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SUMMARY

This article presents a holistic research agenda to address the significant environmental impact of information 

and communication technology (ICT), which accounts for 2.1%–3.9% of global greenhouse gas emissions. It 

proposes several research thrusts to achieve sustainable computing: accurate carbon accounting models, life 

cycle design strategies for hardware, efficient use of renewable energy, and integrated design and manage

ment strategies for next-generation hardware and software systems. If successful, the research would flatten 

and reverse growth trajectories for computing power and carbon, especially for rapidly growing applications 

like artificial intelligence. The research takes a holistic approach because strategies that reduce operational 

carbon may increase embodied carbon, and vice versa. Achieving these goals will require interdisciplinary 

collaboration between computer scientists, electrical engineers, environmental scientists, and economists.

INTRODUCTION

Information and communication technology (ICT) accounts for a 

surprisingly large share of global greenhouse gas (GHG) emis

sions—estimates range from 2.1% to 3.9%. To tackle this chal

lenge, the International Telecommunication Union aims for a 

45% reduction in ICT emissions by 2030,1 aligning with the Paris 

Agreement’s goal to limit warming to 1.5◦C above pre-industrial 

levels. Meeting the growing demands for computing while 

achieving these goals will be difficult and costly, requiring 

rigorous methods that balance sustainability benefits against 

implementation costs. To succeed, computer scientists, electri

cal engineers, environmental scientists, and economists 

must develop an ecosystem for sustainable computing with 

THE BIGGER PICTURE The digital world is expanding at an unprecedented pace, driven by the explosive 

growth of artificial intelligence, data center computing, and networked devices. However, these computing 

technologies come with an environmental cost that is also growing rapidly but is still poorly understood. 

These costs arise from the energy-intensive data centers that power artificial intelligence as well as from 

the manufacture of semiconductors that store and compute on massive datasets. Current trends are unsus

tainable as artificial intelligence transforms the way we live and work and, consequently, as the demand for 

computing accelerates. 

This article presents an agenda for making computation more sustainable by rethinking how we design, build, 

and operate digital systems. The agenda is interdisciplinary and spans hardware design, software optimiza

tion, energy systems, and economic policy. It seeks to mitigate both embodied carbon, the emissions asso

ciated with manufacturing hardware like chips and servers, and operational carbon, the emissions associ

ated with the electricity used to power this hardware. Reducing both types of emissions will require 

modular hardware organizations that allow greater reuse, energy-efficient data center design and manage

ment, and intelligent use of renewable or carbon-free energy. The authors encourage collaboration across 

disciplines—from computer science and engineering to economics and environmental science—to ensure 

that technical solutions align with societal goals. 
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transformative solutions to computing’s carbon problem. This 

responds to the call for action from Knowles et al.2: computing 

must end the ‘‘digital exceptionalism’’ that overlooks its carbon 

footprint due to its contributions to societal productivity and ef

ficiency.

We envision several interlocking research thrusts to address 

these sustainability challenges for next-generation computer 

systems. These thrusts take a coordinated approach to hard

ware and software, designing new processors, servers, and 

data centers as well as optimizing their deployment for emerging 

artificial intelligence (AI) applications. These thrusts also take 

a holistic view of computing’s carbon footprint, reducing 

embodied carbon from hardware manufacturing via life cycle 

design strategies and reducing operational carbon from the judi

cious, timely use of carbon-efficient electricity. We anticipate 

interesting trade-offs between embodied and operational car

bon, as a solution might reduce one type of carbon at the 

expense of the other. Finally, these solutions must account for 

the broader economic and policy context to align private initia

tives with societal goals.

This article briefly surveys the challenges and opportunities in 

sustainable computing. It reflects the research priorities of the 

authors, but the holistic perspective may inspire researchers 

from diverse intellectual communities—computer science, elec

trical engineering, industrial ecology, economics, and law—to 

engage with these questions. We recognize that some of these 

research questions are becoming qualitatively more challenging 

due to interest in AI and investment in hyperscale data centers. 

We also recognize that some of these questions, such as life cy

cle analysis for hardware, are benefiting from industry attention. 

This article seeks to place these recent developments in context 

and encourage greater coordination between these individual 

research contributions.

