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Abstract— Vertical take-off and landing (VTOL) vehicles are
becoming increasingly popular for real-world transport; but, as
with any vehicle, guaranteeing safety is both extremely critical
and highly challenging due to issues like rotor faults. Existing
fault detection and isolation (FDI) techniques usually focus on
multirotor systems or fixed wing systems, rather than the hybrid
VTOLs. Since VTOLs have both rotors and ailerons, a fault in
a rotor may be masked by the (correctly working) ailerons,
making it much more difficult to detect faults. However, this
masking only works when ailersons are used (e.g., during
cruising), leaving the takeoff and landing vulnerable to crashes.

This paper presents an online rotor fault detection and
isolation (FDI) method for VTOLs. The approach uses pose
analysis and aileron command data to quickly and accurately
identify the faulty rotor and to compute the severity of the fault.
Our method works for hard-to-detect fault scenarios, such as
small-severity faults that are masked during cruise flight but
not during vertical motion. We evaluated our technique in a
SITL PX4 simulation of a modified Deltaquad QuadPlane. The
results show that our FDI technique can quickly detect and
isolate faults in real time (within 1s-2.5s) and achieve high
isolation success rate (91.67%) across six rotors, and that it can
estimate the severity of faults to within 2%. When applying a
simple recovery process post-isolation, the system consistently
achieved safe landing.

I. INTRODUCTION

Aerospace ventures have traditionally focused on either fixed
wing aircraft or multirotor systems; however, recent efforts
by companies such as Joby, Archer, and Lilium are exploring
vertical takeoff and landing vehicles (VTOLs) that use both
fixed wings and multiple rotors. Such hybrid systems offer
two key advantages: (i) unlike pure-fixed wing aircraft,
which need large runways or slingshots to become airborn,
VTOLs can use their multiple rotors to move vertically;
and (ii) systems that rely solely on rotors to fly suffer
from low range (because of the high energy cost inherent
in relying entirely on propellers for lift), whereas VTOLs
can leverage their fixed wings to operate for long periods of
time (while still being battery-powered). For example, using
a VTOL, one can cut down a fifty-minute drive in the Munich
Metropolitan Region or San Francisco Bay Area by 3%-13%
in ‘normal’ traffic and by more than half in heavy traffic [1].

As in pure multi-rotor systems, VTOL rotors are sus-
ceptible to faults, which reduce trajectory tracking ability
and may cause the vehicle to crash. In fact, the impact of
faulty actuators have been shown in practice. For example,
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Fig. 1. (Left) MV22 VTOL system crashing [2]. (Right) F-35B VTOL
crashing [3].
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Fig. 2. A fault that is masked during cruise flight can crash the system when
landing. In each subfigure, the blue solid line shows the trajectory without
faults; the red dashed line shows the trajectory with 10% fault injected to
Rotor 1 at 60.5 sec after takeoff.

Fig. 1 shows two real-world VTOLs that crashed because of
a single faulty actuator. Thus, if we could quickly identify
and mitigate the impact of the faulty actuators, we could
improve the ability of these systems to avoid expensive and
dangerous crashes, thereby ensuring safety for the nearby
people, infrastructure, and environment.

Goal and challenges. Our goal is to develop techniques
that leverage unique aspects of VTOLs to quickly detect and
isolate rotor faults. We consider a rotor faulty if its output
thrust is a scaled version of the desired output thrust.1One
challenge towards this goal is to detect and isolate very low-
severity faults. Such faults are especially hard to detect in
VTOLs because they are masked by the fixed wings during
cruising but can cause the system to crash as soon as the
vehicle switches to landing. As an example, Fig. 2 shows
the desired and achieved trajectories for a VTOL system
that does not deploy any FDI method. When a 10% rotor
fault occurs while cruising (using fixed wings), the system
travels along its desired trajectory. However, upon switching
to a ‘vertical’ landing mode, in which the ailerons and fixed
wings play little role, the rotor fault causes a critical failure
and crash shortly afterwards. This can happen in seemingly
less serious cases, in which as little as 4% of thrust capacity
is lost in one rotor. Due to the short time window during

1Developing recovery strategies for handling complete rotor failure is an
interesting future work.



which the fault impact can be observed, one needs a real-time
FDI method that can isolate such low-severity faults within
a bounded amount of time while also being lightweight.

