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Abstract—Aerial vehicles with dozens of rotors are becoming
increasingly common in important applications such as trans-
portation and construction. One challenge with building such a
system is to ensure that the system is robust against faults: as
the number of rotors increases, the likelihood of a rotor failing
during operation also increases; despite the spare thrust capacity
provided by the redundant rotors, a rotor fault can significantly
impact the motion and safety of the system.

This paper presents an efficient fault detection and isolation
(FDI) method for aerial vehicles with a large number of rotors.
Our approach relies on two key insights: First, the effect of a
faulty rotor directly affects the tracking error in roll and in pitch.
This property can be used to order our faulty rotor search space.
Second, the error in either roll or pitch is related to both the
distance from the (relevant) axis and the severity of a fault. With
these observations, we can use probe faults to isolate faulty rotors.
Evaluation results show that our technique can efficiently detect
and isolate faults in multi-rotor aerial vehicles with up to 64
rotors (8× more rotors than in existing FDI work), and that it
can help improve robustness. To the best of our knowledge, our
FDI method is the first that scales to several dozens of rotors.

I. INTRODUCTION

Multirotor aerial vehicles (MAV) with dozens of rotors are
becoming increasingly common for important applications
such as transportation [3], [8], [13]. As the number of rotors
increases, the likelihood of any rotor becoming faulty at
runtime also increases. Therefore, it is critical to efficiently and
effectively handle faults in these systems to avoid undesirable
consequences such as potential crashes [2].

The standard approach to handling faults is fault-tolerant
control, either by designing the controller to be able to stabilize
itself in the presence of a fault (passive methods) or by
isolating the fault and changing the control parameters to
adapt (active methods). While fault-tolerant control has been
explored extensively in control systems, we are not aware of
any existing work that applies to faulty rotors in multirotor
systems with dozens of rotors. A a first step towards active
fault-tolerant control for such systems, we present an efficient
method for online fault detection and isolation (FDI) of faulty
rotors in MAVs with many rotors.

Challenges. Within a MAV, rotors are bound together in a
single rigid body; thus, a fault in one rotor can impact the
motion of the entire system. Consider the examples shown in
Fig. 1. The left figure shows a non-modular chAIR system [8],
which can lift a human using a 76-rotor MAV. The right figure
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Fig. 1: (Left) The 76-rotor chAIR can lift a human [1]. (Right) ModQuad
structures with 12 and 28 rotors [18]. All vehicles have redundant rotors.

shows ModQuad [18], a modular aerial vehicle composed of
cuboid modules that are bound together (e.g., using magnets)
to form a rigid body, with each module being propelled
by a quadrotor. In both examples, a fault in one rotor can
substantially impact the motion of the structure as a whole. It
is, therefore, important to isolate the rotor that is faulty, and
to estimate how severe it is, to perform appropriate actions.

There are several challenges towards this goal, however.
First, a rotor may be partially faulty, so the fault severity lies
along a continuous scale; thus, searching over the infinitely
many possible fault severity levels would be impractical.
Second, the magnitude of the impact of a fault depends on
multiple factors, including e.g., structure shape, fault location
and fault severity. In addition, different fault scenarios may
have similar impact on the system, making them indistin-
guishable from one another; for instance, a less severe fault
in a higher-leverage rotor may cause the same error in motion
as a more severe fault in a lower-leverage rotor. Together,
these make it hard to efficiently isolate the faulty rotor and to
correctly estimate its fault severity, especially as the number
of rotors increases.

Related work. Fault-tolerant control methods have been stud-
ied extensively; for a recent survey on the topic, see [17].

Active fault-tolerant techniques [10], [15] first use an FDI
method to identify the faulty rotor, and then tune the controller
to adapt to the identified fault. Some solutions assume that an
FDI method is given [10], [21], whereas others (like ours)
focus on the FDI problem. Existing FDI methods typically
fall into two categories: model-based approaches [9], [15] and
machine learning approaches [7], [14]. The former is often
system-specific and does not scale well, whereas the latter
tends to require adding hardware and lots of data.

