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ABSTRACT

We define the concept of degree of schedulability to charac-
terize the schedulability and performance of soft real-time
systems. The degree of schedulability of a system is given
in terms of the two factors 1) Percentage of Missed Dead-
lines (PoMD); and 2) Degradation of the Quality of Service
(DoQoS). Our work is set as a model-based framework for
hierarchical scheduling systems where we introduce proba-
bility based sporadic tasks. The novel aspect is that we
consider task arrival patterns that follow user-defined con-
tinuous probability distributions. The separately modeled
task triggering events represent the system environment. We
determine the degree of schedulability of a single scheduling
component which can contain both periodic and sporadic
tasks using statistical model checking in the form of UpPPAAL
SMC. Finally, we show the applicability of our framework
by analyzing an avionics case study.

1. INTRODUCTION

In the areas of avionics and automotive, embedded sys-
tems are increasingly constructed as hierarchical scheduling
systems, where a set of components share different resources.
Some of these components are hard real-time (critical) while
others may be soft real-time components, such that the hi-
erarchical scheduling system itself is a mixed-criticality sys-
tem. Due to the complexity and size of the systems, it is
not feasible to analyze the complete system in one model.

We present a model-based analysis method that fits in a
compositional approach [4, 26] for modeling and analyzing
single-core hierarchical scheduling systems. In this paper we

*The research presented in this paper has been partially
supported by EU Artemis Projects CRAFTERS and MBAT.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CBSE’15, May 4-8, 2015, Montréal, QC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3471-6/15/05 ...$15.00.
http://dx.doi.org/10.1145/2737166.2737170 .

Abdeldjalil Boudjadar

~ Queen’s University
jalil@cs.queensu.ca

Kim G. Larsen,
Arne Skou
Aalborg University
{kgl,ask}@cs.aau.dk

91

Ulrik Nyman
Aalborg University
ulrik@cs.aau.dk

Insup Lee,
Linh Thi Xuan Phan
University of Pennsylvania
{lee,linhphan}@cis.upenn.edu

System Model

Event Models

ch

Figure 1: Overview of framework setup.

focus on the quantitative analysis of soft real-time compo-
nents. We propose metrics for analyzing the quality of ser-
vice of scheduling systems where some deadline misses can
be tolerated. One novel aspect is that we handle sporadic
tasks with arrival patterns modeled as continuous proba-
bilistic functions.

Supplying a system with less resources than it requires
may lead to a degradation of the quality of service. Theo-
retical interest as well as practical considerations have moti-
vated additional metrics, such as deadline miss ratio [20] and
deadline miss probability [12], to quantify the degradation
of the quality of service. For the estimation of the quality of
service, in the case of hierarchical systems, we introduce the
degree of schedulability (Sched®) in terms of the Percentage
of Missed Deadlines (PoMD); and average delay per missed
deadline, called Degradation of Quality of Service (DoQoS).
The PoMD and DoQoS can be computed compositionally
for any level of the system using only the interfaces of the
immediately lower level components or tasks.

Our analysis technique relies on a model based setting
that uses statistical and symbolic model checking. Symbolic
model checking is used to ensure that the hard real-time
tasks contained in a component never miss a deadline. The
same models can be analyzed using statistical methods in or-
der to obtain quality of service measures. Methods based on
statistical model checking scale logarithmically in the size of
the analyzed models, moreover they are trivially paralleliz-
able and still scale sub-linearly [16], thus easily scaling to
industrial size systems. Our framework gives a great degree



of flexibility where all models are parameterized and can be
instantiated for any kind of scheduling system.

Our method is intended to be used by system engineers
during the design space exploration of an embedded system.
The engineers can estimate the performance of the system
under different environment assumptions and system config-
urations.

As illustrated in Fig. 1, we make the unusual choice of
modeling the triggering events for the sporadic tasks sepa-
rately from the system itself, leading to a clearer separation
of concerns. A major motivation for this separation is that
it more easily allows changing the environment model of the
system without changing the system implementation. If one
uses a static minimum inter-arrival time for sporadic tasks,
the analysis can potentially be very pessimistic. The sep-
aration of concerns also allows for modeling different en-
vironments that represent different operating contexts or
modes of the system. Our model fits well with sporadic
tasks that are triggered by hardware interrupts, based on
sensors and other embedded systems. An application field
of this framework is automotive and avionics systems. The
system consists of a set of hierarchical components. For each
component, the timing requirements are represented by the
interface consisting of period and budget. A component con-
sists in a set of tasks sharing a single CPU according to a
scheduling policy. We consider static (Fixed Priority) and
dynamic priority (Earliest Deadline First) scheduling poli-
cies, together with preemptive execution of tasks. So that
our system model can be analyzed under any kind of schedul-
ing policy in the same way. When a soft real-time task
misses its deadline, it continues to execute. Soft real-time
tasks are triggered by external events that have continuous
probabilistic arrival patterns such as Gaussian, uniform, ex-
ponential, and user-defined. We only consider cases where
hard real-time tasks never miss a deadline.

Our main contributions are:

e We study the degree of schedulability (Sched®) of hier-
archical scheduling systems where sporadic tasks have
continuous probability arrival patterns.

e We show how to compute and estimate the two metrics
Percentage of Missed Deadlines (PoMD); and average
delay per missed deadline, called Degradation of Qual-
ity of Service (DoQoS).

e We provide detailed implementation models of the frame-

work including explicit environment models as well as
an avionics case-study.