Another challenge is to accurately estimate the severity of
the fault, which is important because different fault severity
levels have different effects on the actual thrust output. In
principle, if we know in advance the severity of a rotor
fault – for instance, the rotor operates at only 70% of the
commanded thrust – then, we could design recovery actions
(e.g., by adapting the controller) for that particular fault
mode. In practice, however, the degree of a fault can vary
substantially: a faulty rotor may produce a thrust anywhere
between 0% and near 100% of the desired thrust. Therefore,
we need to be able to accurately determine the fault severity
at run time to perform the right recovery actions. Recovery
actions based on incorrect estimation of the severity level
will not only fail to compensate for the impact of the fault
on motion but could also further destabilize the controller.

Related work. The dynamic model of VTOLs has been well
studied in prior studies [4], [5], but to our best knowledge,
FDI techniques that consider the hybrid dynamics (i.e., partly
fixed wing aircraft and partly multirotor aerial vehicle) of
VTOLs are much less explored. The authors of [6] designed
a controller capable of leveraging tilting rotors to recover
from the effects of (a) a rotor that completely fails, or (b)
a rotor-tilting mechanism that locks a rotor at a particular
tilt angle. Unlike our work, however, it focuses on complete
rotor faults and thus is orthogonal to our method.

FDI has been more extensively studied in both pure fixed-
wing aircraft and pure multirotor aerial vehicles (MAVs). For
instance, one approach for fixed-wing aircraft uses current
sensors to perform fault detection; if more current than that
of the fault-free condition is drawn, then a fault is deemed
detected [7]. Conceptually, it should be possible to port
such a technique to MAVs. However, additional hardware
components would need to be added to each motor in the
system, and we would need to know the fault-free current
drawn despite natural changes such as the direction of the
wind. Other techniques, such as [8], [9], propose using set-
valued observers for FDI in fixed-wing UAVs; however, these
have not been studied in the context of hybrid VTOLs.

Similarly, detecting rotor faults in multirotor systems
is a topic of considerable research over the past several
years. One approach is to use vibration data to find faulty
propellers [10]–[12]. However, this approach does not scale
well, even if the number of rotors does not grow significantly;
for example, it can take over 100 seconds to detect a rotor
fault in a quadrotor [11]. Another approach for finding faults
is to use state observers [13]–[15], but such techniques would
need to be adapted significantly to work for VTOLs because
VTOLs have additional forms of actuation and a rigid body
with different dynamics than MAVs. Analyzing the three
angular velocities can also be used to quickly identify faults
in systems with eight rotors [13], but this was only examined
in the context of pure multirotor systems. The work in [16]
extends the concept of [13] to first detect a sector of rotors
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Fig. 3. The actuators in our modeled VTOL.

that contain the faulty rotor, and then uses a finer-grain search
within the sector to isolate the fault. This approach can scale
to systems with dozens of rotors; however, it relies on the
analysis of the steady state error magnitude in roll and pitch,
which does not work for low-severity faults in our setting
since (i) during cruising, the error is masked (by the fixed
wings) and (ii) the fault can cause the system to quickly
crash upon switching, making it impossible to obtain the
steady state behavior that is required for fault detection.

Finally, data-driven approaches for fault detection are
becoming increasingly common, such as those of [17]–[20].
For instance, [20] proposes a supervised neural network to
detect faults in a robotic system. More recent work has even
considered how to run techniques based on neural networks
in microcontrollers [21], although this involves adding an
additional sensor per rotor. Furthermore, the trained model
is specific to the sensor setup that is used and thus needs to
be retrained to work with a different vehicle.

Contributions. We present a method for the FDI of rotor
faults in VTOL systems, and make three key contributions.
First, we adapt the ‘fault-indexing’ technique used in [13],
[16] to identify a ‘half-space’ set of three rotors that contain
the faulty rotor. Second, we propose a technique that uses
the ratio of the error peaks that occur post-fault-detection to
quickly isolate the faulty rotor. We leverage impulse analysis
to efficiently isolate faults (in ≤ 2.5s in our simulations);
then, by analyzing aileron control data, we can accurately
estimate the severity level of a fault with a precision of
within ±2%. Third, we provide experimental validation using
software-in-the-loop simulations of a DeltaQuad Quadplane
in a PX4 environment. Online fault isolation enables the
system to deploy a recovery technique, such as a different
controller, that is better able to hew to the desired trajectory
given that a rotor is faulty. Our VTOL model and FDI
technique are made available as an open source project. [22]

II. MODEL

For concreteness, our technique is developed using the
DeltaQuad Quadplane dynamics model provided by PX4
autopilot software [23], which models the system’s force and
torque dynamics. We made modifications to the system to
make it conform better to passenger VTOLs. In particular,
we added two rotors having rotation axis parallel to the
body-frame z-axis, and we disabled the rotor with a rotation
axis along the body-frame x-axis to better approximate the
VTOL system that Joby is developing [24]. Fig. 3 shows the
placement of the six rotors and two ailerons in our VTOL
frame.



