
RTNF: Predictable Latency for Network Function Virtualization

Saeed Abedi† Neeraj Gandhi† Henri Maxime Demoulin† Yang Li‡ Yang Wu‡ Linh Thi Xuan Phan†

†University of Pennsylvania ‡Facebook

Abstract—A key challenge with network function virtualiza-
tion is to provide stable latencies, so that the network functions
can be treated simply as “bumps in the wire.” In this paper, we
present RTNF, a scalable framework for the online resource
allocation and scheduling of NFV applications that provides
predictable end-to-end latency guarantees. RTNF is based
on a novel time-aware abstraction algorithm that transforms
complex NFV graphs and their performance requirements
into sets of scheduling interfaces; these can then be used
by the resource manager and the scheduler on each node
to efficiently allocate resources and to schedule NFV requests
at runtime. We provide a complexity analysis of our algorithm
and the design of a concrete implementation of our framework.
Our evaluation, based on simulations and an experimental
prototype, shows that RTNF can schedule DAG-based NFV
applications with solid timing guarantees while incurring
only a small overhead, and that it substantially outperforms
existing techniques.

I. INTRODUCTION

Modern network functions no longer restrict themselves

to forwarding packets; they also perform a variety of

other functions, such as firewalling, intrusion detection,

proxying, load balancing, network address translation, and

WAN optimization. Traditionally, these functions have been

implemented as middleboxes on dedicated hardware. But

increasingly this infrastructure is being virtualized, and

the physical middleboxes are being replaced by containers

or virtual machines that run on a shared platform, such

as the cloud [34]. This trend towards network function

virtualization (NFV) offers a variety of potential benefits that

resemble those of cloud computing—including consolidation,

easier management, higher efficiency, and better scalability.

Ideally, the virtualized network functions would offer the

same properties as the middleboxes they are replacing. In

particular, they would offer low, predictable latencies. This

is necessary for the network functions to remain transparent

to the rest of the network: they are expected to behave

as “bumps in the wire” that do not have any effect on the

traffic that passes through them (other than the effects they

were designed for). However, current cloud technology can

only support these properties to a very limited extent. The

reasons are partly historical: most existing platforms were

developed for cloud computing, where worst-case latency

guarantees are rarely needed. Of course, there are scenarios

in which latency variations can cause problems even for

cloud workloads – such as performance “cross-talk” between

VMs [35] – and a number of mitigation techniques have

been developed (e.g., [14, 26, 35]). However, most existing

solutions take a best-effort approach and cannot provide

predictable latencies.

More recently, a number of high-performance platforms

have been built specifically for NFV: systems such as

ClickOS [23], E2 [27], and NetVM [16] enable flexible

and efficient creation, chaining and processing of virtualized

network functions. In addition, resource management and

scheduling techniques for NFV have also been developed—

including, e.g., PLayer [19], SIMPLE [30], FlowTags [10],

connection acrobatics [25], and OpenNF [13]. However,

these platforms and techniques typically focus on improving

the throughput and/or average latencies using best-effort

approaches; as a result, they cannot provide any guarantees

in terms of worst-case or tail latency. In our evaluation, we

found that the 99th percentile latency of the packets when

processed by a chain of network functions using E2 is an

order of magnitude larger than its average latency!

In this paper, we aim to provide the missing link that

could enable the design of scalable NFV platforms with

latency guarantees. We focus on the resource allocation and

scheduling of complex graph-based NFV applications in a

cloud setting to meet their end-to-end latency constraints,

thus bounding tail latency as a result. Our main contribution

is a novel abstraction algorithm that transforms a complex

DAG-based NFV application and its performance require-

ment into sets of resource-aware interfaces, which are much

simpler than the application itself. These interfaces can

then be used by the resource manager and the node-local

schedulers to efficiently deploy the network functions, and to

adapt the scheduling parameters based on the packet arrival

rate to achieve the overall latency goals. Moreover, since

the interfaces abstract away many details of the original

applications, the difficult task of finding a good assignment

of NFs to nodes becomes substantially easier.

We also present the design of a concrete NFV platform

called RTNF. Our evaluation, based on a prototype imple-

mentation of RTNF as well as real-world network traces and

network functions, shows that RTNF can schedule DAG-

based NFV applications with solid timing guarantees, and

that it substantially outperforms existing algorithms in terms

of worst-case, tail and average latencies. Our results also

show that RTNF incurs only a small overhead and utilizes

resources efficiently, even when the workload is bursty. In

summary, we make the following contributions:

• An efficient abstraction algorithm for transforming

complex DAG-based NFV applications into chain-based

interfaces, which enable efficient resource allocation

and adaptive selection of the scheduling parameters to

the actual packet arrival rate at run-time.

• An ILP formulation of the online placement of the NFs

for customer requests based on the interfaces so as to

meet their deadlines.

• Correctness and complexity analyses of our algorithm.

• A simulator and prototype implementation for RTNF.

• Extensive evaluation using real-world network functions

and data center traffic traces.

368

2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)

978-1-7281-0678-6/19/$31.00 ©2019 IEEE
DOI 10.1109/RTAS.2019.00038

II. RELATED WORK

Several high-performance NFV platforms are already avail-

able, including e.g., ClickOS [23], NetVM [16], Open-

Box [7], Dysco [44], NFP [38], and E2 [27]. These platforms

provide a flexible, efficient and modular framework for pro-

gramming, management, and deployment of NFs. A number

of other efforts have looked at resource management and

scheduling for NFV, including PLayer [19], SIMPLE [30],

FlowTags [10], connection acrobatics [25], OpenNF [13],

NFVnice [20], and E2 [27], to name a few. However, none

of the existing solutions supports resource allocation with

predictable end-to-end latency, which is a focus of RTNF.

Task graph scheduling in distributed systems is an

established area of research (see [41] for a survey). However,

prior work typically optimizes other metrics such as cost,

energy, and resource utilization instead of providing timing

guarantees. Solutions that do consider deadlines only support

a single application [2, 8, 9, 42, 43], single-job DAG tasks

(i.e., aperiodic tasks) [22, 33], or offline settings [11, 32];

hence, they are not suitable for our setting.

Recent networking research has also developed methods

to achieve better predictability for network latencies [3,

29] and network function processing [17, 28, 39]. Unlike

ours, these results are limited to either the network layer

or individual network functions, and they cannot provide

end-to-end latency predictability for DAG-based workloads.

The only existing work we are aware of that considers

end-to-end latency guarantees for NFV is NFV-RT [21].

However, NFV-RT does not support general DAGs – it is

restricted to NFV service chains. NFV-RT also has a number

of limitations. For instance, when provisioning the resources

for a service chain, it assumes a fixed maximum traffic rate.

In contrast, RTNF is able to adapt its resource provisioning

to the actual arrival rates of requests at run time, and thus

utilizes resources more effectively. Furthermore, the analysis

in NFV-RT assumes that the period of consolidation of two

traffic flows (requests) is the inverse of their total rate,

which is not true [1]. Although this assumption might not

be an issue when throughput or best-effort latency is the

primary goal, it can lead to violation of latency guarantees,

as observed in our evaluation.

