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Vision-Based Self-Assembly for Modular
Multirotor Structures

Yehonathan Litman“?, Neeraj Gandhi

Abstract—Modular aerial robots can adapt their shape to suit
a wide range of tasks, but developing efficient self-reconfiguration
algorithms is still a challenge. Self-reconfiguration algorithms in
the literature rely on high-accuracy global positioning systems
which are not realistic for real-world applications. In this letter, we
study self-reconfiguration algorithms using a combination of low-
accuracy global positioning systems (e.g., GPS) and on-board rela-
tive positioning (e.g. visual sensing) for precise docking actions. We
present three algorithms: 1) parallelized self-assembly sequencing
that minimizes the number of serial ““docking steps”; 2) parallelized
self-assembly sequencing that minimizes total distance traveled
by modules; and 3) parallelized self-reconfiguration that breaks
an initial structure down as little as possible before assembling a
new structure. The algorithms take into account the constraints of
the local sensors and use heuristics to provide a computationally
efficient solution for the combinatorial problem. Our evaluation in
2-D and 3-D simulations show that the algorithms scale with the
number of modules and structure shape.

Index Terms—Aerial systems: Applications, cellular and
modular robots, planning, scheduling and coordination.

I. INTRODUCTION

HE design of aerial vehicles for applications like rapid
T infrastructure construction [18], [19], [23], load trans-
portation [4], [13], cargo lifting [3], [16], [18] and search and
rescue [12], [15], [24], requires considering a fundamental trade-
off between agility and strength. For instance, a large robot is
well-suited to lifting humans in a search-and-rescue scenario, but
could find it difficult to navigate through wreckage. Small robots
are more agile, but their payload capacity is very limited, often
insufficient to lift a human. With traditional robotic systems,
we would have to pick the larger robot to ensure that humans
can be rescued. Modular robots provide a promising alternative
that can be both powerful and agile since the small modules can
individually navigate to a location before interlocking to form a
structure powerful enough to lift a person.
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Fig. 1. Five modules assembling a T-structure, relying only on local vision.
The white points highlighted with a red circle represent the cameras. Magnets
are turquoise rectangles and WhyCon tags [14] are hollow black circles.

An aerial system composed of multiple modules creates a
versatile “meta” robot that can adapt to task requirements by self-
reconfiguration. Self-reconfiguration is composed of two steps:
1) finding an efficient sequence of steps to reconfigure the robot,
and ii) performing docking and undocking actions to create and
break physical links. The last part requires a precise maneuver to
align the vehicles in midair and create the link. Although there is
existing work in the self-assembly of aerial robots [5], [16], [18],
[24], these typically rely on high-accuracy global positioning
systems. Other platforms consider positioning systems like the
Global Positioning System (GPS) [7], [10], but GPS accuracy is
not high enough for aerial docking (i.e., millimeter accuracy).
There has also been some work on ground- and water-based
modular robots that use vision to determine the relative location
of modules for docking [6], [9], [12]. In aerial robotics, vision
has been used for perching [21], [22] and docking [11].

We propose a hybrid approach by combining low-accurate
global positioning information for determining the docking se-
quence and local perception for high-accuracy docking actions.
Unlike previous approaches [5], [11], [19], this approach consid-
ers constraints like formation deadlocks that result from onboard
sensors. For instance, if two single-camera modules faced one
another, they would be unable to dock to other modules because
each would block the other’s field of view, rendering the full
structure infeasible.

Our approach focuses on modular quadrotor aerial robots
equipped with cameras, but extends to other environments
(ground, aquatic), shapes (convex, symmetric, polygon-shaped
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Fig. 2. Two modules docking to form structure S. Module M aligns its
camera, C', with the y-axis and tag T5 to dock to the back side of Ms.

modules), and relative positioning sensors (e.g., LIDAR).
Docking actions are parallelized as much as possible, so our
techniques are efficient with respect to the number of “serial”
docking steps. Further, the techniques scale with the number
of modules and work across structure shapes. In sum, we make
three main contributions: 1) a self-assembly algorithm that is ef-
ficient in number of serial “docking actions,” 2) a self-assembly
algorithm that minimizes the sum distance all robots must travel,
and 3) a self-reconfiguration algorithm that finds an optimal plan
to transform a structure from one shape into another.

