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Abstract—As cyber-physical systems (CPS) become increas-
ingly autonomous, there is a growing need for resource-efficient
design techniques that can guarantee safety and timeliness during
system reconfiguration or mode changes. In this paper, we present
DECNTR, a co-design technique for jointly optimizing safety,
schedulability and robustness for multi-mode CPS on multi-core
platforms. By designing switching controllers that can switch be-
tween different implementations and between different sampling
periods, DECNTR gives the resource allocation significantly more
flexibility to adapt scheduling decisions to load changes, such as
additional tasks in a new mode or increased demands during a
mode change. For example, it can pick the best implementation
for a task depending on the current resource availability; it can
adapt the period within a safe range to effectively utilize CPU
and shared resources, which helps increase performance and
robustness; and it can relax some job deadlines to avoid transient
overloads during mode transitions for better schedulability. Our
evaluation on an automotive case study and resource-intensive
benchmarks shows that DECNTR is highly effective in maximizing
schedulability and robustness while ensuring safety, and that
it significantly outperforms the state of the art in multi-core
resource allocation for multi-mode systems.

Index Terms—Control and platform co-design; Safety; Multi-
mode systems; Multi-core resource allocation.

I. INTRODUCTION

Modern cyber-physical systems (CPS), such as self-driving
vehicles and autonomous marine systems, are inherently adap-
tive. A self-driving car, for instance, needs to execute different
control tasks depending on detected obstacles, road conditions,
or potential hardware/software faults. A standard way to model
and analyze such systems is to use multi-mode formalism,
where each mode represents a system configuration (composed
of tasks that are active in the mode), and each transition
represents a switch from one configuration to another in
response to a mode-change event (such as a detected obstacle).

Guaranteeing the safety, robustness, and timeliness of multi-
mode CPS on multi-core platforms is highly challenging. On
the one hand, the control design must ensure that the output
(or state) of the plant controlled by each task is inside a
safe region; on the other hand, the scheduling and resource
allocation of the control tasks must ensure schedulability in
each mode and during each mode transition. Achieving these
two (contradictory) goals concurrently is difficult, especially
when the set of control tasks – and thus the system load –
changes as the system moves from one mode to another.

One reason for this difficulty is that, to enable implemen-
tation on a platform, the controller (implemented as a control
task) is designed for a particular sampling period (which
is used as the task period). The controller guarantees the
safety constraint only at the sampling instances, whereas the
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Fig. 1: The plant is con-
nected to a feedback
controller that guaran-
tees the invariance of
XS at sampling time
(denoted by dots on the
curve) but not during
inter-sampling intervals.

behavior at inter-sampling intervals might be unsafe due to
plant dynamics or external disturbance. Fig. 1 illustrates this
situation: the inner rectangle denotes the safe region XS , the
shaded rectangle denotes all possible plant states X , the curve
represents the state during a simulation time interval, and the
dots on the curve represent the state at sampling times. As
highlighted in this figure, while the state at sampling times is
always inside the safe region XS , certain parts of the curve
(highlighted in red) are outside XS . Therefore, a goal of our
work is also to increase the robustness of the controlled system
– namely, the system’s ability to remain safe even in the
presence of slight disturbance affecting the state measurements
at the sampling instant. In other words, the more robust a
controller is, the more likely that the state is also inside XS

during inter-sampling intervals.
One way to increase robustness is to reduce the size of XS

or to impose a bound on the possible external disturbances,
but this also reduces the controller’s capability. For this
reason, reducing the sampling period to reduce the uncertainty
about the plant’s inter-sample behaviors is a common choice
(see [49] and references therein). However, a smaller period
also makes a task harder to schedule. During a mode transition,
this problem is exacerbated because one needs to schedule not
only jobs released in the new mode but also unfinished jobs
from the old mode. Unfinished jobs of tasks that continue in
the new mode are hard to handle. In the worst case, they need
to be executed immediately to meet their deadlines, at the
cost of delaying the execution of new tasks, which can lead
to deadline misses.

Multi-mode systems have been studied extensively in the
real-time community, but the focus is mostly on schedulability
analysis (particularly during mode transitions), and existing
work generally considers a single core. Recently, Omni [21]
presented an end-to-end task mapping and resource allocation
solution for multi-mode systems on multi-core platforms. By
dynamically adjusting the mapping of tasks to cores and the
allocation of shared resources (such as cache and memory



bandwidth) to cores at mode transitions, it can improve
schedulability substantially. However, Omni completely ig-
nores control aspects and assumes instead that the sampling
period for each task in each mode is given a priori. Thus, if
the task periods need to be small to avoid safety violations
during inter-sampling times (to enhance robustness). it may
not be able to schedule the tasks. In addition, to minimize the
number of re-allocations during transitions, Omni works by
finding an allocation for each mode that is as similar to one
another as possible. Consequently, its allocation may not be
optimal for any individual mode.

In this paper, we present a co-design approach to achieving
safety, robustness, and timeliness for multi-mode CPS on
multi-core platforms. Our insights are twofold: First, given
a control task, it is possible to design safety conditions
for switching between different controllers (implementations),
which may have different sampling periods. Having multiple
implementations under different sampling periods enables the
resource allocation to determine the ‘best’ period for each task
in each mode to maximize schedulability and robustness, while
still guaranteeing safety. Second, it is possible to ‘delay’ the
deadline of an unfinished job (or even to kill them) without
compromising safety, as long as the extended deadline is
within one of the safe periods of the controller used. In
other words, we can relax the periodicity requirement for
continuing tasks, often imposed in existing work (including
Omni). This relaxation helps reduce the load during mode
transitions, which not only increases schedulability but also
enables us to use allocations that are ideal for each mode
individually, thus further improving resource efficiency.

To realize this approach, we introduce DECNTR, a concrete
co-design method for co-optimizing safety, robustness, and
schedulability. At the core, DECNTR consists of a control
design technique for developing safe controllers that can
switch between different implementations (sampling periods)
and that can accommodate a certain delay of unfinished
jobs during a switch. DECNTR resource allocation algorithm
intelligently exploits these properties to determine, for each
mode, a sampling period for each task, a mapping of tasks to
cores, and an allocation of cache and memory bandwidth to
each core so as to maximize schedulability while minimizing
periods (to increase robustness). This is done in tandem with
delaying unfinished jobs, if necessary, to improve schedulabil-
ity during mode transitions. By co-designing the controller and
resource allocation this way, DECNTR substantially increases
schedulability and robustness compared to the state of the art,
while guaranteeing safety. As a side benefit, DECNTR resource
allocation can be used for optimizing real-time performance
by adapting the best periods, or allowing graceful degradation
of service as well.

In summary, the paper makes the following contributions:
• A co-design approach for jointly developing controllers

and resource allocation algorithms to maximize safety,
robustness and schedulability.

• A set of controllers that guarantees the CPS’s safety under
known sampling-time variations and transitions between

two different control implementations (Section IV).
• A novel multi-core task and resource allocation algorithm

that guarantees safety while maximizing robustness and
resource efficiency (Section V).

Our evaluation using a CPS case study and real-time bench-
marks shows that DECNTR can substantially improve robust-
ness while increasing schedulability by up to 11× compared
to the state of the art.

II. RELATED WORK

There is a large body of work on multi-mode systems. Prior
work in this area often focuses on one of two key areas: 1) new
models and timing analysis techniques (see e.g., [12], [13],
[22], [3], [34], [45], [35], [36], [29]), and 2) mode-change
protocols for ensuring schedulability during mode transitions
(e.g., see [10], [39] and references therein). Recently, multi-
mode scheduling and analysis have been extended towards
multiprocessors [23], [32], [17], [5], [38], [1]. The majority
only considers CPU, but some recent work, like Omni [21],
considers shared resources [31], [28].

