B1)

and the backlog at the two input buffers are bounded by

b1 ≤ max(0, V (αu1 +B1, α
l
2 +B2))

b2 ≤ max(0, V (αu2 +B2, α
l
1 +B1))

IV. IMPROVING GPC
Our tighter output arrival curves are obtained by modeling

the operational semantics of GPC in a more subtle way.
In GPC, when the buffer is empty, the available resource
will not be consumed. Instead, it will be directly sent to the
output resource interface. In other words, only a portion of
the input resource is actually consumed to process the events.
If we classify the input resources into two types, (i) the input
resources that are actually consumed to process events and (ii)
the input resources that are not consumed, then eliminating all
the type (i) resources from the input resource stream will not
affect the timing behavior of output event stream.

Based on the above observation, we develop a new way to
model the semantics of GPC, as shown in Figure 2. Inside
the GPC, a controller classifies the input resources into the
above mentioned two types by checking whether the input

Fig. 2. A new model of the GPC semantics.

buffer is empty. If yes, the controller will send the resource to
output resource interface. Otherwise, the resource will be sent
to GPC’and perform the actual event processing functionality
of GPC, which is modeled by effective service curve:

Definition 3 (Effective Service Curve): Let E[s, t) denote
the amount of resource actually sent to GPC’ to process the
events in time interval [s, t), then the corresponding upper
and lower effective service curves are denoted as γu and γl,
respectively, and satisfy:

∀s < t, γl(t− s) ≤ E[s, t) ≤ γu(t− s) (9)

where γu(0) = γl(0) = 0.
It is easy to know the following lemma:
Lemma 1: Let C[s, t) denote the amount of available re-

source in time interval [s, t), C ′[s, t) denote the amount of
resource not used to process events in [s, t). Let E[s, t) denote
the amount of resource actually sent to GPC’ to process the
events in [s, t). For any time interval [s, t) it holds:

C[s, t) = E[s, t) + C ′[s, t)

Proof: Any available resource available in [s, t) is either
used to process the events (included in E[s, t)) or not (included
in C ′[s, t)).

By transferring this relation to the time interval domain, we
can compute γu by β and β′ as follows:

Lemma 2: For any time interval [s, t) with t − s = ∆,
E[s, t) is upper and lower bounded by

γu(∆) = inf
λ≥∆
{βu(λ)− β′l(λ)} (10)

γl(∆) = sup
0≤λ≤∆

{βl(λ)− β′u(λ)} (11)

Proof: We first prove (10). For any time interval [s −
ε1, t+ ε2) with ε1 ≥ 0 and ε2 ≥ 0, it holds E[s, t) ≤ E[s−
ε1, t+ ε2), so we have

E[s, t) = inf
ε1≥0∧ε2≥0

{E[s− ε1, t+ ε2)}

= inf
ε1≥0∧ε2≥0

{C[s− ε1, t+ ε2)− C ′[s− ε1, t+ ε2)}

≤ inf
ε1≥0∧ε2≥0

{βu(∆ + ε1 + ε2)− β′l(∆ + ε1 + ε2)}

= inf
ε≥0
{βu(∆ + ε)− β′l(∆ + ε)}

= inf
λ≥∆
{βu(λ)− β′l(λ)}



(a) Input arrival curves. (b) Upper output arrival curves.

Fig. 3. An example comparing the original and new upper output arrival
curves for GPC.

Then we prove (11). For any time interval [s + ε1, t − ε2)
with ε1 ≥ 0, ε2 ≥ 0 and ε1 + ε2 ≤ t − s, it holds E[s, t) ≥
E[s+ ε1, t− ε2), so we have

E[s, t)

= sup
ε1≥0∧ε2≥0∧ε1+ε2≤t−s

{E[s+ ε1, t− ε2)}

= sup
ε1≥0∧ε2≥0∧ε1+ε2≤t−s

{C[s+ε1, t−ε2)−C ′[s+ε1, t−ε2)}

≥ sup
ε1≥0∧ε2≥0∧ε1+ε2≤∆

{βl(∆−ε1−ε2)−β′u(∆−ε1−ε2)}

= sup
0≤ε≤∆

{βl(∆− ε)− β′u(∆− ε)}

= sup
0≤λ≤∆

{βl(λ)− β′u(λ)}

With the γu and γl obtained from the above lemma, now
we can compute the output arrival curves of GPC’. Note that
the operational semantics of GPC’ is exactly the same as the
original greedy processing component GPC, so we have the
following theorem:

