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THE BIGGER PICTURE The digital world is expanding at an unprecedented pace, driven by the explosive
growth of artificial intelligence, data center computing, and networked devices. However, these computing
technologies come with an environmental cost that is also growing rapidly but is still poorly understood.
These costs arise from the energy-intensive data centers that power artificial intelligence as well as from
the manufacture of semiconductors that store and compute on massive datasets. Current trends are unsus-
tainable as artificial intelligence transforms the way we live and work and, consequently, as the demand for
computing accelerates.

This article presents an agenda for making computation more sustainable by rethinking how we design, build,
and operate digital systems. The agenda is interdisciplinary and spans hardware design, software optimiza-
tion, energy systems, and economic policy. It seeks to mitigate both embodied carbon, the emissions asso-
ciated with manufacturing hardware like chips and servers, and operational carbon, the emissions associ-
ated with the electricity used to power this hardware. Reducing both types of emissions will require
modular hardware organizations that allow greater reuse, energy-efficient data center design and manage-
ment, and intelligent use of renewable or carbon-free energy. The authors encourage collaboration across
disciplines—from computer science and engineering to economics and environmental science—to ensure
that technical solutions align with societal goals.

SUMMARY

This article presents a holistic research agenda to address the significant environmental impact of information
and communication technology (ICT), which accounts for 2.1%-3.9% of global greenhouse gas emissions. It
proposes several research thrusts to achieve sustainable computing: accurate carbon accounting models, life
cycle design strategies for hardware, efficient use of renewable energy, and integrated design and manage-
ment strategies for next-generation hardware and software systems. If successful, the research would flatten
and reverse growth trajectories for computing power and carbon, especially for rapidly growing applications
like artificial intelligence. The research takes a holistic approach because strategies that reduce operational
carbon may increase embodied carbon, and vice versa. Achieving these goals will require interdisciplinary
collaboration between computer scientists, electrical engineers, environmental scientists, and economists.

INTRODUCTION Agreement’s goal to limit warming to 1.5°C above pre-industrial

levels. Meeting the growing demands for computing while

Information and communication technology (ICT) accounts fora achieving these goals will be difficult and costly, requiring

surprisingly large share of global greenhouse gas (GHG) emis-
sions—estimates range from 2.1% to 3.9%. To tackle this chal-
lenge, the International Telecommunication Union aims for a
45% reduction in ICT emissions by 2030, aligning with the Paris

®
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rigorous methods that balance sustainability benefits against
implementation costs. To succeed, computer scientists, electri-
cal engineers, environmental scientists, and economists
must develop an ecosystem for sustainable computing with
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Figure 1. Embodied carbon for semiconductor fabrication
Data from industry reports, device characterization.®

transformative solutions to computing’s carbon problem. This
responds to the call for action from Knowles et al.>; computing
must end the “digital exceptionalism” that overlooks its carbon
footprint due to its contributions to societal productivity and ef-
ficiency.

We envision several interlocking research thrusts to address
these sustainability challenges for next-generation computer
systems. These thrusts take a coordinated approach to hard-
ware and software, designing new processors, servers, and
data centers as well as optimizing their deployment for emerging
artificial intelligence (Al) applications. These thrusts also take
a holistic view of computing’s carbon footprint, reducing
embodied carbon from hardware manufacturing via life cycle
design strategies and reducing operational carbon from the judi-
cious, timely use of carbon-efficient electricity. We anticipate
interesting trade-offs between embodied and operational car-
bon, as a solution might reduce one type of carbon at the
expense of the other. Finally, these solutions must account for
the broader economic and policy context to align private initia-
tives with societal goals.

This article briefly surveys the challenges and opportunities in
sustainable computing. It reflects the research priorities of the
authors, but the holistic perspective may inspire researchers
from diverse intellectual communities—computer science, elec-
trical engineering, industrial ecology, economics, and law—to
engage with these questions. We recognize that some of these
research questions are becoming qualitatively more challenging
due to interest in Al and investment in hyperscale data centers.
We also recognize that some of these questions, such as life cy-
cle analysis for hardware, are benefiting from industry attention.
This article seeks to place these recent developments in context
and encourage greater coordination between these individual
research contributions.

