
Bounded-time recovery for distributed

real-time systems

Neeraj Gandhi∗, Edo Roth†, Robert Gifford‡, Linh Thi Xuan Phan§, and Andreas Haeberlen¶

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Email: {∗ngandhi3, †edoroth, ‡rgif, §linhphan, ¶ahae}@seas.upenn.edu

Abstract—This paper explores bounded-time recovery (BTR), a
new approach to making cyber-physical systems robust to crash
faults. Rather than trying to mask the symptoms of a fault
with massive redundancy, BTR detects faults at runtime and
enables the system to recover from them – e.g., by transferring
tasks to other nodes that are still working correctly. When a
fault does occur, there is a brief period of instability during
which the system can produce incorrect outputs. However, many
cyber-physical systems have physical properties – such as inertia
or thermal capacity – that limit the rate at which the state
of the system can change; thus, a very brief outage is often
acceptable, as long as its duration can be bounded, to perhaps
a few milliseconds.

BTR has some interesting properties: for instance, it has a
much lower overhead than Paxos, and, unlike Paxos, it can take
useful actions even when the system partitions or a majority of
the nodes fails. However, it also poses a very unusual scheduling
problem that involves creating sets of interrelated schedules
for different failure modes. We present a scheduling algorithm
called Cascade that can quickly find suitable schedules. Using a
prototype implementation, we show that Cascade scales far better
than a baseline algorithm and reduces the scheduling time from
hours to a few seconds, without sacrificing quality.

Index Terms—design space exploration for RT for latency-
sensitive systems, scheduling and resource allocation for RT or
latency-sensitive systems, system-level optimization and co-design
techniques for RT or latency-sensitive systems

I. INTRODUCTION

It is an unfortunate reality that nodes in a distributed system

can – and frequently do – fail. This is true for all kinds

of distributed systems, and cyber-physical systems (CPS) are

certainly no exception: nodes can overheat, crash, lose power,

malfunction, or encounter a wide range of other misfortunes.

Since the failure of CPS can have dramatic consequences,

including physical destruction and loss of life, it is important

that they be designed to be robust to faults.

The literature contains a variety of techniques for this

purpose – including, for instance, Paxos- or Raft-style fault-

tolerant replication [30, 35]. However, these techniques were

typically designed for general-purpose distributed systems,

and not specifically for CPS. As a result, the properties they

provide are not a perfect fit for CPS: on the one hand, they tend

to lack properties that are critical for CPS, such as hard real-

time guarantees, graceful degradation, and a low overhead; on

the other hand, they also sometimes provide properties that

CPS do not really need.

For instance, Paxos works very hard to create the illusion

of a state machine that never makes a single mistake, even

when many nodes fail. This makes perfect sense for, say, a

banking application, where a single incorrect transaction can

cause an almost unlimited amount of damage. However, it is

less important for, say, an autonomous vehicle, where sending

incorrect signals to the steering system is not necessarily a

problem, as long as it happens only very briefly – e.g., for a

few milliseconds. This is because the physical part of a CPS

tends to have properties such as inertia or thermal capacity that

limit the rate at which state changes can occur. Thus, many

CPS can tolerate brief periods of incorrect actuator output [33];

the length of the period depends on the specific system, but

values in the tens or hundreds of microseconds are common.

We have recently proposed a very different approach to

fault tolerance that exploits this observation. Our approach,

bounded-time recovery (BTR) [9], works by converting the

system into a multi-mode system, with one mode for each

anticipated fault pattern (say, “All nodes are working correctly”

or “Nodes 4 and 7 have failed”) and potentially a different

schedule for each mode. At runtime, the nodes monitor each

other to detect faults; when a fault occurs, the remaining

nodes execute a transition to the appropriate mode. During

the transition, the system experiences a brief period of chaos

during which its outputs can be wrong; however, as long as

both the time-to-detection of the fault and the transition time

can be bounded, the overall system will still be able to recover

quickly enough to prevent damage.

BTR has a number of interesting properties. For instance,

by not trying to mask all faults perfectly, it avoids known

impossibility results – such as FLP [17] – and gains the ability

to take useful actions even when the system partitions or a

majority of the nodes fail. It also has an inherently lower

overhead than Paxos-style protocols, which generally require

2 f + 1 replicas to tolerate f crash faults, whereas recovery

requires only f +1. However, BTR introduces the major new

challenge of scheduling. Since finding a new schedule within

milliseconds after a fault is not realistic, it must generally

prepare schedules before the system runs. However, preparing

for up to f faults requires an undesirably large number of

schedules. To make matters worse, the schedules are interde-

pendent: if a fault can transition the system from some mode A

to another mode B, then the schedules for A and B should

ideally be very similar. Otherwise, the transition would require

a very substantial amount of work (for shifting jobs from

one node to another) and thus make it impossible to obtain

a reasonable time bound. We are not aware of any scheduling

problem in the literature that is even remotely similar to this.