Attitude Representation. Let the inertial frame be repre-
sented as {FI} = {OI ; b̂n, b̂e, b̂d}, where b̂d points down-
ward, consistent with North-East-Down (NED) orientation as
seen in related work [4], [6]. The body frame is denoted by
{FB} = {OB ; b̂x, b̂y, b̂z}, centered at the vehicle’s center
of mass (CoM). The aircraft’s orientation relative to the
inertial frame is captured by the rotation matrix RB

I .
VTOL dynamics consist of three components: gravity

dynamics, propulsion dynamics, and aerodynamics. These
components constitute the total force and moments that act
on the VTOL, as shown in (1) and (2).

FB = FB
g + FB

r + FB
a (1)

MB = MB
m +MB

r +MB
a (2)

Here, g represents the component attributable to gravitational
influences, r denotes the contribution from propulsion thrust,
and a signifies the aerodynamic forces and moments. The
moment component MB

m refers to resisting moments caused
by the spinning of rotors.
Gravity dynamics. The effect of gravity on the VTOL
system can be modeled with the equation

FB
g = RB

I

 0
0

mgb̂d

 ,

where m is the mass of the VTOL system.
Propulsion dynamics. Assuming negligible induced drag,
the total thrust force is the collective force produced by the
propellers:

FB
r =

6∑
i=1

TB
i =

6∑
i=1

Tiû
B
i ,

where Ti is the thrust generated by the ith rotor and ûB
i

defines the direction of the thrust force produced by the ith

rotor’s rotation relative to the body frame. Then,

Ti = cFω
2
i and FB

r = cF

6∑
i=1

ω2
i

 sinχi

0
− cosχi

 ,

where cF > 0 is the thrust constant coefficient of the rotors,
ωi is the rotational speed of the ith rotor, and χi is the angle
between bz and −by , which defines the tilt of rotor’s thrust
direction relative to the vertical axis of the body frame.

Thrust moments MB
r occur when the rotor-generated force

is applied at a distance from the vehicle’s CoM, creating a
rotational effect due to the offset between the thrust’s line
of action and the CoM. These moments are calculated by
considering the thrust magnitude and the radial distance from
the CoM to the point of force application:

MB
r =

6∑
i=1

(rBi × (Tiûi))

Resisting moments MB
m occur due to the torques generated

by the rotor rotations, which produce a rotational effect
that counteracts the vehicle’s motion. These moments are

calculated by considering the torque magnitude and the
rotational direction of the ith rotor relative to the body frame.
Formally,

MB
m =

6∑
i=1

τBi ,

where τBi is the torque generated by rotation of the ith rotor
relative to the body frame. This torque can be expanded into
the form

τi = (−1)dicKω2
i , MB

m = cK

6∑
i=1

(−1)diω2
i

 sinχi

0
− cosχi

 ,

where cK > 0 is the torque constant coefficient of the rotors,
and di ∈ {0, 1} is the rotation direction of the ith rotor
around its axis (i.e., clockwise or counter-clockwise).

Aerodynamics. The aerodynamic force FB
a arises from

airflow interaction with the airfoil, and plays a critical role in
the aircraft stability. Three forces constitute the aerodynamic
forces acting on the VTOL: drag (XW ), lateral forces (Y W ),
and lift (ZW ). The total aerodynamic force vector is thus:

FB
a = RB

W

XW

Y W

ZW

 ,

where XW = q̄SCX(α, β), Y W = q̄SCY (β), and ZW =

q̄SCZ(α). Here, q̄ =
ρV 2

α

2 represents the dynamic pressure,
where ρ is the air density, Vα is the airspeed, and S denotes
the aerodynamic surface area of the model. The angle of
attack is given by α, and β represents the angle of the
velocity vector relative to the projection of xb onto the wind
plane. Coefficients CX , CY , and CZ correspond to drag,
lateral, and lift forces, respectively. For simplicity, we assume
lateral forces are negligible, and thus CY = 0. For lift and
drag coefficients, approximations are made for two cases: the
pre-stall region (α > 0), and the post-stall region (α < 0).