The rest of the paper is structured as follows: Section 2 ex-
amines relevant related work, Section 3 introduces the com-
positional analysis framework. In Sections 4, 5 and 6 we
introduce respectively continuous sporadic tasks, the mod-
els used to analyze them and the actual analysis. Finally, we
demonstrate the applicability of our method on an avionics
case study in Section 7, and conclude in Section 8.

2. RELATED WORK

In this section we present related work with a specific focus
on sporadic tasks. The sporadic task model [3, 22], which is
an extension of an earlier task model known as the Liu and
Layland (LL) [17] task model has received immense research
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attention over the years. In [3], the authors propose an ex-
act schedulability analysis by providing some necessary and
sufficient conditions for a sporadic task system to be schedu-
lable. In fact, the authors consider sporadic tasks with min-
imum inter-arrival time as periodic tasks, then define the set
of legal requests that a task may perform. Based on such a
function, they analyze the system schedulability regardless
of the schedulability policy. However, considering sporadic
tasks with known minimum inter-arrival times as periodic
tasks may lead the schedulability analysis to be pessimistic
and seriously overestimates the number of task arrivals. Our
work differs by modeling probabilistic inter-arrival times and
quantifying the system schedulability according to hard and
soft real-time requirements.

In [29], the authors propose a framework for the schedu-
lability analysis of real-time systems, where they define a
generalized model for sporadic tasks to characterize more
precisely the task arrival times. Each task is characterized
by two constraints: higher instantaneous arrival rate which
bounds the maximum number of task arrivals during some
small time interval; lower average arrival rate which is used
to specify the maximum number of arrivals over some longer
time interval. In [9] the authors present a symmetric multi-
core framework where a flat scheduling system can be de-
scribed in the Prelude language. The schedulability can be
checked using generated UPPAAL models.

The work of [21] extends the work in [12] by making all
the task attributes of a flat scheduling system probabilis-
tic. However the methodology in [21] does not handle dy-
namic scheduling policies. In [28], the authors propose a
method to control the preemptive behavior of real-time spo-
radic task systems by the use of CPU frequency scaling.
They introduced a new sporadic task model in which the
task arrival may deviate, according to a discrete time prob-
ability distribution, from the minimum inter-arrival time.
Based on the probability of arrivals, the authors propose
an on-line algorithm computing CPU frequencies that guar-
antee non-preemptiveness of task behavior while preserving
system schedulability.

The work in [5] is an introduction to the concept of "degree
of schedulability”, without theory nor implementation. The
current work is built on [5] by formally defining how to com-
pute the two metrics: DoQoS and PoMD. Moreover, it also
presents the UPPAAL models used for the implementation of
the concepts as well as an avionics case-study.

To the best of our knowledge, there is no previous re-
lated work which uses continuous probabilities to character-
ize the arrival patterns of sporadic tasks. A concept similar
to PoMD is given in the work by [20] which handles only flat
soft real-time systems, whereas our framework can model
and analyze hierarchical mixed criticality systems. Another
difference is that [20] has a stochastically distributed execu-
tion time but with fixed periods. Our arrival patterns follow
a probability distribution, whereas our tasks execution times
are static.

The term “degree of schedulability” was first introduced
in [23] to characterize the sum of response time delays from
the individual task deadlines for static priority scheduling
systems. The work in [23] is presented in the context of a
distributed, but flat, real-time system with a common com-
munication bus and only considers hard real-time systems.

We define the concept of DoQoS in a similar way, but focus
on the total amount of time by which deadlines are missed.
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Figure 2: Mixed crit. hierarchical scheduling system

We define our notion of degree of schedulability (Sched®) by
combining PoMD and DoQoS into one measure.

3. COMPOSITIONAL FRAMEWORK

A hierarchical scheduling system [1] consists of a set of
concurrent real-time components sharing a set of resources
according to a scheduling policy. Each component can be in-
ternally organized as a set of components, giving the system
a tree-like structure. The use of temporal partitioning [25]
of components is motivated by the fact that it provides re-
duction of complexity, separation of concerns, confinement
of failure modes, and temporal isolation among system ap-
plications. One obvious partitioning of the components in a
mixed-criticality system is to group them according to their
criticality [14]. Such a grouping enables easier certification
of the safety-critical components when they have minimal
communication with the non safety-critical parts [24].

In this paper we focus on the schedulability analysis of one
component inside a hierarchical scheduling system. The hi-
erarchical scheduling system can be as deeply nested as it is
necessary for the given application, and is thus not restricted
to two levels as shown in the avionics system of Fig. 2. Each
square box represents a component in the system, except
for the top box which represents the complete system. The
avionics system is based on a previously published case study
[18, 13, 4]. Throughout this paper we use the Targeting
component as a running example to illustrate our analysis
method. The whole system will be analyzed in Section 7.

Formally, a hierarchical scheduling system S = (C, R, A)
is given by a set of hierarchical components C, a set of re-
sources R and a scheduling algorithm A. A component,
in turn, can be either a hierarchical unit ({C4,..,Cr}, A)
of other components Cj, or a basic composition (W, A) of a
workload W, together with a scheduling policy A. The work-
load W is a set of real-time tasks having time constraints
like deadline, execution time, and next arrival. The inter-
face Z [27] of a component is given in terms of a period and
a budget, i.e. Z = (p,b). The budget b specifies the resource
amount that should be provided to the component workload
in order for it to be schedulable. The interface Z of a compo-
nent C'(W, A) specifies the collective resource requirements
that the workloads W performs under the scheduling policy
A. In a compositional schedulability analysis framework [7,
4], a hierarchical system is said to be schedulable if each
component is schedulable.
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In Fig. 2, we specify for each task (in parenthesis) the
period or arrival pattern (probability distribution together
with the minimum inter-arrival time), followed by execution
time and deadline. For each component we specify the pe-
riod, minimum supply and the scheduling policy. One com-
ponent has “insuf” as minimal supply because its resource
requirement exceeds 100% of the system resource for one
CPU. This is dealt with in Section 7 by distributing the
components to different CPUs.