In this paper, we focus on the question of how to approach

scheduling for a BTR-type system, and, in particular how to

make it scale to systems with a nontrivial number of nodes. We

present an algorithm called Cascade that solves this problem in

roughly the following way: first, it maps the overall scheduling

problem to a very large instance of integer linear programming

(ILP). Then, to obtain scalability, it recursively breaks the ILP

into smaller ILPs (taking care to prevent applications from

being split up across ILP instances) until it reaches a size at

which solutions can be found efficiently. It then synthesizes

a solution to the overall ILP, working upwards to larger

and larger layers until it arrives at a schedule for the entire

system. We have built a prototype implementation of Cascade,

and we report results from an experimental evaluation, using

both synthetic topologies and a real topology from the on-

board network of a car. Our results show that Cascade can

find schedules in seconds that would normally take hours to

generate, with almost no loss in quality.

We note that BTR creates interesting possibilities beyond

what we can explore in this paper. For instance, there is no

requirement that the modes must all be variants of the original,

fault-free mode. Instead, they could create new tasks (e.g.,

to activate an alarm signal), remove existing tasks (e.g., to

triage less critical subsystems once there are no longer enough

resources), or even completely change the way the system

operates (e.g., to execute an emergency shutdown). This flexi-

bility is not present in classical fault-tolerance systems, whose

main goal is to avoid changes in the system’s behavior when

faults occur. In summary, our contributions in this paper are

the following:

• An ILP formulation for generating schedules for BTR-

style systems (Section V);

• A suitable mode transition protocol, with a matching a-

nalysis (Section VI);

• Cascade, an efficient and scalable scheduling algorithm

for BTR (Section VII);

• A prototype implementation of Cascade (Section VIII);

• And an experimental evaluation (Section IX).

II. RELATED WORK

Fault tolerance: The question of how to build safe, reliable,

and fault-tolerant distributed systems has been considered

in great detail by several communities, including distributed

systems, real-time systems, and controller design. Existing

solutions include replication protocols for asynchronous dis-

tributed systems like Paxos [30] and Remus [11]; fault-tolerant

real-time systems like Mars [28] and DeCoRAM [2]; fault-

tolerant scheduling techniques for aperiodic real-time systems,

such as deallocation and overloading [19]; and fault-tolerant

and/or reconfigurable control systems [3, 4, 41]. Most of the

existing work assumes crash faults, as we do in this paper,

but it should be possible to extend BTR to other fault models,

such as ASC [10] or Byzantine faults [31].

Self-stabilization: One way to make a distributed system

fault-tolerant is to ensure that it converges to a correct state

CEM SAS BCM ECM TCM SUM DRM

UEM PDM

CCM

PHM

ICM

SRS

DIM

SWM

PSM

DDM

AEM

REM

AUD

Normal ECU

ATMSUBICMMMMMP1MP2

MMS RSMSCMSRM

GSM
LSM

CPM

SCM

SHM SHM

PAS

ISM

KEY
HCAN
LCAN

MOST
LIN

Low-Power ECU

HCAN Sensors / Actuators

LCAN
Sensors/
Actuators

MOST
Sensors /
Actuators

Fig. 1: Onboard network of a Volvo XC90 (based on [34]).

even if it is started in an incorrect state. This approach was first

proposed by Dijkstra [13] and has led to a rich body of work

on self-stabilizing systems [1, 5, 6, 14, 15, 20, 21, 24, 26, 29].

This line of work tends to use a very different system model:

for instance, it often relies on a global reset mechanism for

recovery, it typically does not consider scheduling, deadlines,

or task criticality, and it does not provide a time bound for

recovery.

Failure detectors: There is an impressive amount of work on

fault detection in the context of failure detectors, starting from

a paper by Chandra and Toueg [8], but this literature usually

studies theoretical bounds on the information about failures

that is necessary to solve various distributed computing prob-

lems [7]. Haeberlen et al. [23] is similar to our work in that it

handles observable faults and partially connected topologies,

but that work focuses on a very different setting (asynchronous

system with Byzantine faults) that is mostly orthogonal to ours.

Multi-mode systems: Many real-time embedded systems can

operate in multiple modes that involve different sets of tasks,

and transitioning between modes requires elaborate mode-

change protocols (MCPs) to prevent deadline misses and other

disruptions [18, 36, 37, 38, 39, 40]. Our work is an application

of the multi-mode concept to fault tolerance specifically; in the

broader literature, the modes represent different conditions in

which the system can operate – say, cruise control enabled or

disabled – and are not necessarily aligned with failure modes.

Also, the number of modes is typically much smaller, so the

scalability concern does not arise.

III. SYSTEM MODEL AND GOALS

We assume a distributed system with a number of compute

nodes that execute a set of mixed-criticality applications. The

nodes are connected by a network. We represent the platform

by an undirected graph G = (N,L), where N denotes the set

of nodes and L the set of network links between two nodes.

In contrast to some of the earlier work, we do not assume

that the network is fully connected. To see why, consider the

on-board network of a Volvo XC90 – shown in Figure 1 –

which is a mix of various buses and point-to-point links. (We

will use this network again in our evaluation, in Section IX-E.)