EMBODIED CARBON

Embodied carbon describes emissions associated with comput-
ing’s demands on hardware manufacturing and supply chains;
the GHG Protocol designates these as scope 3 emissions.®™>
These costs are significant for high-performance computing
due to unprecedented data center construction and massive
capital investments in graphics processing units and other hard-
ware components for Al. They are also significant for embedded
and mobile devices due to high replacement rates and relatively
low utilization. Nearly 75% of Apple’s emissions are due to
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Figure 2. Embodied carbon scenarios that vary fab electricity
growth, renewable energy use, characterization, and 3Rs of circular
economy

manufacturing.” Billions of devices are expected to come online
by 2027, and their embodied carbon may approach one gigaton
of CO, per year, exceeding commercial aviation’s footprint.®

Semiconductor fabrication’s contributions to global warming
are attributed to electricity and gasses used in manufacturing.
Electricity use is particularly significant for advanced technology
nodes that require extreme ultraviolet lithography (Figure 1). Car-
bon-free electricity is a meager 6% of the total in Taiwan and
South Korea, where most chips are produced, but the Taiwan
Semiconductor Manufacturing Company (TSMC) and Korea
may increase their use of carbon-free energy to 40% and 20%
of their respective totals by 2030.5"

Figure 2 presents several scenarios for embodied carbon.
Even under optimistic assumptions where fab demand is un-
changed (0%) and the renewable energy supply increases by
20%, the industry will miss its goal of reducing emissions by
45%, as indicated by the dashed line in the figure. This outcome
is partially explained by gases, which account for 25% of total
emissions and are unaffected by the use of renewable energy.
Thus, reducing embodied carbon by 45% requires more aggres-
sive, innovative measures.

Researchers will need to explore several mitigation strategies
that arise from the Rs of the circular economy—reduce, reuse,
and recycle. Our analysis specifies an “R factor” that estimates
the extent to which these Rs are needed to reduce embodied car-
bon by 45%. For example, R = 1.5 estimates the combined effect
of reducing hardware procurement by 33%, reusing hardware
1.5x longer, and recycling 1.5x more hardware relative to 2020
levels. While different combinations are possible, increasing
each of the three Rs is essential for the 45% reduction target.

Reduce

Computer architects should precisely manufacture, provision,
and allocate the hardware required for software needs. We
need hardware functions that can be designed and implemented
separately as small chiplets and then connected with fast net-
works.? Chiplets are more carbon efficient, as fabs precisely
manufacture the required circuits and no more, reducing the sil-
icon area and improving manufacturing yields, which in turn re-
duces waste and carbon. Moreover, fabs could separate the
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manufacture of disparate capabilities—compute, memory, and
sensors—and use dedicated process flows for each, reducing
the number of process steps and associated carbon.

We also need data-center-scale disaggregation, which orga-
nizes hardware into collections of network-attached compo-
nents. Compute nodes would offer many central processing
units (CPUs) but little dynamic random access memory
(DRAM), whereas memory nodes would offer the reverse. Disag-
gregation allows servers to independently scale a specific hard-
ware type. “Lego-block” systems with custom core and memory
configurations would better balance the system and improve
carbon efficiency. Today’s servers provision many DRAMs for
capacity but must also inefficiently provision a corresponding
number of memory channels and processor sockets even
when workloads under-utilize these channels and processors. '°

Reuse

Data center operators might replace hardware components
based on individual technology advances or failure rates rather
than on the fastest evolving or least reliable component, thereby
extending the hardware’s average tenure. For example, graphics
processing units (GPUs) might refresh at a rate dictated by
growing demands for Al workloads, whereas CPUs might refresh
at a different rate, tracking demand for general computation.
Today, the typical server lifetime is 3-6 years, after which the
entire rack is replaced with new hardware. Networking equip-
ment lifetimes are longer, 5 years for switches/routers and 10
years for the fiber cable plant, but periodic and wholesale
replacement is still common.

Recycle

Hardware will require better instrumentation and health models to
facilitate an efficient secondary market that disassembles systems
into components and sells them for a second life. For instance,
heavily used processors from data centers will have very different
resale values than lightly used ones from enterprises. Hardware
“odometers” could be implemented with immutable, tamper-
resistant registers that count operations. For memories, registers
might count errors and faults as well as reads and writes. Measures
of physical conditions such as power variations, thermal stresses,
and humidity will be helpful. These data must be curated by man-

Operational carbon describes emissions

associated with computing’s electricity
use; the GHG protocol designates these as scope 2 emissions.
These costs exhibit explosive growth, driven by Al and its myriad
applications. Annual ICT energy demand is projected to exceed
100 exajoules, nearly 15% of the world’s energy production.”
Electricity use at Google, Meta, and Microsoft grew at a com-
pound annual growth rate (CAGR) of 25% per year from 2015
to 2021, nearly quadrupling. In contrast, US renewable energy
investments grew by only 7% per year (Figure 3). In 2021, hyper-
scale data centers consumed 19 TWh more than in 2020, nearly
half of the 44 TWh of new renewable capacity.