Several multi-resource and task co-allocation techniques
have been developed. For example [54], [53] propose holis-
tic resource allocation techniques that find the assignments
of tasks, cache and memory bandwidth to cores. DNA/-
DADNA [20] does the same dynamically at run time for soft
real-time tasks but also does not consider multiple modes.
These techniques, however, focus on single-mode systems.

Safety controllers are extensively studied for CPS appli-
cations. One particular approach is the design of so-called
barrier functions [37], [2], [27]. This method is applicable to
systems with nonlinear dynamics and circumvents the direct
computation of the controlled invariant set, which delineates
the region within which the system can maintain safety.
Nonetheless, a level-set of barrier functions, which constitutes
the controlled invariant set, can be overly conservative due to
the inherent conservatism of barrier functions. Other research
concentrates on systems with linear dynamics [6], [8], [9],
which can compute the maximal controlled invariant set via
operations over sets.

Lastly, there is extensive research in control and scheduling
co-design. The result in [4] is one of the first to introduce the
concept of modifying a control task’s sampling period for the
sake of improving CPU efficiency. Since then, there has been a
large collection of techniques [19], [44], [40], [42], [11], [58],
[46], [15], [43], [24], [16], [47], [48] that apply co-design
principles to resource allocation, to scheduling, or to multi-
mode systems. However, to the best of our knowledge, no
prior work has considered a holistic co-design of multi-mode
controllers with multi-mode allocations of tasks and shared
resources (such as cache and memory bandwidth) on multi-
core platforms.

III. SYSTEM MODELING AND MODE-CHANGE PROTOCOL

A. Multi-mode system and platform modeling

Platform. The system is deployed on a multi-core platform
consisting of r identical cores that can access a shared
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cache and shared memory bandwidth (BW). The cache and
BW are divided into Cmax and Wmax equal-size partitions,
respectively. At run time, distinct sets of cache and BW
partitions are distributed to cores, and each core has exclusive
access to its allocated partitions. Cache and BW allocation
can be performed using existing mechanisms, such as Intel’s
CAT [26] for cache and MemGuard [55] for BW.

System model. We consider a multi-mode system defined by
{M,R,m0, T }, where M is the set of modes, R ⊆ M×M
is the set of transitions, m0 ∈ M is the initial mode, and T
is the set of control tasks. Each mode m is associated with
a set of periodic tasks T m ⊆ T that are active in m. Each
transition (m′,m) is triggered by a mode-change request
event (MCR), upon which the system moves from mode m′

to mode m by executing a mode-change protocol (described
below). We assume that when an MCR occurs, another MCR
can only occur after the system has completely moved to the
new mode. Within a mode, each active task is mapped onto
a core, and it remains on the core while the system is in
this mode. Tasks on the same core are scheduled under the
Earliest Deadline First (EDF) policy.

Task model. Each task τi in the system controls a particular
physical plant of the CPS. It is associated with a set of qi
controllers (implementations) Ki =

{
Ki,j | 1 ≤ j ≤ qi

}
, from

which it can pick to execute in a mode. Each controller Ki,j

has a safe range of sampling periods, [ρi,j , ϱi,j ], and the task
can switch between any two sampling periods in this range
that are multiples of ρ without compromising safety, where
ρ > 0 is a configurable control parameter. We denote by
ρi,min = minqij=1 ρi,j and ϱi,max = maxqij=1 ϱi,j the minimum
and maximum safe period of τi, respectively. In each mode
m where τi is active, our resource allocation algorithm will
assign a specific controller Km

i ∈ Ki and a period value pmi
in the period range of Km

i for execution. For simplicity, we
assume the task’s deadline is the same as its assigned period; it
should be straightforward to extend our algorithm to the case
where deadlines are smaller than periods.

We consider a resource-aware task model where a task’s
worst-case execution time (WCET) depends on the resource
it is given. Specifically, ei(c, w) represents the WCET of τi
when it is given c cache partitions and w BW partitions, for
all 1 ≤ c ≤ Cmax and 1 ≤ w ≤ Wmax.

Mode-change protocol design. To define the execution be-
havior during a mode transition from m′ to m, we distinguish
three types of tasks associated with the transition: (i) old tasks
are active in m′ but not in m; (ii) new tasks are active in m
but not in m′; and (iii) carry-over tasks are active in both m
and m′. If a carry-over task has an unfinished job, we call the
job a carry-over job during the mode transition.

We drop old tasks (and their unfinished jobs) at the MCR
instant. However, the mode-change semantics for carry-over
and new tasks are designed to leverage the capability of our
controllers in tolerating certain delay for the next actuation
(sampling) time during a mode transition and in allowing more
than one sampling period.

Formally, for each transition (m′,m), we determine for each
task τi in mode m whether we need to delay the deadline
(within a safe range) of its first job to complete after the MCR
(to improve schedulability). This could either be its carry-over
job (if exists) or the first job that τi releases in mode m. If we
do, we mark the task as delayable by setting deli(m

′,m) = 1,
and compute a corresponding ‘delayed’ deadline. If τi has
a carry-over job, then the delayed deadline must be a safe
period value for Km′

i (the controller used in the old mode);
otherwise, the delayed deadline must be a safe period value
of Km

i . Hence, we will associate with each task τi in each
transition (m′,m) ∈ R a delayed deadline di(m

′,m) that
may be applied to the first job τi releases in mode m, for all
τi ∈ T m. In addition, we also compute a delayed deadline
dci (m

′,m) for the carry-over job of each carry-over task τi of
the transition.

Mode-change semantics. When a mode transition (m′,m)
is triggered, we execute the following mode-change actions:

Step 0) Drop all old tasks, including their unfinished jobs.
Step 1) For each new task, release its first job immediately.
Step 2) For each carry-over task that has no carry-over job,

release the next job at pmi time units after its last job release.
Step 3) For each task τi in m that is delayable, if it has

a carry-over job, we set the deadline of the carry-over job to
be dci (m

′,m); otherwise, we set the deadline of its first job
in m to be di(m

′,m). All subsequent jobs are released and
assigned deadlines according to the task’s assigned period pmi .
For all tasks τi that are not delayable, all jobs will follow the
periods determined by the mode in which they are released.

In the new mode m, the tasks and resources allocated to
each core may change. We assume that any such change take
effect immediately, including for carry-over jobs.

B. Controller design

As discussed earlier, each task in a mode implements a feed-
back controller that controls a physical plant. We now discuss
our control model, starting with some necessary notation.

Given sets X and Y , the projection map of X onto Y is
denoted by ΠY (X). As usual, N,Z,Z≥0,R,R>0 and R≥0

denote the set of natural, integer, nonnegative integer, real,
positive, and nonnegative real numbers, respectively. Notations
[a, b], ]a, b[, [a, b[ and ]a, b] denote closed, open, and half-open
sets in R. Likewise, [a; b], ]a; b[, [a; b[ and ]a; b] denote closed,
open, and half-open sets in Z. Thus, [a, b] ∩ Z = [a; b].

Given sets A and B, f : A ⇒ B denotes a set-valued
map, whereas f : A → B denotes a single-valued map (i.e., a
function). We denote the identity map by I. The set of maps
from Y to X is denoted by XY . The set of all signals with
image on X defined on intervals [0;T [ is denoted by X [0;T [.
Finally, X∞ =

⋃
T∈Z≥0∪{∞} X

[0;T [.
We consider plants as linear control systems evolving in

continuous-time, as defined below.

