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Abstract—Critical real-time systems like spacecraft and air-
craft commonly use Byzantine fault-tolerant (BFT) state ma-
chine replication (SMR) to mask faulty processors and sensors.
Unfortunately, existing BFT SMR techniques require replicas to
reach agreement on redundant sensor data and perform source
selection before executing, which adds unavoidable latency to
every execution and inevitably decreases control performance.
The standard way to reduce the latency of BFT SMR in non-
real-time systems is to use speculation, forgoing agreement on
inputs altogether, and repeating executions when faults occur.
However, this approach is not suitable for real-time systems, since
its worst-case latency when faults occur can be even higher than
that of non-speculative systems.

This paper presents IGOR, a new speculative BFT SMR
approach that leverages multi-core processors to avoid the added
latency inherent to traditional BFT SMR techniques in both the
absence and presence of faults. The key idea of IGOR is to eagerly
execute on data from redundant sensors in parallel. While these
executions are underway, the replicas reach agreement on which
execution will determine the system’s final state. As a result,
IGOR’s latency is reduced to the time taken by the executions or
by the agreement process, whichever is longer. Our evaluation
shows that IGOR reduces latency by up to 1.75× and improves
schedulability by 1.88–3.22× compared to the state of the art.
We also show that when used to execute spacecraft guidance,
navigation, and control software during a dynamic mission phase,
IGOR noticeably increases vehicle stability.

Index Terms—Byzantine fault tolerance, state machine repli-
cation, speculative execution, multi-core, real-time systems, dis-
tributed systems

I. INTRODUCTION

Real-time control systems, such as those in spacecraft and
aircraft, often use Byzantine fault-tolerant (BFT) state machine
replication (SMR) to mask errors due to hardware faults and
environmental factors, such as cosmic radiation [1]–[16]. In
these systems, the same function is performed simultaneously
by multiple processors (i.e., replicas), each of which receives
data from redundant sensors. To ensure that the replicas
maintain the same internal state and produce the same output,
care must be taken to ensure they operate on the same input
data. This is typically accomplished by having the replicas run
an agreement protocol on the data from each sensor [8], [15],
[17]. The replicas then perform a source selection to choose a
single “best” sensor value as the system input [5], [15], [18].
The source selection step is typically application-specific, and
can be as simple as a mid-value selection [5], [15]. Finally,
the replicas execute on the selected input value.

Unfortunately, this “agree-execute”1 approach used in tra-
ditional BFT SMR systems has a significant drawback:
high latency. Since any deterministic agreement protocol re-
quires at least f + 1 rounds of communication to tolerate f
faulty replicas [20], requiring that the replicas reach agreement
on inputs before executing adds at least f + 1 rounds of
communication latency to every execution they perform on the
incoming data. As we show in §VI, this additional delay can
make it impossible to meet certain hard deadlines. Moreover,
even when all deadlines can be met, the added latency results
in an unavoidable reduction in real-time control performance
and system stability, and thus increases the complexity of the
control software to compensate for the extra delay [21].

A standard approach to addressing this challenge in non-
real-time systems, such as data centers and blockchains [22]–
[27], is to adopt speculative execution, which forgoes agree-
ment on the inputs altogether and assumes the replicas will
end up in identical states. In the common case where replicas
do not diverge, this approach completely avoids running an
agreement protocol. However, when the states do diverge –
which can be caused by faulty replicas – the system needs
to rollback and repeat previous executions [22]–[26]. This
outcome is not generally acceptable for real-time systems,
since repeating executions can substantially increase worst-
case response times, leading to deadline misses.

In this paper, we present IGOR, a novel speculative BFT
SMR approach that leverages the increasing prevalence of
multi-core processors in real-time embedded systems [10],
[28] to enable speculation without rollback. The key idea
behind IGOR is to eagerly execute on the data from redundant
sensors simultaneously, without knowing which execution (and
thus which sensor) will be used to determine the system’s
final state. While these executions are underway, the replicas
reach agreement on which states to discard and which to keep.
As soon as the executions and the agreement process are
completed, IGOR can deliver results to the actuators. Thus,
when the executions take longer than agreement (which is
common in practice, as we show in §VI), IGOR’s end-to-end
latency (from sensors to actuators) is the same as that of a
non-replicated system – that is, IGOR achieves the minimum
possible latency. In all other cases, IGOR’s ability to overlay
agreement and execution inevitably results in latency savings.

1We borrow the term “agree-execute” from [19], but narrow its meaning to
refer specifically to BFT systems that agree on inputs before executing.



It is not sufficient to simply run an existing agreement proto-
col concurrently with the speculative executions, however. The
reason is that, although the source selection algorithm will still
select a single “best” sensor value, we cannot guarantee that
the selected sensor value has been executed on by enough non-
faulty replicas, and thus there may not be enough non-faulty
replicas with the same state to out-vote the faulty replicas (c.f.
§IV-A). We solve this problem by introducing new agreement
protocols that allow replicas to simultaneously reach agree-
ment on both (1) the sensor values they received and (2) how
many replicas received each of those sensor values. As such,
the protocols are able to guarantee that a given sensor value
cannot be selected unless there is a high enough number of
replicas claiming to possess the value such that, even if some
of those replicas are faulty, a sufficient number of replicas must
have executed on the value successfully. Importantly, IGOR
can provide this guarantee without sacrificing correctness or
using more communication rounds than that of a traditional
agreement protocol.

To evaluate IGOR’s performance, we implemented a proto-
type of IGOR in NASA’s Core Flight System (cFS) [29], an
open-source general-purpose flight software framework used
in a variety of real spacecraft, including the Lunar Reconnais-
sance Orbiter and Parker Solar Probe [30]. Our experimental
evaluation shows that, for realistic system configurations,
IGOR reduces latency by up to 1.75× and improves schedula-
bility by 1.88–3.22× compared to the state of the art, and that
its latency closely matches the theoretical minimum (produced
by a non-replicated system). We also used IGOR to execute
simulated guidance, navigation, and control software from
a real spacecraft (including multiple genuine flight software
components); our evaluation shows that IGOR is able to meet
deadlines that existing solutions cannot, leading to improved
vehicle stability and performance.

In summary, we make the following contributions:
• IGOR: a speculative BFT SMR system with low latencies

in both the presence and absence of faults (§IV).
• A prototype of IGOR for NASA’s cFS framework (§V).
• An experimental evaluation of IGOR, including bench-

marks (§VI-A) and schedulability analysis (§VI-B).
• A case study of IGOR in a spaceflight application (§VI-E).

II. BACKGROUND AND CHALLENGES

In this section, we describe how BFT SMR systems are built
today and why such a design results in poor performance.

A. Overview of a BFT SMR System

A typical BFT SMR system consists of multiple redundant
processors (i.e., replicas) that communicate with a variety of
redundant input and output devices [1]–[16]. Depending on the
application, these devices may include inertial measurement
units, star trackers, remote interface units, and engine or
thruster controllers. In modern systems, all these devices are
connected to a single backbone network [5], [31]–[33]. For
simplicity, we refer to all input devices as “sensors” and all
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Fig. 1: Overview of traditional agree-execute BFT SMR sys-
tems. Sensor 3 and replica 4 are faulty.

output devices as “actuators”. We refer to each input data item
from a sensor as a “value”.