The analytical analysis approaches [15, 3, 19] compute
whether or not a system is schedulable, according to EDF
(Earliest Deadline First) scheduling policy, by giving a firm
response to the following question: is the demand bound
function dbf of each component workload W, over a time
interval ¢, lower or equal to the supply bound function sbf
of a resource according to interface Z, over the same time in-
terval, i.e. Vt > 0 dbf o(W,t) < sbfz(t). If such an equation
is satisfied, the component is said to be schedulable. In the
same way, in a model-based setting [28, 2, 10, 4] a system is
said to be schedulable if the error locations, stating the dead-
line violation, are unreachable. We use location to denote the
states of Timed Automata. Moreover, in our model-based
framework, the condition dbf 4 (W,t) < sbfz(¢) is applied
not only to EDF but also for other scheduling policies, such
as FP (Fixed Priority) scheduling, so that the same task
models can be used for different scheduling policies.

In contrast to the mentioned techniques, we do not only
consider if a system is schedulable or not, but we provide
the degree of schedulability (Sched®) as a way to measure
how schedulable a system is. We define the Sched® of an
entity (system, component or task) by the two concepts:
Percentage of Missed Deadlines (PoMD) and Degradation
of Quality of Service (DoQoS). Each of these concepts can
be computed for either a task, a component or a complete
embedded system. They should be measured or simulated
over a sufficiently large time bounded run and a sufficiently
large number of runs in order to obtain usable values.

By S we designate the system comprising the probabilistic
models of the event-triggering as well as the hierarchical
scheduling of tasks as depicted in Fig. 1. A run « of a
system S is an infinite sequence:

™= So(t0,60)81(t1,61) e sn(tn,en) e

where s; is a global state giving information about the state
of each task (e.g. idle, ready, running, blocked) and resource
(e.g. idle, occupied) at stage i; so is the initial state. Each
e; indicates an event (triggering, completing or preemption)
signifying a transition from state s; to s;11. Timestamp
to indicates the time from system initiation until event eq.
Every subsequent timestamp ¢; (with ¢ > 1) indicates the
separation between events e;_1 and e;.

We denote by Runs the set of runs of S. For a run 7 and a
time-interval ¢ € R>¢, we may define (in an obvious manner)
the functions:

e Missi(m) € N is the total number of missed deadlines
for task ¢ up to time ¢;

e Trigi(m) € N is the total number of triggerings of task
i up to time t.
DEFINITION 3.1. The Percentage of Missed Deadlines
(PoMD) of an entity X for a run 7 is given by:
Miss: (X, )

PoMD™ () = (li
0 (m) = (limsup Trig, (X, )

t—o0

) x 100



where Miss;(X, 7) is the total number of deadlines missed by
X on run 7 up to time bound ¢, and Trig,(X, ) is the to-
tal number of X executions triggered within the run 7 until
time bound ¢. The entity X could be a task, a component
or a system. In the case where X is a system, Miss; and
Trig, are computed with the system components considered
as tasks. Even if no top-level component misses a deadline, a
task inside one of the components could still miss its dead-
line. A healthy system engineering approach might be to
ensure that all levels except the lowest levels have a PoMD
of 0. Now, the probabilistic arrival patterns of tasks of S
give rise to a unique probability measure Ps over (Runs, B)*
as such PoMDT and PoMD are random variables. In order
to estimate the expected values of PoMD* and ePoMD™,
we generate a set II of random (according to the stochas-
tic semantics of S) and independent runs and calculate the
mean using the following formula:

> e POMD™ ()

1]
In fact, we estimate the ePoMD at the system level by sim-
ulating the complete system and summing up all triggering

events and deadline misses. Our concept of PoMD is similar
to the concept Deadline Miss Ratio (DMR) from [20].

DEeFINITION 3.2. We define the Degradation of Quality of
Service (DoQoS) of a task T; over a single run w by:

ePoMD™ (IT) =

0 if lim sup Miss(T;,7) =0
DoQoS™ (1) = e
lim sup Querruny (T5.m) - Otp erapise

P Miss¢ (T ,7)

where Overrun(T;,m) is the sum of the time amounts by
which task T; misses its deadline over run .

An example of an overrun for a specific triggering, overrung,
is given in Fig. 3. Similarly as done for PoMD, we estimate
the expected value of DoQoS, called eDoQoS, using a set of
random and independent runs.

