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Abstract
This paper introduces Perséphone, a kernel-bypass OS sched-

uler designed to minimize tail latency for applications ex-

ecuting at microsecond-scale and exhibiting wide service

time distributions. Perséphone integrates a new scheduling

policy, Dynamic Application-aware Reserved Cores (DARC),

that reserves cores for requests with short processing times.

Unlike existing kernel-bypass schedulers, DARC is not work

conserving. DARC profiles application requests and leaves

a small number of cores idle when no short requests are in

the queue, so when short requests do arrive, they are not

blocked by longer-running ones. Counter-intuitively, leaving

cores idle lets DARC maintain lower tail latencies at higher

utilization, reducing the overall number of cores needed to

serve the same workloads and consequently better utilizing

the datacenter resources.
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1 Introduction

Datacenter networks and in-memory systems increasingly

have (single) microsecond [10] latencies. These latencies

are critical for today’s complex cloud applications to meet

SLOs while fanning out to hundreds of datacenter backend

servers [21, 72]. At microsecond-scale, the distribution of

request processing times can be especially extreme; for ex-

ample, Redis can process GET/PUT requests in 2𝜇s [74] but

more complex SCAN and EVAL requests can take hundreds

of microseconds or milliseconds to complete. As a result,

a single long-running request can block hundreds or thou-

sands of shorter requests.

To bound tail latency, especially for short requests, mod-

ern datacenter servers run at low utilization to keep queues

short and reduce the likelihood that a short request will

block behind long requests. For instance, Google reports that

machines spend most of their time in the 10-50% utilization

range [11]. Unfortunately, this approach wastes precious

CPU cycles and does not guarantee that microsecond data-

center systems will always meet SLOs for short requests.

Recent kernel-bypass schedulers have improved utiliza-

tion with shared queues [62] and work-stealing [73, 75] but

these techniques only work for uniform and lightly-tailed

workloads. For workloads with a wide distribution of re-

sponse times, Shinjuku [48] leverages interrupts for pro-

cessor sharing; however, Shinjuku’s interrupts impose non-

negligible delays for single digit microsecond requests and

are too expensive to run frequently (our experiments saw

≈2us per interrupt and preempting as often as every 5𝜇s had

a high penalty on sustainable load). Furthermore, Shinjuku’s

non-standard use of hardware virtualization features makes

it difficult to use in the datacenter [62] and public clouds,

e.g., Google Cloud, Microsoft Azure, AWS, etc.
Recent congestion control schemes [3, 68], similarly, opti-

mize network utilization and reduce flow completion times

by approximating Shortest-Remaining-Processing-Time (SRPT),
which is optimal forminimizing the averagewaiting time [79].

Unlike CPU scheduling, though, switch packet schedulers

have a physical ‘preemption’ unit, which is the MTU in the

worst case; they process packet headers that include the
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actual message size; and leverage traffic classes that can pri-

oritize packets based on the size of the flow they belong to,

which makes scheduling decisions and policy enforcement

easier. A CPU scheduler cannot know in advance for how

long each request will occupy the CPU and there is no upper

limit on execution time, which makes the implementation of

SRPT-like policies, or generally policies that prioritize short

requests, hard to implement at the microsecond scale.

The unifying factor between congestion control schemes,

such as Homa [68] and CPU schedulers, such as Shinjuku,

that deal with heavy-tail flow and request distributions, re-

spectively, is that they both temporarily multiplex the shared

resource. This paper takes a different approach to CPU sched-

uling for heavy-tailed service time distributions by taking

advantage of parallelism and the abundance of cores on a

modern multicore server through application-aware [52]

spatial isolation of CPU resources.

First, we observe that a kernel-bypass scheduler can, with

a little help from programmers, identify the type of incoming

requests. For many cloud applications, the messaging pro-

tocol exposes the required mechanisms to declare request

types: Memcached request types are part of the protocol’s

header [63]; Redis uses a serialization protocol specifying

commands [86]; Protobuf defines Message Types [35]; Next,

we observe that requests of the same type often have similar

processing types, so, given the ability to identify types, we

can track past per-type process times to predict future pro-

cessing times. Finally, we carefully leave cores idle to prevent

short requests from queuing behind arbitrarily longer ones.

Inspired by prior research in networking [2], our approach

goes against the grain for OS schedulers, which commonly

prioritize work conservation. We show that by making a

minor sacrifice in the maximum achievable throughput, we

can increase the achievable throughput under an aggres-

sive latency SLO and as a result, increase the overall CPU

utilization of the datacenter.

To implement this approach, we need to tackle two chal-

lenges: (1) predict how long each request type will occupy

a CPU and (2) efficiently partition CPU resources among

types while retaining the ability to handle bursts of arrivals

and minimizing CPU waste. To this end, we introduce Persé-

phone, an application-aware kernel-bypass scheduler. Per-

séphone lets applications define request classifiers and uses

these classifiers to dynamically profile the workload. Using

these profiles, Perséphone implements a new scheduling

policy, Dynamic, Application-aware Reserved Cores (DARC)
that leverages work conservation for short requests only

and is not work conserving for long requests. DARC prior-

itizes short requests at a small cost in throughput – 5% in

our experiments – and is best suited for applications that

value microsecond responses. For other applications, exist-

ing kernel-bypass scheduler work well, though we believe

there is a large set of datacenter workloads that can benefit

from DARC.

We prototype Perséphone using DPDK and compare it to

two state-of-the-art kernel-bypass schedulers: Shinjuku [48]

and Shenango [73]. Using a diverse set of workloads, we

show that Perséphone with DARC can drastically improve

requests tail latency and sustain up to 2.3x and 1.3xmore load

than Shenango and Shinjuku, respectively, at a target SLO.

In addition, these improvements come at a lower cost to long

requests than Shinjuku’s preemption technique, highlighting

the challenges of traditional OS scheduling techniques at

microsecond scale.

2 The Case for Idling
For workloads with wide service time distribution, long re-

quests can block short requests even when queues are short

because long requests can easily occupy all workers for a

long time. We refer to this effect as dispersion-based head-
of-line blocking. To better understand how dispersion-based

blocking affects short requests, we look beyond request la-

tency and study slowdown: the ratio of total time spent at

the server over the time spent doing pure application pro-

cessing [40].

Slowdown better reflects the impact of long requests on

short requests. For heavy-tailed workloads, short requests

experience a slowdown proportional to the length of the tail.

More concretely, consider the following workload, similar

to Zygos’ “bimodal-2” [75], a mix of 99.5% short requests

running for 0.5𝜇s and 0.5% long requests executing in 500𝜇s.

A short request blocked behind a long one can experience a

slowdown of up to 1001, while a long request blocked behind

a short request will see a slowdown of 1.001. As a result, a

few short requests blocked by long requests will drive the

slowdown distribution and increase tail latency.

Using this workload, we simulate four scheduling policies,

including DARC, listed in Table 1. Decentralized first come,
first served (d-FCFS) models Receive Side Scaling, widely

used in the datacenter today [27, 60] and by IX [14] and Ar-

rakis [74]. With d-FCFS, each worker has a local queue and

receives an even share of all incoming traffic. Centralized
first come, first served (c-FCFS) uses a single queue to receive

all requests and send them to idle workers. c-FCFS is usually

used at the application level — for example, web servers (e.g.,
NGINX) often use a single dispatch thread — and captures

recent research on kernel-bypass systems [73, 75], which

simulate c-FCFS with per-worker queues and work stealing.