Finally, there is a long line of work in real-time scheduling,

including scheduling of task graphs (see e.g., [4, 24, 31, 36,

37]). However, it assumes much simpler traffic and network

models—e.g., most focus on a single-node multiprocessor—

and cannot be applied to the cloud setting. Extending such

techniques for NFV is an interesting future direction.

III. SYSTEM MODEL AND GOALS

We begin by stating a specific system model on which

latency guarantee will be based; however, our approach is

general and should work for other settings as well.

Platform. We assume the network has a fat-tree network

topology [1], which is common in data centers. The platform

is divided into multiple pods. Each pod consists of multiple

racks that are connected to a number of aggregation (EoR)

Fig. 1: An example NFV application.

switches; all EoR switches are further connected to the core

switches. Each rack has multiple machines and a top-of-rack

(ToR) switch that connects these machines. Each network

link (from a node to a switch, from a switch to a node,

or from one switch to another) is associated with a total

bandwidth. We assume the communication latency between

two nodes in the same pod is bounded. We believe this is a

reasonable assumption: any nondeterministic latency caused

by collisions or ARP can be avoided in today’s data center

networks using SDN configuration; further, by disallowing

nodes to send faster than the link capacity, we can eliminate

the unpredictable delay caused by link congestion [3]. For

simplicity, we assume that there are no link failures.

Each machine hosts multiple containers (or virtual ma-

chines)1 within which the network functions are executed.

For concreteness, we assume that the kernel is configured to

use the Earliest Deadline First (EDF) scheduling algorithm,

as it has high utilization bound and is available in common

kernels, such as Linux (the SCHED_DEADLINE scheduler)

and Xen (the RTDS scheduler).

Applications and requests. The platform provides a range

of NFV applications (services) to its users. Each application

is a directed acyclic graph (DAG), whose vertices represent

network functions (NFs), as illustrated in Figure 1. Each

NF is characterized by a per-packet worst-case execution

time (WCET), which can be obtained using existing WCET

analysis [40] or by profiling. Each incoming packet is always

processed by the NFs along a path in the DAG; the exact

path depends on the packet’s characteristics (e.g., header

or payload) and can vary across packets (even of the same

traffic flow). For instance, in Figure 1, after being processed

by the NAT and the Firewall, packets are forwarded to

either the Web cache or one of the IDS network functions,

depending on the outcome of the Firewall function.

We associate each application with an end-to-end deadline,

which represents the bound we wish to guarantee on the

latency of any packet. This end-to-end deadline would

depend on the depth of the graph and the specific NFs,

and it must be met by all traffic flows (with potentially

different packet rates) that are processed by the NFV graph.

We assume that the system is dynamic: at runtime, new

users may submit requests for the provided NFV services,

and existing users may leave the system. Each request

specifies an NFV application the user wants to use and

the packet rate of its traffic flow. (We use the terms ‘flow’

and ‘request’ interchangeably.) We say a request meets its

deadline if the end-to-end latency of every packet of its

traffic flow (i.e., from the instant the packet arrives at the
1Our approach is not specific to containers or VMs; however, we will

use the term ‘containers’ in the rest of the paper for convenience.

369

first NF until the instant it leaves the last NF) does not

exceed the application’s end-to-end deadline.

Challenges. In this setting, our goal is to efficiently allocate

resources at runtime so as to 1) meet the end-to-end latency

guarantees while 2) minimizing resource consumption. A

natural question to ask is whether this could be done

simply by applying a known real-time scheduling algorithm.

However, the scheduling problem we are facing is very

complex. For each new request, we would need to decide:

1) Which containers should each NF of the requested NFV

application execute in?

2) Which node should each container be executed on?

3) Which network path should be used to communicate

between containers on different machines?

4) How many resources should each container get?

This problem has far more degrees of freedom than a

typical scheduling problem in real-time systems, and it is

too complex to solve from scratch every time a new request

arrives. Most of the existing NFV solutions aim for good

throughput and low average latency, which is not enough to

bound the worst-case latency. The only system that comes

close to achieving this is NFV-RT [21]; however, NFV-RT

is limited to simple chains of NFs. We are not aware of any

solution that can provide worst-case (or tail) latency bounds

for general DAG-based NFV applications.

IV. OVERVIEW OF RTNF

Next, we present an overview of our approach and design.

The detailed algorithms are discussed in Sections V–VII.

A. Resource allocation approach

Recall that, given a new request, our goal is to compute a

concrete deployment configuration for the associated NFV

application – that is, an assignment of NFs to containers,

an assignment of containers to machines, a route between

containers, and the scheduling parameters for each container

– such that the packet end-to-end latency will always be

bounded by the application’s end-to-end deadline.

Basic idea. To enable predictable latency, we first transform

each complex NFV graph into a scheduling interface

that captures the resources needed to meet the end-to-

end deadline. Intuitively, the interface specifies (i) how

NFs should be grouped into components, where each

component will be deployed in a separate container and

scheduled as a conventional real-time task, and (ii) the

scheduling parameters (WCET or budget, period, deadline)

for each component, such that: any incoming request of

the application will always meet its deadline if (1) all

components of the interface are schedulable under their

assigned parameters, and (2) there is sufficient network

bandwidth for the data transfers between components.

This interface (computed offline) provides an efficient way

to allocate resources to online requests and to guarantee

predictable latency. Specifically, as a new request of the

NFV graph arrives, we can quickly determine both the

assignment of NFs into containers (i.e., components) and

the containers’ scheduling parameters based on the interface.

Further, due to the above property of the interface, we can

reduce our original problem into a much simpler one: find

an assignment of the containers onto the machines and a

route between them, such that each container is schedulable

on its assigned machine and there is sufficient bandwidth for

the data transfers between containers. As containers have

well-defined scheduling parameters, their schedulability can

be verified using the EDF schedulability test (recall that

the node-local scheduler uses EDF). Consequently, we can

formulate this new problem as an ILP optimization that can

be solved efficiently at run time.

Interface computation challenges. One challenge to re-

alizing this approach is to decompose the graph into

components. In general, having fewer components leads to

lower communication overhead but higher CPU demand

per component (which makes the component harder to

schedule on a core). Another challenge is that the scheduling

parameters of the interface’s components depend on the

packet rate of the request: the higher the packet rate, the

higher the resource demand. However, this information is

specific to each request, and it is only available when the

request arrives but not during the interface computation.

Insights. Our abstraction algorithm within RTNF is based

on the following insights: (1) Leveraging the single-path

characteristic of a packet when processing through the

NFV graph, we use a chain structure for the interface

(i.e., the interface is a chain of components), following

the topology of the DAG. Not only does this chain structure

enable more efficient online assignment of (NFs within)

components onto nodes, it also simplifies the computation

of the components’ scheduling parameters substantially. (2)

To adapt to the varying online packet rates of the requests, for

each application we compute not one, but a set of interfaces.

Each such interface captures a range of traffic periods (i.e.,

inverse of the packet rates) for which the interface can

ensure latency guarantees. This approach enables the system

to select the most optimized interface for a request depending

on its actual packet rate. (3) Our algorithm groups different

parallel subpaths of the DAG with similar total WCETs

into a component to minimize the computation overhead.