Definition 1 (ct-LTI). A linear control system is described by:

ξ̇(t) = Acξ(t) +Bcν(t), (1)

3



where Ac ∈ Rn×n, Bc ∈ Rn×d, ξ(t) ∈ X̄ ⊆ Rn, and ν(t) ∈
Ū ⊆ Rd for all t ∈ R≥0. ξ and ν are called state and input
trajectories of the system, respectively. Given ρ ∈ R>0 and
interval I ⊆ [0, ρ], a solution of (1) on I under input ν is
defined as an absolutely continuous function ξ : I → X̄ whose
time derivative ξ̇(t) satisfies (1) for almost every t ∈ I .

To enable implementation on a digital platform, we consider
a sampled-and-hold version of the plant’s model for the sake
of design as introduced below.

Definition 2 (dt-LTI). A discrete-time linear control system
associated with the control system in (1) and sampling time
ρ > 0 is a tuple

S = (X,X0, U,A,B, ρ), (2)

where X = X̄ is the state set, U = Ū is the input set, X0 ⊆ X
is a set of initial states, and the evolution of the system is
described as:

x(t+ 1) = Ax(t) +Bu(t), (3)

with A = eAcρ and B =
∫ ρ

0
eActdt ·Bc.

A tuple (u,x) ∈ U [0;T [×X [0;T [ is a solution of the system in
(2) over [0;T [ if for T ∈ N ∪ {∞}, (3) holds ∀t ∈ [0;T − 1[
and x(0) ∈ X0.

Here, for a given safety set XS ⊆ X , we are interested
in designing feedback controllers K : D ⇒ U , for some
D ⊆ XS , forcing solutions of (3) to evolve within U∞×D∞,
i.e. x(t) ∈ D for all t ∈ N ∪ {∞}, where u(t) ∈ K(x(t)).
In particular, we denote the set of such controllers by K̄(U).
Such a family of controllers is characterized by the maximal
controlled invariant set contained in X [6], [8], [9], [51],
formally defined as follows.

Definition 3. Consider a safety set XS ⊆ X . A set R ⊆ XS

is called controlled invariant w.r.t. (3) and U , if there exists
a feedback controller K ∈ K̄(U) so that every solution (u,x)
of (3) with initial state x(0) ∈ R and u ∈ K(x), evolves
in U∞ × R∞. Moreover, we denote the maximal controlled
invariant set of (3) and U as R(XS).

We use the following iteration for the computation of R(XS)
as proposed in [6]:

R0 = XS , Ri+1 = pre(Ri) ∩XS , (4)

where pre(R) = {x ∈ X | ∃ u ∈ U s.t. Ax+Bu ∈ R}. If it
exists, the fixed point of the iteration is the set R(XS).

C. Problem formulation

Our first goal is to design a set of safety controllers (see Fig. 2)
for each plant. Specifically, given a plant as in Definition 1, for
a given ρ > 0 and dt-LTI S = (X,X0, U,A,B, ρ) associated
to the plant, and a safety set XS ⊆ X , we aim to develop
a set of feedback controllers of the form K : R(XS) ⇒ U
guaranteeing that for any u ∈ K(x), (u,x) ∈ U∞×X∞

S (see
Definition 3). Specifically, we will develop for each task τi
a set of qi ∈ N safety controllers (Ki,j , pi,j), where Ki,j :

… …

Sc
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r
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(Kq, pq)

Fig. 2: The sched-
uler selects one of the
controllers (implemen-
tation) Kj with period
pj . Task index i is
omitted for clarity.

R(XSi) ⇒ Ui and respective sampling period pi,j with j ∈
{1, . . . , qi}, which guarantee the safety even under switching
implementations (see Fig. 2).

Our second goal is to design a resource allocation algorithm
that exploits the designed controllers to optimize schedulabil-
ity and robustness. Specifically, for each mode m ∈ M and
each task τi ∈ T m, we need to determine:

1) cmk and wm
k , the numbers of cache and BW partitions

allocated to each core k (0 ≤ k < r) in mode m;
2) coremi , a core assigned to τi in m; and
3) Km

i and pmi , a controller and a period assigned to τi in
m, where Km

i ∈ Ki and pmi is a period of Km
i .

In addition, for each incoming mode transition (m′,m) ∈ R,
we need to determine

• deli(m
′,m), a boolean variable indicating whether we

should delay a job of τi during the transition (m′,m);
• dci (m

′,m), a delayed deadline for the carry-over job of
τi, if τi is a carry-over task; and

• di(m
′,m), a delayed deadline for the first job of τi

released in mode m. At run time, if τi has a carry-over
job, then we only delay the deadline of its carry-over job
(using dci (m

′,m)) but not its first new job in m.
Our objective is to maximize schedulability, while minimizing
the assigned periods and delayed-deadlines of all tasks in all
modes and mode transitions.

IV. CONTROLLER DESIGN

In this section, we focus on the controller design for just one
plant; thus, we drop the task index i and only use τ for the
sake of simple presentation. First, we discuss the design of an
isolated safety feedback controller with a constant sampling
period. We then present a switching condition for a task τ that
guarantees safety while switching between different controllers
with different sampling periods, which will be used by our
resource allocation algorithm (Section V).

A. Safety feedback controller with constant sampling period

We consider a dt-LTI S for a given plant and the following
regularity assumptions, which are for the tractable computa-
tion of the maximal controlled invariant set [8].

Assumption 4. Assume the pair (A,B) is
controllable, i.e., the controllability matrix C(A,B) =
[B AB A2B . . . An−1B] is full rank.

Assumption 5. Sets XS and U are polytopes. Namely, there
are matrices Hx, Hu and vectors hx, hu such that XS = {x ∈
Rn | Hxx ≤ hx} and U := {u ∈ Rd | Huu ≤ hu} are
compact sets.
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Moreover, we enforce the following condition on the sampling
period of the controllers we aim to design for a given task τ .

Assumption 6. The sampling period of every controller is a
natural multiple of ρ, i.e., for each j ∈ {1, . . . , q}, there is
αj ∈ N such that pj = ραj

= αjρ.

Assumption 6 does not restrict practical applications since the
sampling period of the controller is related to the sampling
period of the sensor from which the controller receives the
feedback signal.

Now, let us consider only one controller j, and let Assump-
tions 4-6 hold. Then, for ρα = αρ, the value of u(t) applied
for α consecutive instants must ensure that if x(t) ∈ XS , then
x(t+α) ∈ XS . One can compute the evolution of the system
in this interval as follows:

x(t+ 1) = Ax(t) +Bu(t)

x(t+ 2) = A2x(t) + (A+ I)Bu(t)

... =
...

x(t+ α) = Aαx(t) + (Aα−1 +Aα−2 + . . . A+ I)Bu(t).

We abuse notation and denote the ”α”-maximal controlled in-
variant set as Rα(XS), and the set preα(R) = {x ∈ Rn | ∃ u ∈
U s.t. Aαx + Aα−1Bu ∈ R}, where Aγ :=

∑γ
i=0 A

i, and
A0 = I. In particular, the iteration in (4) is initialized as
follows:

preα(R0) = (5)

ΠXS

({
(x, u)

∣∣∣∣ [
HxA

α HxAα−1B
0 Hu

] [
x
u

]
≤

[
hx

hu

]})
,

where R0 = XS and Ri+1 = preα(Ri). Assuming the
iteration admits a fixed point in a finite iteration, the fixed
point is the polytope Rα(XS) := {x ∈ X | HRαx ≤ hRα}
when it is not empty [9].

Remark 7. The linearity of the dt-LTI and Assumption 5
provide an LMI in (5) which simplifies the computation of
ΠXS

. However, these assumptions are insufficient to guarantee
the finite convergence of the iteration. Modifications to the
iteration can be made to allow the computation of outer-
and inner-approximations of Rα(X), ensuring the finite-time
convergence of the iteration (see [41] and references therein).
These modifications are omitted for the sake of clarity.