We could assume logical connectivity, since each node can

in principle reach every other node; however, in many cases

there is no direct physical link, so messages would need to

be forwarded by a few of the nodes. If these nodes fail,

some of the connectivity fails with them; this can partition the

network or, at the very least, increase the traffic on some of

the links that would be used for “detour” routes. By modeling

the physical connectivity explicitly, our solution can take these

effects into account.

Each application τi is a dataflow of Mi tasks,

〈τi,1→ τi,2→ . . .→ τi,Mi
〉, where τi,k+1 relies on inputs

from τi,k. Each τi is associated with a period Pi (shared by all

its tasks), a criticality Ci (smaller value means more critical),

and an end-to-end deadline Di. Each task τi,k has a worst-case

execution time (WCET) of Ei,k and a local deadline of Di,k,

and each dataflow τi,k → τi,k+1 is associated with a latency

bound of di,k. We assume that the deadlines Di,k and latency

bounds di,k are derived from Di using an existing deadline

decomposition technique (e.g., [12, 25, 32]), such that τi will

always meet its end-to-end deadline if (i) all of its tasks meet

their deadlines, and (ii) the latency for transmitting the output

of τi,k to τi,k+1 is no more than di,k. We assume that network

links do not drop packets, and we denote by δs the maximum

delay for transmitting a message of size s over a network

link.

Fault model. We assume that up to f < max(|N|, |L|) nodes

or links may fail. We assume that nodes fail by crashing, that

is, they stop executing tasks and no longer send messages; this

is a common model that is widely used in the fault-tolerance

literature, e.g., in protocols such as Paxos [30] or Raft [35].

If a link fails, it drops all messages that are being sent over

it. Depending on the network topology, a node or link failure

may lead to a network partition, preventing some nodes from

being able to communicate. However, in contrast to existing

work, which typically assumes that the number of faults is

relatively small (e.g., Paxos assumes f < |N|
2

), we do not put

any nontrivial restrictions on the number of faults; for instance,

almost all (e.g., |N|−1) of the nodes could fail.

Goal. Informally, our goal is to ensure that tasks are schedu-

lable, except for very brief periods after observable node

failures. A failure on a node becomes observable [23] as soon

as it affects the externally visible behavior of a node – under

our fault model, this occurs when a message is omitted. More

formally, a task is allowed to miss a deadline at time t iff

at least one fault has become observable during [t−Rmax, t].
In other words, deadline misses are (only) allowed during

intervals of length Rmax immediately after an observable fault.

We refer to these intervals as recovery periods, and to Rmax

as the maximum recovery time bound; the value of the latter

depends on the specific system. We assume that Rmax is given

and applies to all applications; however, our method can be

easily extended to per-application recovery times.

A major difference between existing fault-tolerance tech-

niques and BTR is that the former try to completely mask the

symptoms of faults, whereas BTR does not. In other words,

classical fault tolerance will try to keep the behavior of the

system constant as faults accumulate. Eventually, it runs out

of resources and has to “give up” and lose all guarantees.

In contrast, a BTR-enabled system can potentially change its

behavior depending on the current mode; for instance, it can

discard tasks to free up resources, it can launch additional

tasks (e.g., an “alarm signal” task or an “emergency shutdown”

task for particularly dangerous modes), or it can reconfigure

itself to concentrate more resources on critical tasks, e.g.,

by creating additional replicas for such tasks, at the expense

of less-critical ones. This provides considerable additional

flexibility.

We cannot hope to fully explore the space of possible

policies in this paper, so we limit ourselves to a simple default

policy, which specifies, for each application τi, the number

of additional concurrent faults Fi(f) that τi should be able

to tolerate when f ≥ 0 faults have already occurred. For

instance, the system designer could set Fi(f) = 1 by default

and Fi(0) = 2 when i is a highly-critical application. This

would cause the highly-critical applications to receive more

replicas in the initial (fault-free) system, so they could survive

a simultaneous failure of two nodes. Once a node does fail,

the system would reduce the number of replicas for these

applications, since there would now be fewer resources. We

require that Fi(f ′)≤ Fi(f) for all f ′ > f .

Under resource constraints, it is possible that not all appli-

cations can be scheduled. In this paper, we assume a specific

scheduling objective, which is to maximize the number of

applications that are schedulable (in criticality order) while

meeting their fault-tolerance requirements. However, it should

be possible to use our approach with other objectives.

IV. FAULT DETECTION AND MODE CHANGES

Our goal is to design the system to respond to faults dy-

namically at runtime. Towards this, the system is designed

to operate in multiple modes, each of which corresponds to

a different fault scenario and may have a different mapping

of tasks onto nodes. Conceptually, there is a mode for every

possible failure scenario. Each mode m can be characterized

by (Nm,Lm), where Nm and Lm represent the current sets of

correct nodes and links; further, fm = |N|−|Nm| represents

the number of nodes that have failed. The mode graph is

constructed offline. At runtime, each node runs a task that

detects when other nodes fail, and propagates this information

to other nodes. Whenever a new fault is detected on a node,

the other nodes use the recovery period to perform a mode

change to the appropriate new mode. This will involve a brief

period of deadline misses, as nodes transition from one mode

to another, but, as long as the transition is complete before the

recovery period ends, we can still maintain the bounded-time

recovery guarantee.