To ensure non-faulty replicas never produce conflicting
commands, it is necessary to ensure they maintain the same
internal state, which in turn requires replicas to operate on
the same inputs in the same order. Typically, the ordering of
the inputs is known a priori (e.g., because system components
are synchronized and tasks and traffic patterns are scheduled
offline [34]). To ensure that the actual content of the inputs is
identical, the replicas run an agreement protocol on all inputs
before executing [5], [17].

Figure 1 illustrates this “agree-execute” approach: 1 Each
sensor sends its value to each of the replicas; since sensor
3 is faulty, some replicas receive different values from this
sensor. 2 The replicas then use an agreement protocol to
agree on the value from each sensor, and 3 perform source
selection2 to choose a single “best” sensor value to use as input
for the computation. 4 The replicas then perform the same
deterministic computation on the selected input, and thus all
non-faulty replicas end up with the same state. The replicas
use the state to determine the system output, then send the
output to the actuators.3 5 The actuators use a majority vote
to mask the output of a bad replica.

Notice that if the replicas did not run an agreement protocol
before executing, then the source selection could result in
different non-faulty replicas using different sensor values as
their inputs, which would cause their internal states to diverge.

B. Drawbacks of the Agree-Execute Approach

Real-time systems require low latency for tight control loops
and hazard response. Unfortunately, traditional BFT SMR
systems suffer from high latency, as the replicas must reach
agreement before executing and the latency of the agreement
protocol is often significant.

The latency of an agreement protocol depends on two
factors: the number of communication rounds in the protocol
and the length of each round. A round must be large enough to
ensure all messages sent at the start of a round are received by
the end of that round [35]–[37]. Therefore, the round length

2The source selection process is typically application-specific; it could be
as simple as a mid-value selection [15].

3A state change does not always require an output to be sent to the actuators.



must be at least as large as the worst-case traversal time
(WCTT) of a message over the network.

In large systems like spacecraft and aircraft, which com-
monly have thousands of traffic flows and large networks
spanning multiple switches [38]–[40], the message WCTT –
and thus minimum round length – can be on the order of
several milliseconds [38]–[42]. For example, in deterministic
Ethernet (AFDX [43]) networks used in avionic systems,
the WCTT can be up to 3–4 ms for individual Ethernet
frames [38], [42]. Large messages must be fragmented into
multiple frames sent at least 1 ms apart [43], and more
commonly 4+ ms apart [38], which can result in message
WCTTs that are multiple times that of a single frame [43].
We note that since agreement protocols often require replicas
to send increasingly larger messages in each round [35]–[37],
[44], [45], fragmentation is common, even if the data to agree
on is small. For example, agreeing on 250 bytes in a typical
1 fault-tolerant BFT SMR system (4 replicas, where 1 replica
may be faulty) requires replicas to broadcast 2250 bytes of
data in the second round, which must be fragmented across at
least 2 Ethernet frames. Agreeing on 1200 bytes would require
8 fragments.

Time-triggered networks [46]–[49] can reduce frame
WCTTs to hundreds of microseconds [31], [50]. However, if
the frame WCTT is short, the round length is then dictated by
other factors. For example, each round cannot be shorter than
the period at which the network schedule lets devices access
the network, which is often on the order of milliseconds to
avoid delaying or dropping other traffic [31], [51]. Further, the
round length cannot be shorter than what the software schedule
allows. For example, replicas typically communicate through
a dedicated I/O task or partition that executes with a fixed
period [52], [53], which is often 10+ ms to avoid excessive
processing overhead [53], [54]. Lastly, large messages still
need to be fragmented across multiple time slots [41].

Since a single round can take several milliseconds, and
any deterministic agreement protocol must take at least f + 1
rounds [20], simply having the replicas agree on sensor data
can take upwards of 10 ms even for small values of f . Often,
this agreement latency can be as much as, or exceed, the time
needed for execution on the agreed upon data [55], [56], thus
resulting in end-to-end latencies that are 1.5–2× higher than
that of a non-replicated system (see §VI).

The standard way to reduce the average latency of BFT
SMR in non-real-time systems is to adopt a speculative ap-
proach [22]–[26] that avoids executing an agreement protocol
in the (common) fault-free case. Unfortunately, using this
strategy in a real-time system makes little sense, since the
maximum latency, which occurs when replicas are faulty and
requests need to be re-executed, can be even higher than in
traditional BFT SMR systems.

III. MODELS

This section describes our system and failure models. Our
models are consistent with real-time systems that rely on BFT
in practice [1], [2], [4], [8], [15], [32].

A. System Model

We consider a distributed system of processors, sensors, and
actuators (which we collectively refer to as devices) connected
to a network. We assume the system is synchronous, i.e.,
there are known upper bounds on the time needed for pro-
cessors to perform computations and for messages to traverse
the network [36], [57], [58]. This is typically accomplished
using specialized real-time operating systems [59], [60] and
networking protocols [8], [43], [48], [49], [61], [62].

We assume all devices are synchronized, either via the
network [48], [49], [61] or external timing equipment [63], and
that the system progresses in a series of rounds. At the start of
each round, devices send messages. At the end of each round,
devices read messages and perform computations. Messages
are received in the same round they are sent.

We assume replicas can communicate directly with each
other, and with sensors and actuators, over the network.
This assumption follows trends in distributed real-time control
systems, which are becoming increasingly “flat”, with a single
backbone network connecting all system components [5], [31],
[32], [64]. The network can use any physical topology, which
may include switches [43], [48], [61], buses [49], [64], or
point-to-point links [1], [3], [8]. Regardless of topology, we
model communication between devices as point-to-point.

Lastly, we assume a device can identify the sender of any
message it receives. This is a necessary assumption in any BFT
system [36], since otherwise a faulty device could impersonate
all the other devices [65]. The assumption is trivially satisfied
in point-to-point networks. In other networks, it is typically
satisfied using (1) static routing tables, where the devices
connected to each switch port (for example) are known a
priori, and switches discard messages that disagree with the
table [43], [48], [61], or (2) a time-division multiple access
scheme [4], [32], [62], [64], in which the sender is implied by
the time a message is received.

B. Failure Model

We consider the classical Byzantine failure model, where, in
a system with n replicas and m sensors, f < n/3 of the
replicas [36] and g < m/2 of the sensors [14], [66] can
be faulty. Faulty devices can exhibit any possible behavior,
including pretending to have received messages that were
never sent, dropping or failing to send messages, sending
messages at the wrong time, or sending conflicting messages to
different devices. For example, a faulty replica that is supposed
to broadcast some value v to all replicas may instead send v
to some replicas, v′ to some other replicas, and no value to
the rest of the replicas.

Byzantine behaviors can have multiple causes in practice,
e.g., software errors [67], device wear-out [68], and bits flips
from charged particles [69]. Broadcast networks can prevent
some of these behaviors, since messages are sent only once by
the device and replicated by the switch or bus [43], [48]. How-
ever, Byzantine behaviors can still result from a faulty device
that transmits different values on different redundant networks,
with some receivers reading the message from network A first
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Fig. 2: High-level design of IGOR. Sensor 3 is faulty.

while others from network B first [4]. A faulty device can
also transmit a marginal signal that is interpreted differently
by different receivers receiving the same message [70].