Pre-stall region: Cx(α, β) ≈ CD,0 + CD,αα
2

Cz(α) ≈ CZ,0 + CZ,αα

Post-stall region: Cx(α, β) ≈ c1 sin(2α)

Cz(α) ≈ c0 + 2c1 sin
2(α),

where coefficients c0, c1, CD,0 ,CD,α, CZ,0, and CZ,α are
sourced from the PX4 documentation [23].

While cruising, the aerodynamic moments MB
a play a

critical role in stabilization. They are controlled by the de-
flection of ailerons, elevators, and rudder, which are denoted
by δa, δe, and δr, respectively. (Our specific aircraft uses
only ailerons.) The aerodynamic moments are approximated
with the combination of roll torque ΦB ≈ qSbCLaδa, pitch
torque ΘB ≈ qSc̄CMeδe, and yaw torque ΨB ≈ qSbCNrδr.
The vector then becomes

MB
a =

ΦB

ΘB

ΨB

 ,



TABLE I
PARAMETERS OF VTOL DYNAMICS

Signal Description
cF Thrust constant coefficient of the rotors
cK Torque constant coefficient of the rotors
CZ,0 Lift coefficient at zero angle of attack
CZ,α Lift coefficient slope
CD,0 Drag coefficeint at zero lift
CD,α Incremental drag coefficient
CLa Aileron coefficient
CMe Elevator coefficient
CNr Rudder coefficient

where b is the wingspan, and c̄ is the mean aerodynamic
chord. The coefficient CLa, CMe, and CNr are from PX4’s
configuration of the base model [23]. Table I summarizes
these values.

Fault model. We consider VTOLs in which one or more
rotors may become faulty during flight, but the rest of
the system always works correctly. The severity level of
a faulty rotor is represented by si ∈ [0, 1], where i is the
rotor index. An individual rotor’s thrust is thus redefined as
T ′
i = min{(1 − si)Ti, (1 − si)fmax}, where Ti is the thrust

commanded for this rotor by the control algorithm and fmax is
the nominal thrust capacity of the rotor. We assume no limit
on the number of rotors that can become faulty, but at most
one can fail at the same time for simplicity. Finally, we focus
on rotor faults that occur during cruise flight, but can impact
the vehicle safety during vertical motion. In our setting, the
cruise trajectory is a straight trajectory with steady speed.

We assume the desired state at any given time t is given,
and we can extract orientation information (including the
roll angle ϕ and the pitch angle θ) by using a 9-axis inertial
measurement unit (IMU). ϕ is defined as the UAV’s rotation
about b̂x, and θ is defined as the rotation about b̂y . Since
our FDI approach relies on errors in roll and pitch, we define
a limited state error vector e = [eϕ, eθ]

⊤, where eϕ is roll
angle error and eθ is pitch angle error. The median value of
e over a time window ∆x is given by ex.

III. APPROACH OVERVIEW

The work in [25] demonstrated how to use the ratio of
steady-state error values |eϕ| and |eθ| for fault isolation.
It has two key insights: first, |eϕ|

|eθ| remains steady across
fault severity levels and trajectories for a given rotor lo-
cation; and second, fault severity can be estimated as a
low-order bivariate polynomial that relates error magnitude
and fault location to fault severity. However, their method
is tailored specifically for pure multirotor systems, such as
ModQuad [26] and does not apply to VTOLs due to its
reliance on steady state error (which cannot be achieved
within the short time window when switching from cruising
to landing mode). Our simulations show that during cruise
flight, VTOL controllers will deploy their ailerons to mask
rotor faults until they switch to a vertical mode of flight. We
adopt the core concept of using an error ratio, but apply
it to examine the ratio of peaks in roll and pitch error
following the occurrence of a fault; since we examine a

system with fewer redundant rotors, the effect of a fault is
more pronounced.
Fault detection. Fault detection establishes whether there
exists a faulty rotor in the system. One simple approach is
to perform error thresholding: if an error parameter (e.g.,
roll error) ever exceeds some preset threshold, we declare a
fault to have occurred. However, this can result in a lot of
false positives and false negatives, as noisy signals caused
by factors such as wind can significantly affect the system.
Instead, we adopt a dynamic approach as first proposed for
MAVs [16].

This approach involves: (i) collecting a baseline window
of data and computing the standard deviation in the mag-
nitude of error in both roll and pitch over this window;
(ii) periodically collecting new ‘test’ windows of data to
compare to the baseline; (iii) comparing the difference in
errors recorded over both windows to the weighted values
of the standard deviation computed in i.