II. MoODQUAD-VI MODEL

Our modular aerial system is propelled by autonomous mod-
ules based on [11]. A module is defined as follows.

Definition 1. (Module): A module, M, is a quadrotor-
propelled cuboid that can horizontally dock to other modules.
The cuboid has length and width w and height h.

Modules are homogeneous; they have identical mass m, di-
mensions, inertia tensor, sensors and actuators. Each vertical
face of the cuboid frame has four magnets (one magnet per
corner). The left, right, and back sides of the cuboid have
WhyCon tags [14]. Each module has a front-facing camera that
is used for onboard tag detection [14]. An individual tag’s pose
relative to a camera can be detected at high frequency (> 30 Hz).
A structure is a set of attached modules forming a rigid body.
Formally, it is defined as:

Definition 2. (Structure): A structure, or robot, S =
{Mjy,..., My}, isanon-empty set of rigidly connected modules
that behave as a single rigid body. Docking is always in a
horizontal direction; thus, structure height is always h.

A pair of modules can dock in midair, whereby one module
hovers in place and the other tracks a WhyCon tag on the first to
guide itself (and other attached modules) to attach to the tracked
tag-face of the hovering module. These are waiting (M,,) and
docking (M 4) modules, respectively.

The inertial frame, W, is fixed and has its z-axis pointing
upwards. The center of mass of the i*" module M; in the
inertial frame is denoted x; € R3. The origin of the structure
coordinate frame, S, is at the structure’s center of mass. The
graph G = {S, £} is the set of modules, S, and the set of inter-
module connections, £ = {||x; — x,|| = w,¥(M;, M;) € S}.
We assume that we directly control accelerations, in addition
to linear and angular velocities. Please refer to [18] for more
dynamics details.
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(a)

Fig. 3. (a) The desired structure. (b) Proper assembly of the desired structure,
with a visual example of a path from one of the modules in the structures to
the master represented by a black line. (c) A misalignment in camera position
occurred in the smaller structure, preventing assembly. (d) No cameras point
outward, rendering the structure unusable.

Docking is a directed operation: one module’s camera must
point to another module’s tag. Fig. 2 shows a docking (M) and
a waiting (Ms) module. Eight permanent magnets, shown as
orange rectangles in the figure, magnetically connect the mod-
ules. The gray ellipses represent the rotors, and the blue, red, and
green axes represent the world, structure, and module coordinate
frames, respectively. The docking module, M, follows the tag
on the back face of waiting module, M». The arrow from C to T5
shows the docking path to join M, and M5. The waiting module
hovers at a fixed position while the docking module tracks a tag
and performs docking. The master module, M™*, is the module
in the assembled structure that will guide the structure in future
dockings (here, M* = Ms).

III. VISION-BASED SELF-ASSEMBLY

Challenge: A key challenge in achieving perception-based
self-assembly is creating a plan that avoids formation deadlock;
i.e., a sequence of docking actions that are infeasible for the
modules to perform. Fig. 3 shows the desired structure (a), a
feasible configuration of modules after assembly (b), and two
infeasible assemblies (c), (d). Grey squares represent modules,
black circles represent tags, white circles represent the location
of the modules, and blue squares represent the cameras. The two
formation deadlocks depicted in Fig. 3(c)—(d) are: 7) a formed
structure has a shape such that no docking operations with
other structures will result in the final desired structure; e.g.,
the docking structure would have to dock in the xz-plane and
yz-plane simultaneously (Fig. 3(c)); or, i¢) the formed structure
has each module’s camera pointing at a tag, leaving no cameras
available for future dockings (Fig. 3(d)).

During a docking action, the docking module’s camera has
to be tracking one of the waiting module’s tags. Options for
assembly are limited because the docking module’s camera can
only see one of the non-camera sides of the waiting module.
Further, any feasible assembly sequence must determine, for
each assembly action, a) the direction each module will face
in the assembled structure, and b) the individual substructures
needed for each parallelized assembly step.