EMBODIED CARBON

Embodied carbon describes emissions associated with comput

ing’s demands on hardware manufacturing and supply chains; 

the GHG Protocol designates these as scope 3 emissions.3–5

These costs are significant for high-performance computing 

due to unprecedented data center construction and massive 

capital investments in graphics processing units and other hard

ware components for AI. They are also significant for embedded 

and mobile devices due to high replacement rates and relatively 

low utilization. Nearly 75% of Apple’s emissions are due to 

manufacturing.4 Billions of devices are expected to come online 

by 2027, and their embodied carbon may approach one gigaton 

of CO2 per year, exceeding commercial aviation’s footprint.5

Semiconductor fabrication’s contributions to global warming 

are attributed to electricity and gasses used in manufacturing. 

Electricity use is particularly significant for advanced technology 

nodes that require extreme ultraviolet lithography (Figure 1). Car

bon-free electricity is a meager 6% of the total in Taiwan and 

South Korea, where most chips are produced, but the Taiwan 

Semiconductor Manufacturing Company (TSMC) and Korea 

may increase their use of carbon-free energy to 40% and 20% 

of their respective totals by 2030.6,7

Figure 2 presents several scenarios for embodied carbon. 

Even under optimistic assumptions where fab demand is un

changed (0%) and the renewable energy supply increases by 

20%, the industry will miss its goal of reducing emissions by 

45%, as indicated by the dashed line in the figure. This outcome 

is partially explained by gases, which account for 25% of total 

emissions and are unaffected by the use of renewable energy. 

Thus, reducing embodied carbon by 45% requires more aggres

sive, innovative measures.

Researchers will need to explore several mitigation strategies 

that arise from the Rs of the circular economy—reduce, reuse, 

and recycle. Our analysis specifies an ‘‘R factor’’ that estimates 

the extent to which these Rs are needed to reduce embodied car

bon by 45%. For example, R = 1.5 estimates the combined effect 

of reducing hardware procurement by 33%, reusing hardware 

1.5× longer, and recycling 1.5× more hardware relative to 2020 

levels. While different combinations are possible, increasing 

each of the three Rs is essential for the 45% reduction target.

Reduce

Computer architects should precisely manufacture, provision, 

and allocate the hardware required for software needs. We 

need hardware functions that can be designed and implemented 

separately as small chiplets and then connected with fast net

works.9 Chiplets are more carbon efficient, as fabs precisely 

manufacture the required circuits and no more, reducing the sil

icon area and improving manufacturing yields, which in turn re

duces waste and carbon. Moreover, fabs could separate the 

Figure 1. Embodied carbon for semiconductor fabrication 

Data from industry reports, device characterization.8

Figure 2. Embodied carbon scenarios that vary fab electricity 

growth, renewable energy use, characterization, and 3Rs of circular 

economy
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manufacture of disparate capabilities—compute, memory, and 

sensors—and use dedicated process flows for each, reducing 

the number of process steps and associated carbon.

We also need data-center-scale disaggregation, which orga

nizes hardware into collections of network-attached compo

nents. Compute nodes would offer many central processing 

units (CPUs) but little dynamic random access memory 

(DRAM), whereas memory nodes would offer the reverse. Disag

gregation allows servers to independently scale a specific hard

ware type. ‘‘Lego-block’’ systems with custom core and memory 

configurations would better balance the system and improve 

carbon efficiency. Today’s servers provision many DRAMs for 

capacity but must also inefficiently provision a corresponding 

number of memory channels and processor sockets even 

when workloads under-utilize these channels and processors.10

Reuse

Data center operators might replace hardware components 

based on individual technology advances or failure rates rather 

than on the fastest evolving or least reliable component, thereby 

extending the hardware’s average tenure. For example, graphics 

processing units (GPUs) might refresh at a rate dictated by 

growing demands for AI workloads, whereas CPUs might refresh 

at a different rate, tracking demand for general computation. 

Today, the typical server lifetime is 3–6 years, after which the 

entire rack is replaced with new hardware. Networking equip

ment lifetimes are longer, 5 years for switches/routers and 10 

years for the fiber cable plant, but periodic and wholesale 

replacement is still common.