Recently, other data-driven FDI methods have also been
developed, but they are either too slow or do not scale to
many rotors. For example, IMU data have been used to find
faulty propellers, but it can take over 100 seconds to detect a
single fault in a quadrotor [4], [5]. Saied et al. [15] uses the
signs of orientation error vector elements to quickly identify
faulty rotors in octorotors, but their technique cannot extend
to systems with more than eight rotors.

Passive fault-tolerant methods, in contrast, do not need
an FDI method, because the controller is designed to work



even in the presence of faults. Several passive approaches
exist, including sliding mode control, backstepping, H-infinity
control, nonlinear dynamic inversion, and fractional-order
control [17]. Sliding mode control is robust, but more-than-
expected faults can exceed the fault tolerance capabilities of
the system without warning and cause the entire system to fail
abruptly [16]. Backstepping and nonlinear dynamic inversion
both require highly accurate (or even full) knowledge of state,
and H-infinity control and fractional order control are complex,
even in systems with eight or fewer rotors [17].

To the best of our knowledge, our work is the first to
consider MAVs with a single rigid body containing more than
eight rotors. Our solution only uses data from a pre-planned
trajectory and an IMU, both of which are commonly available
in robots. The insights underlying our approach also apply to
systems with fewer rotors, such as in 6-rotor VTOLs [6].

Contributions. As the first step towards active fault-tolerant
control for MAVs, we present an online FDI method that can
be used to efficiently isolate rotor faults in multirotor vehicles
with dozens of rotors. We make three main contributions: First,
we establish that roll error and pitch error magnitudes are
consistently related to each other for each individual rotor in
a MAV, independent of fault severity, planned trajectory, and
even structure shape. This can be used to order the faulty
rotor search space. Second, we introduce a bivariate quadratic
model to relate the faulty rotor location, fault severity, and the
magnitude of error in roll and pitch. Given a candidate faulty
rotor, we can compute by what severity it must have failed if it
is indeed the faulty rotor. Third, we present a way to use probe
faults to determine whether a candidate faulty rotor with a
candidate fault severity, computed using our bivariate quadratic
model, is the faulty rotor. Our evaluation in CoppeliaSim using
ModQuad shows that our method can efficiently detect and
isolate faults in MAVs with up to sixty-four rotors (8× more
than the state of the art). Furthermore, by enabling prompt
mitigating actions, our real-time detection can help increase
the system’s robustness against future faults (even when using
just a simple mitigation strategy).

II. MODEL AND APPROACH OVERVIEW

Our approach is designed for any MAV with many rotors;
however, for concreteness we present our solution based on
ModQuad [18], [19]. In ModQuad, a module is a cuboid pro-
pelled by a quadrotor. Modules can self-assemble to produce
a larger MAV. A set of rigidly attached modules is called a
structure; two example structures are shown in the right image
in Fig. 1. For simplicity, we focus on settings without external
disturbances such as wind, but – as we will show in Section V
– our technique is robust to thrust noise. The dynamics model
we use is largely based on [18]; however, our fault model and
FDI approach are completely new.

A. Dynamics of MAV

The standard basis in R3 is given by the three unit vectors
b̂1 = [1,0,0]⊤, b̂2 = [0,1,0]⊤, and b̂3 = [0,0,1]⊤. The fixed
world coordinate frame, in which the z-axis points up, is

denoted by {W}. The set of rigidly attached modules that form
a particular structure are associated with a structure coordinate
frame {S}. Within a structure, the jth module has a module
reference frame {M j} with its origin at the module’s center
of mass. The unit vectors of the bases of module frames are
parallel and identically oriented to those of {S}. The location
and orientation of {S} in {W} is specified by vector r ∈ R3

and rotation matrix W RS ∈ SO(3).
The four propellers associated with each respective module

are coplanar on the xy-plane. The kth propeller of the jth

module generates force f jk = f jkĥ jk, where f jk is less than
or equal to the maximum producible thrust fmax and we
define for compactness ĥ jk =