) DoQoS%i ()

|11
The eDoQoS of a component C over a set of time bounded
runs II is defined by the eDoQoS of its workload W as:

Dorew eDoQoS”i (11)
- (W]

Each item ¢ in the workload W can either be a task or a
component. The eDoQoS can be recursively calculated up
to the system level. The eDoQoS of a task could be used to
compare the same task embedded in different components
with different configurations. For the eDoQoS of a compo-
nent we chose to use a simple weighted average.

eDoQoS™ (IT) =

eDoQoS“ (I1)

DEFINITION 3.3. We define the degree of schedulability
(Sched®) of an entity in terms of two factors Schedp and
Schedp to be given by:

o [ o0 if ePoMD =0
Schedp = { a5 Otherwise }

o o0 if eDoQoS =0
Schedp = { m Otherwise }

'Here B is the standard S-algebra over Runs generated from
a standard cylinder construction. For more see e.g. [11].
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Figure 3: Execution of a sporadic task, 7°(P,4,2,3)

According to such a definition, an entity is absolutely schedu-
lable if either Schedp or Schedp is equal to oo. This cor-
responds to the classical notion of schedulability where no
deadline is missed.

To compare different system configurations in terms of
the Sched®, we use the multi-objective Pareto frontier of
Schedp and Schedp. In this way, engineers could keep up-
dating resources and requirements and compare the system
Sched® from one configuration to another. Thus, this fact
helps to define the best system configuration in terms of an
equation including the amount of provided resources, the
expected schedulability degree and the task requirements.
But, Sched® is not intended as a measure to compare com-
pletely unrelated systems.

We reuse and adapt our previous work [4], for the schedu-
lability analysis of hierarchical systems, now extended with
probabilistic sporadic tasks. As mentioned earlier, a work-
load W = {T1, ..., T} is a set of periodic and sporadic tasks.
Periodic tasks [17] T?(p, e, d) are commonly given at least
by a period p, an execution time e and a deadline d. Simi-
larly, sporadic tasks [3] T°(I, e, d) are usually specified with
a minimum inter-arrival time I, an execution time e and a
relative deadline d. In order to characterize more precisely
the arrival time of sporadic tasks and capture efficiently the
deviation of their arrivals from the minimum inter-arrival
time, we associate to each sporadic task a continuous prob-
ability distribution stating the probability of each possible
delay dlyprop. Thus, our sporadic task model is given by
T°(P,I,e,d) where P is a probability distribution given by
a density function F. Depending on the density function F,
the probability distribution P could be uniform, exponential
or Gaussian.

Fig. 3 depicts an example of the execution of our prob-
ability based sporadic task model where we show how the
probability distribution influences the task behavior, and
thus affects the task schedulability. We use a;; as the j*
arrival of the task with index ¢. The task arrival a; de-
lays for dlyprop = 1 time unit, according to the probability
distribution, from the previous minimum inter-arrival time
(expected at the starting point of the time axis). The task
arrives at time a; and becomes immediately ready to start
its execution. Unfortunately, due to the resource availabil-
ity the task waits dly,.s = 1 time unit before acquiring re-
sources and starting its execution. After being provided with
resources, the task starts its execution e which achieves per-
fectly with the deadline d. After one minimum inter-arrival
time I = 4 since the last task arrival a;, the task may start a
new execution. Always depending on the probability distri-
bution, the new arrival a;+1 of the task delays for dlyprop = 2
time units from the last minimum inter-arrival time point.
After being ready, the task delays again dly,es = 1.5 be-
cause of the resource availability. After acquiring resources,
the task starts its execution e = 2 which leads task to miss
its deadline d with an amount of time dlymiss = 0.5. One
can remark that such an excess could be not critical and can



be measured as Quality of Service (QoS) of the schedulabil-
ity. Our probability-based sporadic task model is strictly
more expressive than traditional real-time task models but
could retain efficient demand computation for the analysis.

4. CONTINUOUS PROBABILITY TASKS

In this section, we introduce the characteristics of the
probability-based sporadic tasks. Our framework models
both a fixed inter-arrival time and a probability distribu-
tion. Obviously, a task cannot arrive before the inter-arrival
time, and the inter-arrival time can potentially be set to
zero. After the expiration of the inter-arrival time, the ar-
rival of a given task delays with § according to a continuous
probability distribution, such as Gaussian N = (y1, 0%) with
a mean value u and a variance o (Fig. 4(a)). Fig. 4 shows
the three specific probability distributions we consider in our
setting: Gaussian, exponential and uniform. As the proba-
bility distribution is a parameter of the sporadic tasks in our
framework, any user-defined probability distribution can be
used.

4.1 Probability Distributions

‘We have implemented Gaussian Probabil

the continuous prob-
ability distributions
we consider via a set
of UPPAAL embed-
ded functions over
the time domain. An
example of a Gaus-
sian normalized curve,
generated by UPPAAL )
SMC, is depicted in DB
Fig. 4(a) where the (b) Exponential (1/800)
X axis represents con- Uniform Probability Distribution
tinuous time from 0 i
to 240, =100 , and
o =100. Fig. 4(b)
shows an exponential KR
probability distribu-
tion, with the rate of
exponential A being
. The smaller A is,
the more spread out
the distribution is. In contrast to the two previous proba-
bility distributions, the uniform distribution (Fig. 4(c)) has
a equal probability for all time instances up to a maximum
time where the probability drops to zero.