Our analysis highlights the essential role of renewable energy
in computing (Figure 4). If renewable energy capacity grows at
10% per year, as forecasted by the US Energy Information
Administration (EIA), and computing’s energy demand remains
at 2020 levels, carbon emissions would fall by 36%. However,
Figure 5 indicates computing’s energy demand may increase
by 10%—25% per year based on forecasts by industry groups'’
and various consultancies.’?'°

Carbon-free energy growth would struggle to keep pace.
Meeting these demands yet reducing carbon by 45% requires
computing to adopt renewable energy at 1.7-1.9x faster than
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Figure 4. Operational carbon reduction (45% by 2030) achieved via
1.7 x higher uptake in ICT renewable electricity compared to the grid
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Figure 5. Electricity usage forecasts for data center power in the US
and globally
Variance in CAGR estimates is significant.

the US average. Nuclear, whether refurbishing existing plants or
building small modular reactors, could be a carbon-free alterna-
tive. But there is great uncertainty in this pathway, as the nuclear
industry must show that it can build capacity on schedule and
within budget in the US.

Demand response

As renewable energy proliferates, sustainable data centers must
delay or boost computation based on the availability of carbon-
free energy.'”'® Such demand response (DR) requires grid and
data center coordination. One interface would use real-time pri-
ces to incentivize data centers to modulate energy use, but this
departs from today’s contracts that charge based on the amount
of power provisioned rather than used. An alternative interface
would simply communicate carbon intensity, assuming data
centers would modulate demand without compensation.

DR will require hardware and software to trade off perfor-
mance and power. Ideally, DR frameworks will incentivize partic-
ipation and guarantee service. Game theory could model system
dynamics when users selfishly pursue performance goals. Real-
time scheduling and robust machine learning could ensure deci-
sions satisfy diverse obligations. Ultimately, DRs require
rethinking conventional wisdom in which data centers constantly
compute at peak power to amortize facility and power costs.”®

Power modulation

Each user must define and implement multiple operating modes
that modulate power when required. Hardware mechanisms will
rely on energy proportionality, the idea that power should rise
and fall with workload. Energy-proportional hardware is difficult
to design because most components have a significant fixed po-
wer cost dissipated even at near-zero loads. Decades of
research have improved CPUs, but today’s data centers deploy
large memory systems and graphics processing units that will
need to be designed for energy proportionality.
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Software mechanisms will rely on approximate, degraded
computing. Online applications implement contingency plans
for site events, ensuring varying degrees of service that depend
on system availability and downtime. We will explore real-time
system design and anytime algorithms to provide a smoother
spectrum of trade-offs between quality and power than
permitted in today’s systems. Strategies for computational
sprinting might allow workloads to dynamically consume addi-
tional resources as power budgets permit.”’

Intelligent decisions
A cognitive stack could organize power management into a low-
level reactive layer and a high-level deliberative layer. An agent
monitors software performance and hardware utilization, opti-
mizing power use to achieve performance goals while account-
ing for data center conditions and competition from other
agents. The reactive policy would adjust a processor’s power
use based on program phases, while the deliberative policy
would ensure that adjustments align with other processors’ pol-
icies and data center goals in sustainability, safety, and stability.
The cognitive stack could use multi-agent game theory and
reinforcement learning for dynamic decision-making.’” Dyna-
mism is crucial because computation varies over time, and allo-
cation decisions in the present should account for the past and
anticipate the future. For example, in a repeated game, agents
spend tokens for power and learn policies for spending, request-
ing power, and using hardware. When carbon-free energy is
scarce, data centers could offer tokens to jobs that defer their
computation or require more tokens from those that do not.
How should agents spend tokens to maximize long-term perfor-
mance when allocations in one time period affect those in an un-
certain future? How should data centers price power to achieve
sustainability goals?

DRIVING APPLICATIONS

Al will drive increasingly rapid growth in computing. Training re-
quires hundreds of thousands of processors that collaboratively
consume massive datasets and compute for weeks or months to
compute parameter values for a model. Inference requires a
rapidly growing number of processors that invoke trained
models and respond to user or application prompts, often with
ambitious goals for accuracy, response time (i.e., latency), and
response rate (i.e., throughput). Efficient Al requires software so-
lutions, such as specialized models that compute equally accu-
rate answers with fewer calculations,?® and hardware solutions,
such as application-specific integrated circuits, that reduce the
cost of each calculation.

Advances in Al are enabled by scaling deep models and their
training data,** which impacts sustainability.”>**® Benchmarking
Al's carbon footprint would help researchers identify the
most pressing challenges.”” An integrated hardware-software
perspective will be particularly helpful as researchers explore
the net impact of custom hardware,”® which reduces operational
carbon through energy efficiency but increases embodied car-
bon through semiconductor manufacturing.