SRM j
M j Rkb̂3. The torque due to

propeller drag is given by τττd
jk = f jk(−1) j+k

(
km
k f

)
ĥ jk, where

km and k f are experimentally obtained constants. The total
force can be represented by the vector sum fT = ∑ jk f jk and
τττT =∑ jk τττ f

jk+τττd
jk. Here, τττ f

jk = p jk×f jk is the torque generated
by the thrust force of the kth propeller in the jth module, where
p jk ∈ R3 is the position of each propeller in {S}.

The control vector, denoted by u= [f11, f12, . . . , fN4]
⊤, where

N is the number of modules, represents the thrust commanded
to be outputted from each rotor in the system. Together
with the design matrix A (see [20, Sec. III]), this can be
used to produce the wrench vector w = Au in {S}, where

A =

[
. . . ĥ jk . . .

. . . p jk × ĥ jk +(−1) j+k
(

km
k f

)
ĥ jk . . .

]
.

The dynamics of the structure can be represented by the
Lagrangian for robot motion [11], [12]

M
[

r̈
ω̇ωω

]
+C

[
ṙ
ωωω

]
+g = Bw (1)

where r̈ is the linear acceleration, ṙ is the linear velocity,
ω̇ωω is the angular acceleration, ωωω is the angular velocity,
M =

[
mI3 0

0 J

]
, C =

[
0 0
0 ωωω×J

]
, g=

[
mgb̂3

0

]
, and B=

[
W RS 0

0 I3

]
. Here,

M collects the mass m and inertia tensor J of the structure, C is
the Coriolis matrix and the operator (.)× converts a vector into
its skew-symmetrix matrix form, g is the gravitational force
vector (g is gravitational acceleration), B maps the wrench
vector w from {S} to {W}, and I3 is the 3×3 identity matrix.

Faults and errors. A rotor’s current ‘fault level’ can be
quantified as a severity s jk ∈ [0,1], where ( j,k) is the index of
the rotor. For notational convenience, we additionally define
Γ jk = 1− s jk, and we coaelesce these quantities acrosss all
rotors in the structure into the vector ΓΓΓ = [Γ11,Γ12, . . . ,ΓN4]

⊤.
An individual rotor’s thrust can now be redefined as u′jk =
min{Γ jku jk,Γ jkfmax}, where u jk is the thrust commanded for
this rotor by the control algorithm. We consider a single rotor
fault at a time; however, multiple rotors can become faulty
sequentially, in which case we assume that a subsequent fault
only occurs after the current one has been isolated.

The trajectory planner for the structure outputs a desired
state, and we can extract orientation information by using a
gyroscope to measure angular velocity. Since our approach is
mainly concerned with roll and pitch, we define a limited state
error vector e = [eφ ,eθ ]

⊤ consisting of roll angle error eφ and



Fig. 2: 4×4 (a) square structure and (b) plus structure.

pitch angle error eθ . We denote ηηη = [ηφ ,ηθ ]
⊤ as the vector of

error magnitudes, where ηφ = |eφ | and ηθ = |eθ |. The median
value of ηηη over a time window ∆x is given by ηηηx.

Objective. Given a flying MAV, our goal is to detect whether
any rotor is faulty and, if so, isolate the faulty rotor and
estimate its fault severity. Our solution should work even when
some prior faults have been previously identified in the MAV.

B. Fault detection and isolation approach overview

Detection can be done by thresholding state error data, but this
approach is unreliable under noise in the rotor thrust output.
To avoid this problem, our detection method performs error
thresholding on a function of the standard deviation in roll
and pitch error over a baseline time window of data. When a
fault is isolated, we collect a new baseline window.