Note that Rα(XS) is the domain of only one safety feed-
back controller with a fixed period p = ρα.

B. Safety Feedback Controllers with Multiple Sampling Time

We now consider the condition that allows the platform sched-
uler to switch among multiple (q) safety feedback controllers,
each of which has a set of sampling periods that guarantee
safety. This has two implications: 1) The scheduler may
change the period of a chosen controller, namely, a control
task τ implements a controller (Kj , pj), where pj ∈ [ρj , ϱj ]
with ρj ≤ ϱj < ∞. However, in the previous section, we
designed (Kj , ρj) assuming the control input u(t) is applied

at time instants ρjt with t ∈ Z≥0. Hence, for any pj ̸= ρj ,
we cannot claim safety satisfaction; 2) The scheduler may
change the controller of a given task, and the transition must
be feasible and ensure the safety property. This means that
if the scheduler executes controller (Kj′ , pj′) after controller
(Kj , pj), then it should hold that x(t + αj) ∈ Rαj′ (XS).
Otherwise, Kj′(x(t + αj)) might be empty, and one cannot
ensure the safety of the closed-loop system.

To address the aforementioned issues, we consider a maxi-
mum delay value between executions. Without loss of gen-
erality, we consider (Kj , ρj), and (Kj′ , ρj′) with j, j′ ∈
{1, 2, . . . , q}, and the maximum delay between two executions
ρjj′ as in Fig. 3. We provide ρjj′ for every combination
of j and j′ even for j = j′; thus, pj ∈ [ρj , ϱj ] with
ϱj = ρj +maxj′∈{1,...,q} ρjj′ .

𝜌

𝜌! = 𝛼!𝜌 𝜌!!’ = 𝛼!!’𝜌 𝜌!’ = 𝛼!’𝜌

Fig. 3: Switching between two (different) controllers may be
delayed in case the next implementation, (Kj′ , ρj′) in our case,
cannot be allocated immediately after the final execution of
(Kj , ρj).

Similar to Assumption 6, we assume the following condition
for the maximum delay time.

Assumption 8. For all j, j′ with j, j′ ∈ {1, . . . , q}, the
maximum delay is either zero or a natural multiple of ρ,
namely, ρjj′ = αjj′ρ where αjj′ ∈ Z≥0.

The value of ρjj′ is a design parameter that allows pj ∈
[αjρ; (αj + αjj′)ρ], providing flexibility for the scheduler to
delay a task in the event of an overloaded mode transition. For
a given dt-LTI S, a safe set XS , and sampling times ρj , ρj′ ,
with maximum delay ρjj′ , we define the following inequality:

HxA
αj+αjj′ HxAαj+αjj′−1B

HxA
αj+αjj′−1 HxAαj+αjj′−2B

...
...

HxA
αj+1 HxAαj

B
HxA

αj HxAαj−1B
0 Hu


[
x
u

]
≤



hx

hx

...
hx

hx

hu


. (6)

The design of each controller must ensure the safety property
under any switching of controllers – that is, we need to
provide a controlled invariant set R∩α such that for all
j, j′ ∈ {1, . . . , q}, the inequality in (6) is satisfied. Under
Assumptions 4-8, we modify iteration (4) as:

pre(R0) = ΠXS
({(x, u) ∈ XS × U | (7)

∀j, j′ ∈ {1, . . . , q} inequality (6) holds}) .

Assuming (7) converges in finite time to a not empty set, we
have that the controlled invariant set is given by R∩α = {x ∈
XS | HR∩αx ≤ hR∩α}.
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Fig. 4: Safe set and
controlled invariant set
for the DC Motor ex-
ample.

Now, we provide the main result of this section.

Theorem 9. Consider a ct-LTI as in Definition 1, its asso-
ciated dt-LTI S with sampling period ρ > 0, and a safe set
XS ⊆ X . Let Assumptions 4-8 hold and ᾱjj′ := maxj′{αjj′}.
The safety controllers (Kj , pj) with j ∈ {1, . . . , q} have the
following form:

Kj(x) = {u ∈ U | (8)
HR∩αAαj+ᾱjj′−1B

...
HR∩αAαjB

HR∩αAαj−1B

u ≤


hR∩α −HR∩αAαj+ᾱjj′x

...
hR∩α −HR∩αAαj+1x
hR∩α −HR∩αAαjx

hR∩α




.

Note that the computation of R∩α(XS) is done offline. Given
a state measurement x, the controller consists of an algorithm
that returns a subset of U fulfilling the Linear Matrix Inequal-
ity (LMI) in (8).

C. Example

For the sake of illustration, consider a DC motor [56], with
states (w, i) representing, respectively, the rotational speed and
electric current and DC voltage V as the input. The ct-LTI
model is given by:[

ẇ

i̇

]
=

[
−b/J K/J
−K/L −R/L

] [
w
i

]
+

[
0

1/L

]
V,

with J = 0.25, b = 0.05, K = 0.05, R = 0.1, and L = 0.1.
Consider the safe set X = XS = [4.5, 5] × [−5, 5], input set
U = [−1, 1], and ρ = 0.01s. We consider three controllers
with p1 = 12ρ, p2 = 7ρ, and p3 = 5ρ. We implement the
iteration in (4) with preα(R) as in (5), and obtain the results
as in Fig. 4.

Next, we introduce an algorithm for task and resource allo-
cation that leverages possible values of ρ and p ∈ [αjρ, (αj +
maxj′{αjj′})ρ] = [ρj , ϱj ] to improve the resource efficiency,
schedulability, and robustness of the system.

V. DECNTR RESOURCE ALLOCATION ALGORITHM

A. Key ideas and algorithm overview

Key ideas. The DECNTR algorithm allocates tasks and re-
sources to cores in a way that optimizes each mode individ-
ually. By tightening task periods and delaying job deadlines
during mode transitions if necessary, it achieves safety and

schedulability while improving system robustness. We high-
light three key insights of DECNTR that make this possible:

Insight #1: Group tasks with similar cache and BW require-
ments on the same cores to best consolidate resources to tasks
that need them the most. If we instead place tasks with high
resource requirements on many separate cores, there may not
be sufficient resources for such cores to meet their demands.

Insight #2: Tightening each task’s period to better improve
system robustness. As discussed in Section IV, shorter task pe-
riods lead to measurable improvements in system robustness.
Our allocation minimizes task periods whenever possible (i.e.,
as long as the system is still schedulable).

Insight #3: Delaying deadlines of some jobs within a
safe interval during mode transitions to reduce transient
overloads and improve transition schedulability. During a
mode transition, the combination of both new jobs and
carry-over jobs, with the latter often having very little slack
time in the worst case, can lead to an overload in resource
demands right after the MCR. We leverage the ability to
safely delay controller actuation time to reduce this transient
overload, making the transition easier to schedule.

Overview. Based on the above insights, DECNTR first com-
putes an initial allocation for each mode. The initial mode allo-
cation aims to (1) maximize resource efficiency, (2) minimize
task periods (i.e., to improve controller robustness), and (3)
guarantee each mode’s schedulability. DECNTR achieves this
by grouping tasks with similar resource needs onto the same
cores. During this step, the algorithm assumes each task has
the smallest possible period and increases it gradually – after
having attempted to migrate tasks between cores of similar
resource needs – until the mode becomes schedulable. The
outcome of the initial allocation is a mapping of tasks and
resources to cores, as well as a controller and a period assigned
to each task, for each mode such that each mode is schedulable
in isolation. If mode schedulability cannot be guaranteed, the
system is deemed unschedulable and the algorithm terminates.