4.2 Conceptual Model of Sporadic Tasks

Our conceptual event model is shown in Fig. 5(a). When a
delay has elapsed, the event triggers the corresponding task
and moves to the location InterArrivalWait waiting for one
inter-arrival time I before starting a new round. The con-
ceptual task model (Fig. 5(b)) starts at location Wait waiting
for the triggering event (trigger?) by which it moves to the
composite state Execution. Depending on the scheduling, the
task can alternate between the locations Running and Pre-
empted, while the deadline is not missed. The task can leave
this composite state when completing the execution. If the
task ends up in location MissedDeadline, the overrun will be
measured (used for estimating the DoQoS) before moving
to the location Wait. The UPPAAL implementations of our
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Figure 5: Conceptual model of a sporadic task and
its triggering event.

probability based sporadic task model, omitted because of
the space limitation, are very close to the conceptual event
triggering model given in Fig. 5(a) and can be found in the
linked zip-file. In the UPPAAL task model (Fig. 11), the
composite state is modeled by a single location in which the
preemption is captured by a stopwatch; which is active when
the task is running and stopped when the task is preempted.
Thus, the stopwatch will always contain the accumulated ex-
ecution time of the task.

S. ANALYSIS MODELS FOR THE DEGREE
OF SCHEDULABILITY

For our compositional analysis framework, the hierarchi-
cal scheduling systems and their analysis elements consist
of environment models, scheduling models, resource model,
and task models.

We are using UPPAAL SMC to perform a formalized sta-
tistical simulation of our models, known as Statistical Model
Checking (SMC). SMC enables quantitative performance
measurements instead of the Boolean (true, false) evalua-
tion that symbolic model checking techniques provide. We
can summarize the main features of UppAAL SMC in the
following:

e Stopwatches [8] are clocks that can be stopped and
resumed without a reset. They are very practical to
measure the execution time of preemptive tasks.

e Simulation and estimation of the expected minimum
or maximum value of expressions over a set of runs,
E[bound] (min:expr) and E[bound] (max:expr), for a
given simulation time and/or number of runs specified
by bound.

e Probability evaluation Pr[bound] (P) for a property
P to be satisfied within a given simulation time and/or
number of runs specified by bound. P is specified using
either LTL or tMITL logic.

The disadvantage of using statistical model checking is
that it will not provide complete certainty that a property
is satisfied, but only verify it up to a specific confidence level
[6], given as an analysis parameter.
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Figure 6: Conceptual model of PRM

5.1 Periodic Resource Model

The resource model that this paper considers is the Pe-
riodic Resource Model (PRM), which provides a specific
amount of resources to a set of tasks or components every
period [26]. The PRM represents the interface requirement
between a set of tasks and their (higher level) scheduler. The
high level scheduler is referred to by Supplier, which satis-
fies the interface requirement given by the periodic resource
model. To represent the behavior of the resource supply,
based on the interface requirement, we use the PRM in the
form of a PSA model.

In order to model the PRM for any type of scheduling
policy, we provide a stochastic resource model as shown in
Fig. 6. This resource model guarantees the specific amount
of resource allocation for a specific period, but the beginning
of the supply is non-deterministic such that it implements an
asynchronous supply of resources of the PRM [26]. In this
model, the variable supply represents the resource allocation,
which is a variable shared with the task model. Thus, the
supply is only enabled for b time units (budget) within the
period p. At location Ready, the supply of resource can be
delayed for at most p — b. The contracted amount of re-
source in the interface of a component is fully fed to a set of
tasks in that component at location Supplying, and then the
remaining time of a period is spent at location Done.

One can remark that our resource model supplies the
whole budget non-preemptively in one chunk, but accord-
ing to [26] if one considers only worst cases, both preemptive
and non-preemptive resource models provide the same worst
case analysis results. This is also true for our framework be-
cause we search for the traces with the highest PoMD or
DoQoS. What we are analyzing is the DoQoS and PoMD of
a component in any potential setting where this component
could be used given that it is still supplied with its budget.
We achieve this by analyzing all extreme cases of the supply
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supplying[supid]=0, sPrdIndc[supid]=0 )

éDone
curTime <=sup[supid].prd

Figure 7: PSA template of Periodic Resource Model
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Figure 8: Supplier and Task Execution.

Fig. 7 shows the supplier template. The initial location
is committed in order to enforce the supplier to move in-
stantaneously to the next location NotSupplying. Slack time
(sup[supid].prd-sup[supid].budget) is the maximum amount of
time that can elapse before the supplier starts supplying.
Non-deterministically at some point between time zero and
the slack time, the supplier moves to the location Supplying.
Entering this location the stopwatch supplying time[supid] is
reset to 0 and the rate is indirectly set to 1 through the
variable supplying[supid]. Once the budget is fully provided,
the Supplier moves to the location Done.

Fig. 8 shows the supplier supply, and runs of tasks 7%
and T} (of Fig. 2). In this setting, T has priority over 7%,
and executes sporadically over a uniform distribution. Thus,
the execution period of Ty is irregular. The supplier at the
bottom is supplying non-deterministically so the supply is
also irregular within the period. Further explanation can be
found in our previous paper [4].

supplying[supid]=0

0 ©
1 izint[LowerBound, UpperBound]

| gbudget[supid]=i,

| cbudget[supid] = gbudget[supid]

v NotSupplying

)
supplying_time[supid]'==0
&& curTime <= sup[supid].prd-gbudget[supid]

start_supplying[supid]!
supplying[supid]=1

Supplying

supplying_time[supid]'==

&& supplying_time[supid]<=gbudget[supid]
stop_supplying[supid]!
supplying_time[supid]==gbudget[supid]
supplying[supid]=0

curTime ==sup[supid].prd
Time=0, lying_ti id]=0,
Done curTime=0, supplying_time[supid]

D supplying[supid]=0

curTime <=sup[supid].prd
&& supplying_time[supid]'==

(a) Budget estimation model

Z
K=
]
3
[
=

0!
10.0 12.0 14.0 16.0

cbudget[0]

(b) Budgets causing deadline miss

18.0 20.0 22,0

Figure 9: Budget estimation.



place < rq[rid].length

&& curTimelt]-taskl[t].deadline <=
curTime[rg[rid].element[place]]
eadline

WaitSchedReq SearchQPosition

run_sched[EDF][i]?
rid=i, place = (IsPreemptive(rid)? 0:1),
t = rq[rid].element[rg[rid].length]

place == rq[rid].length
|| curTime[t]-task[t].deadline >
curTime[rg[rid].element[place]]

-task rq[nd_].elemem{ lace]].deadline
insert_at(rid, place, Y

AckSchedReq
ack_sched[EDF][rid]!