Fault isolation aims to answer two key questions: (1) How to
efficiently find the faulty rotor as the search space grows with
more rotors? and (2) Given a candidate rotor, how to determine
whether it is indeed the faulty one? We address these questions
using four key insights: I1) By adapting the technique in [15],
we can quickly identify the structure quadrant containing the
faulty rotor. I2) The roll-error-to-pitch-error ratio is stable
across fault severity levels, planned trajectories, and structure
shapes; using this ratio, we can sort the candidate rotors by
their likelihood of being faulty. I3) Using a bivariate quadratic
model that relates the error in roll (or pitch), the distance
from the axis roll (or pitch) is found w.r.t., and the fault
severity, we can estimate the fault severity of a candidate rotor
based on its structure-frame position and the observed error.
I4) For a candidate rotor, injecting a probe fault can help
determine whether the candidate is indeed faulty. Specifically,
if the change in state error is consistent with the estimation
(in I3) plus the probe fault severity, the search can terminate;
otherwise, it moves to the next rotor.

Due to space limitations, our experimental studies focus on
the two ModQuad structures shown in Fig. 2, referred to as
the ‘square’ and ‘plus’ structures. However, the core technique
is designed to work for other symmetric ModQuad structure
shapes as well. We now discuss our approach in detail.

III. DETECTING THE PRESENCE OF A ROTOR FAULT

One way to detect the presence of a fault is to set up thresholds
on (roll and pitch) errors: if the error observed at runtime
exceeds the set threshold, a fault is considered present. This
simple strategy is insufficient, however, since we can expect
that noise, inertia, and the control gains will result in imperfect
tracking of the desired state. Instead, we take the statistical
median over a window of time. Specifically, we compute ηηηb =

[ηφ ηθ ]
⊤ over a time window ∆b, where ∆b is a ‘baseline’

window to compare newer windows against.
We periodically collect a new window ∆n and check if

||ηηηn −ηηηb > mσηηηb ||1 = 2, or (2)

||ηηηn −ηηηb||1 > m′||σηηηb ||1, (3)

where m∈R : m> 0 and m′ ∈R : m′ >m are tunable constants,
σηηηb is the standard deviation in ηηη over ∆b, > returns 0 (false)
or 1 (true), and || · ||1 is the L1-norm. This not only makes fault
detection more robust to noise but can also be used to detect
sequential faults (i.e., the next fault can be detected based on a
new baseline ∆b′ ). Our approach uses both (2) and (3) because
sometimes the roll error is much larger than the pitch error,
and vice versa. (3) can detect the fault even if one of the
errors is low; in contrast, (2) is better at detecting faults in the
presence of noise. This is also the reason for m′ > m.

IV. ISOLATING THE FAULTY ROTOR

Once a fault is detected, our technique 1) identifies the
quadrant containing the fault, 2) performs sub-quadrant search
by examining rotors of the identified quadrant in decreasing
likelihood of being faulty, 3) computes the severity with which
a candidate rotor should have failed to produced the observed
errors, and 4) uses probe faults to verify faultiness.

TABLE I: Inference table for
identifying the faulty quadrant.

eφ eθ

Quadrant
with Fault

+ - I
+ + II
- + III
- - IV

Quadrant isolation. Quadrant
isolation is inspired by [15], which
uses the errors in orientation to
create an inference table for find-
ing the faulty rotor in an octoro-
tor. We adapt this idea to identify
the quadrant of the structure that
contains a fault. Since (sgn(eφ ),sgn(eθ )) is unique for each
quadrant, we can use Table I to narrow down the search space.

Sub-quadrant candidate ordering with error ratios. Next,
we search through the candidate faulty rotors within the
quadrant. The first step is to order rotors by their likelihood
of being faulty. We start by modeling the effect of a fault on
the dynamics of the structure. The wrench vector computation
is rewritten as w′ = AHu, where H = diag(ΓΓΓ) is a 4N × 4N
diagonal matrix defined as having elements of ΓΓΓ along its
diagonal and zeros elsewhere. Thus, the dynamical model
described in (1) can be reformulated as M

[
r̈
ω̇ωω

]
+C

[
ṙ
ωωω

]
+g = Bw.