Following the initial allocation, DECNTR makes sure that
each mode transition is schedulable. For this, it uses breath-
first search to iterate over all mode transitions. For each
transition (m′,m), it checks whether the system is schedulable
during the transition under the current mode allocation. If not,
it adds a minimum delay – as small as possible within the
safe duration allowed by the controller – to the deadline of
the first job to be completed for a task on a core that is
unschedulable, until either the transition becomes schedulable
or no further delaying is possible. In the former case, it saves
the delayed deadlines for this transition and moves to the next
transition. In the latter case, it will attempt to increase the
task periods in the new mode and re-check if the transition is
schedulable. If so, it saves the assigned periods and moves to
the next transition. If the periods have been increased up to
their maximum sampling periods allowed by the controllers
and the transition remains unschedulable, DECNTR reports
system unschedulability and returns the current allocations.
The algorithm outputs schedulability and the corresponding
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Algorithm 1 Mode Allocation
1: function MODEALLOC(m) ▷ m: mode
2: InitTasks(T m)
3: SortByResourceSensitivity(T m)
4: reset = true
5: while (true) do
6: if reset then
7: ResetCoreAlloc(cores)
8: cores[0].cache = Cmax

9: cores[0].bw = Wmax

10: cores[0].tasks = T m

11:
12: for i = 0; i < r and IsSchedulable(cores[i]); i++ do
13: if i ≥ r then return SCHEDULABLE

14: for j = i+ 1; j < r and cores[j].util ≥ 1; j++ do;
15: if j < r then
16: splitPoint = GetSplitPoint(cores[i].tasks)
17: SplitCore(cores[i], cores[j], splitPoint))
18: ResRedistrubte(cores)
19: reset = false
20: continue
21: success = MIGRATE(m)
22: if success then return SCHEDULABLE
23:
24: if INFLATE(m) == false then break
25: reset = true
26: return UNSCHEDULABLE

allocation if all transitions are schedulable.
We next discuss the key procedures for allocation.

B. Mode allocation

Algorithm 1 shows the pseudo-code for finding an allocation
for a mode m. DECNTR initializes each task τi in m by
assigning its period to be its minimum safe period, i.e.,
pmi = ρi,min. In addition, it sets Km

i to be the controller Ki,j

with the highest maximum period ϱi,j where ρi,j = pmi . It
then sorts all of m’s tasks in non-increasing order of resource
sensitivity (Line 3), where the resource sensitivity of a task τi
in m is defined as:

γi,m =
ei(1, 1)− ei(Cmax,Wmax)

ei(1, 1)
. (9)

Intuitively, the resource sensitivity of a task is a metric that
depicts how much a task’s WCET will be reduced when
provided more resources. Here, we capture it simply as the
relative difference in WCETs when provided minimum and
maximum resources, since this already works well; however,
a different estimation can also be used.

After sorting, DECNTR begins its first iteration where it
resets all core allocations (Line 7), assigns all resources to
core 0 (Lines 8-9), and assigns all the sorted tasks to core 0
(Line 10). DECNTR then begins checking for the schedulability
of each core in increasing order of core index (Line 12),
from 0 to r − 1 (where r is the number of cores), using
the schedulability analysis in Section VI. If all cores are
schedulable, DECNTR returns with the current allocation for
m (Line 13), and it will move on to find an allocation for the
next mode. If a core is found to be unschedulable, DECNTR
will attempt to split the core’s taskset (Lines 14-17).

Algorithm 2 Task Migration
1: function MIGRATE(m) ▷ m: mode
2: while (true) do
3: for (i = 0; i < r and IsSchedulable(cores[i]); i++) do
4: if i ≥ r then return true
5: for (dist = 1; dist < r; dist++;) do
6: if i− dist ≥ 0 and
7: TaskResRedist(m, i, i− dist) then break
8: if i+ dist < r and
9: IsSchedulable(cores[i+ dist]) and

10: TaskResRedist(m, i, i+ dist) then break
11: if dist ≥ r then return false

To split, we first find the closest higher-index core j whose
utilization is less than 1 (Line 14) and a split point, defined as
the index of the task with the highest difference in resource
sensitivity compared to the next task’s on this core (tasks are
sorted in non-increasing order of resource sensitivity). All
tasks after the split point are moved onto core j, keeping
their current ordering (Lines 16-17). This way, cores are
automatically ordered in non-increasing resource sensitivity
– a lower-index core contains tasks that benefit more from
having additional resources than a higher-index core does.

After splitting, DECNTR redistributes resources onto all
cores (Line 18). This is done by reassigning them one
partition at a time, going from lower-utilization cores to
higher-utilization cores to balance utilizations across cores.
It then continues with rechecking schedulability for all cores
(Line 20 then Line 12) and performs splitting of tasks on
unschedulable cores as before. If we run out of a valid core
to split onto, DECNTR attempts to migrate tasks between
cores (Line 21).

Migration. Algorithm 2 shows the migration function, which
performs a more fine-grained movement of tasks from un-
schedulable cores to some nearby schedulable cores to best
leverage our resource sensitivity groupings. In each while-loop
iteration, it first finds the first core i that is unschedulable,
checking in increasing core index order (Line 3). If none
exists, the function returns true (Line 4). Otherwise, it attempts
to migrate tasks from core i to a neighboring core, checking
cores in increasing distance from itself (Lines 5-10). For each
distance value, dist, it checks whether a migration to the core
(i − dist) is successful (Lines 6-7) before checking the core
(i+ dist) (Lines 8-10). Since all cores with index less than i
are already schedulable, we only need to check schedulability
for the higher-index core before attempting migration (Line 9).
If a migration is successful, we continue to the next iteration
of the while loop and repeats the process (Line 7 and Line
10). If it is not feasible to migrate tasks to any of the cores,
the function returns false (Line 11).

To migrate tasks, we attempt to move a single task to the
chosen target core, followed by a resource redistribution.
As long as the target core remains schedulable after this
redistribution, we keep the migration. Otherwise, we revert
to the previous resource allocation and attempt to migrate
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Algorithm 3 Task Inflation
1: function INFLATE(m) ▷ m: mode
2: i = −1
3: dist = 0
4: for j ∈ Tm do
5: if ϱj,max − pmj > dist then
6: dist = ϱj,max − pmj
7: i = j

8: if i < 0 then return false
9: while pmi ≤ ϱi,max do

10: pmi += ρ ▷ Update period
11: Km

i = GetController(K(i), p
m
i ) ▷ Find the controller

12: if Km
i then return true ▷ Eventual guarantee

another task. To select a candidate task, we iterate over the
sorted list of tasks in the same direction of the target core.
For migrating to a higher-index core, we consider tasks in
reverse order of γi,m, and vice versa. Intuitively, we move
less (resp. more) resource-sensitive tasks onto less (resp.
more) resource-sensitive cores.

Inflation. The goal of task inflation is to increment a task’s
current assigned period by ρ (the control parameter) and then
find the controller with the largest ϱ such that the increased
period falls within its range. Algorithm 3 shows how this is
done. We select the task τi whose current assigned period
pmi is farthest away from its maximum safe period ϱi,max

for inflation (Lines 2-7). If no such task exists, the function
returns false. Otherwise, in Lines 9-12, we increase the period
and search for a (potentially) new controller for τi. If there is
no controller in Ki that has a safe period equal to the updated
pmi , we increment pmi again until a controller is found. Note
that a controller is guaranteed to be found eventually, since
the pmi will eventually reach the maximum safe period defined
by some controller. Once a controller is found, we save it as
Km

i and keep the updated pmi , then return true.

