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Abstract—Network functions are increasingly being commodi-
tized as software appliances on off-the-shelf machines, popu-
larly known as Network Functions Virtualization (NFV). While
this trend provides economics of scale, a key challenge is to
ensure that the performance of virtual appliances match that
of hardware boxes. We present the design and implementation
of NFV-RT, a system that dynamically provisions resources in
an NFV environment to provide timing guarantees. Specifically,
given a set of service chains that each consist of some network
functions, NFV-RT aims at maximizing the total number of
requests that can be assigned to the cloud for each service chain,
while ensuring that the assigned requests meet their deadlines.
Our approach uses a linear programming model with randomized
rounding to efficiently and proactively obtain a near-optimal
solution. Our simulation shows that, given a cloud with thousands
of machines and service chains, NFV-RT requires only a few
seconds to compute the solution, while accepting three times the
requests compared to baseline heuristics. In addition, under some
special settings, NFV-RT can provide significant performance
improvement. Our evaluation on a local testbed shows that 94%
of the packets of the submitted requests meet their deadlines,
which is three times that of previous reactive-based solutions.

I. INTRODUCTION

Network functions are being commoditized as software appli-
ances on off-the-shelf machines, popularly known as Network
Functions Virtualization (NFV) [5]. NFV enables elastic scal-
ing and pooling of resources in a cost-effective manner and can
be deployed in a more agile fashion than traditional hardware
based appliances. Example network services include function-
alities for routing, load balancing, deep-packet inspection, and
firewalls [4], [16]. While this approach provides economics of
scale, a key challenge is to ensure that the performance of
these virtual appliances matches that of traditional hardware
boxes. This is because, unlike dedicated hardware appliances,
virtual network appliances are deployed in virtual machines
(VMs) on commodity servers, e.g., in the cloud.

Current solutions are either heuristics-based (e.g., auto-
scalers on public clouds) which provides no guarantees, or
reactive in nature, where the cloud operator is alerted only
after the SLAs have been violated. To address this challenge,
this paper presents NFV-RT, a platform for composable cloud
services with soft real-time guarantees. NFV-RT dynami-
cally provisions resources in an NFV environment to provide
packet-wise timing guarantees to service requests. Specifically,
we make the following contributions:
Mathematical modeling and analysis. We formulate the
resource provisioning problem that NFV-RT has to solve with
a mathematical model. Given a set of service chains that
each consist of some network functions, NFV-RT aims at
maximizing the total number of requests that can be assigned
to the cloud for each service chain, while ensuring that the
assigned requests meet their deadlines. Our approach uses

service chain consolidation with timing abstraction and a
linear programming technique with randomized rounding to
proactively obtain a near-optimal solution. This approach
scales well for large data center deployments, and it can
optimize real-time performance even in online scenarios where
new NFV chains are added on demand.
Implementation and evaluation. To evaluate our approach,
we have implemented a simulator for NFV-RT. Our simula-
tion results show that, for a cloud with thousands of machines
and thousands of service chain requests, NFV-RT took only
a few seconds to compute the solution, while accepting three
times more requests than a baseline heuristics does. The results
also demonstrate that under some special settings, NFV-RT
can provide significant performance improvement. In addition,
we have developed a prototype implementation of NFV-RT,
based on RT-Xen [22], a real-time virtualization platform built
upon Xen. Our evaluation on a local 40-core testbed shows
that NFV-RT enabled 94% of the packets of the submitted
requests to complete before their deadlines, which is three
times compared to the baseline solution.

II. CLOUD MODEL

We consider a cloud provider that supports many cloud ten-
ants, each of whom runs one or more NFV service chains
in the cloud, servicing traffic on behalf of her customers. The
goal of the cloud provider is to develop a resource provisioning
strategy that maximizes the number of requests with SLA
guarantees (meeting deadlines) while ensuring isolation among
tenants. Towards this, we aim to find an assignment such
that (i) the total number of accepted requests of all tenants
is maximized, (ii) the delay experienced by each packet of an
accepted request does not exceed its relative deadline, and (iii)
services of different tenants cannot execute in the same VM. In
this paper, we focus on single-path flows through the service
chains; enabling multi-path flows is an avenue for future work.

NFV-RT is a system for resource provisioning that the
cloud provider can use to meet the above goal. We begin by
presenting a mathematical model used by NFV-RT.

Our model considers a typical fat tree [10] network topology
popularly used in data centers, where each node v denotes a
switch or a rack of machines, and each edge (v,v′) denotes
a network link connecting v and v′. Figure 1 shows a three-
layer fat tree: the top, middle, and bottom layers are made of
sets of core switches, end-of-row switches (EoR), and racks
of machines (M), respectively. Each core switch is connected
to all the EoRs and serves as a point of presence (PoP) of the
cloud. All NFV traffic must enter and leave through the PoPs.
Pod. The cloud has multiple disjoint pods that are connected
through core switches (e.g., two pods in Figure 1). Each pod
contains a number of EoRs and their connected racks.
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Fig. 1. An example fat tree topology.
Rack. Each rack contains a top-of-rack switch (ToR) and
several physical machines that each run a virtual machine
monitor (VMM). We model the collection of machines within
a rack m as an aggregated node with cpum cores, where cpum
is the total number of cores of the machines in the rack m.