Time Sharing (TS) is used in the Shinjuku system [48], with

multiple queues for different request types and interrupts at

the microsecond scale using Dune [13]. We simulate TS with

a 5𝜇s preemption frequency and 1𝜇s overhead per preemp-

tion, matching Shinjuku’s reported ≈ 2000 cycles overhead

on a 2GHz machine.

Figure 1 shows our simulation results assuming, an ideal

system with no network overheads. We use 16 workers, sim-

ulate 1 second of requests distributed under Poisson, and

report the observed slowdown for the 99.9th percentile of
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Figure 1. Simulated achievable throughput as a function of 99.9th percentile slowdown for the policies listed in Table 1 on a 16 cores

system and a workload composed of 99.5% short requests (0.5𝜇s) and 0.5% long requests (500𝜇s). For a target SLO of 10 times the average

service time for each request type, c-FCFS and TS can only handle 2.1 and 3.7 Millions requests per second (Mrps), respectively. DARC can

sustain 5.1 Mrps for the same objective. The Y axis represents the total achievable throughput for the entire workload.

Table 1. Unlike most existing kernel-bypass OS schedulers, DARC

is not work conserving. It extracts request types from incoming

requests, estimates how long a request will occupy a CPU before

scheduling it and reserves workers for short requests to minimize

dispersion-based head-of-line blocking.

Policy
Exploit
typed
queues

Non
Work conserving

Non
preemptive Example System

d-FCFS ✗ ✓ ✓
IX [14]

Arrakis [74]

c-FCFS ✗ ✗ ✓
ZygOS [75]

Shenango [73]

TS ✓ ✗ ✗ Shinjuku [48]

DARC ✓ ✓ ✓ Perséphone

each type of requests — to capture the impact of the 0.5%

long requests on the tail — at varying utilizations, up to a

maximum of 5.3 million requests per second (Mrps).

d-FCFS performs poorly; it offers an uncontrolled form of

non work conservation where workers sit idle while requests

wait in other queues. Additionally, d-FCFS has no sense of

request types: workers might process a long request ahead of

a short one if it arrived first. c-FCFS performs better because

it is work conserving but short requests will block when all

workers are busy processing long requests. To meet a target

SLO of 10x slowdown for each type of requests, c-FCFS must

run the server at 2.1 Mrps, 40% of the peak load. Shinjuku’s

TS policy fares better than c-FCFS and d-FCFS, being both

work conserving and able to preempt long requests: it main-

tains slowdown below 10 up to 3.7 Mrps, 70% of the peak

load. However, this simulation accounts for an optimistic

1𝜇s preemption overhead and overlooks the practicality of

supporting preemption at the microsecond scale (c.f., Sec. 6).
The DARC way: Our key insight is that prioritizing short

requests is critical to protect their service time, an obser-

vation the networking community has already made when

designing datacenter congestion control schemes [2, 3, 68].

However, using traffic classes and bounded buffers do not

work for CPU scheduling since schedulers do not know how

long a request may occupy a CPU and preemption is unaf-

fordable at single-digit microsecond scales. We observe that

leaving certain cores idle for readily handling potential future
(bursts of) short requests is highly beneficial at microsecond
scale. For a request that takes 1 𝜇s or less, even preempt-

ing as frequently as every 5𝜇s introduces a 6x slowdown.

Instead, given an understanding of each request’s potential

processing time, an application aware, not work conserving

policy can reduce slowdown for short requests by estimating

their CPU demand and dedicating workers to them. These

workers will be idle in the absence of short requests, but

when they do, they are guaranteed to not be blocked behind

long requests.

As seen in Figure 1, DARC can meet the 10x slowdown

SLO target for both type of requests at 5.1 Mrps. This repre-

sents 2.5x and 1.4x more sustainable throughput than c-FCFS

and an optimistically cheap time sharing policy. At this load,

short requests experience 9.87𝜇s p99.9th tail latency, 3 and 1
orders of magnitude smaller than c-FCFS and TS with 7738𝜇s

and 161𝜇s, respectively. To achieve this, DARC asks program-

mers for a request classifier to identify types and uses this

classifier to dynamically estimate requests’ CPU demand. In

this example, DARC reserves 1 worker for short requests at

a small penalty of 5% achievable throughput.
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Counter-intuitively, although DARC wastes cycles idling,

it reduces the overall number of machines needed to serve this
workload because servers can run at much higher utiliza-

tion while retaining good tail latencies for short and long

requests.

3 DARC Scheduling

The objective of DARC is to improve tail latency for single-

digit microsecond requests in cloud workloads without pre-

emption. Like recent networking techniques that co-design

the network protocol and themanagement of network switches’

priority queue [2, 3, 68] to favor small messages, we protect

short requests at backend servers by extracting their type,

understanding their CPU demand, and dedicating enough

resources to satisfy their demand.

In this section, we describe the challenges associated with

implementing these techniques as a CPU scheduling policy,

then present the DARC scheduling model, how to compute

reservations and when to update them. Table 2 describes the

notation used throughout this section.

Challenges. Protecting short requests in a dynamic way

through priority queues and non work conservation is diffi-

cult because we need to (1) predict how long each request

type will occupy a CPU and (2) partition CPU resources

among types while retaining the ability to handle bursts of

arrivals and minimizing CPU waste.

The first challenge stems from the granularity of operation

DARC is targeting, microsecond scales, and from the need to

react to changes in workload. We tackle this challenge with

a combination of low-overhead workload profiling and queu-

ing delay monitoring, using the former to build a fingerprint

of requests’ CPU demand and the latter as a signal that this

fingerprint might have significantly changed. This section

describes the technique and Sec. 4 its implementation.

The second challenge can be detailed in two parts: burst-

tolerance and CPU waste. First, though reducing the number

of cores available to a given request type forbids it from

negatively impacting other types, it also reduces its ability

to absorb bursts of arrivals [57]. We solve this tension by

enabling cycles stealing from shorter types to longer ones,

a mechanism in which short requests can execute on cores

otherwise reserved for longer types — but not the opposite.

The rationale for stealing is that shorter requests compara-

tively cause less slowdown to long requests. Note that cycle

stealing is a similar concept to work stealing [73, 75] but

is different in practice, as it is performed from the DARC

dispatcher rather than from application workers (thus does

not require expensive cross-worker coordination).

Second, and similarly tomessage types and priority queues

in network devices, the number of request types can be dif-

ferent than the number of CPU cores on the machine, so

very likely the demand for each request type will be frac-

tional — i.e., a request type could require 2.5 workers on

Table 2. Notation used to define DARC

Symbol Description

𝑁 Number of request types

𝑆 Average service time

𝜏 A request type

𝜏 .𝑆 Type’s average service time

𝜏 .𝑅 Type’s occurrence

𝛿 Service time similarity factor for two types

average. As a result, we need to determine a strategy for

sharing — or not — CPU cores between certain request types.