In contrast to the replicas and sensors, we assume the
network itself is reliable. This has two implications. First, the
network cannot drop messages. This is typically accomplished
using automatic retransmissions [61], or redundant network
planes [43], [48], [49], in which messages are sent over
multiple independent networks simultaneously. Second, the
network cannot corrupt or create messages. This is typically
accomplished by having network cards vote messages from
redundant networks [4], [5], or by using specialized self-
checking switches that are proven to fail silent with sufficiently
high probability [32], [64], [71]. We note that by not worrying
about network failures, we keep IGOR’s design general and
applicable to a broad range of architectures; there is no reason
IGOR could not be analyzed in the context of network failures.

Finally, in safety-critical systems, where BFT is perhaps
most used in practice [1]–[8], [11]–[15], cryptographic meth-
ods like digital signatures are typically considered an in-
sufficient means of constraining the behavior of faulty de-
vices [72]–[75]. We design IGOR to avoid cryptographic
assumptions and to be correct in all possible executions.

IV. DESIGN

This section describes IGOR, a new speculative approach for
building high-performance BFT SMR systems suitable for
real-time applications. In general, IGOR has two main goals:
• Low latency in all executions — Real-time systems

must meet deadlines in the worst-case scenario (i.e., under
faults). There is no benefit to being fast in the absence
of faults if the system is slow when faults do occur.

• Robustness to faulty sensor data — Traditional BFT
SMR architectures use a source selection process to reject
bad sensor data and select a single “best” input. Despite
IGOR’s speculative approach, it needs to retain this same
robustness to faulty sensor data.

IGOR accomplishes these goals using a speculative ap-
proach, in which – rather than agreeing on sensor data before
executing – replicas eagerly execute on sensor data while
simultaneously agreeing on which data to use. The key idea
is to keep replicas from wasting time communicating when

they could be getting closer to delivering a result. Of course,
IGOR’s ability to reduce latency relies on the replicas’ ability
to perform extra computations. However, we believe this is a
worthwhile trade-off in critical low-latency applications (e.g.,
flight control) that could not meet deadlines otherwise. It also
lets IGOR take advantage of emerging aerospace processors,
which can feature 4, 8, or more cores [10], [28].

Figure 2 gives an overview of IGOR’s design. 1 Like in
traditional BFT SMR systems, the replicas get a value from
each sensor; however, they do not run an agreement protocol
on the values directly. 2 Instead, each replica delegates
each sensor value to a different core and executes on each
value simultaneously. Each execution produces a (potentially
different) resulting state, which is stored temporarily. 3 While
these executions are in progress, the replicas use an agreement
protocol to determine which replicas claim to possess the value
from each sensor. As a result of the agreement process, the
replicas end up with an identical set of “candidate” sensors—
sensors whose value could be selected as the “trusted” sys-
tem input. IGOR ensures that if a sensor is non-faulty, it
is guaranteed to be in this candidate set. 4 The replicas
then perform a source selection process to determine which
candidate sensor, and therefore which execution, will be used
to determine the system’s final state. This process is analogous
to the source selection performed in an agree-execute system.
5 Once the executions on the sensor values are complete, the

replicas commit the state resulting from the chosen execution
and discard other states. If an output is required, the replicas
reference their (now final) state to determine the output and
send it to the actuators. Like in agree-execute systems, the
actuators use a majority vote to determine the system output.

IGOR also uses two key optimizations to make BFT SMR
more efficient. First, it uses a binary reduction technique [76]–
[79] to reduce the problem of agreeing on arbitrarily large
sensor data to that of agreeing on a small constant number
of bits. This technique enables IGOR to achieve low latencies
even when tolerating multiple faults, which would otherwise
be impossible due to the added latency of fragmenting large
messages (see §VI-A). Second, IGOR exploits the fact that,
even though all non-faulty replicas must agree on the system
state before the next iteration of the protocol, only a subset
of those replicas are needed to deliver correct results to the
actuators. Therefore, IGOR can produce an output before the
agreement process is actually completed.

The following sections describe IGOR in detail. We start
with a version of IGOR that is optimized for low latency in
the single-fault case (§IV-A). We then modify the protocol
using a binary reduction technique to make a version of IGOR
optimized for tolerating multiple faults (§IV-B).

A. Optimizing Eager Execution for the Single-Fault Case

Figure 3 shows an outline of the protocol, which proceeds in
multiple stages. The Agreement and Source Selection Stages
are executed in parallel with the speculative executions. The
State Dispersal Stage is executed concurrently with delivering
results to the actuators. We now describe each stage in detail.
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Agreement Stage. Each replica starts executing on the value
from sensor k immediately after receiving it, with the exe-
cution assigned to core k. However, since sensor k may be
faulty, and thus can send different values to different replicas,
two non-faulty replicas may execute on different values on
their k-th core. The goal of the Agreement Stage is to detect
these kinds of inconsistencies and to ensure replicas agree on
the content of the data.

Unfortunately, it is not sufficient for IGOR to simply place a
traditional agreement protocol in parallel with the speculative
executions. The reason is that, although traditional agreement
protocols guarantee all non-faulty replicas end up with the
same value, they make no guarantees about how many replicas
started with – and thus executed on – that value [35], [80],
[81]. Even agreement protocols with stronger guarantees [82],
such as ensuring that a value cannot be decided unless at least
one non-faulty replica started with that value, are not sufficient.
For example, consider a typical system with 4 replicas (1
faulty) and 3 sensors (1 faulty). The faulty sensor may send a
value v to one replica and v′ to the others, which the replicas
start speculatively executing on. After running an agreement
protocol, the replicas may decide on the value v from the
faulty sensor, and that value may be selected by the source
selection process as the system input. However, only one non-
faulty replica actually executed on that value originally, and
thus has the resulting state, which is not enough to out-vote a
faulty replica when delivering results to the actuators.

IGOR’s Agreement Stage fixes this problem by having
replicas simultaneously agree on both the content of the sensor
data and how many replicas received it. This is described in
Protocol 1, which the replicas execute on each sensor value.
It uses an existing Byzantine agreement (BA) protocol [36],
[80], [81] as a primitive, which guarantees that, when a faulty
replica broadcasts a value, all other non-faulty replicas receive
the same value [36].

In Protocol 1, MyValuek is the value the replica received
from sensor k. If no value was received, it is set to a predeter-
mined default value. Valuesk is an n-dimensional vector used
to store values other replicas received from sensor k (recall that
n is the number of replicas). All elements are initialized to ⊥
to indicate the values are missing. Candidatek and MyAcceptk

are variables indicating whether sensor k’s value is a candidate
for source selection and whether the replica executed on that
value originally, respectively. Both are initialized to False.
Note that broadcasting includes logically sending to one’s self.

Protocol 1: Agreement Stage
• Broadcast MyValuek to all replicas using a BA protocol
• Valuesk[j] ← the value broadcasted by replica j (if any)

if ≥ n− f values in Valuesk are the same then:
— Candidatek ← True
— Let v be the value with ≥ n− f matching copies
— if MyValuek = v then: MyAcceptk ← True
— else: MyValuek ← v

LEMMA 1. For any sensor k, Candidatek is the same for all
non-faulty replicas. Further, if Candidatek is True, MyValuek
is the same for all non-faulty replicas.

Proof. Each value in Valuesk was broadcasted with a BA
protocol; hence, it is the same for all non-faulty replicas. Thus,
if one non-faulty replica sets Candidatek ← True, so do all
non-faulty replicas. Otherwise, Candidatek is False.