Given a set of predefined executable services of an NFV
service chain, we denote by wcets(L) the worst-case execution
time (WCET) that a service s takes to process a packet of size
L. (The WCET of a service can be obtained using well-known
WCET analysis methods [20].) As the size of the output packet
of a service can differ from that of the input packet (e.g., in the
case of compressing/decompressing or encryption/decryption
services), we denote by γs the scaling function of s: if L is the
size of an input packet of s, then the size of its corresponding
output packet is at most γs(L).
Tenant. The profile of a tenant i is defined as
tenanti(vs

i ,v
t
i,
〈
s1

i ,s
2
i , . . . ,s

ci
i

〉
,di), where vs

i and vt
i are the

core switches through which the traffic enters and leaves the
cloud, respectively;

〈
s1

i ,s
2
i , . . . ,s

ci
i

〉
is the service chain (of

length ci) that the tenant intends to route all her customers’
traffic through; and di is the relative deadline, which is the
longest tolerable packet-wise end-to-end delay. The traffic
demand of a customer of a tenant is called a request. A
request is a tuple requesti(tidi,αi), where tidi is the identifier
of the tenant, and αi is the maximum packet rate (packets/s).
NFV-RT considers one service chain per tenant, but it can
easily be extended to allow more service chains per tenant.

For ease of presentation, we assume the same packet size
for all requests of a tenant. The size of each incoming packet
of tenanti is denoted by L0

i , and the size of the output packet
after traversing the first j services of the service chain of the
tenant is denoted by L j

i , i.e., L j
i = γs j

i
(L j−1

i ) for all j > 0.
For each incoming request, NFV-RT needs to spawn VMs

on the physical machines to execute the services. An assign-
ment of a request from tenanti involves assigning (a) one or
more VMs, and their corresponding machines, that execute
every service of the tenant, and (b) a path starting from vs

i ,
passing through the VMs that execute the services, following
the order of the service chain, and ending with vt

i . If a request
is accepted, an assignment for the request must be given. An
assignment of a set of requests is made of an assignment of
every request in the set.

III. OVERVIEW OF NFV-RT

Figure 2 shows an overview of NFV-RT. It contains two
interacting components: (i) the controller, which is responsible
for communicating with customers of the cloud’s tenants and
for performing the deployment of the services on the cloud
based on a resource assignment; and (ii) the resource manager,
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Fig. 2. An overview of NFV-RT.

which is responsible for determining an assignment for new
requests, and for keeping track of the current status of the
cloud and the current assignment of existing requests.

The controller takes two sets of inputs: (1) the cloud model
(c.f. Section II) and a set of tenants, and (2) a set of customers’
requests, which may arrive dynamically at run time. It then
passes these inputs to the resource manager, which will
perform the request admission test and compute an assignment
for the accepted requests. The controller will then deploy the
computed assignment on the cloud (e.g., communicates with
the VMM in each machine to create and configure VMs, and
sets up network paths for the accepted requests).

To enable real-time guarantees, each machine of the cloud
runs a real-time VMM that supports real-time scheduling at
both VMM and guest OS levels (e.g., RT-Xen [22]). NFV-RT
assumes that the VMM scheduler and the guest OS within
each VM follow the Earliest Deadline First (EDF) scheduling
policy [11] (which is supported by existing VMM implementa-
tions [22]), so as to achieve high resource utilization. However,
our system can easily be extended to other scheduling policies.

The resource manager works in two phases, as illustrated
in Figures 3(a) and 3(b). In the initial phase, it performs the
service chain consolidation and timing abstraction to minimize
the communication and VM overhead, based on which it then
determines an assignment for an initial set of requests. In the
online phase, it dynamically determines a new assignment for
each new set of requests as they arrive at run time. In the next
two sections, we describe these two phases in greater detail.

IV. INITIAL RESOURCE PROVISIONING

As shown in Figure 3(a), the initial assignment consists of
three consecutive stages: (1) Service request consolidation, (2)
Pod assignment, and (3) Machine assignment per pod. We
describe these stages in detail below.

A. Stage 1: Service Request Consolidation

Overview. In this stage, we consolidate the service chain of
each tenant1 into a consolidated service chain (CSC) and
abstract its resource requirements into a timing interface. The
CSC contains the same services as the original service chain
does, but adjacent services may be merged together to form
a consolidated service to be executed on a single VM. To
reduce the VM overhead, our consolidation aims to minimize
the number of consolidated services. The CSC timing interface
gives the conditions on the incoming packet rate and the CPU
resource required to ensure each instance of the CSC meets
the deadline. Based on this information, we can send requests

1To ensure isolation among tenants, two tenants cannot share the same VM;
hence, consolidation is done for each tenant individually.
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Fig. 3. NFV-RT resource provisioning method.

to a CSC instance if they satisfy the packet rate condition,
and we can assign the consolidated services to machines if
the machines can satisfy the required CPU resource.

Specifically, the CSC timing interface is made of two parts:
(i) the CPU resource required by each consolidated service,
given in the form of (period,budget), which specifies that
this consolidated service requires budget execution time units
every period time units; and (ii) the maximum packet rate,
i.e., the maximum number of packets that can be sent through
each instance of the CSC every second.

The CSC satisfies the following property: “If the traffic of
some requests goes through a CSC instance, then the packets
of the requests can meet their deadlines if (a) the total packet
rate sent through this instance is at most the CSC’s maximum
packet rate, (b) the VMs that execute the consolidated services
of the instance are each given the required CPU resource, and
(c) there is sufficient bandwidth between the VMs that execute
any two adjacent consolidated services.”

Figure 4 shows an example service chain with three services
〈s1,s2,s3〉. It is consolidated into a CSC with two consolidated
services, [s1,s2] and [s3]. The CSC timing interface specifies
that (i) [s1,s2] requires a budget of 1.5ms (equal to its WCETs,
shown within the box) of CPU time every 2ms, and [s3]
requires 2ms of CPU time every 2ms; and (ii) this CSC can
receive a maximum packet rate of 500 packets/s.

After the service consolidation, the requests of each
tenant are packed into a number of aggregated requests
(based on the requests’ packet rates) that will be assigned to
different instances of the CSC. NFV-RT will then determine
an assignment for these CSC instances. By construction,
every aggregated request that is accepted and receives an
assignment will meet its packet-wise deadline, assuming that
the scheduling overhead is negligible. We next discuss the
consolidation and service aggregation in detail.