Sharing cores leads to a tension: regrouping types onto the

same cores risks dispersion-based blocking, but always giv-

ing entire cores to types with fractional demand can lead to

over-provisioning and starving other types. We handle this

tension with two mechanisms: grouping types together and

providing spillway cores. Grouping lets all request types fit

onto a limited number of cores and reduces the number of

fractional ties while retaining the ability to separate types

based on processing time. Spillway cores allows DARC to

always provide service to types with little average CPU de-

mand (typically much less than an entire core) as well as

undeclared, unknown requests.

Scheduling model. DARC presents a single queue ab-

straction to application workers: it iterates over typed queues

sorted by average service time and dequeues them in a first

come, first served fashion. Requests of a given type can be

scheduled not only on their reserved cores but also steal cy-

cles from cores allocated to longer types — a concept used in

Cycle Stealing with Central Queue (CSCQ), a job dispatching

policy for compute clusters [42]. Algorithm 1 describes the

process of worker selection. For each request type registered

in the system, if there is a pending request in that type’s

queue, DARC greedily searches the list of reserved workers

for an idle worker. If none is found, DARC searches for a

stealable worker. If a free worker is found, the head of the

typed queue is dispatched to this worker. When a worker

completes a request, it signals completion to the DARC dis-

patcher.

DARC reservation mechanism. The number of work-

ers to dedicate to a given request type is based on the average

CPU demand of the type at peak load. We use average de-

mand because it is a provable indicator of stability [40] for

the system. In addition, workloads can have performance

outliers that should not necessarily drive SLOs [22]. We com-

pute average CPU demand using theworkload’s composition,

normalizing the contribution of each request type’s average

service time to the entire workload’s average service time.

The contribution of a given request type is its average service

time multiplied by its occurrence ratio as a percentage of the
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Algorithm 1 Request dispatching algorithm

procedure Dispatch(Types)
w← None

for 𝜏 ∈ Types.sort() do
if 𝜏 .queue == ∅ then

continue

else
workers← 𝜏 .reserved ∪ 𝜏 .stealable
for worker ∈ workers do

if worker.is_free() then
w← worker

break

if w ≠ None then
r← 𝜏 .queue.pop()

schedule(r, w)

Algorithm 2 Worker reservation algorithm

procedure Reserve(Types, 𝛿)
// First group together similar request types
groups = group_types(Types, 𝛿).sort()

// Then attribute workers
𝑆 ← ∑𝑁

𝑗=0 𝑆 𝑗 ∗ 𝑅 𝑗

n_reserved = 0

for g ∈ groups do
g.𝑆 =

∑
𝜏 .𝑆 ∗ 𝜏 .𝑅 ∀ 𝜏 ∈ g

d =
𝑔.𝑆

𝑆

P← round(d)

if P == 0 then P← 1

for 𝑖 ← 0; 𝑖 < P; 𝑖++ do
g.reserved[𝑖]← next_free_worker()

n_reserved++;

// Set stealable workers
n_stealable← num_workers - n_reserved;

for 𝑖 ← 0; 𝑖 < n_stealable; 𝑖++ do
g.stealable[𝑖]← next_free_worker()

entire workload. Specifically, given a set of 𝑁 request types

{𝜏𝑖 ; 𝑖 = 0 . . . 𝑁 }, the average CPU time demand Δ𝑖 of 𝜏𝑖 with

service time 𝑆𝑖 and occurrence ratio 𝑅𝑖 is:

0 ≤ 𝑆𝑖 ∗ 𝑅𝑖∑𝑁
𝑗 𝑆 𝑗 ∗ 𝑅 𝑗

, ≤ 1 (1)

Given a system with𝑊 workers, this means that we should

attribute Δ𝑖 ∗𝑊 workers to 𝜏𝑖 .

Because CPU demand can be fractional and given the

non-preemptive requirement we set for the system, we need

a strategy to attribute fractions of CPUs to request types.

For each such “fractional tie”, we have to make a choice:

either ceil fractions and always grant entire cores or floor
fractions and consolidate fractional CPU demands on shared
cores. The former risks over-provisioning certain types, at

the cost of others, while the latter risks creating dispersion-

based blocking by mixing long and short requests onto the

same core(s).

Our approach combines the two: first we decrease the

number of “fractional ties” by grouping request types of

similar processing times and computing a CPU demand for

the entire group; second we round this demand. As a result,

for 𝐺 groups, if 𝑓𝑖 is the fractional demand of group 𝑖 , the

average CPU waste for DARC across all 𝐺 groups is:

𝐺∑
𝑖,𝑓𝑖 ≥.5

1 − 𝑓𝑖 (2)

across all 𝑓𝑖 that are greater or equal to 0.5 — otherwise it is 0

for group 𝑖 . In practice, during bursts, because we selectively

enable work conservation through work stealing for shorter

requests, CPU waste is smaller.

Algorithm 2 describes the reservation process. First, we

identify similar types whose average service time falls within

a factor 𝛿 of each other. Next, we compute the demand for

each group and accordingly attribute workers to meet it,

rounding fractional demands in the process. We always as-

sign at least one worker to a group. DARC grouping strat-

egy can still result in earlier groups — of shorter requests

— consuming all CPU cores. For example, a group of long

requests with a CPU demand smaller than 0.5 will not find

any free CPU core. To provide service to these groups, we

set aside “spillway” cores. If there are no more free work-

ers, next_free_worker() returns a spillway core. In our

experiments (Sec. 5), we use a single spillway core.

Finally, we selectively enablework conservation for shorter

requests and let each group steal from workers not yet re-

served, i.e., workers that are to be dedicated to longer request
types. This lets DARC better tolerate bursts of shorter re-

quests with little impact on the overall tail latency of the

workload.

As we process groups in order of ascending service time,

we favor shorter requests, and it is possible for our algorithm

to under-provision long requests — but never deny them

service thanks to spillway cores. Operators can tune the 𝛿

grouping factor to adjust non work conservation to their

desired SLOs. Grouping lets DARC handle workloads where

the number of distinct types is higher than the number of

workers.

Profiling the workload and updating reservations.
At runtime, the DARC dispatcher uses profiling windows
to maintain two pieces of information about each request

type: a moving average of service time and an occurrence

ratio. These are the 𝑆𝑖 and 𝑅𝑖 of equation 1. The dispatcher

gathers them when application workers signal work com-

pletions. The dispatcher uses queuing delay and variation

in CPU demand as performance signals. If the former goes

beyond a target slowdown SLO and the latter deviates sig-

nificantly from the current demand, the dispatcher proceeds
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to update reservations and transition to the next windows.

During the first windows, at startup, the system starts us-

ing c-FCFS, gathers samples, then transitions to DARC. This

technique lets DARC cope with changing workloads where a

type’s profile changes (effectively, misclassification). During
a profiling window, unknown or unexpected requests can

use the spillway core(s) to execute. We discuss the sensitivity

of this mechanism in Sec. 4.3.3.

4 Perséphone

We implement DARCwithin a kernel-bypass scheduler called

Perséphone. Though DARC requires no special hardware

or major application modifications, Perséphone must meet

the following requirements to support microsecond-scale

kernel-bypass applications: (1) the networking stack must

be able to efficiently sort requests by type in the data path,

(2) the scheduler must be able to quickly make per-request

scheduling decisions, and (3) workload profiling for updating

DARC reservation must present low overheads.