We next look specifically at the angular acceleration ex-
pression: Jω̇ωω + ωωω×Jωωω = τττT . By rearranging, we get ω̇ωω =
J−1 (τττT −ωωω×Jωωω).1 This is the expected angular accelera-
tion (i.e., what we would expect if ΓΓΓ = 1). We can sim-
ilarly compute the achieved angular acceleration as ω̇ωω ′′′ =
J−1 (τττ ′T −ωωω ′×Jωωω ′); this is the acceleration achieved given the
fault(s) in the system. We can double-integrate each of the
elements of ω̇ωω and ω̇ωω

′ to find the expected and achieved

1The inertia matrix must be invertible; the structure has mass distributed in
3D space, meaning that in the body-fixed frame, where the basis is defined
along the principal axes, the inertia matrix is diagonal and full rank, implying
the invertibility of J.



roll, pitch, and yaw:
∫ ∫

ω̇ωωdt = J−1 (
∫ ∫

(AτττT u−ωωω×Jωωω)dt),
where AτττT is the bottom row of A. We abstract the
Taylor series of this result as

∫ ∫
ω̇ωωdt = D1ℓℓℓ

(n)
1 (t) −

D2ℓ
(n′)
2 (t), where D1ℓℓℓ

(n)
1 (t) = J−1 ∫ ∫

AτττT udt, D2ℓℓℓ
(n′)
2 (t) =

J−1 ∫ ∫
ωωω×Jωωωdt, D1 and D2 are (n + 1) × (n + 1) coef-

ficient matrices, ℓℓℓ
(n)
1 (t) =

[
tn tn−1 . . . 1

]⊤, ℓℓℓ
′(n)
1 (t) =[

tn′ tn′−1 . . . 1
]⊤

, and n and n′ represent the order
of the polynomial Taylor series. Similarly,

∫ ∫
ω̇ωω ′dt =

D′
1ℓℓℓ

′(n)
1 (t) − D′

2ℓ
′(n′)
2 (t). We can then find the orienta-

tion error as
∫ ∫

ω̇ωωdt − ∫ ∫
ω̇ωω

′dt =
(

D1ℓℓℓ
(n)
1 (t)−D2ℓℓℓ

(n′)
2 (t)

)
−(

D′
1ℓℓℓ

′(n)
1 (t)−D′

2ℓℓℓ
′(n′)
2 (t)

)
. For compactness, we define Ωφ (t) =(

D1φ
ℓℓℓ
(n)
1 (t)−D2φ

ℓℓℓ
(n′)
2 (t)

)
−

(
D′

1φ
ℓℓℓ
′(n)
1 (t)−D′

2φ
ℓℓℓ
′(n′)
2 (t)

)
and Ωφ (t) =(

D1θ
ℓℓℓ
(n)
1 (t)−D2θ

ℓℓℓ
(n′)
2 (t)

)
−
(

D′
1θ
ℓℓℓ
′(n)
1 (t)−D′

2θ
ℓℓℓ
′(n′)
2 (t)

)
.

Then, we can take the limit of the ratio of the roll and pitch
errors: lim

t→∞

Ωφ (t)
Ωθ (t)

. Let ζζζ be the vector with the first element
being one and all others zero. If n > n′, the limit becomes
(D1φ

−D′
1φ

)ζζζ

(D1θ
−D′

1θ
)ζζζ

. If n < n′, the limit becomes
(D2φ

−D′
2φ

)ζζζ

(D2θ
−D′

2θ
)ζζζ

. Finally,

if n = n′, the limit becomes
(D1φ

−D2φ
−D′

1φ
+D′

2φ
)ζζζ

(D1θ
−D2θ

−D′
1θ

+D′
2θ

)ζζζ
. In all cases,

the result of the limit is a constant. Thus, given a fault at a
particular location, we should expect to see that the roll-to-
pitch error ratio ηφ/ηθ is stable. Note that the severity does
not impact this ratio, since the severity term will appear in
both the numerator and denominator.