1) Conditions for Consolidation and Abstraction:
Consider a tenanti, and denote the maximum packet rate of
its CSC by cap (# packets/sec). Then, the CSC should satisfy
three conditions: (1) Feasibility condition: Each consolidated
service requires at most one core; (2) Traffic condition: The
value of cap is at most one tenth of the smallest link bandwidth
of the cloud; and (3) Deadline condition: If we take the packet
arrival period (i.e., 1/cap) as the maximum delay for executing

max packet 
rate: 500/s

Service Chain:

CSC:

0.5(ms) 1(ms) 2(ms)

1.5(ms) 2(ms)

s1 s2 s3

[s1, s2] [s3]

Period=2(ms)
Budget=1.5(ms)

Period=2(ms)
Budget=2(ms)

Requests:

100 packets/s

100 packets/s

200 packets/s

200 packets/s

300 packets/s

CSC 
Instance 1

CSC 
Instance 2

500 
packets/s

400 
packets/s

Fig. 4. An example of service request consolidation. The number within each
service represents its WCET.

each service of the CSC (instead of the WCET), then the total
delay for executing all consolidated services and transmitting
a packet between subsequent consolidated services is at most
the tenant’s deadline. We now discuss each condition in detail.

Feasibility Condition. Every consolidated service of a CSC
instance of the tenant will be executed by a unique VM. Like
in existing real-time systems research [11], we assume that a
VM can run on only one core at any time. Therefore, the CPU
utilization of each consolidated service must be no more than
1 to feasibly schedule it on a core, i.e.,

cimax
j=1

{
cap×wcets j

i
(L j−1

i )
}
≤ 1. (1)

In Eq. (1), s j
i denotes the j-th consolidated service,

wcets j
i
(L j−1

i ) denotes its WCET (for each input packet, which

is of size L j−1
i ), and thus its utilization is wcets j

i
(L j−1

i )×cap.
Traffic Condition. We impose a soft constraint on the

maximum amount of traffic that can traverse a CSC instance,
based on the intuition that it is easier to find small chunks of
available bandwidth than to find a large one. NFV-RT uses
one tenth of the smallest link bandwidth of the cloud as the
upper bound on the traffic rate, i.e.,

cimax
j=0

(cap×L j
i )≤

minek {bk}
10

, (2)

where bk is the bandwidth of each link ek.
The above bound is an empirical bound that comes from

the analysis of the Linear Programming (LP). Essentially, this
bound is to ensure that, after we obtain a (fractional) solution
of the LP, randomly rounding the obtained solution into an
integer assignment will output an almost optimal result. Due
to space constraints, we omit the details here.

Deadline Condition. We first briefly explain our estimation
of the maximum delay a consolidated service takes to process
a packet. Recall from Section III that, to enable predictable
delay, each machine runs a real-time VMM, such as RT-
Xen [22], which schedules VMs on the physical cores under
EDF. NFV-RT will create VMs with designated periods p j
and budgets b j, where p j and b j are specified by the interfaces
of the consolidated services. In other words, each VM j
requests the CPU for at most b j execution time units every
p j time units, where 0 < b j ≤ p j. Due to this, when multiple
VMs share the same core under EDF, if the total utilization
of all the VMs is no more than one (i.e., ∑ j b j/p j ≤ 1), every
VM j is guaranteed to receive at least b j execution time units
every p j time units [11]. Since the b j CPU time units can be
given towards the end of the period, each considolated service
may experience a worst-case delay of up to p j time units.



Algorithm 1 A dynamic program for determining the shortest
consolidated chain

1) Input:
〈
s1,s2, . . . ,sc〉 with function wcet(i, j), which is the WCET for

executing the sequence of services
〈
si,si+1, . . . ,s j〉, and period T .

2) Define function f (i) as the length of the shortest chain for executing
services s1,s2, . . . ,si. Define f (0) = 0.

3) For i from 1 to c: f (i) = min j∈[0,i−1] ∧ wcet( j+1,i)≤T { f ( j)+1}
4) Output f (c) and the corresponding CSC.

We now establish the deadline condition. For each tenanti,
if the maximum packet rate of the CSC is cap, and the length
of the CSC is l, then when using the period (1/cap) as the
delay of each service, the end-to-end delay of a packet will
be dtr +(1/cap+ dtr)l, where dtr is the maximum delay for
transmitting a packet between any two machines in the same
pod. (To minimize transmission delay, each CSC instance is
always assigned to the same pod; however, our formulation
can easily be modified to relax this condition.) Note that the
adjacent services in the chain can be merged and executed
in the same VM if their total CPU utilization is no more
than one. Moreover, after merging the services, the number of
consolidated services decreases, which in turn decreases the
total estimated delay for executing the consolidated services,
as well as the total transmission delay (since packets traversing
services executing within the same VM do not need to go
through the network). Hence, to ensure that the delay is at
most the deadline d of the service chain, our goal is to find the
largest cap such that there exists a way to merge the adjacent
services to obtain a CSC (with length l) such that the end-to-
end delay is at most d, i.e.,

dtr +(1/cap+dtr)l ≤ d. (3)

2) Algorithms for Consolidation and Abstraction:
We now present an algorithm for finding the maximum cap
and the corresponding CSC based on the deadline condition
(Eq.(3)), using an upper bound derived from the feasibility and
traffic conditions (Eqs. (1) and (2)). We use Algorithm 1 as
a sub-procedure, which takes any given cap and returns the
shortest length of the consolidated service chain.