Perséphone meets the first requirement with a request
classifiers API for capturing request types. Using request

classifiers, programmers provide a way for the system to

classify requests based on types as they enter the system.

Perséphone meets the remaining two requirements with a

carefully architected networking stack, profiler, and sched-

uler packaged in a user-level library.

4.1 System Model

Perséphone is designed for datacenter services that must

handle large volumes of traffic at microsecond latencies. Ex-

amples include key-value stores, fast inference engines [54],

web search engines and RESTful micro-services. We assume

the application uses kernel-bypass for low latency I/O (e.g.,

with DPDK [26] or RDMA [80]) and performs all application

and network processing through Perséphone. Our current

prototype is designed for UDP networking, but our tech-

nique also works for a stateful dispatcher (c.f., Sec. 6 for a
more elaborate discussion).

4.2 Request classifiers

Perséphone relies on user-defined functions, i.e., “request
classifiers” to group incoming requests. A request classifier

accepts a pointer to an application payload (Layer 4 and

above) and returns a request type. If the classifier cannot

recognize a request, Perséphone categorizes it as UNKNOWN
and places it in a low priority queue. There is at most one

classifier active at a time in our current design. Though most

of our target applications use optimized protocols such as Re-

dis’ RESP [86] that allow a classifier to look-up for a header

field to parse the request type, we opted for generality and al-

lowing users to write arbitrarily complex classifiers. There is,

of course, a performance trade-off: a non-optimized request

classifier will impact the dispatcher’s performance because
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Figure 2. Perséphone architecture. After the net worker processes
incoming packets, the dispatcher classifies requests using a user-

defined classifier. Requests wait in typed queues for DARC to push

them to workers. (c.f., Sec. 4.3 for pipeline details.)

request classifiers are “bumps-in-the-wire” on the dispatch-

ing critical path. We leave it to users to quantify this trade off

based on the performance they wish to obtain from the dis-

patcher (i.e., how many requests per second it should be able

to sustain). While a complete study of classifier performance

is out of scope for this paper, we found that for standard

protocols where the request type’s position is known in the

header, our dispatcher can process up to 7 millions pack-

ets per second on our testbed, a number competitive with

existing kernel-bypass schedulers.

4.3 Perséphone Architecture

Perséphone consists of three components, shown in Fig-

ure 2: one or many net workers dequeueing packets from the

network card, a dispatcher applying request classifiers and
performing DARC scheduling, and application workers per-
forming application processing (e.g., fetching the value from
the key-value store). These components operate as an event-

driven pipeline and process packets as follows. 1 On the

ingress path, the net worker takes packets from the network

card and pushes them to the dispatcher, which 2 classifies

incoming requests using a user-defined request classifier and
3 stores them in typed queues, i.e., buffers specialized for

a single request type. 4 The dispatcher, running DARC,

selects a request from a typed queue and pushes it to a free

application worker. 5 The worker processes the request,

formats a response buffer, and 6 pushes a pointer to that

buffer to the NIC. In addition, 7 the application worker

notifies the dispatcher that it has completed the request.

4.3.1 Networking Both the net worker and application

workers receive a network context at initialization. This con-
text gives them unique access to receive and transmit queues

in the NIC. Perséphone registers a statically allocated mem-

ory pool with the NIC for contexts to quickly allocate new

buffers when receiving packets. This memory pool is backed

by a multi-producer, single-consumer ring so workers can

release buffers after transmission. Both the net and appli-

cation workers use a thread-local buffer cache to decrease
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interactions with the main memory pool. For requests con-

tained in a single application-level buffer, we perform zero-

copy and pass along to workers a pointer to the network

buffer. To issue a response on the transmit path — and if

the request holds in a single packet — the worker reuses the

ingress network buffer to host the egress packet, reducing

the number of distinct network buffers in use (with the goal

of allowing all buffers to fit in the Last Level Cache space

used by DDIO [25] — usually 10% of the LLC). Our current

implementation requires copy if the request spans multiple

packets.

4.3.2 ComponentCommunication The dispatcher uses

single-producer, single-consumer circular buffers to share

requests and commands with application workers in a lock-

less interaction pattern. We use a lightweight RPC design

inspired by Barrelfish [12], where both sender and receiver

synchronize their send/read heads using a shared variable.

To reduce cache coherence traffic between cores, the sender

synchronizes with the receiver — to update the read head

and avoid overflows — only when its local state shows the

buffer to be full. In our prototype, operations on that channel

take 88 cycles on average.

4.3.3 Dispatcher The dispatcher maintains three main

data structures: a list of RequestType objects, which con-

tains type information such as the type ID and instrumenta-

tion data; typed request queues; and a list of free workers. In

addition, the dispatcher holds a pointer to a user-defined re-

quest classifier. The list of free workers is updated whenever

a request is dispatched and each time application workers no-

tify the dispatcher about work completion; this is done using

a specific control message on the memory channel shared

between dispatcher and each worker. Finally, the dispatcher

maintains profiling windows, during which it computes a

moving average of service times by request type and incre-

ment a counter for each type seen so far. DARC uses these

profiling windows to compute resource allocation (Sec. 3)

and adjust to changes in the workload’s composition. In our

prototype, at the median, updating the profile of a request

takes 75 cycles, checking whether an update is required takes

about 300 cycles, and performing a reservation update takes

about 1000 cycles.

To control the sensitivity of the update mechanism in face

of bursty arrivals, we set a lower bound on the number of

samples required to transition — 50000 in our experiments —

and the minimum deviation in CPU demand from the current

allocation — 10% in our experiments. As a measure of flow

control, when the system is under pressure and workers

cannot process requests as fast as they arrive, the dispatcher

drops requests from typed queues that are full. This allows

to shed load only for overloaded types without impacting

the rest of the workload.

Table 3. Workloads exhibiting 100x and 1000x dispersion.

Workload

Short Long
Runtime (𝜇s) Ratio Runtime (𝜇s) Ratio

High Bimodal 1 50% 100 50%

Extreme Bimodal 0.5 99.5% 500 0.5%

4.3.4 Application Workers Upon receiving a pointer to

a request, application workers dereference it to access the

payload. As an optimization, they can access the request

type directly from the RequestType object rather than du-

plicating work to identify needed application logic (e.g., to

differentiate between a SET or GET request). Once they fin-

ish processing the request, they reuse the payload buffer to

format a response and push it to the NIC hardware queue

using their local network context. Finally, they signal work

completion to the dispatcher.

5 Evaluation
We built a prototype of Perséphone, in 3700 lines of C++

code
1
, to evaluate DARC scheduling against policies pro-

vided by Shenango [73] and Shinjuku [48]:

• For a workload with 100x dispersion between short and

long requests, Perséphone can sustain 2.35x and 1.3x more

throughput compared to Shenango and Shinjuku, respec-

tively (Sec. 5.4.1)

• For a workload with 1000x dispersion, Perséphone can

sustain 1.4x more throughput than Shenango and improve

slowdown by up to 1.4x over Shinjuku for short requests.