We next prove the second part of the lemma. Suppose two
non-faulty replicas Ri and Rj end up with different values for
MyValuek. Since Candidatek is True, the two replicas must
have received different sets of ≥ n− f values that match the
MyValuek they end up with. Since the values were broadcasted
with a BA protocol, each replica must possess the same values
in Valuesk. However, any two sets of ≥ n − f values must
overlap at ≥ n− 2f values, which is ≥ 1. Hence, Ri and Rj

could not have received different sets of ≥ n − f matching
values, which is a contradiction.

Source Selection Stage. In the Source Selection Stage, the
replicas decide which of the candidate sensors will determine
the system’s final state, using an existing deterministic source
selection algorithm. This process is analogous to the source
selection process in traditional agree-execute systems, except
that it happens in parallel with the executions.

Protocol 2 describes the Source Selection process. Selected-
Source is a variable containing the ID of the selected sensor,
which in turn determines the selected state.

Protocol 2: Source Selection Stage
• Let C be a set of tuples of the form (k,MyValuek), where

Candidatek = True for each tuple
• Use the source selection algorithm to select the sensor with the

“best” value in C
SelectedSource ← the ID of the selected sensor

LEMMA 2. All non-faulty replicas have the same set C and
the same SelectedSource.

Proof. By Lemma 1, if one non-faulty replica includes sensor
k in C, then all non-faulty replicas do too. Also, by the same
lemma, MyValuek is the same for any sensor k included in
C. Thus, set C is the same for all non-faulty replicas, and



as long as the source selection algorithm is deterministic, all
non-faulty replicas select the same sensor.

LEMMA 3. If some sensor k is non-faulty and sends value v,
then set C contains sensor k (and its value v).

Proof. Since sensor k is non-faulty, all non-faulty replicas set
MyValuek ← v and broadcast v in the Agreement Stage. Since
≤ f replicas are faulty, each non-faulty replica receives ≥ n−
f copies of v, sets Candidatek ← True, and keeps MyValuek
as v. Thus, for all non-faulty replicas, set C contains (k, v).

State Consolidation Stage. Once Source Selection is over, all
non-faulty replicas know which sensor value was selected as
the input. During State Consolidation, replicas that executed on
that value commit the resulting state, and all replicas discard
states resulting from the other speculative executions.

Protocol 3 describes the State Consolidation Stage. Saved-
State is a variable containing the current system state, which
persists to the next iteration of the protocol. TempStatek is the
temporary state resulting from executing on sensor k’s value.

Protocol 3: State Consolidation Stage
• if MyAcceptSelectedSource = True then:

— SavedState ← TempStateSelectedSource
• Discard TempStatek for all k = 1, ...,m

LEMMA 4. At least n − 2f non-faulty replicas have
MyAcceptSelectedSource = True and have the same SavedState.
At most f non-faulty replicas have MyAcceptSelectedSource =
False (i.e., do not have the state).

Proof. By Lemma 2, all non-faulty replicas set SelectedSource
to the same sensor k from set C. A sensor k is only in C if
Candidatek = True, which means ≥ n− f replicas Byzantine
broadcasted the same value v from that sensor to all replicas
in the Agreement Stage. Of these replicas, ≤ f may be faulty.
Thus, ≥ n−2f non-faulty replicas started with MyValuek = v,
and thus set MyAcceptk ← True. Moreover, these ≥ n− 2f
non-faulty replicas all speculatively executed on v (since they
started with it). Since they all perform the same computation
on v in the same state (shown later), they produce the same
state TempStatek, which they then store in SavedState.

Now we prove the second part of the lemma. Above we said
≥ n − 2f non-faulty replicas possess the same SavedState.
Since there are ≤ f faulty replicas and n total replicas, there
are ≥ n − f non-faulty replicas, and thus at most (n − f) −
(n− 2f) = f non-faulty replicas do not have the state.

State Dispersal Stage. At the end of the Stage Consolidation
stage, at least n − 2f non-faulty replicas possess the final
state and can deliver results to the actuators. However, up to
f non-faulty replicas still do not possess the updated state. The
purpose of the State Dispersal Stage is to provide the updated
state to those replicas. Importantly, this state dispersal process
happens simultaneously with sending results to the actuators,
so does not contribute to the end-to-end latency. Moreover, it
can be overlaid with the process of receiving sensor data in the

next iteration of the protocol, as long as the state is finished
updating before the next speculative executions begin.

Protocol 4 describes the State Dispersal Stage. States is an
n-dimensional vector used to store the SavedState from each
replica. All elements are initialized to ⊥.

Protocol 4: State Dispersal Stage
• if MyAcceptSelectedSource = True then:

— Broadcast SavedState to all replicas
• if MyAcceptSelectedSource = False then:

— States[j] ← the state broadcasted by replica j (if any) —
SavedState ← the majority of the non-⊥ states in States

The correctness of the protocol will be shown in Theorem 1.
Deliver Outputs. At the same time as the State Dispersal
Stage, the replicas deliver outputs to the actuators. The proto-
col is shown in Protocol 5. The actuators use a majority vote
of the outputs to resolve the final system output.

Protocol 5: Deliver Outputs
• if MyAcceptSelectedSource = True then:

— Reference SavedState to determine the output
— Send the output to actuators

We now prove the correctness of the overall protocol.
THEOREM 1. Given there are n > 3f replicas and m > 2g
sensors: (1) the system always operates on correct sensor data,
(2) all non-faulty replicas obtain the same correct state, and
(3) all non-faulty actuators obtain the correct system output.

Proof. We first consider condition (1). If the Source Selection
Stage selects a value from a non-faulty sensor, (1) is trivially
satisfied. Now we consider the case where the selected value
comes from a faulty sensor.

By Lemmas 2 and 3, all non-faulty replicas are guaranteed
to agree on C, and C must include all values sent from non-
faulty sensors. Since there are m > 2g sensors, this means that
C contains ≥ (2g + 1) − g = g + 1 non-faulty sensor values
and up to g faulty sensor values. Thus, as long as a source
selection algorithm that tolerates a minority of the sensors
being faulty is used, the input to the non-faulty replicas is
guaranteed to be correct. For example, in the common case,
where source selection is a mid-value selection [5], [15], [83],
a faulty sensor value that is selected is guaranteed to be upper
and lower bounded by at least one non-faulty sensor value on
each side. In other words, the selected value must fall within
the range of values from non-faulty sensors.

We now consider (2). Let Shappy be the set of non-faulty
replicas for which MyAcceptSelectedSource = True at the end
of the State Consolidation Stage, and Ssad be the set of non-
faulty replicas /∈ Shappy. By Lemma 4, |Shappy| ≥ n − 2f ,
and all replicas ∈ Shappy have the same SavedState s, which
they obtained by executing on the (correct, as shown above)
value from the selected sensor. In the State Dispersal Stage
all replicas ∈ Shappy broadcast s to all replicas, and replicas ∈
Ssad do not broadcast their states. Thus, at the end of the State
Dispersal Stage, all replicas ∈ Ssad possess ≥ n − 2f copies



of s from non-faulty replicas, and at most f states s′ 6= s from
faulty replicas. Since n > 3f, n − 2f > f . Thus s must be
the majority of non-⊥ states held by replicas ∈ Ssad.