Our isolation approach is based on the constant-ness of the
limit observed above. Specifically, the error ratio is (mostly)
agnostic to fault severity, planned trajectory, and even structure
shape. (Our simulation further confirms this property, but due
to space constraints we omitted the details here.) The error
ratios provide a much finer-grained information about the
rotors than the quadrant-level analysis. At runtime, we subtract
(element-wise) the observed error ratio from a saved error
ratio profile, flatten the result, and sort it to generate a list of
candidate faulty rotors in decreasing likelihood of being faulty.

Computing severity. Suppose a particular rotor in a particular
position in the structure is faulty. Given the ηφ and ηθ

observed at runtime, we need to determine which severity level
this rotor must have undergone.

Given a specific arrangement of rotors in a structure, ηφ

and ηθ are a function of the distance of the rotor from the
relevant axis and the severity of the fault. This is illustrated
by Fig. 3, which shows the error magnitudes observed for both
the square and plus structures. As before, each plot represents
the data across three trajectories and four fault severities, with
noise added as described in Sec. V. These figures combine
data points for ηφ and ηθ , since they follow the same trends.

The magnitude of orientation error observed at runtime can
be modeled using the bivariate quadratic model

[
ηφ ηθ

]
=
[
c0 c1 c2 c3 c4 c5

][1 dφ s d2
φ

dφ s s2

1 dθ s d2
θ

dθ s s2

]⊤
, (4)

where dφ and dθ are the distance from the axes roll and
pitch are computed w.r.t., s is the fault severity, and c0, ..c5
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Fig. 3: Models used to compute fault severity. (Note: the z-scales in the two
plots are not the same.)

TABLE II: Coefficients found for (4).

c0 c1 c2 c3 c4 c5
Square 0.103 −0.941 −0.312 1.542 12.786 0.169
Plus 0.902 −6.580 −2.875 5.983 51.420 1.966

are coefficients (unique to each structure). Overlaid on the
stem plots of the errors observed is a wireframe that plots the
bivariate quadratic models fitted to each respective data set.
Table II shows the coefficients found for each structure. The
coefficients can be quite different across different structures,
and the maximum η varies by a factor of almost 3×.

Thus, we can compute the severity of a fault given a)
the candidate faulty rotor, for which the position in a given
structure is fixed, and thus dφ and dθ are known, and b) the
error magnitudes ηφ and ηθ , which are collected as part of
the previous step of finding error ratios.

Determining if a candidate is the faulty rotor. Once we have
selected a candidate rotor to check for fault and have computed
the corresponding fault severity s′, we need to determine
whether this rotor is indeed faulty. This is done via probe
fault injection. Suppose we wish to check a rotor ( j,k) for
having undergone a fault of severity s′ = 1−Γ ′

jk, and we wish
to check whether s′ ≈ s, where s is the actual fault severity.
We inject a probe fault into ( j,k) with severity sp = 1−Γ

p
jk,

where sp is constant. If ( j,k) is the faulty rotor, then the actual
thrust output u′jk = Γ

p
jkΓ jku jk; otherwise, u′jk = Γ

p
jku jk. After

applying the probe fault, we can collect a new window of data
∆p, from which we can compute ηηη p. We can also compute the
expected η̂ηη p by plugging in s′′ = 1−Γ

p
jkΓ

′
jk into (4) (since we

already have all the coefficients and we know the location of
the candidate faulty rotor, from which dφ and dθ are derived).

We next compute δ
ηηη
p,n = (ηηη p −ηηηb)− (ηηηn −ηηηb) = ηηη p −ηηηn

and δ
η̂ηη
p,n = η̂ηη p − (ηηηn −ηηηb). We subtract ηηηb from observed er-

rors to isolate the impact of the probe fault and the actual fault
on ηηη from that of pre-existing error (e.g., from previous faults).
Finally, to determine whether the current fault candidate is the
faulty rotor, check whether ||δ η̂ηη

p,n −δ
ηηη
p,n||1 < m′′σ||ηηηn||1 , where

m′′ ∈R : m′′ > 0 is a tunable constant analogous to the m used
in fault detection and σ||ηηηn||1 is the standard deviation in ||ηηη ||1
over ∆n. If the condition is satisfied, the search terminates.