(Sec. 5.4.2)

• For a workload modeled on the TPC-C benchmark, Per-

séphone reduces slowdown by up to 4.6x over Shenango

and up to 3.1x over Shinjuku. (Sec. 5.4.3)

• For a RocksDB application, DARC can sustain 2.3x and

1.3x higher throughput than Shenango and Shinjuku, re-

spectively (Sec. 5.4.4)

In addition, we demonstrate that Perséphone can handle

adversarial situations where workloads changes swiftly and

where programmers provide an incorrect request classifier.

5.1 Experimental Setup

Workloads. We model workloads exhibiting different ser-

vice time dispersion after examples found in academic and

industry references. Often such workloads exhibit n-modal

distributions with either an equal amount of short and long

requests (e.g., workload A in the YCSB benchmark [20]) or a

majority of short requests with a small amount of very long

requests (e.g., Facebook’s USR workload [7]). Dispersion be-

tween shorter and longer requests is commonly found to be

two orders of magnitude or more [5, 18, 66]. We evaluate

High Bimodal and Extreme Bimodal (Table 3), two workloads
that exhibit large service time dispersion, and TPC-C (Ta-

ble 4), which models requests in the eponymous benchmark-

ing suite [84], a standardized OLTP model for e-commerce.

1
https://github.com/maxdml/psp
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Table 4. The TPC-C benchmark models operations of an online

store. Payment and NewOrder transactions are most frequent.

Transaction name Runtime (𝜇s) Ratio Dispersion

Payment 5.7 44% 1x

OrderStatus 6 4% 1.05x

NewOrder 20 44% 3.3x

Delivery 88 4% 15.4x

StockLevel 100 4% 17.5x

Finally, we evaluate DARC with an in-memory store built

over RocksDB, a database engine used at Facebook [32].

With High Bimodal, long requests represent 50% of the

workload but “only” exhibit 100x dispersion. With Extreme
Bimodal, long requests are much slower — 1000x slower

— but very infrequent (0.5% of the mix). We profile TPC-C
transactions with an in-memory database [85] and run it as a

synthetic workload. Our goal with TPC-C is to evaluate how

Perséphone performs with an n-modal request distribution.

The workload consists of five request types with moderate

service time dispersion — at most 17.5x between infrequent

StockLevel requests and frequent Payment requests. We

assume that requests are not dependent on each other. Finally,

the RocksDB workload is made of 50% GETs and 50% SCANs

requests, executing for 1.5𝜇s and 635𝜇s, respectively, and

exhibiting a 420x dispersion factor. This workload strikes a

balance between High Bimodal and Extreme Bimodal.
Performance metrics.We present two performance views:

(i) the slowdown at the tail taken across all requests in the

experiment, and (ii) the typed tail latency, i.e., a selected

percentile over only the type’s response times’ distribution.

These views help us to understand the various trade-offs

offered by the systems and policies under evaluation. For

both metrics, we use the 99.9th percentile and plot them as

a function of the total load on the system.

Client. The client is a C++ open loop load generator that

models the behavior of bursty production traffic. It generates

requests under a Poisson process centered at the workloads’

average service time. Each experiment runs for 20 seconds

and we discard the first 10% of samples to remove warm-

up effects. We ran our experiments for several minutes and

found the results similar. To interact with the server, we

use a simple protocol where TPC-C transaction ID, RocksDB

query ID, and synthetic workload request types are located

in the requests’ header. We accordingly register a request

classifier on the server to map these IDs to request types.

This request classifier adds a one-time ≈ 100 nanoseconds

overhead to each request.

Systems. In addition to Perséphone, we compare two state-

of-the-art systems: Shenango and Shinjuku. Shenango’s IOK-
ernel uses RSS hashes to steer packets to application cores,

which perform work stealing to balance load and avoid

dispersion-based blocking, in a fashion similar to ZygOS [75].

Figure 3. Evaluating DARC onHigh Bimodal (50.0:1.0 – 50.0:100.0)
within Perséphone. The first column is p99.9 overall slowdown,

the second and third p99.9 latency for short and long requests,

respectively. For all columns, the X axis is the total load on the

system. DARC improves slowdown over c-FCFS by up to 15.7x, at

a cost of up to 4.2x increased latency for long requests.

We also compare to a version of Shenango with work steal-

ing disabled, to evaluate d-FCFS. We choose Shenango over

ZygOS due to its more recent implementation and its support

for UDP. Shinjuku implements microsecond-scale, user-level

preemption by exploiting Dune’s virtualization features [13]

at up to 5𝜇s frequency. Leveraging this ability to preempt,

Shinjuku implements a single queue policy, where preempted

requests are enqueued at the tail of the queue, and a multi-

queue policy with a queue per request type and where pre-

empted requests are enqueued at the head of their respective

queue. The multi-queue policy selects the next queue to de-

queue using a variant of Borrowed Virtual Time [29]. Across

experiments, DARC updates reservations whenever a request

experiences queuing delays of ten times its average profiled

service time. Lastly, all systems use UDP networking.

Testbed. We use 7 Cloudlab [30] c6420 nodes (6 clients, 1

server), each equipped with a 16-core (32-thread) Intel Xeon

Gold 6142 CPU running at 2.60GHz, 376GB of RAM, and

an Intel X710 10 Gigabit NIC. The average network round

trip time between machines is 10𝜇s. We disabled TurboBoost

and set isolcpu. Shinjuku and Perséphone run on Ubuntu

16.04 with Linux kernel version 4.4.0. Shenango runs on

Ubuntu 18.04 with Linux kernel version 5.0. Shinjuku uses

one hyperthread for the net worker and another for the dis-

patcher, collocated on the same physical core. Shenango runs

its IOKernel on a single core, and Perséphone runs both its

net worker and dispatcher on the same hardware thread. All

systems use 14 worker threads running on dedicated physi-

cal cores. For Shenango, we provision all cores at startup and

disable dynamic core allocation since we want to evaluate

performance for a single application and Shenango other-

wise re-assign cores to multiple applications running on the

same machine.

5.2 DARC versus existing policies

To validate that DARC improves performance of short re-

quests compared to c-FCFS and d-FCFS, we run these policies
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Figure 4. Gradually adjusting the degree of work conservation

(“ DARC-static”) with High Bimodal and Extreme Bimodal at 95%
load. Reserving 1 (a) and 2 (b) cores decreases slowdown by 4.4x

and 1.5x, respectively.

on High Bimodal in Perséphone. Figure 3 presents our re-

sults. c-FCFS improves the tail latency of short requests over

d-FCFS by eliminating local hotspots at workers, a result

consistent with previous work [75]. However, because c-

FCFS does not protect the service time distribution of short

requests, they experience dispersion-based blocking from

long requests. With c-FCFS, short requests experience 309𝜇s

p99.9 latency at 260kRPS, driving slowdown for the entire

workload to 283x. In contrast, DARC reserves 1 core for short

requests and schedules them first, reducing slowdown upon

c-FCFS by a factor of 15.72 and can sustain 2.3x higher
throughput for a SLO of 20𝜇s for short requests. This comes

at the cost of up to a 4.2x increase in tail latency for long

requests. The average CPU waste occasioned by DARC is

0.86 core. Because slowdown is driven by short requests and

the two graphs are very similar, we omit short requests in

the next sections and focus on overall slowdown and tail

latency for long requests.