Fault detection. Since we have assumed crash faults, we

can use the following simple method to detect when they

occur. (Pseudocode is included as Algorithm 1.) Each node

i maintains a vector of sequence numbers, one for every node

Algorithm 1 Fault detection protocol.

1: var nodeSeq[|N|] = (0, . . . ,0)
2: var linkSeq[|L|] = (0, . . . ,0)
3: var currentRound = 0
4:
5: function receive(sender, (inNodeSeq, inLinkSeq))
6: for i = 0 . . . |N|−1 do

7: nodeSeq[i] = max(nodeSeq[i], inNodeSeq[i])

8: for i = 0 . . . |L|−1 do

9: linkSeq[i] = max(linkSeq[i], inLinkSeq[i])
10: if L[i] = (self, sender) or L[i] = (sender, self) then

11: linkSeq[i] = currentRound

12:
13: function getMode()
14: var faultyNodes = /0, faultyLinks = /0
15: for i = 0..|N|−1 do

16: if nodeSeq[i] < (currentRound − K) then

17: faultyNodes = faultyNodes ∪ {N[i]}

18: for i = 0..|L|−1 do

19: if linkSeq[i] < (currentRound − K) then

20: faultyLinks = faultyLinks ∪ {L[i]}

21: return (faultyNodes, faultyLinks)

22:
23: function periodicUpdate()
24: currentRound = currentRound + 1
25: nodeSeq[self] = currentRound
26: for each j ∈ N : (i, j) ∈ L do

27: send(j, (nodeSeq, linkSeq))

or link in the system; all sequence numbers are initially set to

zero. Each node i also executes a special task τft, with period

Pft and deadline Dft that are chosen such that Dft+ δft < Pft
where δft is the maximum latency for transmitting the vector

of sequence numbers over a network link.1 τft periodically

increases i’s sequence number in this vector and then, for

each link (i, j) that is adjacent to i, sends a copy of the vector

over this link (lines 23–27). When a node receives such a

vector over a link (j,k), it merges it with its own vector by

setting each sequence number to the maximum of its local

number and the number from the vector it received (lines 5–

11); additionally, it sets the sequence number for (j,k) to its

own sequence number (lines 10–11). If a node i notices that

its local sequence number for another node j, or a link (j,k),
lags behind its own sequence number by more than a constant

K (which must be greater than the diameter of the network),

i concludes that the node or link has failed (lines 13–21), and

transitions to the appropriate mode. Under this algorithm, the

maximum detection time of a node is ∆detect = (K + 1) ·Pft,
where Pft is the period of τft.

We make a few observations about this algorithm. First,

if a node crashes or a link fails, the corresponding sequence

number stops incrementing on all the other nodes, and each

node can thus independently conclude that the other node or

link is no longer working correctly. This conveniently avoids

the need for a central coordinator, which could fail as well,

or some form of agreement, which would require additional

assumptions (such as f < N
2

). Second, the mere failure of an

individual link (i, j) does not cause i and j to consider each

other faulty: as long as there still is some network path that

1This requirement is to enable a simple analysis of the time-to-detection.

connects i and j, updates will continue to flow along that path,

although the sequence numbers will be slightly less recent than

before. (If the shortest path that connects i and j has k hops, the

sequence numbers will lag behind by k; hence the requirement

for K to be greater than the diameter.) Third, the algorithm

maintains consistency: if any node j is still able to hear from

a node i, then all other nodes will also be able to hear from

i, as long as they have a path to j. Perhaps surprisingly, this

is true even when the network partitions: in this case, each

partition will locally conclude that all the other nodes have

failed.

Replication. To provide fault tolerance, the system executes

one or more replicas of a task in each mode. To avoid

correlated faults, replicas are placed on different nodes. The

number of replicas per application in a mode is determined

based on its desirable level of fault-tolerance; specifically, for

any given mode m in which fm nodes have become faulty, we

execute Fi(fm)+1 replicas for each task of τi, so as to tolerate

up to Fi(fm) additional concurrent faults. One of the replicas

serves as the primary, whereas the rest are secondaries. The

primary takes input from the primary of its direct predecessor

(or from the sensors, if the task is the first of the dataflow),

performs computation, and produces output to the replicas of

its direct successor task (or to the actuators, if the task is the

last one of the dataflow).

We consider two types of secondary tasks (though it should

be easy to adapt our solution to other types of replication): (i)

a ‘hot’ replica performs computation just like the primary, but

discards the output; and (ii) a ‘cold’ replica does not perform

computation; it simply accepts and logs input (obtained from

the primary of its preceding task) and a checkpoint of task

state (obtained from the primary). When the primary replica

fails, and if the task is to be scheduled in the new mode, we

appoint one of the alive secondaries to be the primary. If a

hot replica becomes the new primary, it can begin producing

output immediately; otherwise, the new primary will first

replay the log to obtain the most recent task state before

producing output.