Lemma 3: Given a GPC with input arrival curves αu, αl

and service curves βu, βl, and γu, γl computed by Lemma 2,
the output events can be upper bounded by:

αu
′

= [(αu ⊗ γu) � γl] ∧ γu (12)

The new upper output arrival curve in the above lemma is
generally incomparable with the original one: sometimes our
new curve is tighter, sometimes the original one is tighter,
and sometimes the new curve and the original curve do not
dominate each other (one curve is tighter for some parts and
the other curve is tighter for some other parts). Therefore,
combining our new curve with the original one gives the best
result as stated in the following theorem:

Theorem 1: Given a GPC with input arrival curves αu, αl

and service curves βu, βl, and γu, γl computed by Lemma 2,
the output events can be upper bounded by:

αu
′

= [(αu ⊗ γu) � γl] ∧ [(αu ⊗ βu) � βl] ∧ γu (13)

Similarly, by using γu and γl to replace βu and βl, we
can also get a new lower output arrival curve. However, this
yields a looser lower output arrival curve than the original
one. Therefore, for computing lower output arrival curve, we
should still use (4).

(a) Input arrival curves. (b) Lower output arrival curves.

Fig. 4. An example illustrating the negative value problem in original output
curves of AND.

An Example. We use a simple example to demonstrate our
new output arrival curve bounds. Suppose we have a strictly
periodic event arriving pattern with a period of 3 time units
(the processing of each event takes one time unit) and a TDMA
resource provides two time units of resource with a period
of 4 time units, the corresponding arrival and service curves
of which are shown in Figure 3-(a). The original and our
new output upper arrival curves, denoted by OLD and NEW
respectively, are shown in Figure 3-(b), where we can see our
new curve is tighter than the original one.

V. REVISING AND
We first identify the problem in existing analysis methods

of AND, and then present solutions to fix the problem.

A. Problem
Recall the original lower output curve in [4]:

αl1,2 = max(min(αl1�αu2 +B1 −B2, α
l
2),

min(αl2�αu1 +B2 −B1, α
l
1))

We use the following example to illustrate its problem. Sup-
pose we have two strictly periodic event streams with periods
P1 = 5 and P2 = 4, and initial buffers B1 = B2 = 0. The
input curves are shown in Figure 4-(a). Then their upper and
lower arriving curves are

αu1 (∆) = d∆/5e , αl1(∆) = b∆/5c

αu2 (∆) = d∆/4e , αl2(∆) = b∆/4c

Let ∆ = 1, then following the definition of � we have

αl1,2(1) = max (min (X1, 0) ,min (X2, 0))

where

X1 = inf
λ≥0
{b(1 + λ)/5c − dλ/4e}

≤ b(1 + 0.1)/5c − d0.1/4e = −1

X2 = inf
λ≥0
{b(1 + λ)/4c − dλ/5e}

≤ b(1 + 0.1)/4c − d0.1/5e = −1

So both X1 and X2 are negative, and consequently αl1,2(1) is
also negative (the resulting output curve is shown as the dash
line in Figure 4). This violates the basic assumption for all the
computation rules in RTC that all curves are non-negative.



By having a closer look into the above example, we will
see that these negative values are actually a precision problem
rather than a correctness problem. αl is a lower bound for
the number output events, and a negative number is indeed a
correct lower bound. Therefore, for a single AND connector,
the original lower output curve is still correct, but just too
imprecise (even more imprecise than the naive lower bound 0
in some cases). However, when the AND connectors are put
into a RTC network, the effect of these negative curves will
propagate to other components, and eventually may cause in-
consistency to the operational semantics of the system model,
as all the computation rules in RTC are based on the implicit
assumptions that all curves are positive.
B. Solution

The problem mentioned above can be easily fixed by
changing all the negative values to 0. However, this quick
fix only superficially solves the negative value problem, but
does not really address the real source of pessimism behind
the problematic original lower output curve.

In the following, we present a new lower output curve for
AND. Our new result is tighter than the original one and
systematically solves the negative value problem.