The shortest length of CSC. Formally, the problem of finding
an optimal way to consolidate a service chain for a fixed
value of cap can be stated as follows: Given a service chain
S =

〈
s1

i ,s
2
i , . . . ,s

ci
i

〉
with period T (= 1/cap), partition S into

disjoint segments S1,S2, . . .Sk with the smallest k such that, for
any Sx, the WCET of the sequence of services2 in Sk is less
than the period. In other words, if we denote by wcet(i, j) the
WCET of the sequence of services si,si+1, . . . ,s j, then for any
segment Sx that starts from si and ends with s j, wcet(i, j)≤ T .

To solve this problem, we propose a dynamic program
(Algorithm 1), which finds the smallest partition for every sub-
chain that starts with s1. When computing for the sub-chain
from s1 to si, which is of length f (i), the algorithm enumerates
all possible ways to partition the chain into two sub-chains,
where the second sub-chain can form a single segment (the

2The WCET of a sequence of services is not always equal to the sum of
the WCETs of the individual services (for instance, services that share the
same procedure for parsing the packet, see [15]).

Algorithm 2 Find the max cap for deadline condition
1) Input:

〈
s1,s2, . . . ,sc〉 with function wcet(i, j), which is the WCET for

executing the sequence of services
〈
si,si+1, . . . ,s j〉.

2) For l from 1 to c:
(a) Binary-search the packet rate to find the maximum packet rate such
that the corresponding shortest service chain has length at most l.
• In each step of the binary search, use Algorithm 1 to find the

shortest CSC. If the length is less than or equal to l, search for
a larger α; otherwise, search for a smaller α .

(b) Assume α∗ is the largest packet rate, if dtr +(1/α∗+ dtr)l ≤ d,
list α∗ as a candidate, and drop it otherwise.

3) Among all the candidates, pick cap to be the largest among them.

WCET less than the period). Since the smallest partition of
the first sub-chain is stored by function f , it suffices to simply
store the size of the smallest partition among all such bi-
partition (see Algorithm 1 for details). It is straightforward
to see that the algorithm is optimal and takes O(c2) time to
compute, where c is the length of the original service chain.

With the above dynamic program for computing the length
of the shortest possible consolidated service chain, we can
now design the algorithm to determine the maximum cap that
satisfies the deadline condition (Algorithm 2). The algorithm
enumerates all possible lengths (from 1 to c) for the CSC,
and for each length, it performs a binary search to find the
corresponding maximum cap. One can easily show that the
algorithm always output the optimal cap, and the time it takes
is O(c3 logαmax), where αmax is the largest possible value
of cap, which can be obtained from the feasibility condition
(Eq. (1)) and the traffic condition (Eq. (2)).

After obtaining the maximum value of cap that satisfies all
three consolidation conditions, the actual CSC can be directly
found using Algorithm 1. For the CPU resource requirement
of each consolidated service, the period is equal to 1/cap and
the budget is equal to the WCET of the consolidated service.

3) Packing Requests into Aggregated requests:
After obtaining the CSC for each tenant, we will pack the
requests of a tenant into a set of aggregated requests that each
can be executed using an instance of the CSC. In other word,
the total packet rate of each aggregated request should be at
most the maximum packet rate cap. Observe that this is a
standard bin packing problem, where each request is an item
with size equal to its packet rate, and each aggregated request
is a bin with size cap. There are well-studied algorithms
for solving the bin packing problem efficiently with good
approximation ratios that we can use. For instance, the First
Fit Decreasing (FFD) algorithm [8] guarantees to find a
solution using at most 71/60 OPT + 1 bins, where OPT is
the minimum number of bins needed to pack all the items.

After consolidating the services and requests, we explain
how to assign them to the cloud in the next two stages. We will
use the following slightly abused notation for an aggregated re-
quest: requesti(vs

i ,v
t
i,
〈
s1

i ,s
2
i , . . . ,s

ci
i

〉
,αi,#requestsi), where vs

i
is the starting node, vt

i is the ending node,
〈
s1

i ,s
2
i , . . . ,s

ci
i

〉
is the consolidated service chain, αi is the packet rate, and
#requestsi is the total number of original requests that this
aggregated request contains. We denote by β

j
i the traffic rate



Algorithm 3 ILP for assigning requests to pods

min λ s.t. ∀i,∑
j

xi, j = 1, ∀i, j,xi, j ∈ {0,1} (1)

∀ j,∑
i

xi, jβ
in
i ≤ λ ×bin

j , ∀ j,∑
i

xi, jβ
out
i ≤ λ ×bout

j (2)

∀ j,∑
i

xi, jui ≤ λ × podCPU j (3)

after traversing the first j services, and wcet j
i the WCET

per packet of the j-th (consolidated) service. We also denote
β in

i and β out
i as the incoming and outgoing traffic rates,

respectively (i.e., β in
i = β 0

i and β out
i = β

ci
i ).

B. Stage 2: Pod Assignment

This stage is essentially a pre-assignment, which aims to
evenly split the resource demands of all requests of all tenants
into different pods. In the next stage, we will determine the
actual assignment for each pod individually.

Assigning requests to pods is a multidimensional bin pack-
ing problem, which can be formulated as an integer linear
program (ILP). Towards this, we compute for each podi the
maximum total bandwidth available from core switches to
racks and from racks to core switches (using a standard max-
flow algorithm), and denote them by bin

i and bout
i , respectively.

Denote the total number of CPU cores of podi by podCPUi.
For each requesti, denote the CPU utilization of its jth service
by u j

i . Then, the total CPU utilization of the request is
ui = ∑

ci
j=1 u j

i . For any requesti and any pod j, define the binary
variable xi, j to indicate whether requesti is assigned to pod j,
and denote λ as the resource utilization. We formulate the
request assignment as the ILP in Algorithm 3.

Since solving an ILP can be inefficient, we use an LP with
rounding approach to achieve better scalability. For this, we let
the variables xi, j to be chosen within the range [0,1] (instead
of integers {0,1}), and solve the LP version. For any requesti,
we choose a random number and assign it to pod j with the
probability xi, j obtained by the LP solution. One can show
that this LP with rounding technique produces a solution with
objective value (λ ) increased by a factor of at most (1+δ ),
for some small δ > 0, compared to that of the ILP solution.
(Due to space constraints, we omit the details of the analysis,
but a similar analysis can be found in [13]).