5.3 How much non work-conservation is useful?

We empirically validate DARC’s reservation mechanism

(Sec. 3) by manually configuring the number of workers

dedicated to short requests from 0 to 14. We call this version

“DARC-static”. It schedules short requests first and let them

execute on all the cores. When the number of reserved work-

ers is 0, DARC-static is equivalent to a simple Fixed Priority

2
The network contributes 10𝜇s to response time. At 260kRPS, short requests

experience 309𝜇s end-to-end latency with c-FCFS and 18𝜇s with DARC.

This means that server-side slowdown is 37x better with DARC.

policy favoring short requests. Figure 4 presents the overall

slowdown experienced by High Bimodal (a) and Extreme Bi-
modal (b) at 95% load. We observe that for the former, the

best slowdown — a 4.4x improvement — is achieved with 1

core, and for the latter with 2 cores — a 1.5x improvement.

Those settings validate DARC’s selection, as described in

Sec. 5.2 and Sec. 5.4.

For comparison, we draw the slowdown line offered by c-

FCFS on Perséphone. Reserving too many workers results in

long requests being starved. Simple Fixed Priority scheduling

results in dispersion-based blocking for short requests.

5.4 Comparison with Shinjuku and Shenango

Figures 6a and 6b show the performance experienced byHigh
Bimodal and Extreme Bimodal in all three systems. Figure 6

presents TPC-C performance, and Figure 8 RocksDB perfor-

mance. Shenango implements d-FCFS and c-FCFS. Shinjuku

uses its multi-queue policy for High Bimodal, TPC-C, and
RocksDB; and its single queue policy for Extreme Bimodal
(per the Shinjuku paper [48]). We invested significant efforts

in tuning Shinjuku for short requests performance and pre-

empting as frequently as possible. We could only sustain

75% for High Bimodal (5𝜇s interrupts) and RocksDB (15𝜇s

interrupts), and 55% load for Extreme Bimodal (5𝜇s inter-
rupts), after which the system starts dropping packets and

eventually crashes (despite sustaining close to 4.5 million

1𝜇s RPS without preemption on our testbed). We found that

reducing the frequency of preemption helped sustain higher

loads at the expense of shorter requests. TPC-C is most fa-

vorable to Shinjuku because the services times are higher

and dispersion smaller. Shinjuku can handle 85% of this load

when preempting every 10𝜇s.

5.4.1 High Bimodal. Shinjuku improves the tail latency

of short requests over Shenango’s c-FCFS by preempting

long requests. However, Shinjuku aggressively preempts ev-

ery 5𝜇s to maintain good latency for short requests and adds

a constant overhead — at least 20% in this experiment — to

preempted requests. As a result, it can sustain only 75% of

the load before dropping requests. In comparison, DARC

reserves 1 core for short requests and can sustain 2.35x and
1.3x more load than Shenango and Shinjuku, respectively,

for a target slowdown of 20x. At 75% load, DARC reduces
slowdown by 10.2x and 1.75x over Shenango and Shin-
juku, respectively. Perhaps more importantly, compared to

Shinjuku’s preemption system, DARC consistently provides

better tail latency for long requests. We also observe that Per-

séphone’s centralized scheduling offers better performance

for long requests than Shenango — compared to the c-FCFS

line in figure 3 — because Perséphone does not have to ap-

proximate centralization with work stealing.

5.4.2 Extreme Bimodal. We observe similar trends for

this workload. For a target 50x slowdown, both Shinjuku

and Perséphone can sustain 1.4x higher throughput than
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Figure 5

(a) High Bimodal For a 20x slowdown target, DARC can sustain 2.35x and 1.3x more traffic than Shenango and Shinjuku, respectively.

(b) Extreme Bimodal For a 50x slowdown target, DARC and Shinjuku can sustain 1.4x more load than Shenango. In addition, DARC reduces

short requests’ slowdown up to 1.4x compared to Shinjuku. Note the different Y axis for slowdown and long requests tail latency.

Figure 6. TPC-C with Shenango, Shinjuku and Perséphone. The first column is the p99.9 slowdown across all transactions. Each subsequent

column is the p99.9 latency for a given transaction. Transactions are presented in ascending average service time. Note the different Y axis

for slowdown and latency. At 85% load, Perséphone offers 9.2x, 7x, and 3.6x improved p99.9 latency to Payment (b), OrderStatus (c) and

NewOrder (d) transactions, compared to Shenango’s c-FCFS, reducing overall slowdown by up to 4.6x (a). For a slowdown target of 10x,

Perséphone can sustain 1.2x and 1.05x more throughput than Shenango and Shinjuku, respectively.

Shenango. However, past 55% load, the overheads of aggres-

sively preempting every 5𝜇s is too expensive and Shinjuku

starts dropping packets. For long requests, preemption over-

heads are always at least 24% (620𝜇s for 500𝜇s requests).

In contrast, Perséphone reserves 2 cores to maintain good

tail latency for short requests and can sustain 1.25x more
load while reducing slowdown up to 1.4x over Shinjuku.

All the while, Perséphone provides tail latency for long re-

quests competitive with Shenango. For this workload the

CPU waste occasioned by DARC is, on average, 0.67 core.

5.4.3 TPC-C. For this workload, DARC groups Payment
and OrderStatus transactions (groupA), lets NewOrder trans-
actions run in their own group (B), and groups Delivery

and StockLevel transactions (group C). DARC attributes

workers 1 and 2 to group A, 3 − 8 to group B, and 9 − 14 to
group C. Group A can steal fromworkers 3−14, group B from

workers 9−14, and group C cannot steal. There is no average

CPU waste with this allocation because groups A and B are

slightly under-provisioned and can steal from C. Figure 6

presents our findings. DARC strongly favors shorter transac-

tions from groups A and B. Compared to Shenango’s c-FCFS,

DARC provides up to 9.2x, 7x and 3.6x better tail latency
to Payment, OrderStatus and NewOrder transactions, re-

spectively. These transactions represent 92% of the workload,

resulting in up to 4.6x slowdown reduction at the cost of
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Figure 7. p99.9 latency and guaranteed cores for two request types A and B during 4 phases, under c-FCFS and DARC. Top boxes describe

phases (service times and ratios). During transitions, Perséphone’s profiler picks on the new service time and ratio for each type and

accordingly adjusts core allocation. Markers for the core allocation row indicate reservation update events.

Figure 8. RocksDB slowdown with 50% GETs (1.5𝜇s), 50% SCANs

(635𝜇s). For a 20x slowdown target, DARC can sustain 2.3x and 1.3x

higher throughput than Shenango and Shinjuku, respectively.

5% throughput from the longer StockLevel transactions. Be-
cause DARC excludes the longer Delivery and StockLevel
transactions from 8 out of 14 workers, those transactions

suffer higher tail latency compared to Shenango’s c-FCFS.

Interestingly, however, due to DARC’s priority-based sched-

uling, Delivery transactions experience tail latency com-

petitive with c-FCFS at high load. In addition, though ben-

efiting Payment and OrderStatus requests, Shinjuku’s of-

fers performance similar to c-FCFS for the moderately slow

NewOrder requests, because it preempts them halfway to pro-

tect the shorter requests. Likewise, Delivery and StockLevel
requests suffer from repetitive preemption. In contrast, DARC

is able to maintain good tail latency for NewOrder requests,
offers a better trade-off for Delivery and Stocklevel at

high load (not show in the graph for the latter), and reduces
slowdown up to 3.1x compared to Shinjuku.