Further, to reduce communication overhead, it minimizes

the length of the interface using an efficient (and optimal)

heuristic. (See Figure 4 for an example of the interfaces.)

B. Design overview

Our design (sketched in Figure 2) consists of two interacting

core components: 1) a centralized controller, which performs

admission control and computes the resource allocations for

requests, and 2) a set of distributed run-time agents running

on the machines, which perform the deployment of the NFV

graphs for new requests based on the resource allocation

configurations given by the controller.

Internally, the controller executes a control agent that

interacts with users (e.g., receives new requests and responds

with acceptance or rejection decisions) and the run-time

370

Fig. 2: RTNF design.

Fig. 3: Overview of the resource allocation.

agents on the nodes (e.g., to send new resource allocation

configurations to deploy, and to receive node status updates).

The control agent communicates with the resource allocation

module, which implements our strategy to compute the re-

source configuration for the request. Our strategy guarantees

that, if a feasible configuration exists, the request will meet

its end-to-end deadline. In this case, the agent will admit

the request and inform the agents on the assigned nodes

to deploy their assigned NFs and containers according to

the computed configuration. Upon admission, the user can

begin sending its packets directly to the node on which the

first NF of the graph is deployed.

Whenever the run-time agent on a node receives a

deployment request from the controller, it will then create

the containers, assign the NFs to containers, set scheduling

parameters for each container (which will be used by the

kernel’s scheduler to schedule the container), and set up the

route between the NFs according to the configuration given

by the controller. It will then launch the NFs, which will

begin receiving and processing packets from the user.

Figure 3 shows the overall flow of the RTNF resource

allocation strategy. At initialization, it computes a set of

interfaces for each NFV application graph. At run time,

whenever a new request R of an application G arrives, it

selects an interface of G based on R’s traffic period (i.e., the

inverse of the arrival rate), and sets concrete scheduling

parameters for the components in the interface. It will

then attempt to find a placement for the components of

R’s interface onto the platform such that all components

are schedulable and there is sufficient bandwidth for the

transmission between them. If a feasible placement exists,

the controller will admit the request and inform the run-

time agent to deploy the NFs within each component on

the assigned node within a separate container/VM, whose

scheduling parameters are set to be that of the component.

V. INTERFACES FOR NFV APPLICATIONS

In this section, we present the algorithm for computing the

interfaces of NFV applications, which will be used by the

online resource allocation in Section VII. As explained in

Section IV-A, an interface of an application is a chain of

components, such that the application’s deadline is always

met if all components are schedulable. Each component

consists of multiple NFs that can be feasibly scheduled

together within a container on a core. We first formally

define the interface and its key properties.

A. Interface model and properties

Recall that an NFV application is modeled by a DAG G =
(V,E), where each vertex si ∈V represents an NF and each

edge (si,s j) ∈ E represents a possible data flow from si to

s j. We denote by wcet(si) the WCET of si, and by D the

end-to-end deadline of G. We first define the components

of G that form its interface:

Definition 1 (Component): A component Ck of G is a

subgraph of G that will be scheduled together using a

periodic task (within a separate container/VM) on a core.

We denote by period(Ck), deadline(Ck) and wcet(Ck) the

period, deadline, and WCET of (the task that corresponds

to) Ck, respectively. To use the tight utilization-based EDF

analysis, we require that deadline(Ck) ≤ period(Ck). The

CPU bandwidth requirement of Ck, also known as its density,

is given by wcet(Ck)/deadline(Ck).
A chain of components of G is determined by a map

Π : V �→ {1, ...,n}, where Π(si) denotes the index of the

component that contains si. Since the incoming traffic of a

request for G will be processed by the interface’s chain of

components, a valid chain should ensure that, for any edge

(si,s j)∈E, the component containing si does not reside after

the component containing s j, i.e., we must have Π(si) ≤
Π(s j). This property is necessary to to avoid traffic going

against the order of the chain, which could significantly

complicate the online assignment of the components to the

platform. Further, since each component Ck is a subgraph

of G, and because each packet is processed along a path in

G, each packet is processed along a path in Ck. Hence, the

WCET of Ck is, naturally, the largest WCET of any path

in Ck, where the WCET of a path is defined as the total

WCET of all NFs on the path.

Definition 2 (Chain): A chain of components, C =C1 →
C2 → ·· · → Cn, is a valid chain of G iff there exists a

surjective map Π : V �→ {1, ...,n} from V onto {1, . . . ,n},

such that (a) ∀(si,s j) ∈ E, Π(si) ≤ Π(s j), and (b) for all

1 ≤ k ≤ n, Ck consists of all si ∈ V with Π(si) = k, and

wcet(Ck) = max{
∑

si∈Pwcet(si) | P is a path in Ck}.

The interface captures a range of periods for which the

latency guarantee of the requests is feasible; so as to enable

the adaptation of components’ scheduling parameters to

varying traffic periods of online requests. We next highlight

the characteristics of such periods.

Definition 3 (Feasible periods): An input period T is

feasible for a chain C of G iff any request for G with traffic

period T will meet its deadline if all Ck are schedulable under

the scheduling parameters period(Ck) = deadline(Ck) = T .

Further, a range T is a feasible period range for C iff for

all T ∈ T , T is a feasible period for C.

371

We are now ready to formally define an interface.

Definition 4 (Interface): An interface I of G specifies

• C, a valid chain of G, and

• T , a (non-empty) feasible input period range for C.

Properties of interfaces. Again, recall from Section IV-A

that an interface of G should ensure (1) each of its

components can be feasibly scheduled on a core, and (2)

any request with traffic period within the interface’s feasible

period range will meet its deadline if the components are

schedulable. First, for a component Ck to be schedulable on

a core, its WCET must be less than its deadline.2 Thus, we

must have wcet(Ck)< deadline(Ck)≤ period(Ck).
Second, for a request to meet its end-to-end deadline

D, the sum of (i) the response time (i.e., queuing time

plus execution time) of all components Ck in C and (ii)

the total transmission delay between any two consecutive

components Ck and Ck+1 must be no more than D. Suppose

T is a feasible period of the interface, and suppose R is a

request with incoming traffic period T . As the packets of R

arrive at each Ck at a period of T , the period of Ck is also

T . Hence, if we set the deadline of each Ck to be the same

as its period (i.e., T), then the delay of a packet at Ck is

always bounded by T if all components Ck are schedulable.

Further, to minimize communication overhead, our online

placement will always restrict the components of G to nodes

of the same pod (resp. rack). Let dtr be the maximum

transmission latency of a packet from one node to another

in the same pod (resp. rack) when there is sufficient network

bandwidth. Combining with the preceeding property, the

end-to-end latency of a packet when being processed through

C is at most d = n ·T +(n−1) ·dtr, where n is the number

of components in C. Thus, we must ensure that d ≤ D.

The next lemma follows directly from these properties.

Lemma 1: Let C =C1 →C2 → ·· · →Cn be a valid chain

of G. An input period T is feasible for C if

1) for all 1 ≤ k ≤ n, wcet(Ck)< T , and

2) the end-to-end latency of a packet of any request with

traffic period T when processed through C must be no

more than D, i.e., d = n ·T +(n−1) ·dtr ≤ D.