In the following, we first present our algorithm for con-

structing the modes and their transitions, assuming that the

mode transition time is a given parameter. We then discuss

a specific mode transition protocol used in our implementa-

tion and an analysis of the mode transition time under this

protocol.

V. BUILDING THE MODE GRAPH

Recall from above that the system can operate in different

modes, and that each mode represents a particular fault pattern

– that is, a set of faulty nodes and faulty links. Our goal is

to construct a mode graph, whose vertexes are modes and

whose edges represent possible transitions. Each mode should

be annotated with a suitable schedule for that mode (which

specifies the applications that are scheduled in this mode, the

number of replicas per application, and a mapping of their

primary and secondary tasks to the non-faulty nodes), and

each edge should be annotated with a mode transition protocol

that reconfigures the system from the original mode to the

destination mode.

Roadmap: We begin by describing a baseline algorithm that

can generate the mode graph but is not very scalable. This al-

gorithm proceeds in three steps: first, it generates the vertexes

and edges (Section V-A), then it annotates the vertexes with

schedules (Section V-B), and finally, it generates transition

protocols (Section VI). In Section VII, we then present a more

advanced algorithm for computing the schedules that is much

more scalable.

A. Mode graph construction

In principle, a system with |N| nodes and |L| links can

have 2|N|+|L| different modes and 22(|N|+|L|) mode transitions,

which would quickly become unmanageable as N and L grow.

However, in practice, the number of modes and transitions is

much smaller, for two reasons. First, we have assumed that

at most f nodes or links can fail; this reduces the number of

modes to
(|N|+|L|

f

)

. And second, it makes sense to rule out

transitions where the destination mode contains nodes that

were faulty in the origin mode – that is, in which a faulty

node or link is “resurrected”. With the assumption of a reliable

network, the failure detector from Section IV does not make

mistakes, and even if the network were not completely reliable,

allowing such transitions could lead to oscillations and make

the system unstable. It seems safer to exclude nodes and links

permanently once a fault has been detected on them, and to

rely on the operator to manually “bless” nodes and links that

have been repaired and can be readmitted into the system.

With these assumptions, we obtain a directed, acyclic mode

graph, whose root is the fault-free mode, and whose leaves

are the modes in which the maximum number of nodes or

links have failed. To construct this graph, we can (1) create

an initial vertex for the fault-free mode, and then, recursively,

(2) for each vertex m in the graph, enumerate all the modes

m′ in which one additional node or link has failed (unless this

would exceed the limit of f), create a new vertex for each

such mode (unless one already exists), and then add an edge

from the current vertex to this vertex. We call the vertexes m′

successor modes of m.

B. Computing the schedule for a mode

Once the skeleton of the mode graph is in place, we must

generate a schedule for each vertex. At first glance, this is a

very complex problem because the schedules are interdepen-

dent: if the schedule for a vertex m were completely different

from the schedule of a successor mode m′ of m (that is, if

the two modes map almost all tasks to different nodes), the

mode-change protocol for the transition m→m′ would be very

expensive, and would almost inevitably take a long time, thus

preventing us from obtaining a low bound on the recovery

time.

However, we can use the following trick to quickly find

an approximate solution. Since the leaf modes are essentially

unconstrained, we can start by generating schedules for them;

after that, we can move up the tree and generate schedules for

the predecessor modes, taking into account the schedules that

have already been chosen for their successor modes. Usually,

this will work well because, by definition, the predecessor

modes have more available resources (in the form of nodes

that are correct in the predecessor but faulty in the successor)

and thus have more degrees of freedom.

Somewhat more formally, given a mode m and the schedules

of its successor modes, our goal is to compute a schedule for

m such that the number of applications that are scheduled, in

decreasing order of criticality, is maximized, while meeting

the recovery time Rmax. For this, we will use an integer linear

programming (ILP) formulation, which we describe next.

Notation. For any mode m, we denote by Nm, Lm, fm, and Hm

the set of correct nodes, the set of links between the correct

nodes, the number of faults that have occurred, and the shortest

distance matrix, respectively. Here, Hm(n,n
′) gives the number

of network links on the shortest path from n to n′; by definition,

Hm(n,n) = 0 for all n ∈ N, and Hm(n,n
′) = +∞ if there exists

no path connecting n and n′ in m.

Recall that for each τi,k, we need to execute one primary

and Fi(fm) secondary replicas. We denote by Pi,k, Ei,k, Di,k

and Ui,k the period, WCET, deadline and density (ratio of

WCET to the minimum of period and deadline) of the primary.

Similarly, we denote by Pr
i,k, Er

i,k, Dr
i,k and U r

i,k the period,

WCET, deadline and density of each secondary. Let si,k be the

size of τi,k’s output data. Then, the latency for transmitting

τi,k’s output over a network link is bounded by δsi,k
. Thus,

hi,k = di,k/δsi,k
captures the maximum number of network links

allowed between a node executing τi,k and a node executing

its successor τi,k+1.