Approach: Our approach is based on two key insights. First,
we observe that, although the docking module is always oriented
towards the waiting module, its own orientation is invariant to the
waiting module’s orientation. Due to this invariance, we can iter-
atively determine the proper docking module orientation while
disregarding waiting modules. This is accomplished alongside
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the computation of the sequence of docking actions. Second, by
reinterpreting structures and sub-structures as mefta-modules, we
recursively split the structure into two parts: docking and waiting
meta-modules. We orient the docking meta-module towards the
waiting meta-module. In the following, we discuss our approach
in more detail.

Definition 3. (Meta-module): A meta-module is composed
of a waiting (M) and docking (M ;) meta-module, along with
the orientation information of the two contained meta-modules,
where each contained meta-module represents a sub-structure
of the whole structure. Each meta-module has a master module
with an outward-facing camera.

The docking actions needed to assemble a meta-module can
be extracted by recursively splitting the component docking and
waiting meta-modules, which each contain their own docking
and waiting meta-modules. Thus, we recursively disassemble a
meta-module to determine the docking action sequence needed
to assemble a desired meta-module. In prior work [20], we recur-
sively disassembled a structure by “chipping” away at its edges
and stopped when a structure could no longer be disassembled
(i.e., |S| = 1). Generating the assembly plan is straightforward:
we reverse the optimal disassembly plan. Robots act in a parallel
to enable multiple docking actions in a single timestep. The
efficiency of our algorithms depends on the number of sequential
docking actions.

In the following subsections, we discuss our approach in
detail. We begin with a strategy for finding the best master
to guide the meta-module in future assembly while enforcing
correct orientation (Section III-A). Then, we present a docking-
step-optimized assembly algorithm that uses the meta-module
concept to plan the assembly of a structure such that the number
of sequential docking actions is minimized (Section I1I-B). Next,
we adapt this technique to minimize the sum distance traveled
by all robots by leveraging Hamiltonian paths (Section III-C).
Finally, Section III-D presents an algorithm that uses the meta-
module concept to find a full reconfiguration plan to transform
a structure from one shape into another while also accounting
for camera orientation.

A. Master Selection

First, we explain how to select a master module, M™*, for
a meta-module. That is, M™* is the module used to guide the
meta-module in a future docking action.

To find an appropriate master for a structure, we find modules
that are most “central” based on the Betweeness Centrality
Algorithm [1], which produces a betweenness centrality degree
for each node in a graph. Modules are convex and symmetric
cuboids, thereby guaranteeing that mass is evenly distributed
in a structure and that the betweenness centrality of modules
correspond to how close they are to the structure’s center of mass.
Thus, by maximizing the betweenness centrality in the graph, we
seek to find a set of modules that are closest to the center of the
structure. For polygon-shaped agents (with n edges), modules
of degree n are excluded as candidates because the master must
have at least one face available for future dockings. Since our
modules are cuboid, we exclude modules of degree four.
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When multiple modules have the same betweenness central-
ity, we select the module with the fewest neighbors to be the
master module; the least-connected module is likely to be at
the boundary of the structure, where its field of view is free of
obstructing modules and therefore available for future dockings.
This minimax strategy is used to compute the master module as

M* = argmin DEG(argmax §(M;))
M;eS M;

where DEG is a function that returns the degree of each module
and (M) is the output of the Betweeness Centrality algorithm.
The optimal solution for M™* can be a set of modules of identical
degree; in this case, we choose the median of the set.