The correctness of (3) follows from the logic in (2). All
replicas ∈ Shappy have the same correct SavedState, as shown
above. Thus, referencing SavedState produces the same correct
output. Each replica ∈ Shappy sends the output to the actuators,
and replicas ∈ Ssad do not send an output. Since |Shappy| ≥
f + 1, each actuator gets ≥ f + 1 correct outputs and ≤ f
outputs from faulty replicas. Thus the majority of the outputs
received by the actuators must be correct.

B. Scaling Eager Execution for the Multi-Fault Case

The protocol we described above is fast when tolerating a
single fault. However, it requires replicas to broadcast full
copies of the sensor data they receive using a Byzantine
agreement protocol. As we show in §VI-A, this results in high
latency when tolerating multiple faults, since large messages
sent in later rounds of the agreement protocol need to be
fragmented into multiple frames.

The multi-fault version of IGOR fixes this problem using a
binary reduction technique [76]–[79]. The idea is to add an
extra stage, which we call Filtering, before the Agreement
Stage. The Filtering Stage ensures that no two non-faulty
replicas can accept different data from the same sensor, thus
reducing the agreement on each sensor value to agreement on
a single bit (accepted value, or did not accept value). Since
the size of the data to agree on is reduced, fragmentation (and
the resulting latency) is reduced as well.

An outline of the revised protocol is shown in Figure 3 (right
picture). The Filtering Stage, as a well as a new Agreement
Stage, replace the Agreement Stage in the earlier protocol
optimized for single faults. The other stages (State Dispersal,
Consolidation, etc.) remain the same. Below, we describe the
new Filtering and Agreement Stages in detail.
Filtering Stage. The protocol for the Filtering Stage is shown
in Protocol 6, which the replicas execute on each sensor value.
The output of the protocol is a single bit indicating whether
the value is accepted (True) or not accepted (False).

MyValuek is the value the replica received from sensor k. If
no value was received, it is set to ⊥ (missing). Valuesk is an n-
dimensional vector used to store values other replicas received
from sensor k. All elements are initialized to ⊥. MyAcceptk is
a variable indicating whether to accept the value from sensor
k. It is initialized to False.

Protocol 6: Filtering Stage
• if MyValuek 6= ⊥ then:

— Send MyValuek to all replicas
• Valuesk[j] ← the value sent from replica j (if any)

if ≥ n− f non-⊥ values in Valuesk match MyValuek then:
— MyAcceptk ← True

After the Filtering Stage, we have the following guarantees:

LEMMA 5. If sensor k is non-faulty and sends v, all non-faulty
replicas set MyValuek ← v and MyAcceptk ← True.

Proof. Since sensor k is non-faulty, all non-faulty replicas
receive v and store it in MyValuek. Then, all non-faulty
replicas forward v to all replicas. Since there are ≥ n − f
non-faulty replicas, all non-faulty replicas receive ≥ n − f
values that match MyValuek and set MyAcceptk ← True

LEMMA 6. MyValuek is the same for all non-faulty replicas
that set MyAcceptk ← True.

Proof. Suppose two non-faulty replicas Ri and Rj accept
different values from sensor k. That means each replica
received ≥ n − f values from distinct replicas that match
its own value. Any two sets of n − f replicas intersect at
≥ 2(n − f) − n = n − 2f replicas. That means ≥ n − 2f
of the matching values for Ri and Rj came from the same
replicas. Since n > 3f , at least one of those replicas must be
non-faulty. A non-faulty replica sends the same values to all
replicas. Thus, Ri and Rj accepted the same value, which is
a contradiction.

(Revised) Agreement Stage. At the end of the Filtering
Stage, each replica chose to accept or reject the value from
each sensor. In the Agreement Stage, the replicas use this
information, along with values leftover from the Filtering
Stage, to agree on (1) which sensors are candidates for source
selection and (2) what values those sensors sent.

The Agreement Stage is shown in Protocol 7. The replicas
run a separate instance of the protocol for each sensor. The
protocol uses any existing BA protocol as a primitive [36],
[80], [81]. Acceptsk is an n-dimensional vector used to
store MyAcceptk bits from other replicas. All elements are
initialized to ⊥. Candidatesk is a variable indicating if sensor
k is a candidate for source selection. It is initialized to False.

Protocol 7: (Revised) Agreement Stage
• Broadcast MyAcceptk to all replicas using a BA protocol
• Acceptsk[j] ← the bit broadcasted by replica j (if any)

if count(True) in Acceptsk ≥ n− f then:
— Candidatek ← True
if MyAcceptk = False then:
— For all j where Acceptsk[j] = False, Valuesk[j] ← ⊥
— MyValuek ← the most common non-⊥ value in Valuesk

The rest of the stages are the same as in the single-fault
optimized protocol. Therefore, to establish the correctness of
the multi-fault protocol, we only need to re-prove a few of the
lemmas from §IV-A.

(REVISED) LEMMA 1. For any sensor k, Candidatek is the
same for all non-faulty replicas. Further, if Candidatek is True,
MyValuek is the same for all non-faulty replicas.

Proof. Each bit in Acceptsk was broadcasted with a BA
protocol, and thus is the same for all non-faulty replicas.
Hence, either all non-faulty replicas set Candidatek ← True

or they all keep it False.
Now we prove the second part of the lemma. Let Shappy be

the set of non-faulty replicas that set MyAcceptk to True in the
Filtering Stage. Let Ssad be the set of all non-faulty replicas /∈



Shappy. By Lemma 6, MyValuek is the same for all Ri ∈ Shappy.
Call this value v. Each Ri ∈ Shappy sent v to all replicas in the
Filtering Stage and broadcasted True in the Agreement Stage.
Since Candidatek is True, |Shappy| ≥ (n− f)− f = n− 2f .
Thus, at the end of the stage, each Ri ∈ Ssad has ≥ n − 2f
copies of v in Valuesk. Also, since all Ri ∈ Ssad broadcasted
False, no Ri ∈ Ssad possesses a non-⊥ value from an Rj ∈
Ssad. Thus, for each Ri ∈ Ssad, any v′ 6= ⊥ that is not v came
from a faulty replica. Since ≤ f replicas are faulty, each Ri ∈
Ssad has ≤ f such v′ values. Since n > 3f , we know |Shappy|,
which is at least n− 2f , is > f . Thus, for all Ri ∈ Ssad, v is
the most common non-⊥ value in Valuesk.

(REVISED) LEMMA 3. If some sensor k is non-faulty and
sends value v, then set C contains sensor k (and its value v).

Proof. If sensor k is non-faulty and sends v, then by Lemma
5, all non-faulty replicas set MyValuek ← v and MyAcceptk
← True. All non-faulty replicas then broadcast True with a
BA protocol, which each non-faulty replica stores in Acceptsk.
As there are ≥ n−f non-faulty replicas, Acceptsk contains ≥
n−f True bits for all non-faulty replicas. Thus, all non-faulty
replicas set Candidatek ← True, and C contains (k, v).

(REVISED) LEMMA 4. At least n − 2f non-faulty replicas
have MyAcceptSelectedSource = True and have the same Saved-
State. At most f non-faulty replicas have MyAcceptSelectedSource
= False (i.e., do not have the state).