Let Ri[s, t) denote the total number of events arrived in time
interval [s, t), and use Ri(t) to represent Ri[0, t) for short.
Moreover, we use [x]0 to denote max(x, 0) for simplicity.

We first quote a known result from [4]:
Lemma 4: Ri(t)−Rj(s) is upper and lower bounded by:

αli�αuj (t− s) ≤ Ri(t)−Rj(s) ≤ αui �αlj(t− s)

Theorem 2: The output event stream of an AND connector
with two input event streams characterized by arrival curves
α1 and α2 is lower bounded by the curve:

αl1,2 = min(max(αl1�αu2 +B1 −B2, α
l
1),

max(αl2�αu1 +B2 −B1, α
l
2)) (14)

Proof: The backlogs of the two streams at time t are

b1(t) = [R1(t) +B1 − (R2(t) +B2)]0

b2(t) = [R2(t) +B2 − (R1(t) +B1)]0

Let R1,2[s, t) denote the number of output events in time
interval [s, t), which is the minimum between the events of
the two streams in this interval:

R1,2[s, t) = min(R1[s, t) + b1(s), R2[s, t) + b2(s))

= min(R1[s, t) + [R1(s)−R2(s) +B1 −B2]0,

R2[s, t) + [R2(s)−R1(s) +B2 −B1]0)

= min(max{R1[s, t), R1(t)−R2(s) +B1 −B2},
{R2[s, t), R2(t)−R1(s) +B2 −B1})

and by applying Lemma 4 we finally get

R1,2[s, t) ≥ min(max(αl1�αu2 +B1 −B2, α
l
1),

max(αl2�αu1 +B2 −B1, α
l
2))

by which the theorem is proved.

Fig. 5. Modeling a multi-input AND connector as cascaded dual-input AND
connectors.

The solid line in Figure 3-(b) is the lower output curve
generated by out new method. We can see that it does not
only solve the negative value problem, but also in general more
precise than the original curve even if the negative values are
changed to zero.

VI. GENERALIZING AND
Many realistic systems need to synchronize events from

more than two streams. In the following we generalize the
original dual-input AND connector to the multi-input setting.

A. The Cascaded Approach
A straightforward approach to analyze AND connectors

with multiple inputs is to model a multi-input AND connector
as several cascaded dual-input AND connectors. Figure 5
shows the cascaded modeling of a multi-input AND connector
with four input streams.

We use

(αi,j , Bi,j) = (αi, Bi) � (αj , Bj)

to represent the computation of output curves for an AND
connector with input curves αi and αj (using (7) to compute
the upper curves and using our new method (14) to compute
the lower curves) as well as the initial buffer level Bi,j for
this event stream that is useful when it is further combined
with other streams:

Bi,j = min(Bi, Bj)

In general, for n-input streams cascaded by dual-input AND
connectors in a particular order π = {α1, α2, · · · , αn} the
final output curve is computed by

(αand,π, Band) = (α1, B1) � · · · � (αn, Bn) (15)

The result of this approach is sensitive to the order to
cascade the inputs, and it is generally unknown which order
gives the best result. On the other hand, the output bounds
obtained with any of the pairing orders are valid. Therefore,
we can join the results with all the possible orders to get tighter
bounds:

Theorem 3: For multi-input AND connector, let Π be the
full permutation of {α1, · · · , αn}, i.e., the set of all possible
cascading orders of the input streams, and αuand,π and αland,π
are the upper and lower output curves for a particular cascad-
ing order π ∈ Π, then output curves of the multi-input AND
connector is upper and lower bounded by:

αuand = min
π∈Π
{αuand,π}, αland = max

π∈Π
{αland,π}

The proof the theorem is straightforward and thus omitted.



The computation of the maximum delay and backlog of each
stream also depends on the cascading order. For example, in
Figure 5, the maximal delay (backlog) of events in stream α1

should be counted as the sum of the delay (backlog) incurred
at AND1, AND2 and AND3, while for an event in stream α4

only the delay (backlog) at AND3 is counted. Obviously, to
compute a tight delay (backlog) bound for a stream αi, we
should use a cascading order in which αi only connects to the
last dual-input AND connector:

Theorem 4: A multi-input AND connector has n inputs
characterized by {α1, α2, · · · , αn}. The maximal delay and
backlog of events in a stream αi is upper bounded by

di ≤ H
(
αui +Bi, α

l∗ + min
i 6=j
{Bj}

)
bi ≤ max

(
0, V

(
αui +Bi, α

l∗ + min
i6=j
{Bj}

))

where αl∗ is the output curve for joining the other n−1 input
streams using Theorem 3.
The proof the theorem is straightforward and thus omitted.