B. Minimizing Sequential Docking Actions

After selecting an appropriate master, we may compute an
assembly sequence that minimizes the number of sequential
docking actions. The approach is presented in Algorithm 1. First,
we initialize the globally accessible docking action sequence C
as an empty sequence, and the globally accessible orientation
map O to contain only the master module M * and its orientation;
i.e., one of the directions in which the master would point away
from its neighbor modules (Line 1). We then call the recursive
function TSEQUENCE, which takes as arguments a geometric
graph G representing the structure (including module positions),
an initial meta-module representation M, and the initial C and O
from above (Line 2). In this function, we first check whether the
meta-module consists of only one module - the base condition for
our recursive function that is used by all algorithms we introduce
in the remaining subsections (Line 5). If this base condition is
not satisfied, at each timestep we generate all possible partitions
of the graph and meta-module via ALLPOSSIBLEPARTITIONS,
and then call SORTBYBALANCE to sort partitions in a balanced
approach (as defined in Section III.B of [19]) (Lines 7-8). Then,
we pick the best-balanced partition, and check which of its two
meta-modules contains the master module; the one with the
master module is the waiting meta-module while the other is
the docking meta-module (Line 9). The docking meta-module
is assigned a virtual master, M; ., selected from the modules
adjacent to the waiting meta-module (see Sec. III-A for details).
Adjacent modules are the output of the NEIGHBORMODULES
function, and the virtual master is assigned in the MAKEMASTER
function (Lines 10—-11). The ORIENT function orients the virtual
master towards the waiting meta module (Line 12).

Next, recursive TSEQUENCE calls are made on the waiting
and docking meta-modules such that they properly orient their
own modules and calculate the next iteration to be added to the
action sequence (Lines 13—14). After all lower-level recursive
TSEQUENCE calls return, the action sequence at the current iter-
ation is assigned the proper docking and waiting meta-modules
and breakline across which they would both assemble (Line 15).

Analysis. Algorithm 1 has bounded recursive depth of
©(logn), where n is the number of modules. This is because
modules move to the expanded configuration and are evenly
spaced before undertaking assembly, so successive assembly
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Algorithm 1: Self-Assembly Algorithm To Minimize Se-
quential Docking Actions.

Input: A geometric graph G, meta module M, and the master M *
Output: A docking action sequence C, and orientation map O
1: C <+ {},0 <« {(M*,ORIENTMASTER(M *))}
TSEQUENCE G, M, C, O
return C, O
function TSequenceG, M,C, O
if M| = 1 then
return
end if
P < ALLPOSSIBLEPARTITIONS (G, M)
9: P’ <~ SORTBYBALANCE(P)
10: (Mg, M) < P'[1] M* € My, M* & My
11: M, < NEIGHBORMODULES(G, M 4, M)
12: MY, <+ MAKEMASTER(G, M,,)

virt
13: O[M;,.,] < ORIENT(M: ,, M)

virt?
14: TSEQUENCE(G, M 4,C, O)
17: TSEQUENCE(G, M,,,C, O)
15:  C[M] + (breakline, Mg, M,,)

16: return

e A U i

Algorithm 2: Self-Assembly Algorithm To Minimize Total
Traveled Distance.
Input: A desired meta module M, a geometric graph G, meta module M,
a master M *, and the initial position graph Gg
Output: A docking action sequence C, and orientation map O
1: G + HAMILTONIANPATHG

2: C <+ {},0 « {(M*,ORIENTMASTER(M™*))}
3: DSEQUENCE M™T,G, M,C,O

4: returnC,O

5. function DSequence Mt,G, M,C, O

6:  if [M| =1 then

7 return

8:

P < ALLPOSSIBLEPATHPARTITIONS(G, M)

9: Pt « ALLPOSSIBLEPARTITIONS(M T, M)

10: P’ + SORTBYWEIGHT(P)

11: for (Mg, My) € P'do M* € My, M* & My

12: if not VALIDDIVISION(M g, M,,, PT) then
13: continue
14: M;,., < TREENEIGHBORMODULE(G, Mg, My,)

15: O[M;,.,] + ORIEENT(M, ., M)

16 DSEQUENCE(M T, G, My,C,0)

17: DSEQUENCE(M, G, My, C, O)

18: CI(MT, M)] + (breakline, Mg, My,)
19: return

20: function ValidDivisionM 4, M., P+

21:  for (M:{,M$) € Pt do

22: if M| = [My| & M| = [Mg| & (M* € M;)) then
23: return true

24: return false

operations can be performed by meta-modules that are “neigh-
bors”. This allows optimal parallelization: for every assembly,
meta-module size changes by a factor of two.