In addition to the application tasks, each node also executes

the fault-detection task τft (see Section IV). We denote by Pft,

Eft, Dft and Uft the period, WCET, deadline and density of

this task, respectively. For simplicity, we assume that each

node schedules tasks using the Earliest Deadline First (EDF);

however, it should be possible to generalize our approach to

other real-time scheduling algorithms.

Variables. We use Π and R to represent the mappings of task

replicas to nodes in the mode m. Specifically, Π
n
i,k = 1 (Rn

i,k =
1) if the primary (a secondary) of τi,k is mapped onto node

n, and Π
n
i,k = 0 (Rn

i,k = 0) otherwise. We use Ai to represent

whether τi is active in the mode (Ai = 1) or not (Ai = 0). For

brevity, we simply write Fi in place of Fi(fm) (i.e., the number

of extra concurrent faults that τi should tolerate in m).

Next, we describe the four constraints (C1–C4) that our ILP

formulation encodes.

C1) If τi is active in m (i.e., Ai = 1), there must be exactly Fi

nodes that each execute a secondary replica and another node

that executes the primary replica of each task of τi; otherwise,

no task of τi is scheduled in m:

∀1≤ i≤M,∀1≤ k≤Mi :
∑

n∈Nm

Rn
i,k = Fi ·Ai ∧

∑

n∈Nm

Π
n
i,k =Ai

∀1≤ i≤M,∀1≤ k ≤Mi,∀n ∈ Nm : Π
n
i,k +R

n
i,k ≤ 1

C2) For each active application τi, the number of hops between

τi,k’s primary and a replica of τi,k+1 is at most hi,k:

∀n,n′ ∈ Nm,∀1≤ i≤M,∀1≤ k ≤Mi−1 :

Hm(n,n
′) · (Πn

i,k +Π
n′

i,k+1 +R
n′

i,k+1−1)≤ hi,k

In the above equation, if n executes τi,k’s primary (Πn
i,k = 1)

and n′ executes a replica of τi,k+1 (Πn′

i,k+1 +R
n′

i,k+1 = 1), then

the LHS becomes Hm(n,n
′), which is the distance between

τi,k’s primary and a replica of τi,k+1. Otherwise, Π
n
i,k+Π

n′

i,k+1+

Rn′

i,k+1−1≤ 0 and the equation holds trivially.

C3) All nodes are schedulable under EDF:

∀n ∈ Nm : Uft+
∑

1≤i≤M

∑

1≤k≤Mi

{Ui,k ·Π
n
i,k +U r

i,k ·R
n
i,k} ≤ 1

The LHS represents the total density of all primary tasks

executed on n (encoded by Ui,k ·Π
n
i,k) and all secondaries that

are executed on n (encoded by U r
i,k ·R

n
i,k), as well as the fault-

detection task τft.

C4) For each mode transition from m to a successor mode

m′, we denote by ∆
n
mc(m,m′) the maximum time each node n

in m′ takes to transition from m to m′. (We will discuss its

computation in the next section.) Since the sum of the time-

to-detection ∆detect and the mode transition time should be no

more than the recovery time, we must have:

∀n ∈ Nm′ : ∆
n
mc(m,m′)≤ Rmax−∆detect

Objective: Our goal is to maximize the number of applications

that can be feasibly scheduled in m in the criticality order (i.e.,

higher criticality first). This can be formulated as follows:

maximize
∑

1≤i≤M

Ai ·M
(Cmax−Ci+1)

where Cmax = max1≤i≤M Ci is the maximum criticality value

of all applications. The scale factor M(Cmax−Ci+1) has been

chosen to preserve the strict preference for higher-criticality

applications.

VI. MODE TRANSITION PROTOCOL AND ANALYSIS

We next present a concrete mode transition protocol for

Cascade. We then analyze the maximum transition time

∆
n
mc(m,m′) used in Constraint (C4) of our ILP under this

protocol. Towards this, we first distinguish the different types

of tasks on each node n during the transition from m to m′.

Types of tasks. Recall that Π and R are the mappings of

primary and secondary tasks onto nodes, respectively, in mode

m. Let Π
′ and R′ denote the corresponding task mappings in

m′. The type of a task τi,k on n can be defined as follows:

1) Old task: It is scheduled on n in m but not in m′, i.e.,

Π
n
i,k +R

n
i,k = 1 (n executes a primary/secondary replica of τi,k

in m) and Π
′n
i,k +R

′n
i,k = 0 (n executes no replica of τi,k in m′).

2) New task: It is scheduled on n in m′ but not in m, i.e.,

Π
′n
i,k +R

′n
i,k = 1 and Π

n
i,k +R

n
i,k = 0.

3) Promoted task: It is scheduled on n as a secondary in m

but as the primary in m′, i.e., Rn
i,k = 1 and Π

′n
i,k = 1.

4) Demoted task: It is scheduled on n as the primary in m

but as a secondary in m′, i.e., Π
n
i,k = 1 and R′ni,k = 1.