Limitation. When the structure is small, injecting probe faults
can be limiting since smaller systems have fewer redundant
rotors and less redundant thrust in each quadrant. Thus, while
we can use the error ratio and severity computation parts of
our approach for systems with few rotors (as demonstrated
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Fig. 4: Noise models used in the simulation.
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planned trajectories increases.

in [6] for 6-rotor VTOL systems), our approach for validating
a rotor’s fault status is best suited for systems with enough
spare thrust capacity to stay airborne despite faults. This is
why our approach works well for MAVs with many rotors.

V. IMPLEMENTATION

We developed atop ModQuad’s CoppeliaSim simulator [20]
(https://github.com/Jarvis-X/HModQuad-sim). We set m = 1.75, m′ =
2m, m′′ = 1.75, ε = 0.25, sp = 0.5, and ∆ = 8s, where ε is a
tuning factor needed for multiple sequential faults. We used
four trajectories: a diagonal line, a spiral trajectory, a zigzag
trajectory in the xy-plane, and a zigzag trajectory in the xz-
plane (the last of which was not included in our profiling).
We tested s ∈ {0.25,0.5,0.75,1.0}. The fault detector ran at
1Hz; fault detection time was measured from the time of
fault injection to the time of detection. Fault isolation time
was likewise measured from fault injection to isolation. Due
to structure symmetry, we tested faults in one of the four
quadrants of each structure.

Thrust noise. For simplicity, we assume external forces
such as wind are negligible, and techniques such as Kalman
filter are used to handle noise in sensor measurements. A
remaining major source of noise is in the thrust output of
each rotor. To model this noise, we ran experiments on the
EMax RS-1108/5200KV motor equipped with a type-3020
bi-blade three-inch propeller, as used in [20]. The electronic
speed controller outputs a signal of varying length (denoted
ℓ), where a larger ℓ corresponds to a faster rotational velocity,
which in turn produces a larger thrust. Fig. 4 shows the
results in black, along with overlaid regression models in
dashed light-red lines. The equations u = a0 + a1ℓ+ a2ℓ

2

and σu = b0 − b1ℓ+ b2ℓ
2 + b3ℓ

3 related ℓ to u and σu well,
respectively, where u is thrust in Newtons and σu is standard
deviation in u. We found a0 =−0.2269, a1 =−0.0014, a2 =
1.6×10−6, b0 =−0.2, b1 =−4.9×10−4 b2 = 3.98×10−7, and
b3 =−1.09×10−10. In simulation, given the desired thrust u
for a rotor, the quadratic formula is used to find the ℓ-value
that would produce u, after which we can compute σu. The
output of rotor ( j,k) is thus u

′
jk = u jk +G(µ,σu jk), where G

is Gaussian noise and µ = 0N.
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Fig. 6: Lower severities have less impact on motion and take longer to detect
and isolate.
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Fig. 7: K j,k applied at about t = 45s results in lower error despite a fault.

VI. EVALUATION

Our evaluation aims to answer three key questions: 1) How
accurate is our isolation technique? 2) How much time do
detection and isolation take? 3) When used with a recovery
strategy, how well does it improve robustness against faults?

Isolation accuracy. Fig 5 shows our accuracy results for one
quadrant of both the square and plus structures. The lighter
colors shown for some rotors usually stems from inaccuracies
at lower fault severities, which are harder to isolate. The square
structure tends to perform better than the plus structure, which
is partly because the square structure is better able to handle
both the thrust loss from the rotor fault itself and the thrust
loss from the probe faults. The silver lining is that, typically,
we would expect it to be harder to achieve high accuracy when
the system has more rotors to consider as fault candidates, but
we actually see better accuracy with more rotors.