Combine Lemma 1 with Definition 3, we have:

Corollary 1: Let C = C1 → C2 → ·· · → Cn be a valid

chain of G. An input period range T is feasible for C if the

following two conditions hold:

1) For all T ∈ T , max1≤k≤n wcet(Ck)< T .

2) T2 ≤ (D+dtr)/n−dtr, where T2 = max
T∈T

T .

We then imply Corollary 2; its proof is available in [1].

Corollary 2: Suppose T is a feasible input period for

C =C1 →C2 → ·· · →Cn, then [T,T max
n] is a feasible input

period range for C, where T max
n = (D+dtr)/n−dtr.

B. Interface computation algorithm

In the following we fix an application G = (V,E) and

introduce our algorithm for computing its interface. Based on
2We assume a negligible non-zero overhead, but scheduling-related over-

head such as cache inteference, context switches, etc. can be incorporated
by inflating the WCET with such overhead.

Algorithm 1 Find an interface with a fixed length n.

1) Input: An application G = (V,E), end-to-end deadline

D, and the target interface length n.

2) Let T max
n = (D+dtr)/n−dtr, and let emax be the largest

WCET among all NFs in G.

3) Binary search the period from the range (emax,T
max

n],
denoted by T , to find the minimum period T such that

a valid chain for G with period T and length n exists.

a) In each step of the binary search, call Algorithm 2

to find the shortest valid chain for input period T .

b) If the length of the computed chain is ≤ n, search

for a smaller T ; otherwise, search for a larger T .

4) Denote by T ∗
n the (smallest) period found in the above

binary search and by C∗n its associated chain.

5) If T ∗
n ≤ T max

n then return In = 〈C∗n , [T
∗

n ,T
max

n]〉; other-

wise, return NULL.

Algorithm 2 Find shortest valid chain given an input period

1) Input: an application G and an input period T .

2) Create a source service (vertex) s whose WCET is

defined to be 0, and create an edge from s to every

vertex in G.

3) Let ℓ := 1. Repeat the following while there are vertices

left in G:

a) Let Vℓ be the subgraph of G where each vertex v∈Vℓ

has the property that no path from s to v has the

total WCET ≥ T .

b) Assign Cℓ to be the subgraph of G that consists of

vertices Vℓ; assign wcet(Cℓ) to be the largest WCET

of a path in Cℓ; remove Vℓ from G; and ℓ := ℓ+1.

4) Return ℓ−1 as the length of the CSC and the C1 →
C2 · · · →Cl−1 as the output chain.

Lemma 1, the fewer components an interface has, the larger

its feasible input period. To enable the online scheduler to

find the best allocation given the actual period of a request,

we will compute for G a set of interfaces with different

lengths, each of which can be used to schedule requests

with a certain traffic period range. Further, to minimize

communication overhead, we limit the length of the chain

to be at most N, where N is the maximum number of NFs

along any path in G.

For each n ≤ N, we compute a valid chain of length n and

an associated feasible period range for the interface. Towards

this, we will search for the smallest possible input period

value T ∗
n for which there exists a valid chain C∗n of length n

such that T ∗
n is feasible, using the conditions in Lemma 1.

Once obtaining T ∗
n , the interface In of length n can be

constructed from the corresponding chain C∗n and the input

period range [T ∗
n ,T

max
n], where T max

n = (D+ dtr)/n− dtr.

Note that In is a feasible interface for G, since [T ∗
n ,T

max
n]

is a feasible input period range for C∗n (Corollary 2).

Algorithm 1 shows the procedure for constructing the

chain C∗n and the feasible period range [T ∗
n ,T

max
n] of the

interface In, for a given interface length n. Due to Condition

372

Fig. 4: An NFV application (left-most graph) and its interface table (with four interfaces, each enclosed by a solid rectangle).

Here, we assume dtr = 0 for simplicity. The number within each vertex of the graph represents the WCET of the corresponding

NF. The number on top of each component (dotted rectangle) represents the component’s WCET.

1 in Lemma 1, T ∗
n > wcet(Ck) for all 1 ≤ k ≤ n; thus, T ∗

n >
emax, where emax is the maximum WCET of an NF in G.

To compute T ∗
n , we perform a binary search on the interval

(emax,T
max

n]. For each period value T during this search, the

algorithm uses Algorithm 2 as a subprocedure to compute

the corresponding shortest valid chain of G. If the computed

chain has a length larger than n, it will search for a larger

value T ; otherwise, it will search for a smaller value T .

Intuitively, when T is larger, the period/deadline can also be

larger; hence, it is easier to group more NFs to a component,

leading to a smaller length.

Algorithm 2 computes the shortest valid chain of G, given

an incoming packet period T . Here, the construction of each

Vℓ ensures that the WCET of each component Ck is no more

than T , and for any edge (si,s j) ∈ E, Π(si)≤ Π(s j), where

Π is the corresponding mapping of the chain.

Correctness and running time. We now establish the

correctness and running time of our algorithms. Intuitively,

to minimize the length of the chain, Algorithm 2 always

attempts to pack as many NFs into a component as possible,

and this greedy strategy turns out to be optimal. Further,

the running time of Algorithm 2 can be established by

showing that the vertex sets Vℓ in each iteration (Step 3.a)

can be found in linear time, which can be achieved through

a dynamic programming based approach. Due to space

constraints, we omit the proofs.

Lemma 2 (Correctness): Algorithm 2 always outputs the

shortest possible valid chain of G for a given period T .

Lemma 3 (Running time): Algorithm 2 can be executed

in O(n+m) time, where n is the number of vertices and m

is the number of edges in G.

Based on the above results, the overall running time

for finding a feasible interface with a given length n (i.e.,

Algorithm 1) is hence O(d · (n+m) · logW), where d is

the depth of the input DAG, W is the number of different

values (i.e., in the range (emax,T
max

n]) that the incoming

packet period could use, and n and m are the number of

vertices and edges in G, respectively. The correctness of

Algorithm 1 is followed by the correctness of finding the

shortest valid chain (i.e., Algorithm 2).

Interface table of G. Using the output In of Algorithm 1

for all possible candidate interface lengths n, we construct a

set of interfaces I = {In | 1 ≤ n ≤ N} for G, which we refer

to as the interface table of G. The n-th interface of G, In,

specifies a valid chain C∗n with length n and an associated

feasible period range Tn. Figure 4 shows an example NFV

application and its interface table.

In the next section, we describe how RTNF adapts its

resource allocation to the varying period of an online request

based on the application’s interface table.

VI. ONLINE INTERFACE SELECTION

Whenever an incoming request for an NFV application G

arrives, RTNF selects an interface from G’s interface table

for the resource allocation for R based on its traffic period.

Specifically, let T be the period of a new request R. For

convenience, we say that a range T is larger (resp. smaller)

than T if for all T ′ ∈ T , T ′ > T (resp. T ′ < T). The concrete

interface for R is determined as follows.

Case 1: If T falls in the feasible period ranges of

some interfaces in G’s interface table, then we select

the interface with the shortest chain among such inter-

faces (to minimize communication overhead), while setting

period(Ck) = deadline(Ck) = T for all Ck.