Given a 10x overall slowdown target, Perséphone can
sustain 1.2x and 1.05xhigher throughput than Shenango
and Shinjuku, respectively.

5.4.4 RocksDB. We use Perséphone to build a service run-

ning RocksDB and create a Shenango application running

a similar RocksDB service. Shinjuku already implements a

RocksDB service. The database is backed by a file pinned

in memory. We use the same workload as Shinjuku’s: 50%

GET requests and 50% SCAN requests over 5000 keys. On

our testbed, GETs execute in 1.5𝜇s and SCANs in 635𝜇s. Con-

sistently with previous experiments, we were able to sustain

only about 75% of the theoretical peak load with Shinjuku

using a 15𝜇s preemption timer and its multi-queue policy.

We omit d-FCFS because it offers poor performances. DARC

reserves 1 core for GET requests, idling 0.96 core on average.

Figure 8 presents slowdown for this experiment: for a 20x
slowdown QoS objective, DARC can sustain 2.3x and
1.3x higher throughput than Shenango and Shinjuku,
respectively.

5.5 Handling workload changes

In this section, we demonstrate Perséphone capacity to react

to sudden changes in workload composition. For comparison

with a baseline, we include c-FCFS performance. The experi-

ment studies three phase changes: (1) fast requests suddenly

become slow and vice-versa (2) the ratio of each type change

and (3) the workload becomes only fast requests. Across this

experiment, we keep the server at 80% utilization. Each phase

lasts for 5 seconds. Figure 7 presents the results. Green boxes

describe phases. The first row is the 99.9th percentile latency

and the second row the number of cores guaranteed to each

type (not including stealable cores).

At first, B requests can run on all 14 cores — 1 dedicated

core and 13 stealable cores — and A requests are allowed to

run on 13 cores. Latency is slightly higher for B requests and
slightly slower for A requests at the beginning of the experi-

ment because the system starts in c-FCFS before proceeding

to the first reservation. In the second phase, we inverse the

service time of A and B to evaluate how DARC can handle

miss-classification. During the transition, which takes about

500ms, “B-fast” requests observe increased latency — up to

50𝜇s— as “A-slow” requests are allowed to run on all cores

before the reservation update. The graph shows latency in-

crease before the transition because these “B-fast” requests
were already in the system and the X axis is the sending

time.
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Figure 9. High-bimodal performance when DARC is set with a

broken, random request classifier. DARC-random’s behavior con-

verges to c-FCFS.

During the second transition, we change the ratio of each

type: A requests now make up 99.5% of the mix. As a result,

their CPU demand increases and DARC reserves them 2

cores. For this new composition, 80% utilization on the server

results in increased throughput, and latency becomes slightly

higher for both types of requests as all queues grow larger.

Finally, we change the workload to be only made of A
requests. Despite A requests being able to run on all 14 cores,

pending B requests can be serviced on the spillway core.

5.6 Random classifier

Finally, we evaluate DARC’s behavior when users fail to pro-

vide a correct request classifier. We modify the dispatcher to

push incoming requests to a random typed queue. We expect

each typed queue to hold an equal share of each request

type, thus converging to c-FCFS. We run High-bimodal on

a two nodes setup (one server with 8 worker threads and

one client, both running on Silver 4114 Xeon CPUs and us-

ing Mellanox Connectx-5 cards). Figure 9 presents the re-

sults. DARC-random uses the random classifier. As expected,

DARC-random and c-FCFS exhibit similar behaviors.

6 Discussion

Networkingmodel. In the current implementation, the net

worker is a layer 2 forwarder and performs simple checks

on Ethernet and IP headers. Application workers handle

layers 4 and above and directly perform TX. This design

intends to maximize our dispatcher’s performance — the

main bottleneck in Perséphone— and make it competitive

with existing systems. Shenango and Shinjuku separate roles

in a similar way. There is no fundamental reason, though, for

not having the net worker handle more of the network stack

Using a stateful network stack would preclude offloading TX

to the workers since shared state between the net worker

and application workers would hinder performance. For TCP,

this problem is partly addressed by TAS [53] and Snap [62].
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Figure 10. Simulating single queue preemptive systems with var-

ious overheads. At the microsecond scale, implementing and or-

chestrating preemptive systems remains challenging.

Interrupts at 𝜇s scale. Though desirable in theory because

it enables a better approximation to SRPT, interrupts at the

microsecond scale are challenging to implement. In addition

to operating overheads, adequate timing is also critical for

protecting short requests. Consider the simulation from sec-

tion 2. We extend this analysis with a set of single queue

preemptive systems with different interrupt overheads and

delay. We assume a preemption event can be triggered as

soon as a short request is blocked in the queue by long re-

quests running on workers. The first system, “TS 4𝜇s” takes

2𝜇s to propagate a preemption event to a worker, and 2 addi-

tional 𝜇s to preempt the running request. “TS 2𝜇s” and “TS

1𝜇s” operate similarly. “TS 0𝜇s” represents an ideal system

with instant preemption and no overheads. Figure 10 shows

their impact on requests slowdown, compared to DARC. Un-

surprisingly, the ideal system performs similarly or better

than DARC. As preemption speed increases, short requests

are better protected and long requests suffer less in the pro-

cess. However, at the microsecond scale, even 1𝜇s overheads

result in 30% less sustainable load, for a slowdown target

of 10 for the short requests. In response to implementation

and tuning challenges for preemption at the 𝜇s scale, DARC

proposes a complementary resource partitioning technique

that alleviates the need for interrupts. Finally, preemption

comes with a second class of challenges related to practi-

cality. One has to carefully re-work existing applications to

ensure preemption cannot happen during critical sections —

memory management, interaction with thread local storage,

etc. — or non re-entrant functions. This represents consider-

able efforts and encourages other designs trade-off such as

semi-cooperative scheduling [17].

DARC in the datacenter ecosystem. Though not a focus

of this paper, DARC can cooperate with an allocator to obtain

and release cores, adapting to load changes and updating

reservations during such events. In the event of a system

overload, DARC will keep prioritizing short requests as far

as possible, triggering flow control for longer requests first.
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7 Related work
Kernel-bypass. Bypassing a general-purpose kernel to

provide application-tailored services has been revisited regu-

larly over the past fifty years. Some notable examples include

the RC 4000 multi-programming system [37], Hydra [88],

Mach [1], Chorus [77], SPIN [16], and Exokernel [31].