Sustainable Al hinges on its responsiveness to the varying
availability of data, hardware, and electricity. We will need to
design, train, and deploy Al models that offer performance and
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efficiency on a broad spectrum of hardware platforms. Such
models would not only ensure backward compatibility for and
equity of access to Al features, but they might also slow the
rate of hardware refreshes. How can we develop models and
platforms that remain relevant over longer periods and better
amortize the carbon costs of model training?

There is acomplementary need for programmable, reconfigur-
able hardware that supports a broad spectrum of Al workloads.
Such processors would allocate precisely the hardware required
for data processing, training, or inference, consuming energy in
proportion to utilization. Instead of designing static Al accelera-
tors, how can we develop flexible, general processors that are
relevant for large classes of Al computation and better amortize
embodied carbon from semiconductor fabrication?

If successful, this research agenda will reverse current trends
and permit advanced Al with lower carbon costs. Google con-
sumes 1.5-2.3 TWh for Al, 10%-15% of its total energy use.?’
Meta attributes 30% of its Al energy to data processing, 30%
to model training, and 40% to inference.?’ Studies for
BLOOM’s 176B-parameter language model, a GPT-3 replica,
are also alarming. Training uses 433 MWh and emits 25 T-
CO,e, whereas inference uses 914 KWh and emits 19 kgs-
CO.e per day, assuming 558 requests per hour.*°

CARBON ACCOUNTING

Research in reducing the environmental impact of Al will only be
effective with the right metrics and accurate datasets. Measuring
embodied carbon requires standardized methods across the in-
dustry’s many companies and organizations, as well as exten-
sible methods that accommodate new and emerging technolo-
gies. Measuring operational carbon requires scalable telemetry
from large, distributed systems, such as hyperscale data cen-
ters, that track resource and power utilization. Transparency
will be key to building trust and confidence.

Modeling embodied carbon from semiconductor manu-
facturing is difficult because complex fabrication processes are
evolving to accommodate emerging technologies such as nano-
materials,®' photonic devices,*” and heterogeneous integration.**
Yet, we are optimistic given recent advances in technology
models and life cycle analyses.***> Moreover, the manufacture
of “new” technologies actually leverages many existing process
flows. By mixing and matching steps in mature flows—lithog-
raphy, metal and oxide deposition, etching, thermal annealing,
etc.—we might estimate carbon for flows not yet in production.
For example, the first monolithic 3D process flow that integrates
next-generation transistors and resistive random access memory
(RRAM) re-orders existing steps and adds one new step.*®

Operational carbon depends on the energy consumed, and
we need energy profilers for individual tasks, helping operators
track usage and guide management. System telemetry will be
combined with grid telemetry, but estimating electricity’s carbon
intensity is non-trivial. The marginal emission rate, which de-
pends on recently activated generation sources, may overstate
carbon because data centers often receive credits from their
renewable energy investments and because grids often transfer
energy across regional boundaries.

Telemetry lays the foundations for attribution, which assigns
responsibility for carbon to individual pieces of computation.®’

¢? CellPress

OPEN ACCESS

A task’s operational carbon depends on its share of data center
overheads. Estimating a task’s share of embodied carbon re-
quires sophisticated analysis because tasks share servers and
each task uses heterogeneous mixes of hardware. Game theory
and the Shapley value may provide frameworks for fair attri-
bution.*®

We require reliable, harmonized, and transparent methods for
carbon accounting. Data centers’ energy use and emissions are
verifiable by using the EPA’s carbon statistics for power plants
and measuring energy for hardware components. Semicon-
ductor fabrication’s energy use is more difficult to verify but
could leverage published sustainability reports and datasets.
Open-source models for life cycle assessment (LCA) methods
would lay the foundations for improving analysis and engaging
stakeholders.®® Although computing does not yet have such
foundations, the EPA and California have set standards to
reduce emissions from fuels using open-source tools.*

ENERGY ECONOMICS

Research in computing must be cognizant of the broader socie-
tal landscape. External factors may make some solutions more
practical than others or may provide opportunities to amplify or
accelerate anticipated benefits. Economics and policy shape
pathways to carbon-efficient computing. Governments might
introduce carbon trading or incentives for low-carbon energy,
while the private sector could implement offset programs, lead-
ing to renewable energy contracts and credits. DR will need so-
phisticated markets that price electricity at its true marginal cost,
encouraging users to schedule computation accordingly.
Although there is extensive literature on low-carbon policies for
other industries,*’ economic analysis for computing remains
relatively unexplored. Data centers, often the largest grid con-
sumers, must understand how their net-zero operations affect
other consumers and society.