C. Stage 3: Machine Assignment

To assign a list of requests to the machines in a pod, we again
formulate the assignment as an ILP, then solve the LP version
and apply rounding to obtain an almost optimal solution. In the
following, all operations are done for each pod individually.

1) Graph Replication for the ILP formulation: We use a
graph replication technique to formulate the assignment as an
ILP. In the following, we denote by c∗ the length of the longest
service chain of all requests.

We create (c∗ + 1) replications of the pod, denoted by
G0,G1, . . . ,Gc∗+1, and the path assigned to a service chain,〈
s1,s2, . . . ,sc

〉
, will be broken into sub-paths for the sub-chains〈

s1,s2
〉
,
〈
s2,s3

〉
, . . . , where the jth sub-path is assigned using

G j. For each rack m, let m j be the replication of m in G j. We

Algorithm 4 ILP for assigning requests on each pod

max ∑
i

#requestsi · ∑
e∈out(vEoR)

xi,e,0


s.t. ∀i, ∑

e∈out(vEoR)

xi,e,0 ≤ 1, ∑
e∈in(vEoR)

xi,e,0 = 0 (1)

∀i, j ∈ [1,ci−1], ∑
e∈in(vEoR)

xi,e, j = ∑
e∈out(vEoR)

xi,e, j (2)

∀i, j,m, xi,m, j−1 + ∑
e∈in(m)

xi,e, j = xi,m, j + ∑
e∈out(m)

xi,e, j (3)

∀e, ∑
i, j

xi,e, jβ
j

i ≤ be, ∀m, ∑
i, j

xi,em , j ·u j
i ≤ cpum (4)

∀i, j,e,xi,e, j ∈ {0,1} (5)

create an edge from m j to m j+1 (for each j), denoted by em
j .

Hence, a path from the first replication to the cth replication
can be translated into an assignment for the request and vice
versa. We will formulate the ILP for finding such a path.

To minimize communication overhead, we forbid a path
from using any core switches apart from its starting and ending
switches, vs and vt , and we consider the assignment without
vs and vt . Once the sub-assignments between the services are
determined, the complete assignment is achieved by simply
connecting vs and vt to the beginning and the end, respectively.
Graph Abstraction. To reduce the complexity of solving
the LP that finds a path in the replicated graph, we perform
abstraction: Use an aggregated EoR to abstract all physical
EoRs, and call it vEoR. The edge between the aggregated EoR
and a rack is defined to have bandwidth equal to the total
bandwidth between this rack and all physical EoRs. Thus, after
the abstraction, each pod becomes a tree of depth 2.

2) ILP Formulation: We now give the ILP formulation for
finding the path in the (abstracted) graph. For any node v
(which is either a rack or the aggregated EoR), let out(v) and
in(v) denote the set of edges that start from and end with v,
respectively. For each requesti and each edge e, we define the
binary variables xi,e, j to indicate whether the replication of e
in G j is used in the path for requesti. With a slight abuse of
notation, for each rack m, we use xi,m, j to indicate whether the
edge em

j is used in the path for requesti. The problem can be
formulated as the ILP shown in Algorithm 4.

The first three constraints are to ensure that the assignment
of requesti is a valid path starting from vEoR in G0 and ending
with vEoR in Gci . Constraints (4) assert there are enough
bandwidth on every link and enough CPUs on every rack.
As usual, we relax xi,e, j to be in the range [0,1] and solve the
LP version (in this case, the solution is a network flow).

3) Rounding: To transform the fractional solution into an
integer assignment, we use random rounding to obtain a list of
integer solutions and pick one of them. For any requesti, we
assign it with the path that starts from the edge e ∈ out(vEoR)
with probability xi,e,0; following the edges, at each node
choose an outgoing edge with probability proportional to the
xi,e, j values; and repeat until reaching the ending vEoR.

Note that the paths obtained from the above rounding are
paths in the abstracted graph, and VMs are assigned only



to racks instead of to actual machines. To obtain an actual
assignment, we use the following two extensions:
Aggregated EoR to physical EoR. When the path goes
through the vEoR, we will randomly pick a physical EoR to
transform this assignment from the abstracted graph to the
real cloud. Since the traffic rate of the each path is no larger
than one tenth of the edge bandwidth (traffic condition), it can
be shown using Chernoff inequality that with high probability,
almost all edges (at least 1−δ fraction, for some small δ > 0)
will be assigned with enough bandwidth in the original cloud.
Packing VMs. In order to determine which machine of the
rack that a VM should be assigned to, for each rack, we
pack all VMs that are assigned to it into machines, i.e., using
utilization as key and the number of available cores of the
machines as bins, and perform FFD to determine the fraction
of VMs that cannot be packed.

Among all the paths generated by the random rounding, we
pick one where (i) bandwidth on edges is almost satisfied, (ii)
for each rack, the VMs assigned to it can be almost packed,
and (iii) the number of accepted requests is almost as large
as the solution of LP, where ‘almost’ always means (1+ δ )
fraction, for some small δ > 0. (To guarantee the traffic not
exceeding the bandwidth, one only needs to divide the original
bandwidth by (1+ δ ) and use the result as the input to the
solver.) Using Chernoff bound, it can be shown that such a
path exists and can be found if rounding is performed for
sufficiently many times. In our evaluation, we observe that
performing rounding for 20 times is sufficient.