Case 2: If there exists some interface in the interface

table whose period range is smaller than T , then we will

choose the interface with the shortest chain among those; in

addition, we set period(Ck) = T and deadline(Ck) = T max
n ,

where n is the number of components of the interface and

T max
n = (D+ dtr)/n− dtr is the maximum feasible period

of the interface (c.f. Algorithm 1).

Case 3: Otherwise, T must be smaller than every

interface’s feasible period range, and thus the request

cannot be feasibly scheduled. If the request is splittable

(i.e., stateless), we split its traffic flow into two different

subflows with period 2T each, and then attempt to find the

interface for each subflow in the manner as above. If the

request is not splittable, however, we will reject the request.

Example. Consider the NFV application, and its interface

table, shown in Figure 4. We denote by Ii the i-th interface

(with i components) of the interface table. Suppose we have

three incoming requests R1, R2 and R3, with periods T1 = 3,

T2 = 5.1 and T3 = 1, respectively.

Since T1 falls into the feasible period range of only I3, we

select this interface for R1, while setting the period/deadline

of its components to be equal to T1 = 3.

Although no feasible period range contains T2, the feasible

period range (3,5] of I2 is smaller than T2; hence, we select

this interface for R2. In addition, the period and deadline of

each component are set to be T2 = 5.1 and 5, respectively.

373

(1) ∀k ∈ [1..n] :
∑

m∈Nodes;e∈Out(m) xk
e = 1 (6)

∑
v∈EoR;e∈Out(v) x0

e = 1 and
∑

v∈EoR;e∈In(v) x0
e = 0

(2) ∀m ∈ Nodes :
∑

k∈[1..n];e∈Out(m) xk
e ·u

k ≤ cpum (7)
∑

v∈EoR;e∈In(v) xn
e = 1 and

∑
v∈EoR;e∈Out(v) xn

e = 0

(3) ∀e ∈ Links :
∑

k∈[0..n] x
k
e ·β

k ≤ bwe (8) ∀k ∈ [1..n],∀m ∈ Nodes :
∑

e ∈ In(m)xk−1
e =

∑
e∈Out(m) xk

e

(4) ∀k ∈ [1..n] :
∑

s∈EoR;e∈In(s) xk
e ≤ 1 (9) ∀k ∈ [1..n−1],∀v ∈ EoR :

∑
e∈In(v) xk

e =
∑

e∈Out(v) xk
e

(5) ∀k ∈ [0..n−1] :
∑

s∈EoR;e∈Out(s) xk
e ≤ 1 (10) ∀k ∈ [0..n],∀v ∈ ToR :

∑
e∈In(v) xk

e =
∑

e∈Out(v) xk
e

TABLE I: Constraints for the online resource allocation.

As T3 is smaller than all interfaces’ feasible period ranges,

we will reject it. One can validate that, since the maximum

WCET of an NF in the application is 2, it is impossible to

schedule any request with period less than or equal to 2

(see Section V-B), unless we split it into subflows.

The next lemma states the correctness of our interface

selection. Its proof can be found in [1].

Lemma 4: If a request R is not rejected, then the selected

scheduling interface for R guarantees that each component

of the interface can be feasibly scheduled on a core, and that

R will meet its latency guarantee if all of the components

in the interface are schedulable under the concrete period

and deadline assigned by our selection strategy.

VII. ONLINE RESOURCE ALLOCATION

We now present our method for allocating resources to

each new request R based on the computed scheduling

interface of R. Recall that the scheduling interface of R

specifies a chain of components C =C1 →C2 → ·· · →Cn,

with concrete WCET, period, and deadline parameters for

each Ck, such that R meets its latency guarantee if all Ck

are schedulable. Hence, our allocation can be achieved

by simply finding an assignment of the components

to the nodes and a route between them, such that

each Ck is schedulable on its assigned machine and there

is sufficient bandwidth for the data transfer from Ck to Ck+1.

Overview. Our method first finds a pod, and then finds an

assignment of C to this pod while maximizing locality. To

find a pod, we maintain for each pod (a) the total available

CPU bandwidth (i.e., the difference between the total number

of cores and the total density of all active components on

the nodes), and (b) the total available network bandwidth

from EoR switches to ToR switches (downlink bandwidth)

and from ToR switches to EoR switches (uplink bandwidth).

For each pod, we calculate the fractions of the remaining

CPU bandwidth, downlink bandwidth and uplink bandwidth

if C is assigned to the pod. We then pick the pod with the

smallest maximum value of the three fractions, to balance

the network and computational resources across pods.

Once we have chosen a pod for C, we find an assignment

of C to the pod by formulating it as an integer linear program

(ILP). To minimize energy consumption, we aim to minimize

the number of active racks and thus restrict C to active racks

only. If there exists no feasible assignment, we will activate

a new rack and assign all components of C to the rack,

or reject it if there is no such rack available. (Since an

unused rack has much more resource than the demand of

one request, an assignment can always be found.)

ILP formulation. For our formulation, we add a virtual

link (m) from each machine m to itself, which is used by

the transmission from Ck to Ck+1 (denoted as Ck →Ck+1) if

both Ck to Ck+1 are assigned to m. For ease of explanation,

we include in C a (virtual) component C0 before C1, and

Cn+1 after Cn. We use the following notations:

• In(v) and Out(v): sets of incoming and outgoing links

of a switch v, respectively.

• In(m) and Out(m): sets of incoming and outgoing links,

including virtual links, of a node m, respectively.

• Links, EoR, ToR, Nodes, and Racki: sets of all network

links, EoR switches, ToR switches, nodes, and nodes

in the i-th rack, respectively.

• bwe: the available bandwidth of each network link e.

• cpum: the available CPU bandwidth of each node m.

• β k: the maximum bandwidth required by Ck →Ck+1.

• uk: the CPU bandwidth requirement (i.e., density) of

Ck, i.e., uk = wcet(Ck)/deadline(Ck).

We define the binary variables xk
e ∈{0,1} to indicate whether

the link e is used for the transmission Ck → Ck+1. Their

values determine both a route for the transmissions Ck →
Ck+1 and an assignment of Ck to nodes: for any node m

and ToR switch v, if xk
(m,v) = 1 or xk

(m) = 1 – i.e., if the link

(m,v) or the virtual link (m) is used for Ck’s outgoing traffic

– then Ck must be assigned to node m.

Table I shows the constraints of our ILP formulation.

Constraint (1) specifies that each component Ck is assigned

to exactly one node (i.e., exactly one outgoing link from

all nodes is used for Ck →Ck+1). Constraint (2) specifies

the schedulability condition for each node under EDF; for

simplicity, we present here a sufficient condition if nodes are

single core machines; extensions to multicores are discussed

at the end of this section. Constraint (3) states that each

network link e should have sufficient available bandwidth for

all transmissions that use e. Constraints (4)-(7) state that (i)

each transmission Ck →Ck+1 uses at most one incoming link

and at most one outgoing link of all the EoR switches, (ii)

C0 →C1 uses exactly one outgoing link and no incoming

link of all EoR switches; and (iii) the Cn → Cn+1 uses

exactly one incoming link and no outgoing link of all EoR

switches. Constraints (8-10) establish that the links used by

all Ck →Ck+1 must form a valid route: (a) for all k ∈ [1..n],
if an incoming link of a node m is used for Ck−1 →Ck then

an outgoing link of m is used for Ck →Ck+1; and (b) if an

incoming link of a switch v is used for Ck →Ck+1 then an

outgoing link of v is also used for this transmission.