C. Distance-Minimal Sequencing

In minimizing the number of sequential assembly steps,
modules move to the expanded configuration of the desired
configuration before starting assembly. In certain tasks, how-
ever, moving to the expanded configuration of a structure is
undesirable. For instance, it makes more sense to minimize total
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distance traveled when distances between modules are enormous
(e.g., across countries). Here, since modules no longer move to
the expanded configuration of the desired structure, we cannot
use the same meta-module splitting approach as in Algorithm 1.

Forming a distance-minimal geometric representation that
subscribes to the meta-module principle requires finding the
minimum Hamiltonian path in the graph - an NP-complete
problem. We use an algorithm [8] that adapts Christofides’
Hamiltonian circuit finding algorithm [2] to finding Hamilto-
nian paths. We can divide the shortest Hamiltonian path into
sub-groups of modules of arbitrary size, leveraging knowledge
of the initial positions of modules. Such division allows us to
obtain groups of modules such that the portion of the shortest
Hamiltonian path (i.e., the fraction of total distance in the path)
in each group is roughly equal, meaning that the partitions are
balanced with respect to distance. Moreover, this approach of
recovering the geometry can be extended to robots that are
constructed differently (i.e. robots of different convex polygonal
shapes). For instance, we could substitute the shortest Hamilto-
nian path with a degree-constrained minimum spanning tree if
the modules have more degrees of freedom. Once we obtain the
graph representing the Hamiltonian path, we use the graph in a
similar manner as in time-minimal sequencing to compute the
displacement-minimal sequencing.

Algorithm 2 presents the algorithm for distance-minimal
sequencing using the above approach. The algorithm starts by
initializing the docking action sequence map C and the orienta-
tion map O (Line 2). The desired meta-module M ™, geometric
graph G, current meta-module M, together with the initialized
output maps, are passed into DSEQUENCE (Line 3). The base
case (meta-module of size one) is handled in the same manner
as Algorithm 1. Lines 8-10 are similar to the corresponding ones
in time-based assembly sequencing. However, at each recursive
layer, instead of partitioning the structure by balancing the num-
ber of modules they contain, we partition the graph (describing
the minimum path) by balancing the sum of distances between
nodes in partitions.

We iterate over the partitions and use VALIDDIVISION to check
which ones have the necessary number of modules to fit into the
desired structure partitions and whether the master module is
in the waiting sub-structure. If the conditions are not satisfied,
we move to the next-best partition. Otherwise, the two resulting
substructures are defined as meta-modules, and the node in the
docking meta module that had an edge to the waiting meta-
module severed during path partitioning becomes the virtual
master. In ORIENT, the virtual master is oriented towards the
waiting meta-module (perpendicular to the breakline that cuts
the desired structure).

The procedure recurses over the meta-modules in Lines 16-17
and stores the returned assembly actions and orientations into
the action sequence C and orientation map O.

Analysis. Due to their similar structures, the best-case recur-
sive depth produced by Algorithm 2 is the same as that of the
time-minimal sequencing algorithm, whichis Q(log n), where n
is the number of modules. However, in the worst case, recursive
depth is O(n). This occurs when only one module can conduct
assembly in each time step. This could happen when the modules
are arranged in a dispersed line such that the distance between
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Algorithm 3: Self-Reconfiguration Algorithm.

Input: A meta module M, a desired meta module M T
Output: Assembly and disassembly action sequences C,, and Cq
1: Cq+{},Cq+{}

(Mg, My) M
CHECKPAIR(M g, M)

9: function CheckPairM g, M.,

10: T < {Mg, My}

11:  Tgr < RECONFIGURABLET , M T
12: if |[Tr| = 2 then

13: Ca[/\/l] — (Md,Mw)

2:  RECONFIGURE M, M1 C,,Cqy

3: returnC,,Cy

4:  function Reconfigure M, Mt ,C,,Cyq
5:  if [M| =1 then

6: return

7:

8:

14: else

15: Ca[(Ma, My)] <= M

16: if |[Tr| # @ then

17: Co[M] M, M; €Tgr

18: for M; ¢ Tr do

19: RECONFIGURE(M;, Mt C,,Cq)

20: function Reconfigurable7, M+
21: Tr < @
22: for M; € T do

23: if all modules in M can be placed in correct spot in M+ and
master of M is correctly oriented then
24 TR — TR @] Mz

25: return7

every additional pair of modules is exponentially increasing,
and the structure being assembled is a line. In this scenario,
the most balanced partition in the structure partitions would
contain a waiting structure that has all the modules in the original
structure except for one module that is too far away. Thus, for
every timestep, only one module conducts assembly.

D. Reconfiguration

Our reconfiguration algorithm tries to disassemble an initial
structure as little as possible during the reconfiguration process.
That is, it successively disassembles meta-modules; for each
meta-module, it is only disassembled further if it cannot be
“placed” in the correct position in the new desired structure
as is. By the word “placed,” we mean that every physical
module of the meta-module can be placed into its new desired
position, no formation deadlock is caused by the placement,
and the docking module can be oriented towards the waiting
module.

This high-level idea has been considered in our prior work [5],
but instead of using a global positioning system like Vicon as [5]
does, this work leverages agent-local vision for high-accuracy
maneuvering. Since the docking module is invariant to the inner
modules’ orientations (barring the single invalid case when
the waiting module’s camera is facing the docking module’s
camera), we only need to account for the orientation of the master
module within the meta-module when placing the modules. The
complete procedure for reconfiguration is shown in Algorithm 3.

As Algorithm 3 shows, instead of using a single docking ac-
tion sequence, we use two (initially empty) action sequences—
an assembly sequence C, and a disassembly sequence C;—to
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describe the complete reconfiguration process. The reconfigu-
ration procedure RECONFIGURE immediately returns if the base
condition (i.e., the meta-module consists of only one module)
is satisfied (Lines 5-6). Otherwise, we split the current meta-
module representation into a pair of docking and waiting meta-
modules (M, and M,,), and then call the CHECKPAIR function
to check for a possible fitting within the desired meta-module
(Lines 7-8).

In CHECKPAIR, Tx stores the set of meta-modules that can fit
in the desired meta-module M ™. Itis assigned to the set of valid
reconfigurable meta-modules computed by RECONFIGURABLE
(Line 11).

The RECONFIGURABLE subprocedure initially assigns 7x to
be an empty set (Line 21). It then iterates over the docking and
waiting meta-modules to determine whether they will correctly
fit into the desired meta-module M ™ (Line 22). Here, the term
“correctly fit” refers to when all modules can be placed in the
desired positions and the master is correctly oriented. For the
docking meta-module, this means the master can be properly
oriented relative to the waiting meta-module. For the waiting
meta-module, this means the master’s field of view is unob-
structed and that it does not border the docking meta-module.
The meta-modules that satisfy these conditions are placed in 7z
(Line 24).

Once 7Tr is computed by RECONFIGURABLE, we check
whether the docking and waiting meta-modules contained within
Tr can correctly fit into the desired meta-module (Line 12). If
so, we add them both to the assembly action sequence C, (Line
13) and return from the CHECKPAIR function. Otherwise, we
add them to the disassembly action sequence C4 (Line 14). If
either of the meta-modules fits, then we add it to the assembly
action sequence (Line 17). Those modules that could not be
correctly reconfigured at the current recursive layer are further
split until they do correctly fit. The algorithm will break down
a meta-module only as much as is needed—if a meta-module
can fit as is in the desired meta-module, it will not be further
divided.

Analysis. Our algorithm has a recursive depth of ©(logn)
in both best and worst cases. Reconfiguration uses docking-
step-minimal sequencing (Algorithm 1) as its backbone. Thus,
we know that for both disassembly and assembly, modules will
move into an expanded configuration that allows us to optimally
configure partitions such that for each recursive layer, partition
size changes by a factor of two. There is a constant multiplying
factor of two (i.e., ©(2logn)) since we perform both disas-
sembly and assembly, but this does not affect the asymptotic
recursive depth.