Recycle

Hardware will require better instrumentation and health models to 

facilitate an efficient secondary market that disassembles systems 

into components and sells them for a second life. For instance, 

heavily used processors from data centers will have very different 

resale values than lightly used ones from enterprises. Hardware 

‘‘odometers’’ could be implemented with immutable, tamper- 

resistant registers that count operations. For memories, registers 

might count errors and faults as well as reads and writes. Measures 

of physical conditions such as power variations, thermal stresses, 

and humidity will be helpful. These data must be curated by man

Figure 3. Electricity usage (2021) for data 

center and fabrication facilities 

Compound annual growth rate from 2015 to 2021. 

Corporate sustainability reports and EIA.4

ufacturers, sellers, or third parties so that 

consumers can intelligently assign value 

to pre-owned hardware. We draw inspira

tion from the role that odometers, vehicle 

history reports, and certified pre-owned 

designations play in the secondary vehicle 

market.

OPERATIONAL CARBON

Operational carbon describes emissions 

associated with computing’s electricity 

use; the GHG protocol designates these as scope 2 emissions. 

These costs exhibit explosive growth, driven by AI and its myriad 

applications. Annual ICT energy demand is projected to exceed 

100 exajoules, nearly 15% of the world’s energy production.11

Electricity use at Google, Meta, and Microsoft grew at a com

pound annual growth rate (CAGR) of 25% per year from 2015 

to 2021, nearly quadrupling. In contrast, US renewable energy 

investments grew by only 7% per year (Figure 3). In 2021, hyper

scale data centers consumed 19 TWh more than in 2020, nearly 

half of the 44 TWh of new renewable capacity.

Our analysis highlights the essential role of renewable energy 

in computing (Figure 4). If renewable energy capacity grows at 

10% per year, as forecasted by the US Energy Information 

Administration (EIA), and computing’s energy demand remains 

at 2020 levels, carbon emissions would fall by 36%. However, 

Figure 5 indicates computing’s energy demand may increase 

by 10%–25% per year based on forecasts by industry groups11

and various consultancies.12–16

Carbon-free energy growth would struggle to keep pace. 

Meeting these demands yet reducing carbon by 45% requires 

computing to adopt renewable energy at 1.7–1.9× faster than 

Figure 4. Operational carbon reduction (45% by 2030) achieved via 

1.7× higher uptake in ICT renewable electricity compared to the grid
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the US average. Nuclear, whether refurbishing existing plants or 

building small modular reactors, could be a carbon-free alterna

tive. But there is great uncertainty in this pathway, as the nuclear 

industry must show that it can build capacity on schedule and 

within budget in the US.

Demand response

As renewable energy proliferates, sustainable data centers must 

delay or boost computation based on the availability of carbon- 

free energy.17–19 Such demand response (DR) requires grid and 

data center coordination. One interface would use real-time pri

ces to incentivize data centers to modulate energy use, but this 

departs from today’s contracts that charge based on the amount 

of power provisioned rather than used. An alternative interface 

would simply communicate carbon intensity, assuming data 

centers would modulate demand without compensation.

DR will require hardware and software to trade off perfor

mance and power. Ideally, DR frameworks will incentivize partic

ipation and guarantee service. Game theory could model system 

dynamics when users selfishly pursue performance goals. Real- 

time scheduling and robust machine learning could ensure deci

sions satisfy diverse obligations. Ultimately, DRs require 

rethinking conventional wisdom in which data centers constantly 

compute at peak power to amortize facility and power costs.20

Power modulation

Each user must define and implement multiple operating modes 

that modulate power when required. Hardware mechanisms will 

rely on energy proportionality, the idea that power should rise 

and fall with workload. Energy-proportional hardware is difficult 

to design because most components have a significant fixed po

wer cost dissipated even at near-zero loads. Decades of 

research have improved CPUs, but today’s data centers deploy 

large memory systems and graphics processing units that will 

need to be designed for energy proportionality.

Software mechanisms will rely on approximate, degraded 

computing. Online applications implement contingency plans 

for site events, ensuring varying degrees of service that depend 

on system availability and downtime. We will explore real-time 

system design and anytime algorithms to provide a smoother 

spectrum of trade-offs between quality and power than 

permitted in today’s systems. Strategies for computational 

sprinting might allow workloads to dynamically consume addi

tional resources as power budgets permit.21

Intelligent decisions

A cognitive stack could organize power management into a low- 

level reactive layer and a high-level deliberative layer. An agent 

monitors software performance and hardware utilization, opti

mizing power use to achieve performance goals while account

ing for data center conditions and competition from other 

agents. The reactive policy would adjust a processor’s power 

use based on program phases, while the deliberative policy 

would ensure that adjustments align with other processors’ pol

icies and data center goals in sustainability, safety, and stability.