Given the unpriced environmental externality of carbon,*” one
might ask if society is computing too much. What is the optimal
amount of computing? Will more efficient algorithms and sys-
tems drive demand for new applications, increasing overall car-
bon emissions? Prior research suggests that as technology be-
comes more efficient, its use increases, producing rebound
effects that range from 10% to 40%, reducing but not eliminating
energy savings.*® However, these effects have not been studied
for computing.

We need to estimate three types of rebound effects. First,
direct effects occur when lower costs increase technology use.
Data centers likely exhibit strong direct effects, as more efficient
processors lead to data centers with more processors. Second,
indirect effects arise when lower costs increase the use of other
technologies. This requires understanding the interplay between
hardware components; more efficient processors may require
more memory. Finally, macroeconomic effects arise when lower
costs encourage new applications. Efficient processors may
scale the use of large Al models for tasks like conversational bots.

CONCLUSION

Computing is at a moment of profound opportunity and promise.
Emerging applications are driving unprecedented growth for
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systems that offer scalable performance and environmental sus-
tainability. Despite advances toward net-zero carbon emissions,
the industry’s gross energy usage continues to rise, outpacing
new energy installations and renewable energy deployments. A
shift toward sustainability could transform how systems are
manufactured, allocated, and consumed, leading to a more
responsible approach to new technologies.

As researchers establish new standards for carbon account-
ing, they may influence policy and legislation. An interdisciplinary
community dedicated to sustainable computing is needed to
train the next generation of innovators in technology, economics,
and policy. Partnerships between academia and industry would
accelerate the adoption of sustainable practices. Only by work-
ing together can we create holistic solutions that sustain ad-
vances in computation, revolutionizing the way we live and
work for decades to come.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation Expedition in
Computing (CCF-2326605, 2326606, 2326607, 2326608, 2326609, 2326610,
and 2326611). Any opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect
the views of this sponsor.

AUTHOR CONTRIBUTIONS

Conceptualization overall, B.C.L. and D.B.; conceptualization for embodied
carbon, D.B., G.H., V.L., and G.-Y.W.; conceptualization for operational car-
bon, B.C.L., M.E., LT.X.P., C.S., and A.W.; conceptualization for driving appli-
cations, B.P. and E.S.; conceptualization for carbon accounting, U.G., Y.Y.,
and M.Y.; conceptualization for energy economics, A.v.B. and B.C.L.; data sci-
ence for embodied and operational carbon, D.B., G.-Y.W., G.H., and M.E.;
writing — original draft, B.C.L., A.v.B., V.L., E.S., G.-Y.W.,, M.Y,, and Y.Y.;
writing — review & editing, B.C.L. and B.P.

DECLARATION OF INTERESTS

B.C.L. is a visiting/consulting scientist at Google. A.W. is a member of the advi-
sory boards for Freeflow Ventures, Verrus, and Virtualitics.

REFERENCES

1. ITU-T (2020). Greenhouse gas emissions trajectories for the information
and communication technology sector compatible with the UNFCCC Paris
Agreement. https://handle.itu.int/11.1002/1000/14084.

2. Knowles, B., Widdicks, K., Blair, G., Berners-Lee, M., and Friday, A.
(2022). Our house is on fire: The climate emergency and computing’s re-
sponsibility. Commun. ACM 65, 38-40. https://doi.org/10.1145/3503916.

3. Kline, D., Parshook, N., Ge, X., Brunvand, E., Melhem, R., Chrysanthis, P.
K., and Jones, A.K. (2019). GreenChip: A tool for evaluating holistic sus-
tainability of modern computing systems. Sustainable Computing: Infor-
matics and Systems 22, 322-332. https://doi.org/10.1016/j.suscom.
2017.10.001.

4. Gupta, U., Kim, Y.G., Lee, S., Tse, J., Lee, H.H.S., Wei, G.Y., Brooks, D.,
and Wu, C.J. (2021). Chasing carbon: The elusive environmental footprint
of computing. In Proc. International Symposium on High-Performance
Computer Architecture (HPCA), pp. 854-867. https://doi.org/10.1109/
HPCA51647.2021.00076.

5. Pirson, T., and Bol, D. (2021). Assessing the embodied carbon footprint of
loT edge devices with a bottom-up life-cycle approach. J. Clean. Prod.
322, 128966. https://doi.org/10.1016/j.jclepro.2021.128966.

6. International Energy Agency. Korea 2020; Energy Policy Review. https://
www.iea.org/reports/korea-2020.

6 Patterns 6, July 11, 2025

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22,

23.

Patterns

. TSMC (2025). Research Areas/Memory. https://research.tsmc.com/page/

memory/4.html.