5) Unchanged task: It is scheduled on n in both modes

and with its role preserved, i.e., either Π
n
i,k = Π

′n
i,k = 1 or

Rn
i,k =R

′n
i,k = 1.

Mode transition protocol. When a node n detects a new fault

in a current mode m, it discards all pending and currently

executing jobs (and does not release new jobs of existing

tasks until the transition is completed), looks up the schedule

for the new mode m′ (the mode that reflects the new fault

pattern, including the node that just failed), and executes the

mode transition protocol to switch from m to m′. Specifically,

n performs the following mode transition actions:

• Terminate all old tasks immediately.

• For each new task: spawn a new primary (or secondary)

replica, and copy the latest state (or the log of input and

current checkpoint) from the closest existing replica that

is alive, or from the existing primary if it is alive and cold

replication is used. Prime the state based on the logs and

checkpoint (if any).

• For each promoted task: bring its state up to date by

replaying the log, and update its parameters and behavior

to be the primary.

• For each demoted task: update its parameters and behav-

ior to be a secondary.

• Resume normal execution according to the new mode.

Analysis. We next analyze the maximum transition time under

the above protocol. Since the overhead for discarding jobs is

negligible, we omit it here. We assume the following bounds

on the network/execution overhead 2 and some extra notations:

• δ state
i,k : the maximum latency to transmit the latest state

of τi,k across a network link.

• δ
log

i,k : the maximum latency to transmit the log and check-

point of τi,k across a network link.

• δ
replay

i,k : the maximum overhead to bring the state of τi,k

up to date by replaying the log from the latest checkpoint.

• δ spawn: the maximum overhead to spawn a new task.

• δ
update

i,k : the maximum overhead to update a task’s param-

eters and functionality according to its new role.

• Sn: the set of non-faulty nodes n′ that are reachable from

n in mode m′ (i.e., n′ ∈ Nm′ and Hm′(n,n
′)<+∞).

• τnew, τpromoted and τdemoted: the sets of new, promoted,

and demoted tasks on n, respectively.

The transition overheads contributed by the tasks on n depend

on their types, as we discuss below.

Lemma 1 (Current tasks). The total overhead of current

tasks (i.e., old, unchanged, promoted and demoted tasks)

on n is at most ∆
hot
cur =

∑

τi,k∈τpromoted ∪ τdemoted
δ
update

i,k under

hot replication, and at most ∆
cold
cur =

∑

τi,k∈τdemoted
δ
update

i,k +
∑

τi,k∈τpromoted
(δ update

i,k +δ
replay

i,k) under cold replication.

Proof: Recall that old tasks are discarded immediately,

and unchanged tasks preserve their states and functionality.

Hence, they contribute negligible transition overhead.

2As common in existing work, we assume that these overhead bounds are
given. Optimizing their values is an interesting future work.

Consider any promoted task τi,k. Under hot replication, τi,k

needs to update its parameters and functionality to its new

(primary) role, which has a maximum overhead of δ
update

i,k .

Under cold replication, τi,k additionally needs to replay its log

(stored locally on n) to bring its state up to date. Hence, the

overhead it contributes is at most δ
replay

i,k +δ
update

i,k .

Consider any demoted task τi,k. Since τi,k is currently the

primary on n, its state is up to date. Hence, the only overhead

it contributes is the time needed to update its parameters and

functionality to its new role in m′, which is at most δ
update

i,k .

Based on the above, the overhead that all current tasks of

n contribute is the total overhead of promoted and demoted

tasks. Under hot replication, this overhead is bounded by
∑

τi,k∈τpromoted
δ
update

i,k +
∑

τi,k∈τdemoted
δ
update

i,k . Under cold repli-

cation, it is bounded by
∑

τi,k∈τpromoted
(δ update

i,k + δ
replay

i,k) +
∑

τi,k∈τdemoted
δ
update

i,k . Hence, the lemma holds.

We next consider the new tasks on n, first under hot

replication. Since such a task is not currently scheduled on

n, its state must be obtained from an existing (alive) replica.

Lemma 2. Under hot replication, the maximum delay for the

states of all new tasks of n to become available on n is

∆
hot
state = max

τi,k∈τnew

{

min
n0∈Sn

{Hm′(n,n0) ·δ
state
i,k | Π

n0
i,k +R

n0
i,k = 1}

}

.

Proof: Under hot replication, for each new task τi,k, n

obtains the latest task state from the nearest non-faulty node

that executes a replica of τi,k in the current mode m. Recall

that Hm′(n,n0) denotes the minimum number of network links

between n and a connected node n0 in mode m′ (i.e., n0 ∈ Sn).

Since the maximum time to transmit the task state of τi,k over

one network link is δ state
i,k , the time to transmit the state of

τi,k from n0 to n is at most Hm′(n,n0) · δ
state
i,k . Further, for

n0 to execute a (primary or secondary) replica of τi,k in the

current mode m, we must have Π
n0
i,k +R

n0
i,k = 1. Hence, the

maximum delay for the task state of τi,k to be available on n

is the minimum of Hm′(n,n0) ·δ
state
i,k , for all n0 ∈ Sn such that

Π
n0
i,k +R

n0
i,k = 1. By taking the maximum of this delay across

all new tasks τi,k on n, we obtain the maximum delay for their

states to be available on n. This proves the lemma.