The baseline window is collected once the vehicle enters
cruise flight, and it is updated each time a fault is isolated,
thereby ensuring that our technique can detect multiple
sequential faults.
Fault isolation. Once a fault has been detected, the next step
is to isolate (identify) the specific faulty rotor and to estimate
the severity of the fault that has occurred in that rotor. Our
methodology solves this problem using three key insights:
(I1) To narrow the search space, we first determine the half-
space that contains the faults by checking the signs of roll
and pitch error peaks after the fault is detected. (I2) Based
on our observations in simulations, the range of error ratio
of both overshoots is stable under noisy data across different
severity levels. The faulty rotor can be found by comparing
the error ratio with pre-recorded ‘error profiles’. (I3) The
impulse amplitude of the aileron which offsets the steady-
state pose error can be expressed as a quartic function of
severity level. The severity level of the determined candidate
rotor then can be estimated to an accuracy of 2%.

This initial work performs FDI while the system is cruising
(i.e., the majority of flight time), thus enabling recovery
before the system switches to a vertical motion mode (where
redundancy in the form of ailerons does not help).

IV. FAULT DETECTION AND ISOLATION

A. Detecting the existence of a rotor fault

Our detection method relies on comparing statistics over
periodically collected windows of roll and pitch error data
to a baseline window of data. Notably, after the introduction
of a fault, the error will quickly re-stabilize to 0◦ while the
system continues to cruise, as the ailerons mask the effects of
a faulty rotor by adjusting the aircraft’s roll and maintaining
stability. When a rotor fault occurs, the imbalance in thrust
would typically cause the aircraft to roll uncontrollably.
However, the ailerons compensate for this imbalance by
generating corrective roll moments by the embedded control
algorithm, thus maintaining the desired attitude and reducing
the immediate impact of the fault on the aircraft’s trajectory.
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Fig. 4. Pose error over time when 25% fault is injected to Rotor 2. Green:
Before fault injection; Red: After fault injection.

However, this masking no longer works as soon as the
fixed wings become less useful, e.g., during landing, and the
system may crash as a result, as illustrated in Fig. 2. If we
examine the error closer to when the fault occurs, as in Fig. 4,
we can make several observations. First, upon the occurrence
of a fault, the system experiences a sudden spike in attitude
error; these errors both have the same sign. Second, the error
oscillates but dampens over time, and within a few seconds
reaches close to 0◦; this means that the impact of a fault
is completely masked soon after the fault occurs (at least,
for the lower-severity, harder-to-detect faults that we are
concerned with). However, this masking behavior does not
occur during vertical flight, at which point the destabilization
can be so rapid that a crash occurs. Thus, fault detection
must be done before the fault is masked. Given the phase
difference between these two errors, a fault is declared if
the roll error or pitch error exceeds a predefined threshold.
To address noise in inertia and gyroscope measurement, we
apply a baseline buffer ∆b which collects the steady-state
error during cruise flight and takes the median η̄b as the
baseline to the error thresholds.

After ∆b is collected, we proceed to collect a new window
of data in a pose error buffer ∆n while the system continues
to cruise; this buffer is periodically cleared (i.e., we over-
write the buffer). The buffer’s length introduces a trade-off
between the sensitivity of fault detection and noise tolerance.
A shorter buffer length results in fault detection that is more
sensitive but less resilient to noise impact, possibly leading
to a false positive detection. In contrast, a long buffer length
is less sensitive and consumes more memory, which can be
problematic for certain embedded systems, such as that of
the Deltaquad QuadPlane our PX4 simulator used. For the
robustness to noise, we compute the median error in the
collected data (η̄n = [ηϕ, ηθ]) of ∆n, and compare η̄n to
η̄b to determine the presence of a fault. The ηϕ represents
the collected roll error and the ηθ represents the collected
pitch error.

Formally, we perform detection by checking whether (3)
or (4) is satisfied, i.e., checking whether

∥η̄n − η̄b > mσηb
∥1 ≥ 1, or (3)

∥η̄n − η̄b∥1 > m′∥σηb
∥1, (4)

where m and m′ are tunable error threshold constants and
have range R ∈ (0, 1] that controls the sensitivity of FDI, and
σηb

is the standard deviation of pose error in the baseline
buffer. In (3), the l1-norm ∥.∥1 indicates that at least one
of the pose errors (roll or pitch) exceeds or equals to the
threshold, signaling the presence of a fault. To enhance

processing efficiency, all median variables are calculated
using a streaming algorithm, as outlined in (3).