IV. EXPERIMENTAL VALIDATION

To evaluate our algorithms, we performed a series of ex-
periments in simulation. Our evaluation focuses on two key
questions: 1) How do the algorithms perform on a range of
structure sizes and shapes? and 2) How well do they work
when more computationally intense, but also more realistic,
physics is accounted for? We had to split the evaluation into
two parts because of the computational power required for more
realistic simulation. Thus, we implemented two simulators: a
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Fig. 4. (a), (c), (e), (g) present planned assembly sequences (arrows show
assembly direction). The master was hand-picked in (e) - the hole in the structure
affected the selection process. (b), (d), (f), (h) show connections made as time
increases for the structures of (a), (c), (e), (g), respectively.

2-D simulator in Python to evaluate large and diverse structures;
and a more computationally intensive Gazebo 3-D simulator to
evaluate the algorithms in a more realistic environment. Code for
both simulations is available at https://github.com/swarmslab/
modquad-vi-sims/.

Setup. All experiments ran on a machine equipped with an In-
tel i7-8650 CPU and 16 GB of RAM. Our Python simulator was
built using the networkx library. The more realistic Gazebo
simulator was built on MAVROS, itself a ROS [17] package.
In Gazebo, each quadrotor was equipped with virtual tags, a
camera, and a protective cage; we also simulated the quadrotor
hardware. We also placed 4 magnets on each vertical face of
a module and gave each the same magnetic moment. When a
docking module gets close to the waiting module’s WhyCon
tag, a “snap” action occurs; i.e., the magnetic force between the
two modules increases exponentially, indicating the completion
of docking.

Results. We first discuss results from our Python simulations.
We tested three types of configurations: a 9-module square
landing platform, a 41-module hourglass-shaped structure with
a hole in the middle, and a 24-module bridge network. We
refer to results of Algorithm 1 as docking-step-minimal and
Algorithm 2 as distance-minimal. Figs. 4(a), 4(c), 4(e), and 4(g)
show the assembly trees with the randomly colored modules
with the target structure shown in grey. The modules’ docking
directions are shown as arrows. The orientation of the blue
triangles (representing the camera view) shows the docking
direction.

For the landing platform, we present both docking-step-
minimal (Fig. 4(a)) and distance-minimal (Fig. 4(c)) assemblies.
Both assemblies require a series of four assembly “docking
steps,” where each “step” contains multiple actual docking
operations. We can verify the number of steps is optimal by
qualitatively comparing the theoretically optimal number of
steps needed to the actual number of steps taken to perform the
assembly: log,(9) = 3.2, where 9 is number of modules in the
structure; since step counts must be whole numbers, the optimal
number of steps is [3.2] = 4.

Fig. 6(a) shows the optimal Hamiltonian path for the same
structure as in Fig. 4(c). Note that the two assembly sequences
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Fig. 5. Reconfiguring a square structure into a double horseshoe structure.

(a) Initial lattice structure; (b) The disassembled structure; and (c) reconfigured

structure.
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Fig. 6. Optimal geometrically recovered Hamiltonian paths for Figures 4(c)
and 4(g) (target structures shown in grey).

visually resemble one another. In the worst case, Christofides’
path generation is % optimal [8] (i.e., the generated path’s
length will always be within a factor of g ~ 1.67x the optimal
solution’s length). For this particular structure, the solution was
1.37x optimal displacement. Next, we examine more com-
plex structures. Fig. 4(e) shows the assembly sequence of the
41-module hourglass structure as determined by Algorithm 1.
It took seven docking steps to assemble all 41 modules into
the desired structure. [log,(41) = 6] is the expected optimal
number of steps, but due to the odd number of modules we have
one “left over” module that adds a step.