. Gupta, U., Elgamal, M., Hills, G., Wei, G.Y., Lee, H.H.S., Brooks, D., and

Wu, C.J. (2022). ACT: Designing sustainable computer systems with an
architectural carbon modeling tool. In Proc. International Symposium on
Computer Archiecture (ISCA), pp. 784-799. https://doi.org/10.1145/
3470496.3527408.

. Coudrain, P., Charbonnier, J., Garnier, A., Vivet, P., Vélard, R., Vinci, A.,

Ponthenier, F., Farcy, A., Segaud, R., Chausse, P., et al. (2019). Active
interposer technology for chiplet-based advanced 3D system architec-
tures. In Proc. |IEEE Electronic Components and Technology Conference
(ECTC), pp. 569-578. https://doi.org/10.1109/ECTC.2019.00092.

Malladi, K.T., Nothaft, F.A., Periyathambi, K., Lee, B.C., Kozyrakis, C., and
Horowitz, M. (2012). Towards energy-proportional datacenter memory
with mobile DRAM. In Proc. International Symposium on Computer Archi-
tecture (ISCA), pp. 37-48. https://doi.org/10.1109/ISCA.2012.6237004.

Semiconductor Research Corporation (2021). The decadal plan for semi-
conductors. https://www.src.org/about/decadal-plan/.

Boston Consulting Group (2024). U.S. data center power outlook: Balancing
competing power consumption needs. https://www.linkedin.com/pulse/
us-data-center-power-outlook-balancing-competing-consumption-lee-
iz4pe/

Goldman Sachs Research (2024). Generational Growth: Al, data centers
and the coming US power demand surge. https://www.goldmansachs.
com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-
coming-us-power-surge/report.pdf

Electric Power Research Institute (2024). Powering intelligence: Analyzing
artificial intelligence and data center energy consumption. https://www.
epri.com/research/products/000000003002028905.

SemiAnalysis (2024). Al datacenter energy dilemma - race for Al datacen-
ter space. https://semianalysis.com/2024/03/13/ai-datacenter-energy-
dilemma-race/

International Energy Agency (IEA) (2024). Electricity 2024: Analysis
and forecast to 2026. https:/iea.blob.core.windows.net/assets/
6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisand
forecastto2026.pdf

Wierman, A., Liu, Z., Liu, I., and Mohsenian-Rad, H. (2014). Opportunities
and challenges for data center demand response. In Proc. International
Green Computing Conference (IGCC), pp. 1-10. https://doi.org/10.1109/
IGCC.2014.7039172.

Acun, B., Lee, B., Kazhamiaka, F., Maeng, K., Gupta, U., Chakkaravarthy,
M., Brooks, D., and Wu, C.J. (2023). Carbon Explorer: A holistic framework
for designing carbon aware datacenters. In Proc. International Symposium
on Computer Architecture (ISCA). https://doi.org/10.1145/3575693.
3575754,

Xing, J., and Lee, B.C. (2024). Datacenter demand response for carbon
mitigation: From concept to practicality: Invited paper. In Proc. Interna-
tional Green and Sustainable Computing Conference (IGSC),
pp. 142-144. https://doi.org/10.1109/IGSC64514.2024.00034.

Fan, X., Weber, W.D., and Barroso, L.A. (2007). Power provisioning for a
warehouse-scale computer. In Proc. International Symposium on Com-
puter Architecture (ISCA), pp. 13-23. https://doi.org/10.1145/1250662.
1250665.

Fan, S., Zahedi, S.M., and Lee, B.C. (2016). The computational sprinting
game. In Proc. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 561-575. https://doi.org/10.1145/
2872362.2872383.

Yeh, C., Li, V., Datta, R., Arroyo, J., Christianson, N., Zhang, C., Chen, Y.,
Hosseini, M., Golmohammadi, A., Shi, Y., et al. (2023). SustainGym: Rein-
forcement learning environments for sustainable energy systems. In Pro-
ceedings of the Thirty-Seventh International Conference on Neural Infor-
mation Processing Systems, pp. 59464-59476.

Huang, H., Ardalani, N., Sun, A., Ke, L., Lee, H.H.S., Bhosale, S., Wu, C.J.,
and Lee, B. (2024). Toward efficient inference for mixture of experts. In
Proceedings of the Thirty-Eighth International Conference on Neural Infor-
mation Processing Systems, pp. 84033-84059.