(4) is helpful in cases where only one of the roll or pitch
error experiences a large spike upon the occurrence of a fault.

B. Locating and isolating the rotor fault

Once a rotor fault is identified, our algorithm employs a two-
step process to pinpoint the faulty rotor. First, it narrows
down the search area by determining the relevant half-space.
Then, it uses the error ratio to determine the rotor most
likely to be at fault. Once isolated, we can compute the
severity of the fault by examining how the aileron control
command changed in response to the fault. This, in turn,
enables recovery actions that help the aircraft to land safely.
Locate half-space. We categorize rotors into two ‘half-
spaces’ based on the sign of the roll and pitch errors. This
technique of employing pose errors for fault localization
draws from the approaches previously used in octorotors [27]
and MAVs with dozens of rotors [16]. We extend the concept
to VTOLs, in the process verifying that the core concept of
‘faulty rotor sectors’ as described by [16] carries over from
MAVs to VTOL systems. In essence, if both roll error and
pitch error are negative, then we claim that the fault exists in
Half-Space I (Rotor 1, 3, and 5); if both errors are positive,
then we claim that the fault exists in Half-Space II (Rotor 2,
4, and 6), where the rotor IDs are as per Fig. 3.
Identify faulty rotor. After the half-space is identified, the
list of potential faulty rotors is reduced from 6 to 3 in our
six-rotor model. Next, we establish the criteria to quickly
determine the faulty rotor from the set of three. Our method
analyzes the ratio of the peak observed error magnitudes in
roll and pitch, |eϕ| and |eθ|, after the fault is detected, for
all time points currently stored in ∆n. The error ratio Qe is
the ratio of these two peaks, as formally written in (5):

Qe =
max
t∈∆n

|eϕ(t)|

max
t∈∆n

|eθ(t)|
. (5)

To determine the usefulness of this ratio in identifying faulty
rotors we performed an simulation analysis. Figure 5 shows
the error ratio distribution for each rotor within the two
half-spaces. Here, we show amalgamated results across all
rotors, where for each rotor we tested a severity in the
set s ∈ {1%, 2%, ..., 30%} and ran 10 trials for each such
rotor-severity pair. The PX4 simulator we used (see Sec. V)
injected noise such as randomized wind into these trials, so
these results show trends that exist despite the presence of
external disturbances. We limited our tests to severities of
value s ⩽ 30%, as larger-severity faults resulted in immediate
crashes, and from a fault detection perspective it is clear that
a fault exists when this occurs.

For a given half-space, notice how the error ratio ranges
are concentrated, with the largest variance observed for Ro-
tors 5 and 6, which also happen to be the rotors with the least
impact on motion on account of being positioned along the
fixed wing. Furthermore, the error ratios are concentrated at
different values, e.g., the error ratio for Rotor 1 remains close
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Fig. 6. Aileron responses when faults of varying severity are injected into
Rotor 2. Green boxes are where aileron command saturation occurs.

to 0.5, while the ratio for Rotor 3 remains near 1.25. There
is similarity across half-spaces, e.g., the ratio for Rotor 1
is quite similar to the observed ratio for Rotor 2. However,
since half-space identification precedes this isolation step,
we need not be concerned with similarity in error ratios for
rotors in different half spaces. Since these error ratios are
so consistent, even with external disturbances, we can keep
these stored in memory. When a fault occurs at runtime, we
can simply compare the at-runtime error ratio to the stored
error ratios to isolate the faulty rotor within a half-space.

Compute severity level. Once a faulty rotor has been
identified, the final piece of the FDI problem is to compute
the severity of the fault. Our method is based on the
following insight: When a fault occurs, VTOL controllers
will try to compensate for attitude error caused by the faulty
rotor(s) with other actuators, including the ailerons. Thus,
based on how much the aileron control signal changes when
attempting to fly in a straight line, we can compute the
fault severity. For example, consider Fig. 6, which shows
how the aileron control signals vary in response to faults
of varying severity in Rotor 2. The servo motors operate
within a range of ua ∈ [−1, 1], where ua is a PX4 simulator-
specified control signal sent to the VTOL system. As fault
severity increases, the aileron control signal experiences
larger amplitude oscillations, until they eventually reach
saturation, as indicated by the green boxes for parts of the
curve for s = 0.3. If the ailerons reach saturation, the system
tends to destabilize, demonstrated in this figure by the fact
that the curve for s = 0.3 does not experience dampening
over time; eventually, this results in the system crashing.