C. Mode transition allocation

After obtaining a feasible allocation for every mode, DECNTR
proceeds to check whether the system is schedulable during
every mode transition, using the transition schedulability test
in Section VI. If a transition (m′,m) is not schedulable, then
there exists at least one core in mode m that is unschedulable,
and this happens because of the additional load from carry-
over jobs from mode m′ (since m is schedulable in isolation).
Leveraging our controllers’ ability to tolerate some delay be-
tween sampling time points and to allow changes of sampling
periods, we can reduce the transition load by extending the
deadlines of carry-over jobs and/or increasing the task periods
in mode m. The former strategy has only a transient effect
on robustness, since it delays the actuation time of at most
one job per task during the transition. In contrast, the latter
strategy affects all jobs released in the new mode, and may
affect robustness for a longer duration. To minimize potential
negative impact on robustness, we prioritize extending the
deadlines of carry-over jobs over increasing task periods.

Algorithm 4 Transition Allocation

1: function TRANSITION(m ′, m) ▷ m: new mode, m’: old mode
2: jobType = 0 ▷ 0: carry-over job, 1: first new job
3: InitDelays(T m′

, T m)
4: while true do
5: delayed = false
6: failedCore = McpAnalysis(m ′, m)
7: if !failedCore then return SCHEDULABLE
8: for ; jobType ≤ 1; jobType++ do
9: i = MaxSlackTask(jobType, m , m ′, failedCore)

10: j = Km′
i

11: if !jobType and dci (m
′,m) < ϱi,j then

12: dci (m
′,m) += ρ ▷ Delay

13: delayed = true
14: j = Km

i

15: if di(m ′,m) < ϱi,j then
16: di(m

′,m) += ρ ▷ Delay
17: delayed = true
18: break
19: if delayed then continue
20: if !INFLATE(m) then break
21: jobType = 0
22: InitDelays(T m′

, T m)

23: return UNSCHEDULABLE

Algorithm 4 shows the pseudo-code for achieving schedu-
lability for a mode transition. DECNTR invokes this function
for each mode transition (m′,m) ∈ R in the system. It
first initializes di(m

′,m) = pmi for each task τi in m, and
dci (m

′,m) = pm
′

i for each carry-over task τi (Line 3). It
then checks if the transition is schedulable (Lines 6-7). Here,
McpAnalysis(m′,m) implements the transition schedulability
test in Section VI; it returns 0 if the transition is schedulable,
and the index of an unschedulable core (failedCore) otherwise.
If the transition is schedulabe, the function returns schedulable
and DECNTR moves to the next transition. Otherwise, we
call MaxSlackTask(. . . ) to retrieve the task i that has the
largest difference between the maximum period of its assigned
controller and its assigned period. If jobType = 0 (computing
the delayed deadline for a carry-over job from m′), the
assigned controller is Km′

i ; otherwise, the assigned controller
is Km

i . We then extend this task’s delayed deadline(s) by
the minimum amount, which is the configurable parameter ρ
(Lines 12,16). Algorithm 4 attempts to delay the deadlines of
all carry-over tasks before delaying deadlines of new tasks.
After any increment, we repeat the process and recheck mode
transition schedulability. If the transition is still unschedulable
after extending the first deadlines of new tasks, we will attempt
to inflate task periods for the target mode m using the same
procedure (Algorithm 3) as in the single mode case (Line 20).
If inflation is possible, we restart the process in a new iteration,
checking carry-over tasks first again (Line 21) as inflating a
task can change its controller; otherwise, the function returns
with the failed allocation.

VI. SCHEDULABILITY ANALYSIS

This section presents the schedulability analysis used by
DECNTR during its allocation. Given a multi-mode system
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with the mode-change protocol as defined in Section III. Let
A be an allocation of the system, which specifies{
cmk , wm

k , coremi ,Km
i , pmi , deli(m

′,m), dci (m
′,m), di(m

′,m)
}

for all m ∈ M, 0 ≤ k < r, τi ∈ T m, Km
i ∈ K(i), pmi is a

valid period of Km
i , and (m′,m) ∈ R. Then, the system is

schedulable under A iff it is schedulable in each mode m ∈ M
and in each transition (m′,m) ∈ R.
Notation. We begin by recalling the notation used in A.
First, cmk and wm

k are the numbers of cache and bandwidth
partitions assigned to core k in mode m, respectively. Second,
coremi , Km

i and pmi are the core, controller and sampling
period assigned to task τi in mode m. Finally, deli(m

′,m)
indicates whether we will delay the deadline of a job of τi
during the transition (m′,m); if so, dci (m

′,m) is the delayed
deadline of the carry-over job of τi (if τi has a carry-over
job) and di(m

′,m) is the delayed deadline of the first job
of τi released in m. We denote by emi the WCET of τi in
mode m, i.e., emi = ei(c

m
k , wm

k ) where k = coremi . Let T m
k

denote the set of tasks that are mapped onto core k in mode
m under the allocation A. Then, the utilization of a core k is
Um
k =

∑
τi∈T m

k

emi
pm
i

.

A. Mode schedulability

The schedulability of a mode m in isolation can be determined
using the standard demand-based EDF schedulability test, ex-
cept that the WCET emi of each task τi in mode m is dependent
on the allocation. Specifically, the demand bound function
(DBF) of a task τi in mode m is ∀t ≥ 0 : dbfmτi (t) =

⌊
t

pm
i

⌋
emi .

Since tasks on each core are scheduled under EDF, the DBF
of a core k in mode m is given by

∀t ≥ 0 : dbfmk (t) =
∑

τi∈T m
k

dbfmτi (t). (10)

The next theorem states the schedulability condition for mode
m. Its proof follows directly from the existing analysis in [18].

Theorem 10. The system is schedulable in mode m if for all
0 ≤ k < r, Um

k ≤ 1 and for all t < Lm
k , dbfmk (t) ≤ t, where

Lm
k = max

{
Dm

k ,
1

1− Um
k

}
.

and Dm
k denotes the maximum of the assigned periods (dead-

lines) of the tasks in T m
k .

B. Mode transition schedulability

The mode transition schedulability can be established using
a similar analysis as in Omni [21]. However, since Omni
does not delay jobs during a transition, we extend its anal-
ysis slightly to handle delayed jobs. Below, we sketch key
schedulability conditions and accompanying arguments.

Intuitively, for each core, we compute each task’s worst-
case demand for an interval t during a mode transition; if
their total demand of all tasks on a core is no more than t,
for all t > 0, then the core is schedulable. Towards this, we
treat each carry-over job as a new job released at the MCR

instant, with its WCET equal to the carry-over job’s maximum
remaining execution time and its absolute deadline the same as
the carry-over absolute deadline (if the task is not delayable)
or the carry-over delayed deadline (otherwise). As the worst-
case demand of a core for any interval that begins after the
MCR instant will only include demands from jobs released in
the new mode, we can compute its demand using the same
method as in an isolated mode m. Thus, we only need to
consider the worst-case demands for intervals that begin at
the MCR instant (referred to as transition demands).

Like in Omni [21], a task’s worst-case demand occurs when
(i) it has a job with deadline at the end of the interval; (ii)
new jobs are released as soon as possible; and (iii) the carry-
over (unfinished) job was executed as late as possible. Based
on these conditions, we can bound the transition demands of
the jobs for each task type, using conventional demand-bound
analysis, while taking into consideration that 1) a job’s WCET
depends on the current resource allocation (of the new mode),
and 2) a task may be delayable, in which case either their
carry-over job or their first job will be delayed, and thus the
delayed deadline is used for computing the demand instead of
the original deadline.