Proof. By Lemma 2, all non-faulty replicas set SelectedSource
to the same sensor k from C. A sensor k is in C only if
Candidatek = True, which means ≥ n−f replicas claimed to
set MyAcceptk ← True. Up to f of these replicas are faulty,
so ≥ n − 2f non-faulty replicas actually did set MyAcceptk
← True. By Lemma 6, these ≥ n−2f non-faulty replicas all
had the same MyValuek at the start of the protocol, which they
speculatively executed on. Since the replicas perform the same
computation on the same value in the same state, they produce
the same state TempStatek, which they store in SavedState.

We next prove the second part of the lemma. As discussed
above, ≥ n − f replicas claimed to set MyAcceptSelectedSource
← True. In the worst case, all replicas which did not claim
to set MyAcceptSelectedSource ← True are non-faulty. Thus, at
most f non-faulty replicas do not have the state.

V. PROTOTYPE IMPLEMENTATION

To evaluate our solution, we built a prototype of IGOR in
NASA’s Core Flight System (cFS) [29], an open-source soft-
ware framework used in a variety of real spacecraft [30] (and
planned to be used in several future NASA missions [84]).
Overall, our prototype consists of 5976 lines of C code.

Our prototype runs on a cluster of Raspberry Pi (RPi)
3B+ computers with 1.4 GHz ARM Cortex-A53 processors.
We chose RPis as they use the same processor as NASA’s
upcoming High Performance Spaceflight Computing (HPSC)
chiplet [10] (though the HPSC will have twice as many cores).
Each RPi runs Raspbian 9.4 with kernel version 4.14.34 and

the PREEMPT RT patch, with dynamic clock scaling disabled
to improve real-time performance. The RPis schedule tasks
using the cFS scheduler [54], a cyclic executive that triggers
tasks to run in predefined time slots of a periodic schedule.
The RPis’ schedulers are synchronized to a common external
timing circuit. To minimize timing variability, one core of
each RPi is reserved for inter-replica communication, and the
remaining three cores are used for task execution.

All RPis communicate through a gigabit Ethernet switch.
We implemented a software layer in cFS to emulate the
AFDX [43] network found in typical aircraft [85]. The worst-
case Ethernet frame latencies measured in our prototype are
a couple of milliseconds, which are similar to those observed
in real AFDX networks [38], [42]. Messages that are sent to
the same destination in the same round are batched whenever
possible to reduce overhead.

For comparison, we also implemented two state-of-the-art
systems, namely OM and TC. OM is an agree-execute system
based on Lamport, Shostak, and Pease’s Oral Messages agree-
ment protocol [36], [37], which has the theoretical minimum
number of rounds [20] and is used extensively in practice [1]–
[3], [6], [8]. OM is also the basis for all existing Byzantine
agreement protocols that meet this lower bound [35], [86],
[87]. TC is an agree-execute system based on Turpin and
Coan’s reduction protocol [76], which uses a similar reduction
approach to IGOR and takes fewer rounds than any existing
protocol that uses a binary reduction [77], [79], [88], [89]. We
used OM as the binary agreement primitive in TC, as well as
in our IGOR prototype. Lastly, we also implemented a system
without replication, NOREP, which provides the theoretical
minimum latency.

VI. EVALUATION

To evaluate IGOR’s performance and practical applicability,
we conducted a series of experiments on our prototype. We
had four key questions for our evaluation: (1) How effective is
IGOR in reducing end-to-end latency? (2) How much can IGOR
improve schedulability? (3) What are IGOR’s computation
and communication overheads? and (4) How well does IGOR
perform in a real spaceflight application?

A. Latency

Experimental setup. For this experiment, we considered
a range of workload parameters based on practical aircraft
systems. Specifically, the sensor data size was distributed in
the range {250, 750, 1250} bytes, and the task’s worst-case
execution time (WCET) was in {5, 10, 15, 20} milliseconds;
these values were chosen to match those found in typical
aircraft [38], [56]. (Note that the sensor data size is relatively
large, since data delivered to the flight computers are often
batched by downstream devices [32], [83].) We set the actuator
data size, task’s state size, and source selection time to be 500
bytes, 1500 bytes, and 1 ms, respectively, based on NASA’s
Orion Ascent Abort-2 system used in our case study (§VI-E).
The number of sensors was 3, the typical redundancy level
found in aircraft and spacecraft [14]. The band allocation gap
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Fig. 4: End-to-end latencies of IGOR and other state-of-the-art protocols compared to a non-replicated system. Plots (a) and
(b) use 750 bytes of sensor data with 3 sensors. Plots (c) and (d) use 12 ms execution times with 3 sensors.

(BAG) – i.e., the minimum time between AFDX frames sent
on the same virtual link – was 1 ms, which is the minimum
allowed by the AFDX standard [43].

The workloads executed on the experimental platform de-
scribed in §V. We used a 500 Hz cFS schedule (2 ms per
slot), the highest rate that can be achieved with our timing
circuit (and also the upper limit of what is typically seen in
practice [41], [54], [90]). One of the RPis acted as the sensors
and actuators, and the remaining RPis were used as replicas.
We considered two fault settings: f = 1, with 4 RPis serving
as replicas; and f = 2, with 7 RPis serving as replicas.

To determine the schedule table for each system (IGOR,
OM, TC, NOREP), we first measured the maximum time
required to execute each stage of the system (e.g., reading from
sensors, agreement, and execution) over 100 iterations, then
added 10% margin to each measured value. We then rounded
each quantity up to the next time slot and scheduled the stages
in sequence. Finally, we validated that the resulting schedule
worked on our hardware cluster as expected (e.g., without
causing any message drops or overrun of task’s WCET). We
measured the latency as the time between the instant the
sensors were scheduled to transmit their data and the instant
the actuators were scheduled to read outputs from the replicas.
Results. Figure 4 shows the results of all four systems under
each fault setting, as we varied the task’s execution time and
sensor data size. As shown in the figure, IGOR achieves a
latency very close to, or the same as, that of NOREP (the
theoretical minimum) in all cases. For example, under the
f = 1 setting, its latency is equal to NOREP’s for all execution
times of 10 ms and above. Moreover, IGOR’s Filtering (§IV-B)
approach makes it especially fast when tolerating multiple
faults: IGOR’s latency when tolerating 2 faults is even lower
than the latency of the best existing system (OM) when
tolerating 1 fault for all execution times of 10 ms and above.
The next fastest system (TC) has a 1.5–1.75× higher latency
than IGOR’s. Thus, IGOR not only delivers close-to-optimal
latency but also substantially reduces latency compared to
existing systems. Its benefits also increase with more faults.

B. Schedulability

Next, we evaluated whether IGOR could be used to improve
the schedulability of a BFT SMR system.
Experimental setup. We considered application workloads
consisting of independent constrained-deadline periodic BFT

tasks, which are distributed over 3 cores on each replica (as on
our RPis). We varied the workload utilization per core from
0.1 to 1, in steps of 0.1. For each utilization, we randomly
generated 1000 tasksets. The tasks’ WCETs were randomly
selected from {5, 10, 15, 20} ms (the same range used in our
latency experiments). The task periods were randomly selected
from {200, 100, 50, 25} ms, which are commonly used in
practice [53]. The tasks’ deadlines (i.e., the maximum time
allowed between reading a sensor input and producing a result)
were uniformly distributed between their WCETs and periods.
Notice that a task’s deadline is also the maximum allowed time
to finish all of the filtering, agreement, and execution stages.