To quantify fault severity, we analyze the peak aileron
control signal after the fault has been injected and within a
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Fig. 7. Relationship between severity levels and the inital overshoot of
aileron signal following rotor fault injection. Scattered data points represent
actual measurements, while dashed lines depicts an overlaid quartic model.

TABLE II
EXPERIMENTALLY FOUND COEFFICIENTS FOR (6).

Rotor ID c4 c3 c2 c1 c0

1 171.90 -226.13 106.04 18.24 -0.96
2 -22.18 50.33 -40.87 40.78 -1.51
3 -20.67 43.21 -36.77 34.12 -1.61
4 22.85 -26.71 -4.140 24.00 -1.02
5 109.79 -121.56 55.97 47.50 -1.30
6 -206.66 215.30 -13.78 51.68 -2.13

time window, ∆n, as depicted in Fig. 7. This figure plots the
peak control signal of either aileron, ξa, across a spectrum
of severity levels for all six rotors, ranging from 1% to 30%
or those severe enough to induce a crash. We then model
the severity level as a quartic function of ξa, which can be
collected from the altitude controller, illustrated by (6).

s =
[
c0 c1 c2 c3 c4

] [
1 ξa ξ2a ξ3a ξ4a

]T
(6)

Once the faulty rotor is determined, we can use the measured
peak aileron signal ξa over time window ∆n to compute the
severity s with the simulated coefficients reported in Table II.
Due to symmetry, ξa is consistent for symmetrically placed
rotors in each half-space.

V. IMPLEMENTATION

A. Simulation model and environment

This section outlines the simulation framework and the adap-
tations made to a base model for our simulaton analysis. Our
simulator is available as an open source project [22].
Base model. Our simulation utilizes the Deltaquad Quad-
Plane VTOL as the foundational model, a hybrid fixed-wing
and multirotor system. It uses four rotors dedicated to VTOL
operations, transitioning to forward flight through integrated
control surfaces. Unlike traditional fixed-wing models, it
employs only one rotor for forward propulsion, and does
not have elevators or rudders. This base model is depicted
on the left side of Fig. 8.
Modification to the base model. To better simulate popular
commercial eVTOLs, such as that of Joby Aviation [24], we
made a few modifications. We added two rotors on the front
part of the fixed wings; these were symmetrically placed
0.707 m from b̂x. The horizontal back rotor was disabled,



Fig. 8. (Left) PX4’s Deltaquad QuadPlane VTOL model. (Right) The
modified model has six vertical rotors and disables the horizontal rotor.

so only the six vertical rotors could be used. The modified
aircraft is shown on the right of Fig. 8.

Simulation environment. We built on top of the PX4
simulation stack [23], which rendered the environment and
robot in Gazebo [28]. We selected PX4 due to the relatively
high fidelity of its simulations, ease of portability to future
real-world experiments, and built-in disturbances (e.g., wind)
that would ensure the simulations were not operating in an
ideal environment. We used QGroundControl [29] for flight
planning and telemetry monitoring.

B. Simulation setup

The FDI module operated at a sampling frequency of 42 Hz,
and accordingly stored data for the data buffers ∆b and
∆n. The duration of ∆n was configured to 1.2 s (which
corresponds to fifty data points). We chose this buffer size
to balance the sensitivity of fault detection against the
likelihood of false positives.

In each simulation, we used QGroundControl to set a
waypoint for the system to follow, and the VTOL would
takeoff before following a line to the desired waypoint
and land. We evaluated the system across a range of fault
severities s ∈ {1%, 3%, 5%, 10%, 15%, 20%, 25%} to cover
a wide range of hard-to-detect faults (each rotor-severity pair
was tested with 50 trials).

We conducted 50 trials for each severity level across all
rotors, and in each case assessed the FDI system’s accuracy
rate. Here, a trial is considered as “accurate” when the FDI
system accurately estimates the severity level within a ±2%
margin of error with correct fault rotor index identified.

Flight parameters. The PX4 simulator was configured
to model the VTOL’s operational parameters, including a
takeoff to a height of 9.4 m and a cruising speed of 5 m/s.
When traveling between waypoints, we assume the system
to be cruising, i.e., control surface deflection and angular
velocity is small. Two types of noise were present in the
simulations: sensor noise from the Inertial Measurement Unit
(IMU) and actuator control signals, and environmental noise
modeled as variable wind speeds ranging from 0 to 2.5 m/s.