374

Objective: Our formulation aims to minimize the number

of racks being used for the assignment, i.e.,

minimize
∑

k∈[1..n−1];v∈EoR;e∈In(v)

xk
e

Assignment of components to cores on each node. The

solution of the above ILP provides an assignment of

components Ck to nodes, and the links for the transmis-

sions from Ck to Ck+1. It always ensures that the request

will meet its deadline if nodes are single core machines.

Extensions to multicore cases can be done in two simple

ways: (1) extending the ILP to include additional variables

that indicate the assignment of components to cores, and

to modify the schedulability condition (Constraint 2) to

reflect the schedulability on each core (i.e., the available

CPU bandwidth of each core is more than the total BW

requirements of all components assigned to it); or (2) starting

with the solution of the ILP, assigning the components placed

on a node to the node’s cores while considering the core-

level schedulability, which is faster but not optimal. Our

evaluation follows the first approach.

VIII. PROTOTYPE IMPLEMENTATION

To test the efficacy of our system, we implemented both an

event-driven simulator and a concrete prototype of RTNF.

Simulator. The simulation includes the entire resource

provisioning algorithm (Sections V and VII) along with low-

level network behavior and job scheduling. The packet-level

simulator was implemented using 3510 lines of C++ code

and invokes Gurobi [15] with 8 parallel threads as the ILP

solver. The hypervisors for CPUs use EDF scheduling based

on the budget (WCET) and deadline computed by RTNF.

To cover network processing and propagation latencies, we

measured the maximum latencies between two servers and

between containers of a server in our testbed, and used the

results (150µs and 25µs, respectively) in the simulator.

For comparison, we also implemented in our simulator

two existing algorithms: E2 [27], a best-effort resource

allocation framework for DAG-based NFV applications; and

NFV-RT [21], a real-time resource allocation framework for

NFV service chains. We also implemented the default Linux

CFS scheduler, which is configured to be used for E2.

Prototype. We implemented a prototype of RTNF on real

hardware. Our prototype uses a separate Docker container

to execute the NFs of each component of the application’s

interface (determined by the controller for each incoming

request). Each Docker container, which corresponds to a

component of the application, has two virtual NICs (one

input vNIC and one output vNIC). The vNIC of containers

of an application are connected to each other by the pairs of

virtual Ethernet devices (veth), which act like an Ethernet

cable between network namespaces to connect two vNICs.

The NFs within a Docker container are bound to both the

input vNIC and loopback interface of the container: the

former is to receive packets from a preceeding container or

from a user, and the latter to receive packets coming from

another NF in the same container. The NFs are bound to

specific port numbers, thus an input packet can be routed

to its destination NF based on its port number. (Details on

chaining of containers in our prototype are available in [1].)

Our prototype contains 10280 LoC in C++ (3530 LoC

for the controller, 2750 LoC for the run-time agent, and

4000 LoC for the request and traffic generator). For

comparison, we also implemented E2 [27] and NFV-

RT [21] on the testbed. The node’s OS is configured to

use SCHED_DEADLINE scheduler for RTNF and NFV-RT,

and to use its default CFS scheduler for E2.

Run-time overhead. To evaluate the run-time overhead

of RTNF, we measured the time taken to compute an

allocation for each incoming request and to deploy the

NFs using our prototype. We performed the experiments on

our experimental testbed using real-world NFV workload

and data center traffic traces (described in the next section).

The results – obtained across all trials in our experiments

– show that computing a resource allocation took less than

785µs on average and less than 1762µs for over 99% of the

packets, and it took at most 4.1 ms even in the worst case.

Deploying the NFs of a request took 3.1ms on average and

6.7ms for over 99% of the packets. This shows that RTNF

incurs only minimal run-time overhead.

IX. EVALUATION

Our evaluation aims to answer four high-level questions: 1)

Can RTNF provide latency guarantees for online requests

of DAG-based NFV applications? 2) What is the overhead

of running RTNF? 3) Can RTNF handle bursty workloads

efficiently? and 4) How well does RTNF perform compared

to existing solutions?

We evaluated the scalability and effectiveness of RTNF

as large-scale NFV platforms through simulations and

experiments on our prototype. The former allows us to

explore a large parameter space for the platform and

applications, such as a fat-tree topology with hundreds of

machines. The latter enables us to evaluate the potential

impact of practical overheads on performance in a real

cloud environment. Both types of evaluation used real-world

network traces and network functions.

A. Workload

To obtain a representative experimental environment, we

validated RTNF using a range of real-world network func-

tions – including Snort, Load Balancer, Cache Proxy, NAT,

Firewall, VPN, and Traffic Monitor – each with different

configurations, resulting in 18 different NFs.

To obtain realistic and precise execution times of the

NFs in the cloud setting, we profiled them on two sets of

real-world data center traffic traces from [5]. These traces

are well-known and commonly used by the networking com-

munity in research on network functions and middleboxes

(e.g., [12, 13, 27, 38]). We replayed the traces, applied each

NF, and recorded the processing time of each packet using

the RDTSC instruction. We performed this profiling (100000

packets per NF) on every machine in our experimental

testbed and measured the results across all machines. We

375

also analyzed the packet traces and extracted the packet rate,

inter-arrival time and duration of the traffic flows. Based on

the observed patterns, we generated online requests for our

experiments. (More details can be found in [1].)

B. Simulations

Setup. We simulated the network functions in a fat-tree

datacenter topology in our simulator. The network contained

400 machines, each having 8 CPU cores. Every 10 machines

formed a rack. Every network link had a bandwidth of 10

Gbps. Since RTNF first assigns requests to different pods

(whose running time is negligible) and the assignment for

different pods are independent of each other, we focused

on evaluating the behavior of RTNF inside a single pod. To

our knowledge, there is no public industrial data on NFV

application structures, so we followed the standard approach

and randomly generated a wide variety of DAG structures for

our experiments. We generated 20 DAGs, each consisting of

4 to 8 network functions chosen randomly. The deadline of

each DAG is chosen to be the WCET of (the services along

a path of) the DAG plus a threshold ∆, which is typically

less than a few milliseconds (∆ = 2000µs and ∆ = 3000µs

in our simulations). The requests were generated to match

real-world data center workloads as described earlier. Our

experiments were performed on a workstation with 2.6 GHz

Intel Xeon Gold 6142 processors (32 physical cores) and

376 GB of RAM. The OS was Ubuntu 16.04.

Predictable latency guarantees. To evaluate the effective-

ness of RTNF in providing hard latency guarantees for

online requests, we generated 10000 requests of different

NFV graphs and measured the end-to-end latencies of the

packets for all the 10000 traffic flows when being processed

by RTNF. We repeated this experiment for 4 trials, and

computed the request miss rate for each trial – the request

miss rate is defined as the percentage of requests that missed

their deadlines (i.e., that have at least one packet with a delay

larger than the end-to-end deadline) out of all the requests.