B. The Holistic Approach
In the following we present a new approach to compute

the output curve and delay/backlog bounds for multi-input
AND which is both more precise and more efficient than the
above straightforward approach. We call this new approach
the holistic approach, as it computes the desired results with
all the inputs curves at the same time (rather than computing
them step by step with two input curves at each step in the
cascaded approach).

Theorem 5: Given an AND connector with n inputs, which
are characterized by the input upper and lower curves
(αu1 , α

l
1), (αu2 , α

l
2), · · · , (αun, α

l
n), and the initial buffer levels

B1, · · · , Bn, the output arrival curves are computed by:

αuand = max
all k

{
min

(
min
i 6=k

{
αui �αlk+Bi−Bk

}
, αuk

)}
(16)

αland = min
all k

{
max

(
max
i 6=k

{
αlk�αui +Bk−Bi

}
, αlk

)}
(17)

The maximal delay and backlog of input i are bounded by

di = H

(
αui +Bi,min

j 6=i

{
αlj +Bj

})
(18)

bi = max

(
V

(
αui +Bi,min

j 6=i

{
αlj +Bj

})
, 0

)
(19)

Proof: We first prove (18). Let Ri(t) denote the accumu-
lated amount of arrived events of input i from time 0 to t.
The total amount of available events of input i until time t is
Ri(t) + Bi. Then min

i 6=j
{Rj(t) + Bj} is the minimum of the

available events among all the other inputs. So the maximal
delay of the event backlogged at input i at time t is

Fig. 6. The relation between Ψ(k) and Ψ′(k).

di(t) = inf{τ ≥ 0 : Ri(t) +Bi ≤ min
i 6=j
{Rj(t+ τ) +Bj}}

≤ sup
λ≤0
{inf{τ ≥ 0 : Ri(λ) +Bi ≤ min

i6=j
{Rj(λ+ τ) +Bj}}

≤ sup
λ≤0
{inf{τ ≥ 0 : αui (λ) +Bi ≤ min

i6=j
{αlj(λ+ τ) +Bj}}

=H(αui +Bi,min
i6=j
{αlj +Bj})

Now we prove (19). The total amount of output events by
time t is R′(t) = min

all j
{Rj(t) + Bj}, so the buffer of input i

at time t is

bi(t) = [Ri(t)−R′(t)]0

= [Ri(t) +Bi − {min
all j
{Rj(t) +Bj}}]0

= [Ri(t) +Bi − {min
i6=j
{Rj(t) +Bj}}]0

Therefore, we have
bi(t) = [max

i 6=j
{Ri(t)−Rj(t) +Bi −Bj}]0 (20)

By applying Lemma 4 to this, we get

bi(t) ≤ [max
i 6=j
{αui �αlj(0) +Bi −Bj}]0

= [max
i 6=j
{(αui +Bi)�(αlj +Bj)(0)}]0

= max
i6=j
{V (αui +Bi, α

l
j +Bj)}

= max{V (αui +Bi,min
i 6=j
{αlj +Bj}), 0}

In the following we prove (16). Rand[s, t) denotes the
amount of output combined event generated in time interval
[s, t), which equals the minimum among all the inputs:

Rand[s, t) = min
all i
{Ri[s, t) + bi(s)} (21)

where bi(s) is the buffer level of input i at time s.
In the following we prove

min
all i
{Ri[s, t) + bi(s)} = max

all k
{Ψ(k)} (22)

where

Ψ(k) = min

(
min
i 6=k
{Ri[s, t) + bi(s)} , Rk[s, t)

)
By the definition of Ψ(k) we know that for any k ∈ [1, n]

Ψ(k) ≤ min
all i
{Ri[s, t) + bi(s)} (23)



On the other hand, at least one of b1(s), b2(s), · · · , bn(s) must
be 0. Without loss of generality, let bx(s) = 0, then by the
definition of Ψ we have

Ψ(x) = min
all i
{Ri[s, t) + bi(s)} (24)