Fig. 4(g) shows the 24-module bridge assembly sequence,
as determined by Algorithm 2. These modules were assem-
bled in seven docking steps (a near-optimal number of steps,
[log,(24)] = 5, despite distance minimization not prioritizing
docking-step minimization). Again, by visually comparing to the
optimal path for this structure presented in Fig. 6(b), we observe
that the heuristics-produced result is similar to the optimal
one. In more quantitative terms, the heuristics-based solution
in Fig. 4(g) was 1.043x optimal, well below the Christofides’
guaranteed bound of 1.67x optimal. Thus, our technique works
and can scale well to a large number of modules using both the
docking-step- and distance-minimal techniques.

Next, we  examine trends  during  assembly.
Figs. 4(b), 4(d), 4(f), and 4(h) present the number of
established magnetic connections as a function of time,
where a “connection” is defined as a pair of modules that
are magnetically linked. As expected, due to parallelization,
we see large jumps in the number of connections early on.
As meta-modules become larger, the number of additional
connections established per unit time declines, ultimately
approaching the number of connections needed to form the
desired structure (i.e., the dashed green line).

To evaluate our reconfiguration algorithm, we present Fig. 5.
Fig. 5(a) shows the initial square structure, Fig. 5(b) shows the
structure in its maximally disassembled state, where many of the
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modules remain a part of a larger sub-structure because the entire
sub-structure can be placed in the new full desired structure.
Fig. 5(c) shows the final structure reconfigured to. The full
reconfiguration process took 8 parallelized steps (4 steps each
for disassembly and assembly) instead of 9 steps for complete
disassembly and assembly, showing how the algorithm breaks
down the structure only as much as it needs to for the reconfig-
uration process. For even larger structure reconfigurations, the
number of steps saved are expected to be more substantial.

Finally, we look at our Gazebo simulations. Fig. 1 shows
the result structure of a time-minimal sequencing experiment
with five modules. The structure completed assembly using the
onboard camera and IMU of each quadrotor module. The success
of the assembly process in the more physically accurate Gazebo
simulator supports the algorithms’ potential to be applied in the
real world. Both Gazebo and Python simulation recordings are
available at: https://youtu.be/ayhsNq9Y1Po.

Summary. Our experiments have supported the theoretical
efficiencies we were expecting. Recursive depth was optimal
or near-optimal for both docking-step- and distance-minimal
assembly. In distance-minimal assembly, we confirmed that our
heuristics-based approach stays within the 1.67x optimal bound
that Christofides’ algorithm guarantees. Finally, for reconfigu-
ration, our experiments show efficiency improvement over the
“complete” assembly adopted in previous work.

There are some important differences between the techniques;
e.g., the scenarios under which docking-step and distance-
minimal techniques work best differ. In docking-step-minimal
assembly, closely packed modules can easily parallelize assem-
bly, but modules close to one another may not always dock to
one another, thereby making the assembly not distance-optimal.
However, densely-packed modules often do not have a large
distance to travel, so in such cases the additional displace-
ment caused by the docking-step-minimal technique may be
negligible.

Additional steps in assembly become increasingly expensive
as distances between modules increases as other resource con-
straints (e.g., fuel) come to bear. Here, it is prudent to allow for
larger recursive depth but lower consumption of other resources.
Recall, though, that the distance-minimal technique is still
highly parallelized, so we often get good time-step performance.
Fig. 4(a) and 4(c) had identical time-step-performance, and even
for the complex bridge network of Fig. 4(g), we only require two
additional time steps relative to optimal.

V. CONCLUSION AND FUTURE WORK

In this letter, we present three algorithms for self-assembly
and self-reconfiguration that combine global and local posi-
tioning systems. The algorithms use the lower-accuracy global
positioning system to determine the sequence of steps, and an on-
board relative positioning system for precise maneuvering and
docking actions. The algorithms take into account the constraints
of the local sensors and use heuristics to increase efficiency
in solving the combinatorial problem. We presented algorithms
for docking-step-minimal self-assembly, distance-minimal self-
assembly, and the self-reconfiguration of a modular structure.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

Our simulations in 2-D and 3-D show that the algorithms scale
with the number of modules and structure shape. In future work,
we plan to explore approaches that can be performed in cluttered
environments and executed in a distributed fashion.
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