The cognitive stack could use multi-agent game theory and 

reinforcement learning for dynamic decision-making.22 Dyna

mism is crucial because computation varies over time, and allo

cation decisions in the present should account for the past and 

anticipate the future. For example, in a repeated game, agents 

spend tokens for power and learn policies for spending, request

ing power, and using hardware. When carbon-free energy is 

scarce, data centers could offer tokens to jobs that defer their 

computation or require more tokens from those that do not. 

How should agents spend tokens to maximize long-term perfor

mance when allocations in one time period affect those in an un

certain future? How should data centers price power to achieve 

sustainability goals?

DRIVING APPLICATIONS

AI will drive increasingly rapid growth in computing. Training re

quires hundreds of thousands of processors that collaboratively 

consume massive datasets and compute for weeks or months to 

compute parameter values for a model. Inference requires a 

rapidly growing number of processors that invoke trained 

models and respond to user or application prompts, often with 

ambitious goals for accuracy, response time (i.e., latency), and 

response rate (i.e., throughput). Efficient AI requires software so

lutions, such as specialized models that compute equally accu

rate answers with fewer calculations,23 and hardware solutions, 

such as application-specific integrated circuits, that reduce the 

cost of each calculation.

Advances in AI are enabled by scaling deep models and their 

training data,24 which impacts sustainability.25,26 Benchmarking 

AI’s carbon footprint would help researchers identify the 

most pressing challenges.27 An integrated hardware-software 

perspective will be particularly helpful as researchers explore 

the net impact of custom hardware,28 which reduces operational 

carbon through energy efficiency but increases embodied car

bon through semiconductor manufacturing.

Sustainable AI hinges on its responsiveness to the varying 

availability of data, hardware, and electricity. We will need to 

design, train, and deploy AI models that offer performance and 

Figure 5. Electricity usage forecasts for data center power in the US 

and globally 

Variance in CAGR estimates is significant.
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efficiency on a broad spectrum of hardware platforms. Such 

models would not only ensure backward compatibility for and 

equity of access to AI features, but they might also slow the 

rate of hardware refreshes. How can we develop models and 

platforms that remain relevant over longer periods and better 

amortize the carbon costs of model training?

There is a complementary need for programmable, reconfigur

able hardware that supports a broad spectrum of AI workloads. 

Such processors would allocate precisely the hardware required 

for data processing, training, or inference, consuming energy in 

proportion to utilization. Instead of designing static AI accelera

tors, how can we develop flexible, general processors that are 

relevant for large classes of AI computation and better amortize 

embodied carbon from semiconductor fabrication?

If successful, this research agenda will reverse current trends 

and permit advanced AI with lower carbon costs. Google con

sumes 1.5–2.3 TWh for AI, 10%–15% of its total energy use.29

Meta attributes 30% of its AI energy to data processing, 30% 

to model training, and 40% to inference.27 Studies for 

BLOOM’s 176B-parameter language model, a GPT-3 replica, 

are also alarming. Training uses 433 MWh and emits 25 T- 

CO2e, whereas inference uses 914 KWh and emits 19 kgs- 

CO2e per day, assuming 558 requests per hour.30

CARBON ACCOUNTING

Research in reducing the environmental impact of AI will only be 

effective with the right metrics and accurate datasets. Measuring 

embodied carbon requires standardized methods across the in

dustry’s many companies and organizations, as well as exten

sible methods that accommodate new and emerging technolo

gies. Measuring operational carbon requires scalable telemetry 

from large, distributed systems, such as hyperscale data cen

ters, that track resource and power utilization. Transparency 

will be key to building trust and confidence.

Modeling embodied carbon from semiconductor manu

facturing is difficult because complex fabrication processes are 

evolving to accommodate emerging technologies such as nano

materials,31 photonic devices,32 and heterogeneous integration.33

Yet, we are optimistic given recent advances in technology 

models and life cycle analyses.34,35 Moreover, the manufacture 

of ‘‘new’’ technologies actually leverages many existing process 

flows. By mixing and matching steps in mature flows—lithog

raphy, metal and oxide deposition, etching, thermal annealing, 

etc.—we might estimate carbon for flows not yet in production. 