Figure 10: PSA template of EDF Scheduler

In order to estimate the sufficient budget of a supplier
(component) that makes the workload of a component schedu-
lable, we present another stochastic supplier as shown in
Fig. 9.(a). It starts supplying by selecting a random amount
of budget using gbudget[supid] and cbudget[supid]. UPPAAL
SMC checks whether any task misses deadline and generates
a probability distribution of budgets leading to a deadline
miss of a component. Fig. 9.(b) shows the estimated bud-
get numbers that make the component of 75 and 77 non-
schedulable, and it can be concluded that 23 is the minimum
budget.

5.2 Scheduler

We have implemented different scheduling policies in our
framework, but we only show the EDF scheduler here as
an example. Fig. 10 shows the implementation of the EDF
scheduler. At the initial location WaitSchedReq, it waits for
a scheduling request. In the location SearchQPosition, the
scheduler searches through the queue until it has found the
right position. On the transition to location AckSchedReq, it
inserts the task at the correct place in the queue. Finally,
on returning to location WaitSchedReq it communicates to
the rest of the system the task id of the currently scheduled
task.

5.3 Task Models

In the rest of this paper, we use PoMD instead of ePoMD,
and similarly DoQoS for eDoQoS. This is for consistency
with the models where we have used PoMD and DoQoS even
though we are estimating the values.

In our framework,
we provide 4 differ-

ent task templates:
hard real-time and
soft real-time tem-
plates for periodic
and sporadic tasks.
The hard real-time
task stops running
immediately when it
misses a deadline.
Meanwhile, the soft
real-time task con-
tinues running until
the end of simula-
tion time while mea-
suring PoMD and
DoQoS. Fig. 11

Measure@

x <= simTime
&& forall(i:tid_t) PoMDIi]'==

x == simTime

i<=tid n

cntExecution[i]<=0
i++

CaIPoMILtC

cntExecutionl[i]>0
PoMDIi] = ((cntMissDline[i]*100)
/entExecutionli]),i++

i>tid_n

End

O forall(i:tid_t) PoMD][i]'==0

Figure 12: PoMD calculator

shows the soft real-time sporadic task template. It is trig-

gered by the event startTask|tid]?

from the environment
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startTask][tid]?
curTimel[tid]=0, exeTime[tid]=0,
twert[tid]=0, tPrdindcltid] = 1, DoQoS[tid]=0, x=0,

. o . WaitOffset
cntMissDline[tid]=0, cntExecution[tid]++

PDone

exeTime[tid]'==0

&& twert[tid]'==0

&8& DoQoSitid]'==0
finished[task(tid].cpuid]!
delete_tid(task([tid].cpuid,tid),
error=0

exeTime[tid]'==0
&& x<= task([tid].offset
&8 DoQoS[tid]'==0

ReqSched
©
r_req[task([tid].cpuid]!
enque(task(tid].cpuid, tid),
DoQoS|[tid]=0,

tRunIndcftid] = isTaskSched()

ClosingExec

tRunIndc[tid] != isTaskSched()
taskCompl[tid]! du
tPrdIndc[tid] = 0, tRi

{id] = isTaskSched()

tRunIndcftid]=0
C exeTimeltid] >= task[tid].bcet > J
Prdindoftid] = 0 S xeTimeltid]'==isTaskSched()
tworltid]=0 ! 1000 && exeTimeltid] <=task[tid].wcet

&& DoQoSitid]'==0
curTimel[tid]>task[tid].deadline
error=1, missingDL][tid]=1,
cntMissDlineftid]++
exeTimel[tid] >= task[tid].bcet

tPrdindcftid] = 0,

error=0, twert[tid]=0,DoQoS]tid]=0, J{ missingDL_repltid]!

missingDL[tid]=0 O“% tRunindcftid] I= isTaskSched()
dummy!

exeTimeltid]'==isTaskSched() tRunlIndcltid] = isTaskSched()
&& exeTimel[tid] <=task][tid].wcet
&8& DoQoSitid]'==1

Figure 11: Soft real-time sporadic task

model following a probability distribution. The clocks cur-
Time[tid] and exeTime[tid] are used to measure the current
time and the execution time respectively. The clock twert][tid]
measures the worst-case response time. Similarly to the con-
ceptual model, location Execution models both the running
and preempted states of the task. The stopwatch exeTime][tid]
measuring the execution time keeps increasing while the task
is scheduled (exeTimel[tid]' == isTaskSched()). The function is-
TaskSched() returns zero when the task is preempted and one
when the task is scheduled. When the task is preempted it
stays at location Execution, but the stopwatch exeTimeltid] is
stopped by setting the rate of progression for it (exeTimel[tid]')
to zero. The task cannot stay active in the location Exe-
cution longer that the WCET (exeTime[tid] < taskTid[wcet]).
Once the task has actually been scheduled for more than the
BCET, it can non-deterministically choose to go to the loca-
tion ClosingExec, issuing a taskCompl[tid]! event stating that
the task execution is done. When the deadline is missed,
the task will be forced to change location to MISSDL. In that
location, even though the deadline is missed the task keeps
running, whereas the stopwatch exeTime[tid] keeps measuring
the accumulated execution time.