More concretely, to establish the schedulability of a mode
transition, we derive the worst-case demands of all jobs on
a core during the transition. The carry-over demand during
a mode transition (m′,m) consists of (i) the demands of
carry-over jobs of carry-over tasks, and (ii) the demands of
new jobs of both carry-over and new tasks.
Transition demands of new tasks. Since jobs of a new task
are only released in the new mode, the task’s transition demand
can be computed similarly to the task’s demand in an isolated
mode. The only exception is that, if the task is delayable, then
the delayed deadline is used for its first job.

Lemma 11. The DBF of a new task τi during a transition
(m′,m) is given by

dbfm
′,m

i,N (t) = ⌊ t− di(m
′,m) + pmi
pmi

⌋emi (11)

where emi and pmi are the WCET and sampling period of τi
in mode m, respectively. Further, di(m

′,m) is the delayed
deadline of τi’s first job if it is a delayble task (that is,
deli(m

′,m) = 1), and di(m
′,m) = pmi otherwise.

Proof: First, suppose τi is a non-delayable new task.
Then, its worst-case demand during the transition is identical
to its worst-case demand in mode m in isolation, since
all jobs are released and have deadlines in the new mode
and following their corresponding new-mode periods. Thus,
dbfm

′,m
i,N (t) = ⌊ t

pm
i
⌋emi , which is equivalent to Eq. (11) since

di(m
′,m) = pmi in this case.

Next, consider the case where τi is a delayable task. Then,
the (delayed) deadline for its first new job is di(m

′,m),
whereas the deadline of a subsequent job is the same as the
period pmi . Further, according to our mode change protocol
(c.f. Section III), τi releases its first job immediately after
the MCR arrives, and each subsequent job is released at the
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absolutely deadline of the previous job. Hence, the maximum
demand of τi in the transition interval of length t starting
from the MCR instant is at most ⌊ t−di(m

′,m)+pm
i

pm
i

⌋emi . In other
words, Eq. 11 holds.

Transition demands of carry-over tasks. For the demand of
a carry-over task τi however, we need to consider two cases:
1) τi has a carry-over job and its carry-over job has a deadline
of dci (m

′,m), and 2) τi has no carry-over job and its first job
has a deadline of di(m

′,m) > pmi . We can easily show that
the worst-case demand of τi in the first case is always higher
than the demand in the second case, for all time intervals t.
Hence, we can derive the maximum demand for τi based on
the worst-case scenario with the carry-over job. Let dm

′

i be
the deadline of the carry-over job. Then, dm

′

i = pm
′

i if τi is
not delayable and dm

′

i = dci (m
′,m) if it is. With this, we can

compute the DBF of τi during a transition (m′,m) as follows:

Lemma 12. The DBF of a carry-over task τi during a
transition (m′,m) is given by

dbfm
′,m

i,CO (t) = ⌊ t

pmi
⌋emi + Em′,m

i , (12)

where Em′,m
i is τi’s maximum carry-over demand, defined by

(a) If t ≤ dm
′

i − pm
′

i , then Em′,m
i = 0.

(b) If dm
′

i − pm
′

i < t < pmi , then

Em′,m
i = min

{
emi , t+max{0, emi − em

′

i }
}
.

(c) Otherwise, t′ = (t− pmi ) mod pmi , and

Em′,m
i = min

{
emi ,max{0, t′}+max{0, emi − em

′

i }
}
.

Proof sketch: The demand of a carry-over task during the
transition consists of (1) the demand from all new job releases
of τi in mode m, which is given by ⌊ t

pm
i
⌋emi (the first term in

the RHS of Eq. (12)); and (2) the demand from the carry-over
job of τi itself. Thus, to prove the lemma, we need to show
that Em′,m

i correctly bounds this carry-over demand.
Recall that the carry-over job has a (delayed) deadline of

dm
′

i . Thus, the amount of time that its deadline is delayed is
equal to dm

′

i − pm
′

i , since pm
′

i is its original deadline (since it
is released in the old mode m′). There are two scenarios:

If t ≤ dm
′

i − pm
′

i , then the length of the time interval we
are considering, t, is no more than the amount of time we
can delay the carry-over job. Thus, the carry-over job imposes
no demand, since its deadline falls outside the interval. Thus,
Em′,m

i = 0 and the case (a) of the lemma holds.
Otherwise, the maximum carry-over demand can be con-

servatively computed using the analysis from Omni. This is
possible, because Omni does not delay carry-over jobs and
thus the worst-case carry-over demand under Omni is at least
equal to or larger than the carry-over demand under DECNTR.
The two cases (b) and (c) of the lemma come directly from
the results in Omni [21] (see Lemma 2 and Lemma 3 in [21]),
modified appropriately to reflect our different notation.

The next lemma gives the mode change demand of a core
during a transition (m′,m). Its proof is established based
directly on Eq. (11) and Eq. (12).

Lemma 13. The maximum demand of a core k during a mode
transition (m′,m) is bounded by

dbfm
′,m

k (t) =
∑

τi∈T N
k

dbfm
′,m

i,N (t) +
∑

τi∈T CO
k

dbfm
′,m

i,CO (t)

where T N
k and T CO

k are the set of new tasks, and carry-over
tasks that are mapped onto core k in mode m.

Based on Lemma 13 and the mode schedulability, we can
directly imply the next theorem.

Theorem 14. The system is schedulable during a mode
transition from m′ to m if (1) it is schedulable in modes m′

and m (Theorem 10), and (2) for all 0 ≥ k < r, for all t > 0,
dbfm

′,m
k (t) ≤ t.

VII. EVALUATION

To evaluate the effectiveness of DECNTR, we conducted a
series of experiments using real-time benchmarks and an
automotive case study. Our goal was to evaluate (1) how
much DECNTR improves schedulability over the state of the
art, and (2) how effective DECNTR is in increasing system
robustness.

Algorithms. We compare DECNTR against Omni [21], the
state-of-the-art technique for multi-mode, multi-core task and
resource allocation. Like DECNTR, Omni computes an allo-
cation of tasks, cache and memory bandwidth to cores in
each mode to ensure the multi-mode system is schedulable.
However, Omni assumes the tasks’ periods are given a priori
and jobs’ deadlines cannot be delayed. To enable a more direct
comparison for Omni, we develop two extensions of Omni
(which performed strictly better than Omni in our evaluation):

1) Omni-P: we set task periods to be the periods assigned
by DECNTR, then use Omni to find an allocation.

2) Omni-D: we use Omni to find an allocation assuming
tasks are assigned their reference periods (defined below), but
extend it to support delaying job deadlines as DECNTR does.

A. Schedulability evaluation with benchmarks

Workload. To evaluate DECNTR’s effectiveness across a range
of loads and timing parameters, we used a collection of
11 benchmarks from the PARSEC [7], SPLASH2x [52],
DIS [30], and Isolbench [50] suites as workloads. To obtain
their WCETs, we ran each benchmark under all possible cache
and BW configurations on an Intel Xeon E5-2683 v4 processor
with 16 cores and a 40MB L3 cache. The cache is divided
into Cmax = 20 equal partitions using Intel’s CAT. Using
the method from [55], we measured a maximum guaranteed
bandwidth of 1.4 GB/s, which we divided into Wmax = 20
partitions of 70MB/s each using MemGuard. We disabled any
hardware feature that can lead to nondeterministic timings and
used a single-threaded execution mode.

We then generated tasksets using a similar approach to [21]
by randomly picking tasks from our benchmarks to fill a
target taskset utilization. Each individual task’s utilization was
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Fig. 5: System schedulability under different max period factors, 2 modes top, 4 modes bottom.

selected from a bimodal distribution with a 6
9 likelihood to fall

within [0.01, 0.4] and a 3
9 likelihood to fall within [0.4, 0.9].