For example, the first monolithic 3D process flow that integrates 

next-generation transistors and resistive random access memory 

(RRAM) re-orders existing steps and adds one new step.36

Operational carbon depends on the energy consumed, and 

we need energy profilers for individual tasks, helping operators 

track usage and guide management. System telemetry will be 

combined with grid telemetry, but estimating electricity’s carbon 

intensity is non-trivial. The marginal emission rate, which de

pends on recently activated generation sources, may overstate 

carbon because data centers often receive credits from their 

renewable energy investments and because grids often transfer 

energy across regional boundaries.

Telemetry lays the foundations for attribution, which assigns 

responsibility for carbon to individual pieces of computation.37

A task’s operational carbon depends on its share of data center 

overheads. Estimating a task’s share of embodied carbon re

quires sophisticated analysis because tasks share servers and 

each task uses heterogeneous mixes of hardware. Game theory 

and the Shapley value may provide frameworks for fair attri

bution.38

We require reliable, harmonized, and transparent methods for 

carbon accounting. Data centers’ energy use and emissions are 

verifiable by using the EPA’s carbon statistics for power plants 

and measuring energy for hardware components. Semicon

ductor fabrication’s energy use is more difficult to verify but 

could leverage published sustainability reports and datasets. 

Open-source models for life cycle assessment (LCA) methods 

would lay the foundations for improving analysis and engaging 

stakeholders.39 Although computing does not yet have such 

foundations, the EPA and California have set standards to 

reduce emissions from fuels using open-source tools.40

ENERGY ECONOMICS

Research in computing must be cognizant of the broader socie

tal landscape. External factors may make some solutions more 

practical than others or may provide opportunities to amplify or 

accelerate anticipated benefits. Economics and policy shape 

pathways to carbon-efficient computing. Governments might 

introduce carbon trading or incentives for low-carbon energy, 

while the private sector could implement offset programs, lead

ing to renewable energy contracts and credits. DR will need so

phisticated markets that price electricity at its true marginal cost, 

encouraging users to schedule computation accordingly. 

Although there is extensive literature on low-carbon policies for 

other industries,41 economic analysis for computing remains 

relatively unexplored. Data centers, often the largest grid con

sumers, must understand how their net-zero operations affect 

other consumers and society.

Given the unpriced environmental externality of carbon,42 one 

might ask if society is computing too much. What is the optimal 

amount of computing? Will more efficient algorithms and sys

tems drive demand for new applications, increasing overall car

bon emissions? Prior research suggests that as technology be

comes more efficient, its use increases, producing rebound 

effects that range from 10% to 40%, reducing but not eliminating 

energy savings.43 However, these effects have not been studied 

for computing.

We need to estimate three types of rebound effects. First, 

direct effects occur when lower costs increase technology use. 

Data centers likely exhibit strong direct effects, as more efficient 

processors lead to data centers with more processors. Second, 

indirect effects arise when lower costs increase the use of other 

technologies. This requires understanding the interplay between 

hardware components; more efficient processors may require 

more memory. Finally, macroeconomic effects arise when lower 

costs encourage new applications. Efficient processors may 

scale the use of large AI models for tasks like conversational bots.

CONCLUSION

Computing is at a moment of profound opportunity and promise. 

Emerging applications are driving unprecedented growth for 
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systems that offer scalable performance and environmental sus

tainability. Despite advances toward net-zero carbon emissions, 

the industry’s gross energy usage continues to rise, outpacing 

new energy installations and renewable energy deployments. A 

shift toward sustainability could transform how systems are 

manufactured, allocated, and consumed, leading to a more 

responsible approach to new technologies.

As researchers establish new standards for carbon account

ing, they may influence policy and legislation. An interdisciplinary 

community dedicated to sustainable computing is needed to 

train the next generation of innovators in technology, economics, 

and policy. Partnerships between academia and industry would 

accelerate the adoption of sustainable practices. Only by work

ing together can we create holistic solutions that sustain ad

vances in computation, revolutionizing the way we live and 

work for decades to come.
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