For comparison, we also performed the same experiments

for the existing E2 resource allocation algorithm under two

different settings: E2_10 and E2_100, with buffer thresholds

set equal to 10 and 100 packets, respectively.

The results show that RTNF is able to provide a strong

timing guarantee: all the requests always meet their deadlines

across all trials. In contrast, E2 performs poorly in terms

of meeting deadlines, where more than 71% and more

than 76% of the requests missed their deadlines on average

under E2_10 and E2_100 settings, respectively. These results

confirm that techniques designed for throughput and average

latency can severely suffer in terms of predictability.

Average and tail latencies. For each packet processed in the

evaluation, we plot the total end-to-end delay divided by the

deadline and the delay value in one random trial, presented

as Figures 5a and 5b, respectively. (Results of other trials

are similar.) We observe that RTNF gives a more stable

packet latency compared to E2. In addition, it also reduces

the average latency and 99th percentile tail latency by an

order of magnitude across all trials: 165–1292× and 158–

679× compared to E2_10, respectively; and 999–4283×
and 984–2560× compared to E2_100, respectively. This is

quite surprising, as E2 aims to optimize for the average

case, and it also suggests that by making worst-case latency

more predictable we also indirectly gain in terms of average

and tail latencies.

Resource consumption. Finally, we recorded the total

resource usages for one random trial over the period of

the experiment. The results are shown in Figure 5c. We

can observe that the resource consumption under RTNF is

similar to that of E2; thus, we can conclude that RTNF is

equally effective in optimizing resource use as E2 while

giving substantially better latency performance.

We also observe from the results that the CPU demand in

our simulation contains multiple spikes, which is consistent

with the bursty nature of data center traffic [6, 18], and

RTNF is able to dynamically provision more resources when

demand bursts, while gradually scaling down the resource

consumption afterwards (by scheduling most of the new

incoming requests to active machines), and maintaining the

platform resource in an energy efficient manner.

Performance results for NFV chains. Ideally, we would

like to evaluate RTNF against existing NFV platforms that

are designed for latency guarantees; however, the (only)

existing platform we know of is NFV-RT [21], which only

supports chains. For a fair comparison, we considered in this

evaluation only chains of NFs. We generated NFV chains

and requests in the same fashion as in the DAG case.

The results show that RTNF continues to provide

strong latency guarantees for the requests, whereas

E2 performs poorly, which is consistent to its ob-

served performance for general DAG-based applications.

Fig. 7: NFV chains.

Interestingly, we ob-

served that a number of

requests (0.075%) miss

their deadlines under

NFV-RT, even though in

theory they should not;

we expect that this is

because NFV-RT does

not consider the poten-

tial jitter between pack-

ets when it merges mul-

tiple traffic flows. Fur-

ther, as shown in Figure 7, RTNF used substantially less

resource than NFV-RT did (up to 5×). In short, not only is

RTNF strictly more general than NFV-RT it also outperforms

NFV-RT in both latency guarantees and resource usage.

We also evaluated RTNF in soft real-time settings; due

to space constraints, we provide the details in [1].

C. Empirical evaluation

Testbed experimental setup. We evaluated RTNF using

our prototype implementation on a local cloud testbed. The

testbed contains four racks for executing NFs, which have a

376

(a) CDF of Delay/Deadline for packets. (b) Packet end-to-end latencies. (c) Resource usages.

Fig. 5: Simulation results for NFV graphs: Latency predictability, real-time performance and resource consumption.

(a) CDF of the latency/deadline of packets. (b) CDF of the packet latencies. (c) Throughput (number of packets/s).

Fig. 6: Empirical evaluation results for NFV graphs.

total of 96 cores across eight Intel Xeon E5-2620 v3 servers,

each with 12 physical cores running at 2.40GHz and with

64 GB RAM. Machines in each rack are connected via a

1Gbps ToR switch, and all four ToR switches are connected

to a 1Gbps EoR switch. To reduce interference, on each

machine we disabled frequency scaling. We used one core

for handling software interrupts (softirq), one core for the

run-time agent, and the remaining cores for executing the

network functions. These servers run Linux (Fedora 26) and

Docker container software. In addition, the testbed has a

separate rack connected to the EoR switch that has four

8-core Intel Xeon CPU E5-2630L servers (with 1.8 GHz

CPU and 64 GB RAM), running Ubuntu 14.04 LTS. We

used one server to run the controller, and the remaining

three servers to generate packet flows for the users’ requests.

We configured the OS to use the SCHED_DEADLINE for

RTNF and NFV-RT, and we used the default CFS scheduler

for E2. We set the buffer threshold of E2 to be 10 packets.

We randomly created a set of 20 NFV application graphs

in the same fashion as in the simulations. We generated a

total of 2000 requests from across 20 users; the requests’

traffic flows are created using the same two sets of real-world

data center traffic traces as was done in the simulations.

Predictable latency guarantee. Figure 6a shows the request

miss rate and the CDF of the ratios of the end-to-end latency

divided by the deadline of the packets. (Note that the X-axis

in the figure is in log scale.) The results show that RTNF can

deliver solid timing guarantee in practice: all requests met

their deadlines in our experiments. In contrast, E2 performs

poorly in delivering timing guarantee: under E2, 83.25%

of the requests missed their deadlines, and the majority

of the packets (>64%) had an end-to-end latency that is

1000 times larger than their deadlines. We also evaluated

RTNF against NFV-RT and E2 for NFV chains and observed

similar results.

End-to-end latency. Figure 6b further shows the end-to-end

latencies of the packets observed in our experiments for

one trial (the results for other trials are similar). The results

show that RTNF outperforms E2 by an order of magnitude

in all metrics: average, 99.99th percentile, and maximum

end-to-end latency. For instance, the observed packet latency

under RTNF is always below 4.59 ms, whereas the packets

can experience a latency of near 148 seconds under E2.

Throughput. Figure 6c plots the throughput of the system

during the experiment duration. We can observe that RTNF

achieves comparable throughput to E2. This demonstrates

that through proper resource allocation, RTNF can deliver

much better latency performance without impacting through-

put as compared to existing techniques.

X. CONCLUSION

We have presented RTNF, a scalable system for online

resource allocation and scheduling of NFV applications

on the cloud with latency guarantees. RTNF uses a novel

consolidation technique for abstracting a complex DAG-

based application into service chains with flexible timing

interfaces, thus allowing for efficient resource allocation at

run time. Our evaluation using real-world network traces and

network functions shows that RTNF can provide solid timing

guarantees with only a small overhead, and it performs

substantially better than existing techniques.

377

ACKNOWLEDGEMENT

This research was supported in part by ONR N00014-

16-1-2195, NSF CNS 1703936, CNS 1563873 and CNS

1750158, and the Defense Advanced Research Projects

Agency (DARPA) under Contract No. HR0011-16-C-0056

and HR0011-17-C-0047.

REFERENCES

[1] S. Abedi, N. Gandhi, H. M. Demoulin, Y. Li, Y. Wu,

and L. T. X. Phan. RTNF: Predictable latency for net-

work function virtualization. Technical report, CIS De-

partment, University of Pennsylvania, Feb 2019. http:

//www.cis.upenn.edu/~linhphan/papers/rtnf-long.pdf.