We scheduled tasks using a common heuristic, where we
organized tasks into rate groups and scheduled tasks with
higher rates first [91]. Per cFS’ design, tasks were scheduled
without splitting into smaller sub-tasks. We used 2.5 ms slots
to accommodate the tasks’ periods. We determined the WCET
for each protocol stage, such as filtering and agreement, from
our earlier latency experiment.

We assumed sensor data is available whenever the BFT tasks
expect it; in other words, the network imposes no additional
constraints on the scheduling. As in our prototype, all inter-
replica communication is handled by a separate core. Since
we focused on the schedulability of execution tasks on the
replicas, to simplify the analysis, we assumed that the source
selection and the communication with sensors/actuators take
negligible processor time; however, our results should apply
to the general setting as well.

For each schedule, we determined whether the fastest exist-
ing BFT protocol (OM for f = 1, TC for f > 1) can feasibly
schedule all BFT tasks. If not, we used IGOR instead for those
tasks that were unschedulable (while still using the fastest
existing protocol for tasks that were schedulable), and we
checked whether the system would then become schedulable.
For each task scheduled by IGOR, we replaced it with three
speculative copies (assuming 3 redundant sensors). The IGOR
tasks were scheduled in the same time slots on all 3 cores,
at the start of their respective rate group. Besides meeting
deadlines, IGOR tasks were also required to complete state
dispersal by the end of their periods.
Results. Figure 5 shows our results for the two cases: when the
best protocol is used alone, and when it is used in conjunction
with IGOR. As expected, as the utilization increases, the
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Fig. 5: Increase in schedulability when using IGOR.

fraction of schedulable tasksets also decreases for both cases.
Notice that, in our workloads, tasks’ deadlines can be much
smaller than their periods, which explains the large drop in
the number of schedulable tasksets at higher utilizations.

The results show that IGOR is able to substantially increase
the number of schedulable tasksets, compared to using the
best existing protocol alone: it is able to schedule 1.88×
and 3.22× more tasksets under the single-fault and two-
fault settings, respectively. This demonstrates that, even with
the potential computation overhead for speculative execution,
IGOR’s efficiency in reducing overall latency also results in a
substantial increase in the schedulability of the overall system.

C. Computation Overhead

Experimental setup. To evaluate IGOR’s computation over-
head, we repeated the same experiment as in §VI-B. For
each BFT taskset, we calculated the remaining available CPU
capacity per core after having scheduled the taskset, and we
report the average across all tasksets that were schedulable at
each workload utilization. (Note that we excluded unschedula-
ble tasksets, as we focus on hard real-time systems and hence a
taskset is only accepted to run if it is schedulable.) As in our
schedulability evaluation, our goal was to compare between
(1) a system that used the fastest existing protocol on its own,
and (2) a system that used the fastest existing protocol together
with IGOR, where IGOR was used for the tasks that could not
meet deadlines in (1).
Results. Figure 6 shows our results. In the figure, a higher
remaining capacity corresponds to a higher resource use
efficiency and thus a smaller overhead. The difference between
the green/purple column (case 1) and the red column (case 2)
represents the computation overhead added by IGOR.

When tolerating 1 fault, using IGOR results in only 1.1–
20% reduction in remaining average capacity than a system
that uses only OM. When tolerating 2 faults, using IGOR
results in a slightly higher overhead, at 3.3–38% lower aver-
age remaining capacity. Note, however, that the computation
costs in both fault settings are reasonably small compared to
IGOR’s substantial improvements in latency and schedulability
reported in Figures 4 and 5.

D. Communication Cost

Experimental setup. Network bandwidth is often at a pre-
mium in real-time embedded systems. To evaluate IGOR’s
bandwidth usage, we sniffed all traffic entering the Ethernet

0.1 0.3 0.5 0.7 0.9
0

0.2

0.4

0.6

0.8

1

Application utilization per core

A
vg

.r
em

ai
ni

ng
ca

pa
ci

ty
pe

r
co

re (a) 4 replicas (f = 1)

OM OM+IGOR

0.1 0.3 0.5 0.7 0.9
0

0.2

0.4

0.6

0.8

1

Application utilization per core

A
vg

.r
em

ai
ni

ng
ca

pa
ci

ty
pe

r
co

re (b) 7 replicas (f = 2)

TC TC+IGOR

Fig. 6: Available compute capacity when using IGOR.

0 1 2 3 4 5

·106

IGOR

TC

OM

NOREP

Bytes transmitted

(a) 4 replicas (f = 1)

0 2 4 6

·107

IGOR

TC

OM

NOREP

Bytes transmitted

(b) 7 replicas (f = 2)
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switch and counted the total number of bytes (including Eth-
ernet headers) over 100 iterations of each of the four systems
(IGOR, OM, TC, and NOREP) on our prototype. Our AFDX
layer uses Ethernet broadcast to emulate VL multicasting in
AFDX networks, so each frame broadcasted by a given RPi
was counted only once. We used 3 sensors in our tests, each
generating 750 bytes (both numbers are the defaults in our
latency evaluation).
Results. Figure 7 shows our results. In general, IGOR commu-
nicates roughly the same number of bytes as the existing state-
of-the-art systems in both the single- and two-fault settings.
The reason for IGOR’s slightly higher communication cost is
its need to distribute the state after each execution. IGOR’s
bandwidth usage could be reduced by dispersing only deltas
from the previous state, or by not transferring parts of the
state that are known not to change based on the sensor data
being processed. Both of these techniques are commonly used
in existing BFT protocols [19], and could be integrated into
our prototype.

The reason for IGOR’s high communication efficiency in
the multi-fault case is its use of a Filtering Stage. When
minimizing network bandwidth is a priority, the Filtering Stage
could also be used in the single-fault case. However, this would
result in a slightly higher latency (about 2 ms in our tests).

E. Case Study: Orion Ascent Abort-2

To evaluate how well IGOR performs in a real spaceflight
application, we conducted a case study of NASA’s Ascent
Abort-2 (AA-2) flight test. The AA-2 test was performed in
2019 to exercise the launch abort system (LAS) for Orion,
a spacecraft intended to take astronauts to lunar orbit. The
purpose of the LAS is to pull the spacecraft away from the
rocket if an emergency happens during ascent. In the AA-2
test, the LAS was intentionally activated, and it carried the
spacecraft away and jettisoned the craft into the ocean.



Fig. 8: Orion AA-2 simulation moments after the crew module
(left) separates from the launch abort system (right).

We ported a simulation of the Orion guidance, naviga-
tion, and control software (GNC) to 4 RPis in our cluster.
The software included multiple genuine Orion flight software
components, including code for absolute navigation, optical
navigation, propellant balancing, and abort functionality [41].
The software ran against a high-fidelity simulation, which
models the vehicle’s trajectory, as well as the sensors and
actuators. Figure 8 shows a screenshot of the simulation.

The GNC software ran in a 40 Hz control loop. Every
25 ms, it read sensor data (e.g., from inertial measurement
units, barometric altimeters), performed GNC computations,
and commanded the actuators. We batched the sensor data into
three redundant groups, each 772 bytes, to simulate batching
from remote interface units or data concentrators. The GNC
computations took roughly 9.6 ms and maintained 1304 bytes
of internal state. The actuator data totaled 376 bytes.