In summary, the LHS of (22) is no smaller than Ψ(k) for all
k ∈ [1, n], and there exists at least one Ψ(x) that equals to
the LHS (22), by which (22) is proved. Combining (21) and
(22) yields

Rand[s, t) = max
all k
{Ψ(k)} (25)

In the following we will derive an upper bound for
max
all k
{Ψ(k)}. Note that we will derive an upper bound for the

entire max
all k
{Ψ(k)}, rather than upper bounding Ψ(k) for each

k and then getting their maximum.
By applying (20) to Ψ(k), we have

Ψ(k) = min

(
min
i 6=k
{Ri[s, t) + [Ri(s) +Bi − σ]0}, Rk[s, t)

)
where

σ = min
i 6=j
{Rj(s) +Bj}

We define another function Ψ′(k) respect to k as follows:

Ψ′(k) = min

(
min
i 6=k
{Ri[s, t) + [Ri(s) +Bi − σ′]0}, Rk[s, t)

)
where

σ′ = Rk(s) +Bk

Now we discuss the relation between Ψ′(k) and Ψ(k). First,
since σ ≤ σ′, we know the general relation between Ψ′(k)
and Ψ(k):

Ψ′(k) ≤ Ψ(k)

Then we focus on the relation between Ψ′(k) and Ψ(k) with
a particular k satisfying bk(s) = 0 In this case, Rk(s) + Bk
must be no larger than Ri(s) + Bi for any i, which implies
σ = σ′. Therefore, we know bk(s) = 0 implies

Ψ(k) = Ψ′(k)

Moreover, by the definition of Ψ(k), we know Ψ(k) reaches
its maximal value with k if bk(s) = 0, i.e.,

Ψ(k) = min
all i
{Ri[s, t) + bi(s)} = max

all k
{Ψ(k)} (26)

Putting the above discussions together, the relation between
Ψ′(k) and Ψ(k) can be summarized as follows:

In general Ψ′(k) ≤ Ψ(k), while both of them reach
the same maximal value with a particular k satisfying
bk(s) = 0. Moreover, there must exist bk(s) = 0 among
{b1(s), b2(s), · · · , bn(s)} since at any time point at least one
of the stream buffers must be empty. These relations are
illustrated in Figure 6. Therefore, we can conclude that

max
all k
{Ψ(k)} = max

all k
{Ψ′(k)} (27)

In the following, we compute an upper bound for
max
all k
{Ψ′(k)}:

max
all k
{Ψ′(k)}

= max
all k
{min(min

i 6=k
{Ri[s, t) + [Ri(s) +Bi − σ′]0}, Rk[s, t))}

Ψ′(k) reaches the maximal value with k satisfying bk(s) = 0.
If bk(s) = 0, we know Ri(s) + Bi − Rk(s) − Bk ≥ 0, i.e.,
Ri(s) +Bi − σ′ ≥ 0, so the above equation is rewritten as

max
all k
{Ψ′(k)}

= max
all k
{min(min

i6=k
{Ri(t)−Rk(s) +Bi −Bk}, Rk[s, t))}

and finally by (25), (27) and Lemma 4 we have

Rand[s, t)

≤max
all k
{min(min

i 6=k
{αui �αlk +Bi −Bk}, αuk)}(t− s)

By now we have proved (16) for the upper output curve.
In the following we prove (17) for the lower output curve.
The amount of output events in [s, t) is the minimum

amount of events among all streams in this time interval:

Rand[s, t) = min
all k
{Rk[s, t) + bk(s)}

= min
all k

{
Rk[s, t)+[max

i6=k
{Rk(s)−Ri(s)+Bk−Bi)}]0

}
//by (19)

= min
all k

{
max(Rk[s, t),max

i 6=k
{Rk(t)−Ri(s)+Bk−Bi})

}
By Rk[s, t) ≥ αlk(t− s) and Lemma 4, we get

Rand[s, t) ≥ min
all k

{
max

(
max
i6=k
{αlk�αui +Bk −Bi

}
, αlk)

}

VII. EXPERIMENTAL EVALUATION

We implement our new theoretical results in RTC Toolbox
[14] and conduct experiments to evaluate their performance.
Experiments are conducted a computer with a 2.50GHZ Intel
Core i7 processor and 4.00 GB RAM.