Detection and isolation time. Fig. 6 shows the time-to-detect
and time-to-isolate for the square and plus structures, for those
rotors that were correctly isolated. Lower-severity faults take
a bit longer to detect and isolate, but this is expected since a
smaller fault disrupts motion less, and is thus less distinct from
normal behavior. Once detected, however, the time to isolate
the fault is similar for most rotors. We can observe that the
median detection time is virtually identical across severities,
although the variance is still a bit larger for lower-severity
faults. Note that these times are affected by the period with
which we ran our detector (once per second); if it is run more
often, the observed times should decrease.

Impact on robustness when combining with recovery. A
benefit of our FDI technique is that, by efficiently isolat-
ing the fault, we can promptly apply recovery actions to
improve performance and handle multiple sequential faults.
While our technique works with any recovery strategy, for
illustration purposes, we implemented a simple recovery
strategy for low-severity faults. Specifically, once we have
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Fig. 8: Fault impact on motion compounds.
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Fig. 9: Our approach can keep median error close to 0◦.

isolated the rotor ( j,k) as being faulty and have checked
that s

′
j,k ≈ s j,k is a reasonable estimate for the fault severity,

we apply the compensatory gain K j,k = 1/Γ
′
j,k to the rotor

thrust, where Γ
′
j,k = 1 − s′. Thus, the actual thrust output

is u′j,k = min{K j,kΓ j,ku j,k,Γ j,kfmax}. This does not affect the
limits from Sec. IV, since all we are changing are constant
multipliers, so far as the analysis is concerned.

Fig. 7 shows how our FDI combined with recovery can
significantly reduce ηφ and ηθ . The dotted, red, vertical line
shows the time of fault injection, the dash-dotted, green,
vertical line shows the time of fault compensation, and the
dashed, black, horizontal line shows median error in segments
divided by vertical lines. Here, we injected the fault with
severity s= 0.5 into a rotor of high leverage. We observe that
isolating and compensating for the rotor can reduce median
roll error from over 2 degrees to a value close to 0 degrees,
with similar results for pitch error.

Fig. 7 also shows that while the compensatory gain is quite
effective, it can leave a ‘residue’ offset relative to the ideal 0◦

error. This occurs because at runtime, we typically will find
s′ ≈ s, but not s′ = s. Thus, the compensatory gain compensates
for s′ and not s, which in turn means that a fault of severity |s−
s′| is left in the system (although this value is typically small).
Thus, checking for future faults can be affected by artifacts of
previous fault recovery procedures. To address this, once we
apply K j,k, we increment m in (2) by ε to reduce the chance
of false positives in subsequent fault detection, and collect a
new baseline window of data ∆b′ . The new baseline allows
us to isolate the impact that a new fault has on the system,
thereby enabling re-use of the fault detection, isolation, and
simple recovery approaches for future faults as we did for
already-compensated-for faults.

Multiple sequential faults. Finally, we sequentially injected
three faults of severity s ∈ {0.3,0.4,0.5} in three rotors of a
quadrant in the square structure traversing a spiral trajectory.
Fig. 8 shows results without our technique. The dashed green
line shows the ideal error of 0◦, and the solid black horizontal
lines overlaid on the raw data show the median for the relevant
time spans. Translucent rectangles show when each fault was
impacting the system; darker shades indicate compounded
fault impact. Without our method, the compound effect of the

faults pushes error to −2◦ and −4◦ error in roll and pitch,
respectively. In contrast, with our method in Fig. 9, despite
the presence of three faults, we can keep the median error in
both roll and pitch close to 0◦.

VII. CONCLUSION

Fault detection and isolation is a difficult problem in multirotor
aerial vehicles, especially as more rotors are added. We have
presented the first FDI technique for MAVs with dozens of
rotors. Our evaluation shows that our technique can efficiently
detect and isolate faulty rotors in systems with 8× more rotors
than the state of the art, and that it enables prompt recovery
actions to improve the system’s robustness and handle multiple
sequential faults.
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