We determined the schedule using the same process as in
our latency evaluation (e.g., measured the worst-case execution
time, added 10% margin), except that we used 2.5 ms time
slots to accommodate the 40 Hz control loop. State consoli-
dation was performed before sending to the actuators.

Our results are shown in Figure 9. As expected, IGOR adds
no additional latency compared to a non-replicated system.
In contrast, OM (the fastest existing protocol) adds 10 ms
of latency. Therefore, in order to run at a 40 Hz rate, OM
has to overlap sending to the actuators with reading from the
sensors. This means that feedback from the output of a given
GNC execution cannot be incorporated into the inputs of the
next execution, which causes a noticeable reduction in vehicle
stability. This was observed during our experiment, where the
LAS tower rocked back and forth after igniting instead of trav-
eling in a straight path. The results demonstrate that IGOR’s
ability to minimize latency not only improves schedulability
but also enables much better control performance and system
stability compared to state-of-the-art techniques.

VII. RELATED WORK

Speculation to avoid agreement. Several BFT SMR protocols
designed for data centers use speculation to avoid the overhead
of executing an agreement protocol [22]–[26]. In these sys-
tems, replicas execute client requests directly and are assumed
to produce consistent states. If state divergence occurs, then the
system rolls back to a previous state and repeats the execution.
This approach makes sense in non-real-time systems that
prioritize graceful executions over the worst case. However, it
is a poor fit for real-time systems, which require low latency
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Fig. 9: Time slot allocations for IGOR and OM when running
the AA-2 flight software in the single-fault case.

in all executions. IGOR’s speculation is completely different in
that it is eager rather than predictive. This way, IGOR gets the
benefits of speculation in all executions, albeit at the expense
of extra computation.
Overlapping agreement and execution. Several protocols
use speculation as a way to overlap agreement with executing
client requests [92]–[96]. In these systems, replicas execute
while an agreement protocol is run in the background. If the
agreement protocol detects inconsistency, the system rolls back
and the computations are repeated. IGOR also uses speculation
to overlay agreement and execution. However, since IGOR’s
speculation is not predictive, there is no need to rollback.
Other predictive protocols avoid the need for rollback by
generating an optimistic (possibly incorrect) result quickly, and
a guaranteed correct result after some delay [97]. Unlike these
systems, IGOR never exposes incorrect results to the actuators,
and it uses speculation to reduce the latency of generating a
guaranteed correct result (and not just an optimistic one).
Multi-core state machine replication. Several solutions in-
crease the performance of SMR on multi-core processors by
allowing replicas to execute independent requests in paral-
lel [19], [98]–[103]. This approach greatly increases through-
put when requests are mostly independent, but does not sig-
nificantly reduce the latency of executing individual requests.
In general, IGOR is orthogonal to these techniques, but it
does significantly reduce latency. Execute-Verify [19] systems
allow multi-core replicas to execute dependent requests non-
deterministically; however, they require replicas to run an
agreement protocol afterwards to detect state divergence. In
contrast, IGOR assumes deterministic execution, and paral-
lelizes execution and agreement.
Byzantine extension protocols. Several Byzantine agreement
protocols are built as extension protocols, i.e., they use tech-
niques that reduce the problem of agreeing on arbitrarily large
values to that of agreeing on a small number of bits [76]–



[79], [104]–[113]. As a result, these protocols can often
achieve low communication complexities when the value to
agree on is sufficiently large. IGOR also uses a reduction-
based technique, but for the purpose of reducing latency by
preventing message fragmentation. To our knowledge, IGOR’s
Filtering and Agreement Stages take fewer rounds than any
other reduction-based Byzantine agreement protocol [76].
Non-equivocation. Several protocols use a combination of
cryptography and trusted hardware to restrict a faulty device’s
ability to send conflicting information to other devices (i.e.,
equivocate), thus making agreement less expensive [111],
[114]–[119]. Other protocols prevent equivocation by having
devices echo values they receive to one another, and make
decisions based on a quorum of matching echoes [65], [120]–
[123]. IGOR also uses the idea of echoing values in its Filtering
Stage to prevent faulty sensors from equivocating, without
relying on cryptography or trusted hardware assumptions.

VIII. CONCLUSION

This paper presented IGOR, a new speculative BFT SMR
approach that leverages multi-core processors to achieve low
latency in both the presence and absence of faults. IGOR pro-
vides systems a means of meeting tight deadlines that would
otherwise be impossible with classical BFT SMR approaches.
Our experiments show that IGOR achieves up to 1.75× lower
latency than the state of the art, often matching the latency of
a non-replicated system, and improves the schedulability of
BFT tasks by 1.88–3.22×. We show that IGOR has immediate
benefits when used for a real spaceflight application, and we
believe it is broadly applicable to other BFT systems seeking
improved real-time control performance.
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[105] Z. Beerliová-Trubı́niová and M. Hirt, “Perfectly-Secure MPC with
Linear Communication Complexity,” in Proc. TCC, New York, NY,
USA, 2008.

[106] G. Liang, B. Sommer, and N. Vaidya, “Experimental Performance
Comparison of Byzantine Fault-Tolerant Protocols for Data Centers,”
in Proc. INFOCOM, Orlando, FL, USA, Mar. 2012.

[107] G. Liang and N. Vaidya, “Error-Free Multi-Valued Consensus with
Byzantine Failures,” in Proc. PODC, San Jose, CA, USA, Jun. 2011.

[108] A. Patra and C. P. Rangan, “Communication Optimal Multi-valued
Asynchronous Broadcast Protocol,” in Proc. LATINCRYPT, Puebla,
Mexico, Aug. 2010.

[109] A. Patra and C. Rangan, “Communication Optimal Multi-
valued Asynchronous Byzantine Agreement with Optimal
Resilience.” Tech. Rep., Jan. 2011. [Online]. Available:
https://eprint.iacr.org/2009/433.pdf

[110] L. Tseng and N. Vaidya, “Byzantine Broadcast Under a Selective
Broadcast Model for Single-hop Wireless Networks,” Tech. Rep., Jan.
2015. [Online]. Available: https://arxiv.org/abs/1502.00075

[111] A. Choudhury, “Multi-Valued Asynchronous Reliable Broadcast with a
Strict Honest Majority,” in Proc. ICDCN, Hyderabad, India, Jan. 2017.

[112] M. Hirt and P. Raykov, “Multi-valued Byzantine Broadcast: The t<n
Case,” in Proc. ASIACRYPT, Kaoshiung, Taiwan, Dec. 2014.

[113] W. Chongchitmate and R. Ostrovsky, “Information-Theoretic Broadcast
with Dishonest Majority for Long Messages,” in Proc. TCC, Goa, India,
Nov. 2018.

[114] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
Append-only Memory: Making Adversaries Stick to Their Word,” in
Proc. SOSP, Stevenson, WA, USA, Oct. 2007.

[115] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues, “On the (Limited)
Power of Non-Equivocation,” in Proc. PODC, Madeira, Portugal, Jul.
2012.

[116] M. Correia, G. S. Veronese, and L. C. Lung, “Asynchronous Byzantine
Consensus with 2F+1 Processes,” in Proc. SAC, Sierre, Switzerland,
2010.

[117] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Moham-
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