A. Evaluation for GPC
We first evaluate the analysis precision improvement for

GPC. We compare two methods to compute output curves:

• GPC-Old: The original methods to compute the upper
and lower output arrival curves using (3) and (4).

• GPC-New: Computing the upper output arrival curve
using our new method in (13) and the lower output arrival
curve using the original method (4).

The input arrival curves are generated following the PJD
workload model [15] characterized by (p, j, d):

αu(∆) = min

(⌈
∆ + j

p

⌉
,

⌈
∆

d

⌉)
, αl(∆) =

⌊
∆− j
p

⌋
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Fig. 7. Experiment results for GPC.

Fig. 8. The 4 × 4 RTC network.

The service curves are generated following the TDMA model
[14] characterized by (s, c, b):

βu(∆) =

(⌊
∆

c

⌋
· s+ min(∆ mod c, s)

)
· b

βl(∆) =

(⌊
∆′

c

⌋
· s+ min(∆′ mod c, s)

)
· b

where ∆′ = max(∆− c+ s, 0).
Figure 7-(a) and (b) show the experiment results with a

single GPC. The input arrival curves are randomly generated
by selecting the p, j and d values in the following ranges:
p ∈ [20, 50], i ∈ [10, 100] and d ∈ [1, 10]. The input service
curves have a fixed c = 60 and b = 1, and s varies for different
groups of experiments (corresponding to the x-axis). With each
s value, we perform 1000 experiments with both methods.

Figure 7-(a) reports the percentage of generated GPC for
which the output curve obtained by GPC-New is more precise
than GPC-Old. When s = 1, the long-term slope of the
service curves is smaller than the arrival curves, with which the
two methods perform the same. As s increases, the resource
becomes more sufficient, and the percentage of experiments in
which GPC-New is more precise becomes higher. Eventually,
when s ≥ 4, the long-term slope of resource curves is always
larger than the arrival curves, and our new method always
yields more precise results than GPC-Old.

Figure 7-(b) reports the distance between the upper output
arrival curves obtained by the two methods. The distance of
two curves f and g is defined as follows:

dist(f, g) =

∑n
∆=1 |(f(∆)− g(∆))|

n

Figure 7-(b) reports the results of dist(αuold, α
u
new) with n =

200 and different s. For each s, the upper and lower ends of the
vertical segment represent the maximal and minimal distance,
and the cross symbol in the middle represents the average
distance of all the experiments with this s value. In general,
the distance between GPC-New and GPC-Old is larger when
s increases. In summary, Figure 7-(a) and (b) show that the
precision improvement of our new upper output arrival curves
is more significant with more sufficient resource.

In RTC, the final goal is to compute the backlog and
delay bounds of the event streams. Therefore, the precision
improvement in the output curves is meaningful only if it
leads to more precise backlog and delay bounds. Therefore, we
evaluate the backlog and delay bounds of a 4×4 RTC network,
as shown in Figure 8. The initial input arrival curves are
randomly generated in the same way as the above experiments,
and the initial input service curves are generated with s = 20,
c = 60 and b = 1. Figure 7-(c) shows the ratio between the
delay (backlog) bounds obtained using GPC-Old and those
obtained by GPC-New, namely the relative quality. Each
result for x-axis value i is the average of the delay (backlog)
relative quality of components in the ith column. Similar to
Figure 7-(b), the results include the minimal, maximal and
average relative quality for each group of experiments. We can
see that the precision improvement for delay (backlog) bounds
using our new output arrival curves is more significant for the
downstream components. This is because the precision gain in
output curves by our new method will be accumulated as the
curves propagate in the network.

B. Evaluation for Dual-Input AND
Recall that the negative value problem of the original lower

output curve in (8) can be fixed by changing the negative
values to 0, but the resulting output curves are still pessimistic.
Our new method does not only systematically solve the
negative value problem, but also can provide tighter results.
Next we evaluate the precision improvement of our new lower
output curves for dual-input AND connectors in (14). We
compare two methods to compute the lower output curves:

• AND-Naive: The lower output curve obtained by fixing
the negative value problem in the original lower output
curve in (8) by simply changing the negative values to 0.

• AND-New: Our new lower output curve in (14).
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Fig. 9. Experiment results for dual-input AND.