https://handle.itu.int/11.1002/1000/14084
https://doi.org/10.1145/3503916
https://doi.org/10.1016/j.suscom.2017.10.001
https://doi.org/10.1016/j.suscom.2017.10.001
https://doi.org/10.1109/HPCA51647.2021.00076
https://doi.org/10.1109/HPCA51647.2021.00076
https://doi.org/10.1016/j.jclepro.2021.128966
https://www.iea.org/reports/korea-2020
https://www.iea.org/reports/korea-2020
https://research.tsmc.com/page/memory/4.html
https://research.tsmc.com/page/memory/4.html
https://doi.org/10.1145/3470496.3527408
https://doi.org/10.1145/3470496.3527408
https://doi.org/10.1109/ECTC.2019.00092
https://doi.org/10.1109/ISCA.2012.6237004
https://www.src.org/about/decadal-plan/
https://www.linkedin.com/pulse/us-data-center-power-outlook-balancing-competing-consumption-lee-iz4pe/
https://www.linkedin.com/pulse/us-data-center-power-outlook-balancing-competing-consumption-lee-iz4pe/
https://www.linkedin.com/pulse/us-data-center-power-outlook-balancing-competing-consumption-lee-iz4pe/
https://www.goldmansachs.com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf
https://www.goldmansachs.com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf
https://www.goldmansachs.com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf
https://www.epri.com/research/products/000000003002028905
https://www.epri.com/research/products/000000003002028905
https://semianalysis.com/2024/03/13/ai-datacenter-energy-dilemma-race/
https://semianalysis.com/2024/03/13/ai-datacenter-energy-dilemma-race/
https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf
https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf
https://iea.blob.core.windows.net/assets/6b2fd954-2017-408e-bf08-952fdd62118a/Electricity2024-Analysisandforecastto2026.pdf
https://doi.org/10.1109/IGCC.2014.7039172
https://doi.org/10.1109/IGCC.2014.7039172
https://doi.org/10.1145/3575693.3575754
https://doi.org/10.1145/3575693.3575754
https://doi.org/10.1109/IGSC64514.2024.00034
https://doi.org/10.1145/1250662.1250665
https://doi.org/10.1145/1250662.1250665
https://doi.org/10.1145/2872362.2872383
https://doi.org/10.1145/2872362.2872383
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref22
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref22
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref22
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref22
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref22
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref23
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref23
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref23
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref23

Patterns

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

Ghorbani, B., Firat, O., Freitag, M., Bapna, A., Krikun, M., Garcia, X.,
Chelba, C., and Cherry, C. (2021). Scaling laws for neural machine trans-
lation. Preprint at arXiv. https://doi.org/10.48550/arXiv.2109.07740.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy con-
siderations for deep learning in NLP. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (Association
for Computational Linguistics), pp. 3645-3650. https://doi.org/10.18653/
v1/P19-1355.

Dodge, J., Prewitt, T., Tachet des Combes, R., Odmark, E., Schwartz, R.,
Strubell, E., Luccioni, A.S., Smith, N.A., DeCario, N., and Buchanan, W.
(2022). Measuring the carbon intensity of Al in cloud instances. In Proc.
Conference on Fairness, Accountability, and Transparency (FAccT),
pp. 228-239. https://doi.org/10.1145/3531146.3533234.

Wu, C.J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K.,
Chang, G., Behram, F.A., Huang, J., Bai, C., et al. (2022). Sustainable Al:
Environmental implications, challenges and opportunities. Preprint at ar-
Xiv. https://doi.org/10.48550/arXiv.2111.00364.

Hooker, S. (2021). The hardware lottery. Commun. ACM 64, 58-65.
https://doi.org/10.1145/3467017.

Patterson, D., Gonzalez, J., Holzle, U., Le, Q., Liang, C., Munguia, L.M.,
Rothchild, D., So, D., Texier, M., and Dean, J. (2022). The carbon footprint
of machine learning training will plateau, then shrink. Preprint at arXiv.
https://doi.org/10.48550/arXiv.2204.05149.

Luccioni, A.S., Viguier, S., and Ligozat, A.-L. (2022). Estimating the carbon
footprint of BLOOM, a 176B parameter language model. Preprint at arXiv.
https://doi.org/10.48550/arXiv.2211.02001.

Hills, G., Bardon, M.G., Doornbos, G., Yakimets, D., Schuddinck, P.,
Baert, R., Jang, D., Mattii, L., Sherazi, S.M.Y., Rodopoulos, D., et al.
(2018). Understanding energy efficiency benefits of carbon nanotube
field-effect transistors for digital VLSI. IEEE Trans. Nanotechnol. 17,
1259-1269. https://doi.org/10.1109/TNANO.2018.2871841.

Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandra-
sekhar, S., Winzer, P., and Loncar, M. (2018). Integrated lithium niobate
electro-optic modulators operating at CMOS-compatible voltages. Nature
562, 101-104.

Lau, J.H. (2022). Recent advances and trends in advanced packaging.
IEEE Trans. Compon. Packaging Manuf. Technol. 12, 228-252. https://
doi.org/10.1109/TCPMT.2022.3144461.

34.

35.

36.

37.