VI. EVALUATION

To evaluate our proposed FDI method, we performed a series
of experiments using the simulation platform described in
Section V. Our key questions were: 1) How accurately can
our technique identify the faulty rotor and severity? 2) How
quickly can it isolate a faulty rotor? And finally, 3) once
a fault is isolated, how effective is our method in enabling
recovery actions to allow the system to land safely?
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Fig. 9. Landing success rates remain high even as FDI accuracy improves
with faulty severity.
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Fig. 10. Fault severity estimates are close to those of injected faults.

FDI accuracy. Figure 9 presents the performance of our
method across various fault severity levels (total 300 tri-
als for each severity level, and 50 trials for each rotor),
showcasing both the precision in fault rotor identification
and the accuracy in severity estimation. We observe that
accuracy improves as fault severity grows. This is expected,
as higher-severity faults cause more pronounced impulses in
the state errors they produce, and thus are easier to identify.
In contrast, lower-severity faults produce a smaller effect and
are harder to detect. Even for faults of very low severity, at
3%, our method still achieves an accuracy rate of 91.67%.
Fig. 10 further shows that, even when our estimate is not
perfect, the estimated fault severity remains very close to
the injected value.

Our method does have some limitations. First, if fault
severity is below 3%, the fault signal may be masked by
white noise, making it difficult for our FDI method to
distinguish the fault. Second, if the fault severity is above
30%, the sudden loss of so much thrust causes the provided
controller to destabilize. We expect that these problems can
be mitigated by using a more robust controller.

Speed of isolation. Fig. 11 shows the temporal statistics
for those simulations that we accurately performed fault
detection and isolation for, across different severity levels
and for all six rotors. The y-axis of Fig. 11 represents the
”time spent” in seconds (i.e., the moment a fault is injected
until the FDI system successfully detects and isolates the
fault). For the lowest-severity faults, FDI takes longer, since
these faults produce the least impact on motion. However,
even in moving from a 1% severity fault to a 3% severity
fault, we already see substantial improvement in the speed of
FDI, and for faults of severity greater than 3%, FDI remains
near-constant around 2.3s.

Adjusting certain parameters, such as the amount of recent
sensor data we store, could speed up FDI, at the cost of
consuming more memory (which is often constrained on
embedded platforms).
Recovery performance in landing. Ultimately, the goal
of any FDI technique is to enable recovery actions. While
this paper focuses on developing such an FDI method, we
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Fig. 11. The time spent by the FDI module to determine fault severity
after fault injection.

simulated with a simple recovery method to assess whether
we could indeed improve safety outcomes by triggering
recovery post-FDI. Our simple recovery strategy does the
following: if the estimated severity level is determined s′ ≈
s, the updated rotor input becomes T ′

i = min( Ti

1−s′ , fmax).
The results of this simulation are also shown in Fig. 9 as the
columns for ‘Landing Success Rate’. We observe a 100%
success rate for both 1% and 3% severity levels – that is, the
vehicle lands safely in all cases despite faults across all tested
faults and trials. Even for more severe faults, landing success
rates remain higher than 90%. As severity level increases
from 5% to 25%, the landing success rate increases from
91.93% to 99.67%, which is likely due to the improvement
of FDI accuracy with severity level.

VII. CONCLUSION

Fault detection and isolation presents a significant challenge
in VTOL systems, but it is becoming increasingly important
due to the growing number of real-world ventures building
these products to operate in urban environments to interact or
even carry humans. In this work, we focus on developing an
FDI method capable of working on the hard-to-detect faults
that are easily masked during cruise flight, but which can
cause catastrophic failures during vertical motion, when the
fixed wings cannot play a role in fault masking. Our approach
first identifies the half-space containing a rotor fault, then
performs impulse analysis of the error ratio to isolate rotors,
followed by impulse analysis of aileron control signals to
estimate fault severity to within 2%.

When compared with the state-of-the-art recovery tech-
nique (with unique controller design) outlined in [6], our
methodology stands out for its efficiency. Our FDIR method
stabilizes the VTOL with only one-fourth of time required by
the recovery technique in [6]. This significant improvement
not only highlights the efficacy of our method in addressing
the critical aspects of VTOL reliability but also underscores
its potential to enhance operational safety and effectiveness
without the complexity and latency associated with conven-
tional FDIR solutions.
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