[2] H. Arabnejad, J. G. Barbosa, and R. Prodan. Low-

time complexity budget-deadline constrained workflow

scheduling on heterogeneous resources. Future Gener-

ation Computer Systems, 55(C):29–40, 2016.

[3] H. Ballani, P. Costa, T. Karagiannis, and A. Row-

stron. Towards predictable datacenter networks. In

SIGCOMM, 2011.

[4] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela,

L. Stougie, and A. Wiese. A generalized parallel

task model for recurrent real-time processes. In RTSS,

2012.

[5] T. Benson, A. Akella, and D. A. Maltz. Network traffic

characteristics of data centers in the wild. In IMC,

2010.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang. Under-

standing data center traffic characteristics. Computer

Communication Review, 40(1):92–99, 2010.

[7] A. Bremler-Barr, Y. Harchol, and D. Hay. Openbox: A

software-defined framework for developing, deploying,

and managing network functions. In SIGCOMM, 2016.

[8] R. N. Calheiros and R. Buyya. Meeting deadlines of

scientific workflows in public clouds with tasks repli-

cation. IEEE Transactions on Parallel and Distributed

Systems, 25(7):1787–1796, 2014.

[9] Z.-G. Chen, K.-J. Du, Z.-H. Zhan, and J. Zhang. Dead-

line constrained cloud computing resources scheduling

for cost optimization based on dynamic objective

genetic algorithm. In CEC, 2015.

[10] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and

J. C. Mogul. Enforcing network-wide policies in the

presence of dynamic middlebox actions using flowtags.

In NSDI, 2014.

[11] Y. Gao, Y. Wang, S. K. Gupta, and M. Pedram.

An energy and deadline aware resource provisioning,

scheduling and optimization framework for cloud

systems. In CODES+ISSS, 2013.

[12] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,

X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar.

Stratos: A network-aware orchestration layer for mid-

dleboxes in the cloud. CoRR, 2013.

[13] A. Gember-Jacobson, R. Viswanathan, C. Prakash,

R. Grandl, J. Khalid, S. Das, and A. Akella. Opennf:

Enabling innovation in network function control. In

SIGCOMM, 2014.

[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,

S. Shenker, and I. Stoica. Dominant resource fairness:

Fair allocation of multiple resource types. In NSDI,

2011.

[15] Gurobi Optimization, Inc. http://www.gurobi.com.

[16] J. Hwang, K. K. Ramakrishnan, and T. Wood. Netvm:

High performance and flexible networking using virtu-

alization on commodity platforms. In NSDI, 2014.

[17] R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli,

K. Argyraki, and G. Candea. Performance contracts

for software network functions. In NSDI, 2019.

[18] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang.

Joint VM placement and routing for data center traffic

engineering. In INFOCOM, 2012.

[19] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-

aware switching layer for data centers. In SIGCOMM,

2008.

[20] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan,

K. Ramakrishnan, T. Wood, M. Arumaithurai, and

X. Fu. Nfvnice: Dynamic backpressure and scheduling

for nfv service chains. In SIGCOMM, 2017.

[21] Y. Li, L. T. X. Phan, and B. T. Loo. Network

functions virtualization with soft real-time guarantees.

In INFOCOM, 2016.

[22] M. Mao and M. Humphrey. Auto-scaling to minimize

cost and meet application deadlines in cloud workflows.

In SC, 2011.

[23] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,

M. Honda, R. Bifulco, and F. Huici. Clickos and

the art of network function virtualization. In NSDI,

2014.

[24] O. Moreira, F. Valente, and M. Bekooij. Scheduling

multiple independent hard-real-time jobs on a hetero-

geneous multiprocessor. In EMSOFT, 2007.

[25] C. Nicutar, C. Paasch, M. Bagnulo, and C. Raiciu.

Evolving the internet with connection acrobatics. In

HotMiddlebox, 2013.

[26] D. Novaković, N. Vasić, S. Novaković, D. Kostić,

and R. Bianchini. Deepdive: Transparently identifying

and managing performance interference in virtualized

environments. In ATC, 2013.

[27] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-

nasamy, L. Rizzo, and S. Shenker. E2: A framework

for NFV applications. In SOSP, 2015.

[28] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and

K. Argyraki. Automated synthesis of adversarial

workloads for network functions. In SIGCOMM, 2018.

[29] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,

and H. Fugal. Fastpass: A Centralized Zero-Queue

Datacenter Network. In SIGCOMM, 2014.

[30] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and

M. Yu. Simple-fying middlebox policy enforcement

using SDN. In SIGCOMM, 2013.

378

[31] X. Qin and H. Jiang. A dynamic and reliability-

driven scheduling algorithm for parallel real-time

jobs executing on heterogeneous clusters. Journal

of Parallel and Distributed Computing, 65(8):885–900,

2005.

[32] B. P. Rimal and M. Maier. Workflow scheduling in

multi-tenant cloud computing environments. IEEE

Transactions on Parallel and Distributed Systems,

28(1):290–304, 2017.

[33] J. Sahni and D. P. Vidyarthi. A cost-effective deadline-

constrained dynamic scheduling algorithm for scientific

workflows in a cloud environment. IEEE Transactions

on Cloud Computing, 6(1):2–18, 2018.

[34] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,

S. Ratnasamy, and V. Sekar. Making middleboxes

someone else’s problem: network processing as a cloud

service. In SIGCOMM, 2012.

[35] D. Shue, M. J. Freedman, and A. Shaikh. Performance

isolation and fairness for multi-tenant cloud storage.

In OSDI, 2012.

[36] G. L. Stavrinides and H. D. Karatza. Scheduling

real-time dags in heterogeneous clusters by combining

imprecise computations and bin packing techniques for

the exploitation of schedule holes. Future Generation

Computer Systems, 28(7):977–988, 2012.

[37] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The digraph

real-time task model. In RTAS, 2011.

[38] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu. Nfp:

Enabling network function parallelism in nfv. In

SIGCOMM, 2017.

[39] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Ar-

gyraki, S. Ratnasamy, and S. Shenker. Resq: Enabling

slos in network function virtualization. In NSDI, 2018.

[40] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,

S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,

R. Heckmann, T. Mitra, et al. The worst-case execution-

time problem–overview of methods and survey of tools.

ACM Transactions on Embedded Computing Systems

(TECS), 7(3):36, 2008.

[41] F. Wu, Q. Wu, and Y. Tan. Workflow scheduling

in cloud: a survey. The Journal of Supercomputing,

71(9):3373–3418, 2015.

[42] J. Yu, R. Buyya, and C. K. Tham. Cost-based

scheduling of scientific workflow applications on utility

grids. In eScience, 2005.

[43] Y. Yuan, X. Li, Q. Wang, and X. Zhu. Deadline

division-based heuristic for cost optimization in work-

flow scheduling. Information Sciences, 179(15):2562–

2575, 2009.

[44] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and

J. Rexford. Dynamic service chaining with dysco. In

SIGCOMM, 2017.

379