38.

39.

40.

41

42,

43.

¢? CellPress

OPEN ACCESS

Schneider, |., Xu, H., Benecke, S., Patterson, D., Huang, K., Ranganathan,
P., and Elsworth, C. (2025). Life-cycle emissions of Al hardware: A cradle-
to-grave approach and generational trends. Preprint at arXiv. https://doi.
org/10.48550/arXiv.2502.01671.

Ragnarsson, L., Rolin, C., Shamuilia, S., and Parton, E. (2022). The Green
Transition of the IC Industry (White paper). https://www.imec-int.com/
sites/default/files/2022-07/Whitepaper_SSTS_FINAL.pdf.

Srimani, T., Hills, G., Bishop, M., Lau, C., Kanhaiya, P., Ho, R., Amer, A.,
Chao, M., Yu, A., Wright, A., et al. (2020). Heterogeneous integration of
BEOL logic and memory in a commercial foundry: Multi-tier complemen-
tary carbon nanotube logic and resistive RAM at a 130 nm node. In 2020
IEEE Symposium on VLSI Technology, pp. 1-2. https://doi.org/10.1109/
VLSITechnology18217.2020.9265083.

Han, L., Kakadia, J., Lee, B.C., and Gupta, U. (2025). Fair-CO2: Fair attri-
bution for cloud carbon emissions. In Proc. International Symposium on
Computer Architecture (ISCA).

Llull, Q., Fan, S., Zahedi, S.M., and Lee, B.C. (2017). Cooper: Task coloca-
tion with cooperative games. In 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 421-432. https://
doi.org/10.1109/HPCA.2017.22.

Sleep, S., Dadashi, Z., Chen, Y., Brandt, A.R., MacLean, H.L., and Berger-
son, J.A. (2021). Improving robustness of LCA results through stakeholder
engagement: A case study of emerging oil sands technologies. J. Clean.
Prod. 281, 125277. https://doi.org/10.1016/j.jclepro.2020.125277.

Argonne National Laboratory. GREET Model. https://greet.es.anl.gov.

. Abrell, J., Kosch, M., and Rausch, S. (2019). Carbon abatement with re-

newables: Evaluating wind and solar subsidies in Germany and Spain.
J. Publ. Econ. 169, 172-202. https://doi.org/10.1016/}.jpubeco.2018.
11.007.

Hardin, G. (1968). The tragedy of the commons. Science 162, 1243-1248.
https://doi.org/10.1126/science.162.3859.1243.

Gillingham, K., Rapson, D., and Wagner, G. (2016). The rebound effect and
energy efficiency policy. Rev. Environ. Econ. Policy 70, 68-88. https://doi.
org/10.1093/reep/rev017.

Patterns 6, July 11, 2025 7



https://doi.org/10.48550/arXiv.2109.07740
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.1145/3531146.3533234
https://doi.org/10.48550/arXiv.2111.00364
https://doi.org/10.1145/3467017
https://doi.org/10.48550/arXiv.2204.05149
https://doi.org/10.48550/arXiv.2211.02001
https://doi.org/10.1109/TNANO.2018.2871841
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref32
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref32
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref32
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref32
https://doi.org/10.1109/TCPMT.2022.3144461
https://doi.org/10.1109/TCPMT.2022.3144461
https://doi.org/10.48550/arXiv.2502.01671
https://doi.org/10.48550/arXiv.2502.01671
https://www.imec-int.com/sites/default/files/2022-07/Whitepaper_SSTS_FINAL.pdf
https://www.imec-int.com/sites/default/files/2022-07/Whitepaper_SSTS_FINAL.pdf
https://doi.org/10.1109/VLSITechnology18217.2020.9265083
https://doi.org/10.1109/VLSITechnology18217.2020.9265083
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref37
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref37
http://refhub.elsevier.com/S2666-3899(25)00144-8/sref37
https://doi.org/10.1109/HPCA.2017.22
https://doi.org/10.1109/HPCA.2017.22
https://doi.org/10.1016/j.jclepro.2020.125277
https://greet.es.anl.gov
https://doi.org/10.1016/j.jpubeco.2018.11.007
https://doi.org/10.1016/j.jpubeco.2018.11.007
https://doi.org/10.1126/science.162.3859.1243
https://doi.org/10.1093/reep/rev017
https://doi.org/10.1093/reep/rev017

	A view of the sustainable computing landscape
	Introduction
	Embodied carbon
	Reduce
	Reuse
	Recycle

	Operational carbon
	Demand response
	Power modulation
	Intelligent decisions

	Driving applications
	Carbon accounting
	Energy economics
	Conclusion
	Acknowledgments
	Author contributions
	Declaration of interests
	References