V. ONLINE ASSIGNMENT

As shown in Figure 3(b), the resource manager maintains as
its internal state the existing set of CSCs obtained in the initial
phase, the existing assignment (i.e., the existing set of CSC
instances and their current assignments), and the current cloud
status (available bandwidth and CPU utilizations). After the
initial phase, NFV-RT will dynamically perform the online
assignment as new requests arrive at run time. Like in the
initial phase, NFV-RT packs the requests into CSC instances
and then assigns the instances to the cloud. It works in two
stages, as follows.

A. Stage 1: Assign to existing CSC instances

Given each new request R, NFV-RT first checks all existing
CSC instances of the same tenant to find one that has enough
slack between its current packet rate and its maximum packet
rate (cap) to fit the request in. If such a CSC instance exists,
R will be accepted and directly assigned to that instance.

If no such CSC instance exists, NFV-RT will ‘reshuffle’ the
existing CSC instances using bin packing formulation (which
can be solved using existing bin packing algorithms, such as
FFD), as follows: The bins are the CSC instances, and the
items are the requests of the tenant. The capacity of the bin is
the maximum packet rate of the CSC, and the size of an item
is the packet rate of the corresponding request. If all requests
of the tenant, including the new request R, can be packed using
only the existing CSC instances, we accept R and migrate the

requests according to the output of the bin packing solution
(if needed). Note that this migration only involves re-routing
the packet flows of the existing requests of the same tenant
but not migrating the services.

B. Stage 2: Create a new CSC Instance

If it is infeasible to assign the new request using only the
existing CSC instances, NFV-RT will create a new CSC
instance for the new request and assign it to the cloud.

To assign the new instance to the cloud, NFV-RT attempts
to find an assignment that results in balanced resource for
different pods and for different racks in each pod, by using
a two-level balancing strategy. If no such assignment exists,
NFV-RT will perform Pod LP to re-balance the resource usage
of the existing assignment.
Two-level balancing. We define the in-bandwidth and out-
bandwidth of a pod as the bandwidth from the core switches
to its racks and from its racks to the core switches, respectively.
We select a pod using the following method, which we call first
level balancing: first, iterate through all pods, and for each pod,
calculate the fractions of the in-bandwidth, out-bandwidth, and
cores that are remained, respectively, if the new CSC instance
is assigned to the pod; then, pick the pod with the smallest
maximum value of the three fractions.

After choosing the pod, we select a rack in the pod to assign
the entire new CSC instance. This is done using a second
level balancing, as follows. We iterate through each rack and
perform two steps: (i) calculate the fractions of CPU cores in
the rack and the bandwidth of links adjacent to the rack that
are remained, respectively, if the new CSC is assigned to the
rack, and (ii) find a path with sufficient available bandwidth
for the CSC instance from the starting core switch, passing
through the rack, to the ending core switch. More specifically,
for each rack rk, the step (ii) is done by finding two EoR
switches, s1 s2, such that the links (vs, s1, rk, s2, vt) have
sufficient bandwidth for the new CSC instance. Among the
racks for which a path can be found, we pick the one with the
smallest maximum value of the CPU and bandwidth fractions.

If no assignment can be found, we will perform VM or
traffic migration to better organize the resources in the chosen
pod, i.e., perform a re-assignment of existing CSC instances.
This is done through the following Pod LP.
Pod LP. We use the ILP in Algorithm 4 with the following
modifications: In Constraint (1), replace ∑e∈out(vEoR) xi,e,0 ≤ 1
with ‘= 1’, to ensure that all requests will get an assignment.
Define a new variable γ as a ratio reflecting the most congested
link (most loaded rack). Then, in Constraint (4), replace
∑i, j xi,e, jβ

j
i ≤ be with ‘≤ γbe’, and ∑i, j xi,em, ju

j
i ≤ cpum which

‘≤ γcpum’. Finally, change the objective to “minimizing γ .”
We solve the obtained ILP using the LP with rounding

technique, as was done in Section IV-C3. By the design of the
new ILP, the output assignment will minimize rack load and
link congestion. After re-balancing the requests’ assignment
in the pod, we use the two-level balancing heuristics again to
find an assignment for the new request. If no assignment can
be found, the request will be rejected.



VI. EVALUATION

We evaluated the performance and scalability of NFV-RT
using both simulation and on an actual testbed. We imple-
mented a prototype of NFV-RT with all of its functionalities
to perform resource provisioning for NFV requests. We used
Python to implement both the controller and the resource
manager of NFV-RT. For the LP solver, we used Gurobi [6]
with 32 parallel threads.

Within each machine, RT-Xen [22] is used as the real-time
VMM, running on Ubuntu Server 12.04, 64-bit. Although
RT-Xen only supports VM budget specified in millisecond
granularity (period is in microsecond), it is sufficient for the
purpose of illustration, and we simply round up the budget to
the nearest millisecond. Software network bridges in Linux are
set up for the communication between VMs. After the resource
manager has determined an assignment, the controller uses
RPC to create VMs on the machines and to configure both
the services to execute and the next hop to forward packets.

We compared our approach against a greedy algorithm as
our baseline. The greedy strategy constantly monitors the
status of the cloud to detect resource bottlenecks; if a VM
with high CPU utilization (over 85%) is found, it splits the
load and spawns a new VM, then attempts to place the new
VM in the same rack as the overloaded VM. If the rack is
full, it tries the racks that are two-hop away (i.e., racks in the
same pod), before considering any other racks. In addition,
for simulation, whenever a request arrives at run time, it
checks whether assigning this request to the cloud using the
planned assignment will cause a resource bottleneck; if so,
it immediately attempts to spawn a new VM to avoid the
bottleneck (instead of reactively responding after a bottleneck
is observed). If no location can be found for spawning the new
VM, the request will be rejected.

A. Simulation

Setup. We used a 16-core machine to simulate a cloud setup
with the same topology as shown in Figure 1. The setup
contains 1600 machines, with each having 4 CPU cores, and
every 40 machines form a rack. The cloud is divided into 10
pods, with 4 racks and 2 EoR switches each. There are 4 core
switches that are shared by all pods. Every link in the cloud
has a bandwidth of 10Gb/s.