More recently, faster networks and stagnating CPU speeds

have led researchers to look more closely at user-level net-

work stacks [47, 53], to provide high-performance storage

systems [19, 55, 58, 71], access to disaggregated memory [4],

user-level network services [53] such as eRPC [49], and fast

I/O processing (e.g., IX [14] and Chronos [50]). Similarly,

user-level scheduling has been explored with ZygOS [75]

and Shinjuku [48], which focus on improving tail latency by

implementing centralized dispatch policies and user-level

preemption, both of which outperform current decentralized

offerings, as is well understood by theory [57, 87, 90]. DARC

builds on this recent line of work with a more application-

customized solution, motivated by recent insights when ob-

serving performance gain from sharing application-level

information with the dataplane [23, 52, 61], and “common

case service acceleration”, which can improve tail latency for

important requests [64]. DARC multi-queue policy could be

integratedwith existing kernel-bypass schedulers [48, 73, 75],

with the merit that programmers could decide whether pro-

viding request classifiers is worthwhile for their workload. In

fact, we originally designed Perséphone for the Demikernel

Library OS Architecture [89], with the goal of integrating

user-level insights to a wide range of datapaths.

SchedulingPolicies: Recentworks on kernel-bypass and
microsecond-scale applications have revived research in-

terest in scheduling policies, specifically for tail-tolerance.

We compare DARC with existing policies proposed for pro-

cess or packet scheduling, and identified the best fit for

each. Table 5 summarizes our findings. DARC shares ideas

with Fixed Priority (FP) scheduling without suffering from

head-of-line blocking and with Cycle Stealing with Central

Queue (CSCQ [42]), but does not impose limits on stealing

for shorter requests. It also shares ideas with Static Partition-

ing (SP) without being as work conservation avoidant, thus

being able to absorb bursts. DARC targets applications with

high service time dispersion similarly to Processor Shar-

ing policies, implemented as the Completely Fair Sched-

uler [67], Borrowed Virtual Time [29], and Multi-Level Feed-

back Queue [6] in commodity operating systems and variants

of these on datacenter operating systems [48]. Processor shar-

ing policies, despite being application agnostic, are expen-

sive or impossible to implement in many environments, e.g.,
the public cloud. DARC is, to our best knowledge, the first

application-aware and non-preemptive policy that classifies

requests to improve RPC tail latency and can be implemented

on a kernel-bypassed system serving microsecond-scale re-

quests. We note that existing work has specifically made use

of non work conservation to reduce resource contention in

SMT architectures [33, 76, 82], though with a focus on in-

struction throughput rather than tail latency for datacenter

workloads.

In-network end-host scheduling. R2P2 [56] and
Metron [51] propose to integrate core scheduling in the net-

work. Loom [83] proposes a novel NIC design and OS/NIC

abstraction to express rich hierarchies of network schedul-

ing and traffic shaping policies across tenants. Our work

is orthogonal since request classifiers can be offloaded to

the network. eRSS [78] scaling groups offer the possibility

to schedule request groups, which works only on network

headers and requires a specific programming model from

the NIC. RSS++ [9] addresses RSS vulnerability to traffic im-

balance but cannot handle variability in application-request

processing times. Intel recently introduced Application De-

vice Queues (ADQ) [44], a feature for applications to reserve

NIC hardware queues. ADQ requires specific network in-

terfaces (currently Intel’s Ethernet 800 Series) and does not

allow applications to further partition reserved queues by

request type. Finally, recent progress in network hardware

could enable instantiating DARC either in a programmable

switch using a PIFO scheduling transaction [81], or directly

in the end-host hardware using the NanoPU hardware thread

scheduler [43] or a SmartNIC.

Network scheduling for tail latency. Prioritizing pack-
ets to improve tail latency has been extensively studied in the

networking literature [3, 8, 34, 36, 59, 68, 69]. As analyzed

by Mushtaq et al. [70], this line of work uses priority queues

in switches to approximate Shortest Remaining Processing

Time (SRPT) scheduling and avoid head-of-line blocking

caused by FIFO policies. Dedicating more CPU resources to

short requests is similar to prioritizing packets belonging

to short flows, but whereas network devices schedule at the

granularity of packets — bounded by MTU sizes — and pre-

empt long flows by not sending their packets, there is no

affordable way to preempt a long request once dispatched

at a CPU core within microseconds. DARC efficiently parti-

tions CPU resources among requests by profiling their CPU

demand and enabling work conservation only for short re-

quests, capping resources allocated to long requests and

resulting in a similar trade off than Homa [68], pFabric [3],

or HULL [2].

Other efforts to improve tail latency. Haque et al. [39]
exploit DVFS and heterogeneous CPUs to speed up long re-

quests in latency sensitive workloads at the expense of short

requests, with the goal of improving overall tail latency. Our

technique is orthogonal to such optimization, since DARC

defines a clear target to configure power and core settings

for given request types. Another line of work adapts the de-

gree of parallelism of long requests and improves overall tail

latency [38, 46], but this comes at the cost of shorter requests
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Table 5. Summary of different scheduling policies as comparison points to DARC

Policy App
Aware

Non
preemptive

Non
Work Conserving

Prevent
HOL Ideal Workload Comments

d-FCFS ✗ ✓ ✓ ✗ Light-tailed

Easy to implement

Load Imbalance

c-FCFS ✗ ✓ ✗ ✗ Light-tailed Ideal policy for the workload

Processor Sharing

(Linux CFS, BVT [28], MLFQ [6])

✗ ✗ ✗ ✓
Heavy-tailed without

priorities

Hard to implement

(Deficit) (Weighted) Round Robin ✗ ✓ ✗ ✗
Request flows with

fairness requirements

No latency guarantees

Static Partitioning ✓ ✓ ✓ ✗
Different request types

with different SLOs

Inflexible with

rapid workload changes

Fixed Priority ✓ ✓ ✗ ✗
Request priority indendent

of service time

Can lead to priority inversion

Earliest Deadline First ✓ ✓ ✗ ✗
Request priority indendent

of service time

Requires clock sync

Shortest Job First ✓ ✓ ✗ ✗ Custom Can starve long RPCs

SRPT ✓ ✗ ✗ ✓ Heavy-tailed

Optimal for average latency

Hard to implement

Cycle Stealing with

Central Queue

✓ ✓ ✓ ✗
Mix of short and long requests

with the same priority

Can absorb short RPCs bursts

DARC ✓ ✓ ✓ ✓
Heavy-tailed with

high priority short requests

Favor short RPCs over longs

from which more resources are taken away. Mirhosseini et al.

modify another of Mor Harchol-Balter’s typed-queue policy,

SITA [41], to prevent dispersion-based blocking in hardware

queues [65]. RobinHood [15] improves tail latency by pro-

visioning more cache to backends that affect such latency.

Minos [24] shards data based on size to reduce GETs vari-

ability across shards. Finally, isolation techniques such as

PerfIso [45] also eschew work conservation to protect la-

tency critical tasks, but are strictly less efficient than work

conserving, preemption-based techniques. In contrast, at mi-

crosecond latencies, the trade-off between preemption and

idling changes, making our non-work-conserving kernel-

bypass scheduler a better optimized solution.

8 Conclusion
This paper proposes Perséphone, a new kernel-bypass OS

scheduler implementing DARC, an application aware, non

work conserving policy. DARC maintains good tail latency

for shorter requests in heavy-tailed workloads that cannot

afford the overheads of existing techniques such as work

stealing and preemption. DARC profiles requests and dedi-

cates cores to shorter requests, guaranteeing they will not

be blocked behind long requests. Our prototype of Persé-

phone maintains good tail latency for shorter requests and

can handle higher loads with the same amount of cores than

state-of-the-art kernel-bypass schedulers, overall better uti-

lizing datacenter resources.
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