The variables cntExecution[tid], cntMissDline[tid], and DoQoS][tid]

are used to calculate PoMD and DoQoS by the PoMD cal-
culator of Fig. 12 and the following queries:

E[gClock<=simTime;simNum] (max: PoMD[1])
E[gClock<=simTime;simNum] (max: DoQos[1])

For every simulation (simNum) of which time is up to sim-
Time, one PoMDJ1] is obtained by calculating the percentage
of the accumulated number of missed deadlines of ecntMissD-
line[tid], and the count of task executions of cntExecution][tid].
Finally, PoMD is calculated from the average of PoMD[1]s of
all traces. DoQoS[tid] measures the delay after a task misses
a deadline, and the maximum DoQoSltid] is selected from
one trace. Finally, DoQoS is determined by calculating the
average of the maximum DoQoS[tid]s of each individual trace.



6. ANALYSIS OF THE DEGREE OF SCHEDU-

LABILITY

We use as a running example in this section the Tar-
get component from Fig. 2. The workload is character-
ized by a periodic task T3 (40,4,40) and a sporadic task
T;(Unif.,40,2,40). In our setting, 77 has priority over
TY. Both tasks are scheduled according to the fixed pri-
ority scheduling (FP) policy. The sporadic task T follows
the uniform probability distribution between 0 and 20 time
units. The analysis is performed in the following steps:

1. Estimate a component budget as described in Sec-
tion 5.

2. Analyze the Sched® for the estimated and lower bud-
gets.

To estimate the budget of a component, we use the budget
estimator shown in Fig. 9(a) and the following query:

Prcbudget[rid] <= randomBudget]
( <> gClock >= simTimeanderror)

As a result, we found that 23 time units every 40 time
units is a good candidate as a sufficient budget for both
tasks. In order to have valid results, in the next analysis
section we perform experiments where we analyze the same
system with a varying amount of traces and simulation time.
When reaching more than 1000 traces and a simulation time
of more than 100,000 time units, we see that the results
stabilize.

6.1 Analysis of Mixed-Criticality Components

Because our analysis framework is compositional, we can
analyze different components with different methods based
on the criticality of each component. If a component con-
tains hard real-time tasks, it should be analyzed using rigor-
ous methods [4, 27]. Components containing both soft and
hard real-time tasks should be analyzed both for the de-
gree of schedulability and with rigorous methods to ensure
that no hard task ever misses a deadline. So that, statistical
model checking is used to analyze that the DoQoS and PoMD
of the hard real-time tasks are 0. Secondly, in order to ob-
tain 100% confidence, we use the firm schedulability analysis
technique presented in [4]. In this way two different analysis
techniques are combined to analyze a mixed-criticality hier-
archical scheduling system in an efficient way, while ensuring
confidence in the critical parts of the system.

6.2 Analysis Results

In Table 1, we show that T35 and T4 are schedulable under
the interface (40, 23) even if Ty is treated as a periodic task
with a period equal to the minimal inter-arrival time. This is
the classical worst-case budget estimation, and our analysis
also confirms that tasks miss exactly 0 deadlines and have
a DoQoS of 0. Throughout the running example, we use
FP scheduling but our framework supports other scheduling
policies.

Suppose that the resource amount provided to the compo-
nent is reduced to 18. In order to have a baseline to compare
with, in the next analysis steps, we perform an artificial ex-
periment presented in Table 2. We analyze task T4 using the
sporadic template, but with a completely fixed periodic ar-
rival pattern. Note that the sporadic task T never misses its
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Table 1: The degree of schedulability of tasks under
periodic events

Component ((40, 23), FP) | PoMD | DoQoS
T7(40, 4), 0 0
T3 (40, 2), 0 0

Table 2: The degree of schedulability of tasks under
lack of budget

| Component ((40, 18), FP) | PoMD | DoQoS |
T4 (40, 4), 0.032 + 0.033 | 1.610 + 0.616
T3 (Periodic, 40, 2, 40) 0 0

deadline, because it has the highest priority. Table 2 shows
the average value of the PoMD and DoQoS for 1000 traces
as well as the variance of each one. In the following, we fix
the set of tasks and vary the arrival pattern of the sporadic
task. This is done in order to show the versatility of our
method. In an engineering setting, the arrival patterns will
usually be fixed while the workload and budgets vary. For
the same deficit budget (40, 18), Table. 3 shows the degree
of schedulability when the sporadic task T is assumed to
follow an exponential probability distribution with different
rates of exponential.

Table 4 shows the Sched® for the two tasks given a uniform
probability distribution for triggering the sporadic task Ty.
Table 5 shows the results of our analysis when using different
Gaussian distributions, all with a mean value p of 10 and
different deviations o.