There are ten services that the cloud can execute, each with
WCET randomly picked from the range [5,50] µs. There are
50 tenants, each with a service chain of length at most 10 and
a deadline between 5ms and 10ms. The starting and ending
cores switches were randomly picked. A request of a tenant
was generated by randomly choosing packet rate from 1000 to
4000 packets/s. Hence, the largest traffic rate is about 50Mbps.
Once the requests are assigned to pods, the actual assignment
for each pod is independent of each other; hence, the machine
assignment for the pods is fully parallelizable. Therefore, the
execution time of NFV-RT consists of (1) the time to pack
the requests into CSC instances, (2) the time to assign CSC
instances to different pods, and (3) the maximum time for the
machine assignment among all pods.
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Fig. 5. Simulation for real time performance

Efficiency of LP with rounding. We evaluated NFV-RT with
30K requests and 10 randomly generated test cases, where we
recorded both the execution time for finding the assignment
and the number of accepted requests (the acceptance rate). The
results show that our LP rounding based resource manager is
highly efficient: the average execution time of NFV-RT is less
than 5s, which is orders of magnitude better than the traditional
ILP based solutions, which can take 1800s [14] for the offline
stage. In addition, NFV-RT is also effective in utilizing the
resource: it accepts about 75% of the requests, and almost all
links adjacent to the core switches are fully utilized, i.e., no
more requests can be assigned to the cloud.
Real-time performance. We next evaluated the online real-
time performance of NFV-RT and the baseline strategy (where
requests arrive dynamically at run time). For this, we chose a
10-minute interval and generated 60K requests (i.e., about 100
new requests every second). The total traffic rate of each tenant
formed a bimodal distribution over time, so as to capture the
bursty nature of data center network [7], [2]. Specifically, for
each tenant, we selected two time slots as the traffic peaks,
and for each request, we randomly chose one peak, generated a
number x from the normal distribution N (0,150), and finally,
let the starting time and ending time be the peak time ±x. We
generated 10 test cases and constantly recorded the current
acceptance rate (the number of accepted requests divided by
the number of requests so far).
Acceptance rate. Figure 5(a) shows the results for a single
trial, where the x-axis represents time, and the y-axis gives
the current acceptance rate. Observe that NFV-RT always
outperforms the baseline, and the performance improvement
increases with time. This is expected, since long running
requests accumulate in the cloud over time, and it becomes
more difficult for a greedy strategy to fully utilize the cloud.

Figure 5(b) shows the aggregated results of 10 trials. The
y-axis gives the acceptance rate of NFV-RT divided by that of
the baseline, averaged over 10 trials. As shown in the figure,
NFV-RT accepts about 3 times the requests compared to the
baseline. Note that the smaller improvement at the beginning
is expected, because the cloud had a lot of resources available
and the baseline was consuming resources aggressively. When
the resources in the cloud are almost saturated (at around
100s), the baseline performance began to drop substantially. In
contrast, NFV-RT started to demonstrate its ability to schedule
requests efficiently under limited resource availability.

The aggregated results also show that the online assignment
of NFV-RT incurs only small overhead (less than 0.5ms if Pod
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LP for each pod is invoked at most once every second, which
allows us to process over a thousand requests per second).
Schedulable rate. The design of NFV-RT guarantees that the
packets of every accepted request will meet their deadlines.
In contrast, without considering the timing constraints, the
greedy baseline does not have such a guarantee: although our
simulation ensures that CPUs and links are never overloaded,
accepted requests might still miss their deadlines. Specifically,
let the schedulable rate be the percentage of requests that meet
their deadlines. Then, in Figure 5(a), the acceptance rate of
NFV-RT is also its schedulable rate, whereas the acceptance
rate of the baseline is an upper bound of its best possible
schedulable rate. Further, the performance improvement of
NFV-RT over the baseline in terms of schedulable rate is at
least equal to that was shown in Figure 5(b).
With or without Pod LP. We evaluated NFV-RT with and
without Pod LP. We observed that, in the same setting, having
Pod LP does not offer significant improvement. However, there
are scenarios where the benefit of Pod LP can be arbitrary
large, such as the following. Consider a pod with two racks,
rk0 and rk1. At time 1, a large number of CPU-intensive
requests arrive, which use up all CPUs in both racks. At time
2, all requests assigned to rk0 finish and thus, rk0 becomes
fully available whereas rk1 has no CPU left. At time 3, a large
number of bandwidth-intensive requests arrive, each of which
needs very little CPU resource. Without using Pod LP (i.e., no
migration), NFV-RT can only use rk0 to assign these requests.
However, the new assignment given by Pod LP allows requests
from rk1 to migrate to rk0, making the bandwidth on the
links adjacent to rk1 available for the new requests (which
is previously unusable as rk1 has no CPU left). Theoretically,
the gain could be made arbitrarily large if we set the CPU
requirement of the new requests to be arbitrarily small. We
investigated one case in this setting, and we observed that
Pod LP enables over 25% more requests to be accepted.
Scalability. We evaluated the scalability of NFV-RT by
considering larger cloud topologies. We consider respectively
1.6K, 8K, and 16K machines by increasing the number of pods
in the cloud and keeping the size and the topology of each pod
unchanged. Note that the execution time in this evaluation is
for the initial phase of NFV-RT, and when entering the online
phase, the overhead of NFV-RT for scheduling requests is
negligible (less than 0.5ms). We varied the number of requests
from 5K to 35K. Figures 6(a) and 6(b) show the execution
time when varying the number of requests and the number of
machines, respectively. The execution time grows linearly in

terms of the number of requests, but grows sightly less than
linear in terms of the number of machines. This is because the
complexity of LP depends on both the number of machines and
the number of edges, and scaling up the topology will increase
both of them. In all cases, the initial phase is completed within
35 seconds, even for cloud with 16K machines.