In all the experiments with AND (including the multi-input
AND in the next subsection), we use a revised version of the
PJD event model to generate input curves. For AND, if the
long-term slope of the input curves are different, the events
backlogged in the buffer of the one with lower slope will
increase infinitely. Therefore, AND is typically used to join
curves with the same long-term slope. However, in the original
PJD model [15], the long-term slope of a curve only depends
on the parameter p, which represents the period of the events.
Therefore, with the original PJD model, all the input curves to
AND must have the same period, which not only represents a
very special case but may lead to biased comparison results. In
order to cover more general cases and make our results more
convincing, we extend the PJD model from three parameters
(p, j, d) to four parameters (p, j, d, r):

αu(∆) = min

(⌈
(∆ + j)r

p

⌉
,

⌈
∆

d

⌉)
, αl(∆) =

⌊
(∆− j)r

p

⌋
With the extended model, the long-term slope of the curves
depends on the value of r

p . Therefore, we can generate curves
with the same long-term slope but different periods.

The input curves are randomly generated by selecting the
p, j and d values in the same ranges as the experiments in
Figure 7-(a) and (b). For the two input curves of an AND,
their r values are derived so that the long-term slopes of
the two curves are the same. The initial buffer level of each
input stream is randomly chosen in the range [1, x], where x
corresponds to the x-axis in Figure 9. Similar to Figure 7-(a)
and (b), Figure 9-(a) reports the percentage of experiments
in which AND-New is more precise than AND-Naive, and
Figure 9-(b) reports the distance between the lower output
curves obtained by AND-New and AND-Naive. The results
show that the precision improvement of our new results is
more significant when the initial buffer level is smaller.
C. Evaluation for Multi-Input AND

Next we evaluate the generalization of AND to multiple
inputs. We first compare the output curves obtained by the
cascaded approach and the holistic approach:
• CAS-x: The cascaded approach to compute the output

curves in (15). Recall that the cascaded approach is sen-
sitive to the order to apply dual-input AND to the event
streams. The result with any order provides valid upper
and lower output curves, while joining the results with
different orders in general may improve the precision.

CAS-x represents the final results obtained by joining
results with x randomly selected orders.

• HOL: The holistic approach to compute the output curves
using (16) and (17).

Figure 10 shows experiment results with AND with four
input streams. There are in total 4!/2 = 12 different cascading
orders for a four-input AND. Figure 10-(a) reports the percent-
age of experiments that HOL is more precise than CAS-x, and
Figure 10-(b) reports the distance between the output curves
obtained by CAS-x and HOL, with x being 1, 3, 6 and 12,
respectively. The input curves are generated in the same way
as in Section VII-B.

We also compare the time consumed by the analysis of each
four-input AND by different methods in Figure 10-(c). The
input curves are generated in a similar way with above, and
the only difference is that we change the range for selecting
the period p: the lower bound is 10, while the upper bound
is 15, 20, · · · , 40 (the values on the x-axis). The initial buffer
level is in the range [1, 5]. The experiment results show that the
HOL method is consistently efficient: it on average takes less
than 0.1 second, and rarely exceeds 1 second. However, the
efficiency of the cascaded approach is much lower. Even CAS-
1 (only one cascading order is analyzed) is much slower than
HOL. The time consumption of CAS-x increases exponentially
as the range of periods increases.

The low efficiency of the cascaded approach is because of
the “period explosion” problem [16]. In RTC, the curves are
conceptually infinite, which are not implementable. Practical
implementations of RTC, such as the RTC Toolbox [16], are
restricted to a class of regular curves [16], which can be
efficiently represented by finite data structures but are still
expressive enough to model most realistic problems. A regular
curve consists of an aperiodic part, followed by a periodic part.
Each part is represented by a concatenation of linear segments.
Generally, the computation time and memory requirement
of an operation between two curves are proportional to the
number of segments contained by the curves. The number
of segments of a curve representing a PJD event model is
generally proportional to its period. The period of the output
curve of a dual-input AND is the hyperperiod of the two
input curves. In the cascaded approach, the period of the event
stream increases exponentially as it travels through the dual-
input AND, which leads to the low efficiency of the cascaded
approach. When periods of the input curves are selected from
a wider range, the resulting hyperperiod of them is larger,
and thus the efficiency of the cascaded approach is worse. By
contrast, the holistic approach in (16) and (17) only performs
corresponding operations on each pair of the input curves,
which avoids the above “period explosion” problem.