To sum up, we have provided a highly configurable analy-
sis framework where the workload, task types, arrival-patterns,
priorities and scheduling mechanisms can be varied and a
given system configuration can be easily analyzed. All Up-
PAAL models used in this paper are available at: http://
people.cs.aau.dk/ ulrik/submissions/872346/CBSE.zip

7. CASE STUDY

As a case study to show the applicability of our analysis
framework, we analyze the schedulability of an avionics sys-
tem [18, 13, 4]. We use the same timing specification as [13],
whereas the system structure depicted in Fig. 2 follows the
description given in [18]. In our analysis we include infor-
mation about the criticality of the individual tasks, some-
thing which has not been included in any of the previous
treatments of that case study. Table 6 summarizes both
architecture and timing attributes of the avionics system.

Table 3: Degree of schedulability of tasks under Ex-
ponential distribution.

Component Rate of Exp.

((40, 18), FP) of T PoMD DoQoS
1/100,000 | 0.040 & 0.040 | 0.489 £ 0.518
TP (40, 4) T/1000 0.043 £ 0.041 | 0.581 £ 0.630
1710 0.035 £ 0.032 | 0.705 £ 0.634
1/100,000 0.0% 0.0 0.003 £ 0.008
T (Exp.,40,2,40) 171000 0.182 £ 0.168 | 0.259 £ 0.353
/10 0.223 £ 0.039 | 1.792 £ 0.310




Table 6: Generic Avionics Components and Tasks

Component | Criticality T; €; Di d; Importance
.. Aircraft flight data(T? 8 [ 50(55 critical
Navigation Hard Steering(77) Gl 6 8(0 ) critical
. Target tracking(T5 4 40 critical
Targeting Hard Target sweeteninfg(al)f ) 2 40 critical
AUTO/CCIP toggle(T5) 1 200 critical
Weapon Hard Weapon trajectory(77) 7 100 critical
Control Reinitiate trajectory(77) 6 400 | essential
Weapon release(7} ) 1 10 5 critical
HUD display(Ty) 6 | 55(52) essential
Controls & Soft MPD tactical display(77,) | 8 | 50(52) essential
Displays MPD button response (177) | 1 200 | background
Change display mode (T73) | 1 200 | background

Table 4: Degree of schedulability of tasks under Uni-
form distribution.

| Component ((40, 18), FP) | PoMD | DoQoS |
TP (40, 4), 0.057 £ 0.040 | 0.008 £ 0.008
T3 (Unif., 40, 2, 40) 0.188 £ 0.037 | 1.941 + 0.274

Table 5: Degree of schedulability under Gaussian
distribution

Component (1, o)

((40, 18), FP) of T} PoMD DoQoS
(10,10) | 0.068 £ 0.047 | 0.903 £ 0.648
TP (40, 4) (10, 8) | 0.046 £ 0.045 | 0.903 £ 0.777
3 (%0 (10, 5) | 0.033 £ 0.036 | 0.810 £ 0.686
(10, 1) | 0.057 £ 0.471 | 0.875 £ 0.759
(10,10) | 0.184 £ 0.038 | 1.844 £ 0.287
S (10, 8) | 0.173 £ 0.040 | 1.908 £ 0.239
T; (Gauss., 40, 2, 40) (10, 5) | 0.175 £ 0.038 | 1.801 £ 0.277
(10, 1) | 0.185 £ 0.340 | 1.823 £ 0.308

The avionics system is a mixed-criticality application, where

we mainly considered 7 periodic tasks and 5 sporadic tasks
all grouped in 4 components. In the case of critical sporadic
tasks, we have introduced a periodic event to trigger each
task where the event period is equal to the minimum inter-
arrival time of those tasks. We characterize the arrival times
of non-critical sporadic tasks by different probability distri-
butions where the delays generated by such distributions are
relatively proportional to the minimum inter-arrival times
of the corresponding tasks. This was chosen as the original
case-study did not contain any information on the proba-
bility distributions. Because of space limitations, we only
provide the analysis results of one component (Controls &
Displays). Table 7 states the degree of schedulability of
the tasks in the component Control & Displays. One can
remark that component Control & Displays cannot be
scheduled with a budget less than 20 for a period equal to 30
because, at least, one of the tasks misses its deadline. In par-
ticular, tasks HUD Display and MPD Display miss their
deadlines because they are ”"background tasks”, i.e. having
lower priorities. While keeping budget increasing, DoQoS
and PoMD are decreasing until reaching 0, meaning that the
corresponding budget (20) is the minimal sufficient budget
making the component workload schedulable. Other budget
values (14, 17, 19) can be acceptable as sufficient, depending
on the quality of service required by the system. We have
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quantified the components schedulability according to the
budgets, hard and soft real-time requirements.

8.  CONCLUSIONS

We have presented a compositional method for analyzing
the degree of schedulability of hierarchical real-time systems.
The system is modeled in terms of components containing
periodic and sporadic tasks. In order to characterize more
accurately the arrival time of sporadic tasks, we introduced
continuous probability distributions. Given hard and soft
real-time requirements, our approach provides probabilis-
tic guarantees on the system schedulability. The Degree of
Schedulability (Sched®) is defined by the two factors: 1) Per-
centage of Missed Deadlines (PoMD) and 2) Degradation
of Quality of Service (DoQoS). These concepts are help-
ful when analyzing systems or components with insufficient
budgets to meet all deadlines. UpPAAL SMC is used to
perform statistical model checking, in order to compute the
DoQoS and PoMD. Finally, we have demonstrated the appli-
cability of our approach by analyzing the degree of schedula-
bility of an avionics case study which was previously shown
to be non-schedulable [18, 13, 4].
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