B. Actual Testbed

We evaluated NFV-RT in a local cluster consisting of 40 cores
in total across 4 physical machines hosting VMs. An addition
physical machine serves as the traffic generator. The traffic of
a request will always start from the generator, travel through a
list of VMs, and be sent back to the generator. The generator
will record the sending time and receiving time of every packet
to compute the packet’s delay.
VMs. Two of the VM hosts have 4 Intel(R) Xeon(R) 2.40GHz
CPU cores with 12GB RAM, and the other two have 16
Intel(R) Xeon(R) 2.10GHz cores (32 core threads with hyper-
threading) with 24GB RAM. The 16 core machines have
hyper-threading enabled, and hence, we are able to get 32×
parallelism. All VMs run Ubuntu Server 12.04, 64-bit with
256MB RAM. One core is reserved for the VMM in each
4-core machine, and two cores are reserved for the VMM in
each 16-core machine, all with 2GB RAM. We run 4 VMs
on each of the quad-core machines, and 32 VMs on each of
the 16 core machines, for a total of 72 VMs, of which 66 are
used for running the service chains.
Network. On our testbed, we generated delays by running
the machines across different racks. All three racks (more
specifically, the two 16-core machines and the switch that
connects the two 4-core machines) and the traffic generator
are connected by another switch. The local cloud is viewed as
a single pod, with each link having 1Gb/s bandwidth.
Services. We implemented two types of services in C: firewall
and network address translation (NAT). The firewall and NAT
will both attempt to match the source IP of a packet with
a list of pre-defined rules, and, respectively, mark a specific
bit of the packet and change the source IP to a different
IP when a match is found. Each service has a parameter
specifying the number of rules it needs to match. For instance,
FW50000 and NAT100000 stand for firewall with 50K rules
and NAT with 100K rules, respectively. We used four different
services: FW50000 (WCET 2.5ms), FW100000 (WCET 5ms),
NAT50000 (WCET 2.5ms), and NAT100000 (WCET 5ms).
The WCET was estimated by measurement [20].
Requests. We generated 5 tenants, three of whom have service
chains of length 1 and the remaining two have service chains
of length 4. The service chains are chosen randomly with
no repeated service for each tenant. The deadline of each
tenant is the sum of the WCETs of its services plus a random
number chosen between 10ms and 20ms. Each tenant has
10 requests, and the packet rate of each request is randomly
chosen from the range [50,100] (i.e., the maximum data rate
is about 1.2Mb/s). All requests arrive at the beginning and last
for 2 minutes. In other words, we created a network burst at
time zero, and examined the performance.



Figure 7 shows the CDF of the packet delay. The x-axis
represents the delay/deadline ratio, and the y-axis represents
the percentage of the packets that meet their deadlines. For
each algorithm, the point with x-value equal to 1 indicates
the percentage of packets that meet their deadlines (the actual
numbers are listed in the legend).
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NFV-RT provides timing
guarantees for more than
94% of the packets, which
is approximately three times
that can be guaranteed by
baseline (31.39%). We fur-
ther observed that the pack-
ets that missed their dead-

lines under NFV-RT were either caused by network outliers
or happened near the time that the socket was just created.3

We also observed that the CDF under the greedy baseline is
stabilized at a percentage value of less than 50%, i.e., over 50%
of the packets have arbitrarily long delays. We investigated
the data and confirmed that these packets were lost and never
received by the generator. In contrast, the maximum packet
delay under NFV-RT is always bounded, and only a very
small fraction (about 1%) of the packets have delays larger
than 4 times their deadlines. Finally, NFV-RT takes only a
few milliseconds to find an assignment in our experiments.

VII. RELATED WORK

Existing work in NFV resource management does not
consider the dynamic deployment of services in a general vir-
tualized cloud setting with real-time constraints. For instance,
PLayer [9] and SIMPLE [14] are effective “traffic steering”
tools for routing traffic flows between static middleboxes
(MBox), but they do not consider virtualization or dynamic
MBox placement. Similarly, CoMb [15] considers dynamic
MBox placement but in a special setting where the routing path
is fixed, and its goal is simply to determine which machines
on the path should be chosen to execute the MBoxes.

Stratos [3] monitors the cloud to detect resource bottlenecks
and responses accordingly by duplicating or migrating VMs.
However, the ‘reactive’ nature of Stratos leads to poor delay
guarantees (e.g., when a bottleneck is detected, some deadlines
may have been missed). In contrast, NFV-RT proactively as-
signs the resources to services based on a formal analysis, thus
enabling better timing guarantees and performance predictabil-
ity. NFV-RT can enable millisecond-level delay guarantees,
which is not possible under such a reactive approach.

There exists an extensive literature in cloud resource man-
agement (e.g. [18], [1], [19]) but they target non-real-time
applications. Techniques for virtual machine placement and
migration have also been developed, e.g., [21], [12], [17].
However, these techniques do not simultaneously solve the
VM placement and the traffic steering problem, which in
general can lead to sub-optimal solutions. We are not aware of
any existing work that can provide formal timing guarantees
for real-time services in the cloud environments.

3Incoporating these overheads will be considered in our future work.

VIII. CONCLUSION

We have presented the design, implementation and evalua-
tion of NFV-RT, a real-time resource provisioning system for
NFV. NFV-RT integrates timing analysis with several novel
techniques, such as service chain consolidation, timing ab-
straction, and linear programming with rounding, to enable ef-
ficient resource provisioning while ensuring timing guarantees.
Our evaluation using both simulation and emulation shows that
not only NFV-RT is effective in meeting deadlines and offers
significant real-time performance improvement compared to a
baseline approach, but it is also highly efficient and scalable.
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