Each task τi was assigned a reference period (prefi ), defined
as the ratio of its reference WCET, ei(Cmax,Wmax), to its
utilization, rounded to the nearest multiple of ρ. We set
ρ = 1ms in all experiments. We then defined the period
range [ρi, ϱi] for τi based on the reference period, where
the minimum period ρi is the smallest multiple of ρ that is
above the task’s reference WCET, and the maximum period
ϱi = kmax × prefi for some configurable value kmax called the
max period factor (MPF). The task’s period can be any value
kρ in the range [ρi, ϱi], where k is a positive integer. Note that
Omni-D uses the reference period as the task’s period, whereas
DECNTR assigns the task’s period based on its period range.

We generated tasksets with (reference) utilizations in the
range [1.0, 5.0] at steps of 0.1. For each utilization step, we
generated 500 independent tasksets per mode, for a total of
41,000 tasksets in a 2 mode system (82,000 tasksets with 4
modes). We generated 10 experiments (half with 2 modes and
half with 4), with varying MPFs (1.0 − 1.5). The generated
tasks had a 20% probability of being a carry-over task.

Results. Fig. 5 shows the fraction of schedulable tasksets
under the three algorithms for tasksets with MPFs being 1.0,
1.3 and 1.5. The results show that DECNTR is significantly
better at scheduling tasksets compared to Omni when they
use the same assigned periods (DECNTR vs. Omni-P).
Our improvement factor at a medium load of 2.0 reference
utilization ranges from 2.4× (2-mode systems, MPF = 1.0)
to 11× (4-mode system, MPF = 1.5). Note that as the MPF
increases from 1.0 to 1.5, both DECNTR and Omni-P can
schedule more tasks. This is expected, since DECNTR can
assign larger periods to tasks in all modes with larger MPF.
Interesting, this trend holds for DECNTR in both 2- and
4-mode systems, whereas Omni-P only achieves improved
schedulability under 2 modes, highlighting that DECNTR

scales better with the number of modes. We also see that
when the MPF is limited to 1.0, DECNTR not only schedules
more tasksets than Omni-D but also reduces task periods by
5-21% on average.
Runtime. Table I reports the running time of each algorithm
for the 2-mode systems (MPF = 1.3) in our experiments. We
observe that DECNTR is consistently more efficient than both
Omni variants (3.4-8.2× faster on average).

B. CPS Case Study

To evaluate the benefits of our co-design approach in a
real-world CPS, we conducted a case study of an electric
vehicle system. The system contains 5 different control
tasks: battery [14], DC motor [56], active suspension, [33],
automatic cruise control [25], and lane-keeping assistant
[57]. We consider both robustness and schedulability in our
evaluation.
Robustness. For each plant, we designed multiple safety
controllers (Kj , ρj) as in (8), and simulated the closed-loop
performance under additive Gaussian noise in the control
input. Due to space constraints, we present three of the five
simulations to show the effect of the increase in sampling rate
on the safety of CPSs.

DC Motor: We use the model and safe set presented in the
example of Section IV-C. The results are presented in Fig. 6a
for the state evolution of w under the input sequence V . Our
safety property states that w(t) ∈ [4.5, 5] and V (t) ∈ [−1, 1]
for all t ≥ 0. The figure demonstrates that w drifts into the
unsafe region for longer intervals when p is larger.

Automatic Cruise Control (ACC): We use the model and
safety conditions from [25], which maximizes speed while
keeping a safe distance from a forward vehicle. The input is
acceleration, a, and the states are the two vehicle velocities and
the distance from the forward car (v, vf , d). We implemented
the ct-LTI given by v̇ = a, v̇f = 0, and ḋ = vf − v and
we impose the safe set given by the conditions a = [−1, 1],

11



1.00 Taskset utilization 2.00 Taskset utilization 3.00 Taskset utilization 4.00 Taskset utilization
min max avg. 99th min max avg. 99th min max avg. 99th min max avg. 99th

DECNTR 0.02 3.18 0.06 0.35 0.11 4.39 0.24 1.68 0.14 5.11 0.51 3.11 0.24 12.5 0.80 6.72
Omni-P 0.03 24.3 0.24 2.28 0.13 88.0 0.96 12.8 0.21 57.5 1.71 19.9 0.28 193 3.37 54.0
Omni-D 0.03 33.7 0.29 3.42 0.13 102 1.71 30.2 0.20 85.9 4.21 54.7 0.30 64.2 5.24 38.6

TABLE I: Runtime of the three algorithms in seconds.
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Fig. 6: Control simulations demonstrating robustness as sampling rates change

v ∈ [−5, 5], vf ∈ [−5, 5], d ∈ [5, 20], v ≤ d
tsafe

, where
tsafe = 2s, to represent a minimum time-gap that allows the
first vehicle to react in an emergency. Fig. 6b shows the results
of the control reducing the distance between the vehicles while
trying to keep the minimum time-gap with initial state values
(4.4, 3, 9) ∈ R∩α(XS). The controller with p = 1s cannot
satisfy the safety property due to significant inter-sampling
time (highlighted with a dashed red ellipsoid). After 3s we
switch to a controller with p = 0.3 with no safety issues.

Lane Keeping Assistant (LKA): The LKA control steers
the horizontal speed and the yaw angle rate of the vehicle
(vy, r), respectively, provided changes in the steering wheel
angle δ as input. We define ρ = 0.01s, and the safe set given
by vy ∈ [−0.5, 0.5], r ∈ [−0.2, 0.2], and δ ∈ [−0.5, 0.5].
We repeatedly run the controller in two modes m1,m2 and
simulate periods provided by DECNTR. Fig. 6c shows the
result where the periods are p1 = 7ρ in m1 and p2 = 7ρ in
m2. Notably, DECNTR’s allocation requires the LKA task
to have a delayed job release (p = 10ρ) for every transition
(m2,m1). The result confirms that even when extending jobs’
deadlines during mode transitions, the system under DECNTR
allocation remains safe.

Schedulability. We generated tasksets with the controllers in
our case study, using the methodology in Section VII-A. To
generate a taskset at a target utilization, we randomly selected
a single task until the taskset utilization reaches the target
utilization, where each task’s reference utilization is computed
as the reference WCET over the max period: ei(Cmax,Wmax)

ϱi,max
.

Since the reference utilization is small compared to the utiliza-
tion when assigned resources and a period from DECNTR, we
generate tasksets with utilization range of [0.1,4]. For WCETs,
we profiled the controllers on resource constrained hardware
relevant for our case study: a Raspberry Pi 3 Model B+ with
512 KB of shared cache and a guaranteed BW throughput of
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Fig. 7: Case study schedulability, 2 modes.

100 MB/s (20 partitions of 5 MB/s each).
Fig. 7 shows the schedulability results for systems with

2 modes and 500 tasksets per utilization step. As expected,
DECNTR outperforms both Omni variants. For example, at
reference utilization of 0.5, DECNTR can schedule 3.5× more
tasksets than Omni-P and 1.8× than Omni-D. Notably, DEC-
NTR achieves this schedulability improvement even with much
smaller task periods (43% on average) than Omni-D, and thus
it also provides much higher robustness.

VIII. CONCLUSION

In this paper, we introduced DECNTR, along with a controller-
switching co-design approach, which draws inspiration from
the domains of multi-mode resource allocation and control
theory. Our solution demonstrates remarkable performance in
terms of safety, robustness, and timeliness for multi-mode CPS
deployed on multi-core platforms. DECNTR accomplishes this
by harnessing multiple control implementations to dynami-
cally adjust task periods, thereby enhancing system safety
and significantly improving schedulability when compared
to existing state-of-the-art solutions. As part of our future
endeavors, we aim to expand our techniques to encompass
plants with nonlinear dynamics.
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