Finally, we compare the precision and computation effi-
ciency of the delay (backlog) bounds using the cascaded
method (Theorem 4) and holistic method (Theorem 5) for
four-input AND. The input curves are generated in the same
way as the corresponding experiments in above. Figure 10-
(d) and (e) report the percentage of experiments where the
holistic approach gives more precise results and ratio between
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Fig. 10. Experiment results for multi-input AND.

the delay (backlog) bounds by the cascaded approach and by
the holistic approach. Figure 10-(f) gives the time consumption
of the two approaches, where the holistic approach on average
takes less than 0.1 second, while the time consumption of the
cascaded approach is much longer and increases exponentially
as the period range is larger. Note that to compute the
delay and backlog bounds of an event stream in a four-input
AND, we only need to compute the output curve joining the
remaining three streams, so the time consumption is lower
than the experiments in Figure 10-(c) which join all the four
streams. In summary, to generalize AND to support multiple
inputs, our new holistic approach is not only more precise but
also significantly more efficient than the naive approach by
cascading dual-input AND.

VIII. CONCLUSION

In this paper, we improve the two widely used components,
GPC and AND, in real-time calculus. First, we develop a
more precise method to compute the upper output arrival
curve of GPC. The key idea of our new method is to use
the remaining service curves to refine the information about
how much resource is actually consumed to process the input
events. Second, we identify and fix a problem in the existing
analysis method of AND. Third, we study the analysis of
AND connectors with more than two inputs (called multi-
input AND). We first present a straightforward generalization
approach by modeling a multi-input AND as several cascaded
dual-input AND, then present a holistic approach for the
generalization which is more precise and efficient.

REFERENCES

[1] L. Thiele, S. Chakraborty, and M. Naedele., “Real-time calculus for
scheduling hard real-time systems.” in Proc. Inti. Symposium on Circuits
and Systems, 2000.

[2] S. Chakraborty, S. Knzli, and L. Thiele, “A general framework for
analysing system properties in platform-based embedded system de-
signs,” in DATE. Springer Verlag, 2003.

[3] J. L. Boudec and P. Thiran, “Network calculus - a theory of deterministic
queuing systems for the internet,” in LNCS 2050. Springer Verlag, 2001.

[4] E. Wandeler, “Modular performance analysis and interface-based design
for embedded real-time systems,” in PhD thesis, ETHZ, 2006.

[5] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan, “Event count
automata: a state-based model for stream processing systems,” in RTSS,
2005.

[6] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Schedulability
analysis of fixed-priority systems using timed automata,” in Theor.
Comput. Sci., 2006.

[7] Y. Abdeddaim, A. Kerbaa, and O. Maler, “Task graph scheduling using
timed automata,” in Proceedings International Parallel and Distributed
Processing Symposium, 2003.

[8] L. T. X. Phan, S. Chakraborty, P. S. Thiagarajan, and L. Thiele, “Com-
posing functional and state-based performance models for analyzing
heterogeneous real-time systems,” in RTSS, 2007.

[9] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis
and timed automata: a hybrid methodology for the performance analysis
of embedded real-time systems,” Design Automation for Embedded
Systems, vol. 14, no. 3, pp. 193–227, 2010.

[10] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Applying and optimizing tra-
jectory approach for performance evaluation of afdx avionics network,”
in ETFA, 2009.

[11] A. Bouillard, “Algorithms and efficiency of network calculus,” Ph.D.
dissertation, Ecole Normale Supérieure (Paris), 2014.

[12] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” IEE
proceedings-Computers and Digital Techniques, vol. 152, no. 2, pp. 148–
166, 2005.

[13] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis
and timed automata: a hybrid method for analyzing embedded real-time
systems,” in EMSOFT, 2009.

[14] E. Wandeler and L. Thiele, “Real-Time Calculus (RTC) Toolbox,”
2006. [Online]. Available: http://www.mpa.ethz.ch/Rtctoolbox

[15] K. Richter, “Compositional scheduling analysis using standard event
models,” in In Ph.D. Thesis, Technical University Carolo-Wilhelmina
of Braunschweig. Springer Verlag, 2005.

[16] N. Guan and W. Yi, “Finitary real-time calculus: Efficient performance
analysis of distributed embedded systems,” in RTSS, 2013.