Theorem 3 (Hot replication). Under hot replication, the

maximum time for n to transition from m to m′ is given by

∆
n
mc(m,m′) = max{∆hot

cur , ∆
hot
state}+

∑

τi,k∈τnew

δ
spawn (1)

Proof: Under hot replication, the overhead contributed by

the new tasks on n consists of the overhead for transmitting

their task states from existing replicas (over the network) and

the overhead for spawning the new tasks (on node n). Since

communication and computation can be done in parallel, the

state transfer takes place concurrently with the mode change

actions for existing tasks on n. Hence, from Lemma 1 and

Lemma 2, the maximum time (from the instant the fault is

detected) for n to both complete the mode change actions of

old, unchanged, promoted and demoted tasks and to obtain

the new tasks’ states is max{∆hot
cur , ∆

hot
state}. The maximum

transition time ∆
n
mc(m,m′) of n can thus be obtained by adding

the overhead for spawning the new tasks on n to this delay,

the result of which is equal to the RHS of Equation (1).

We next analyze the transition time under cold replication.

For this, let τ1
new be the set of new tasks of n whose current

primary replicas are still alive, and τ2
new = τnew \ τ1

new. Under

cold replication, the state of each new task τi,k in τ1
new can

be obtained from its current primary. In contrast, the state of

each τi,k in τ2
new is obtained by first transferring the log and

checkpoint for τi,k from the nearest alive secondary replica,

and then replaying the log. The next lemma establishes the

state/log transmission time.

Lemma 4. Under cold replication, the maximum delay to

transfer the states of all tasks in τ1
new to n is

∆
cold
state = max

τi,k∈τ1
new

{

min
n0∈Sn ∧Π

n0
i,k

Hm′(n,n0) ·δ
state
i,k

}

.

Further, the maximum delay to transfer the logs and check-

points of all tasks in τ2
new to n is

∆
cold
log = max

τi,k∈τ2
new

{

min
n0∈Sn ∧ R

n0
i,k

Hm′(n,n0) ·δ
log

i,k

}

.

Observe that a node n0 currently executes the primary of τi,k

iff Π
n0
i,k = 1, and that it currently executes a secondary replica

of τi,k iff R
n0
i,k = 1. In addition, the maximum latency to transmit

the log and checkpoint of τi,k over a network link is bounded

by δ
log

i,k . Using these conditions, the lemma can be proven in

a similar manner as Lemma 2. Due to space constraints, we

omit the details.

Theorem 5 (Cold replication). Under cold replication, the

maximum time for n to transition from m to m′ is given by

∆
n
mc(m,m′) = max

{

∆
cold
state, max{∆cold

cur ,∆
cold
log }+

∑

τi,k∈τ2
new

δ
replay

i,k

}

+
∑

τi,k∈ττnew

δ
spawn

Proof Sketch: First, note that the overhead for n to

replay the logs of all new tasks in τ2
new is bounded by

∑

τi,k∈τ2
new

δ
replay

i,k . Further, since the transmission of the states

(or logs and checkpoints) for the new tasks can take place

concurrently with the execution of mode transition actions for

existing tasks on n, the maximum delay for n to a) complete

the mode transition actions for its existing tasks, b) obtain the

latest states of all new tasks in τ1
new, and c) obtain the logs

and checkpoints of all new tasks in τ2
new and then replay the

logs is bounded by

max{max{∆cold
cur , ∆

cold
state},max{∆cold

cur , ∆
cold
log }+

∑

τi,k∈τ2
new

δ
replay

i,k },

which is max
{

∆
cold
state, max{∆cold

cur ,∆
cold
log }+

∑

τi,k∈τ2
new

δ
replay

i,k

}

.

By adding this overhead with the overhead to spawn all new

tasks on n, which is bounded by
∑

τi,k∈ττnew
δ spawn, we obtain

the maximum transition overhead of n. Hence, the theorem.

VII. THE CASCADE ALGORITHM

The algorithm we have described so far works fine, but it is

not very scalable. In particular, the ILP from Section V-B can

become very complex as the number of nodes grows. In this

section, we describe an algorithm that is much more scalable.

A. Overview

One simple way to reduce the complexity of the ILP is to break

the system into multiple smaller partitions, to allocate each

application to a particular partition, and to solve a separate

ILP for each partition. This helps because the complexity of

the ILP grows superlinearly with the number of nodes and

applications; thus, solving a single giant ILP will take far more

time than solving k smaller ILPs that each contain roughly 1/k

of the nodes and applications.

However, there are a few complications. The first has to

do with the way applications are allocated to the partitions.

At first glance, this looks like an instance of bin packing: we

can simply make the allocations based on the computation and

bandwidth resources that are available in each partition. How-

ever, it is possible that the set of applications is schedulable

on the system as a whole but cannot be neatly subdivided into

pieces that fit into the partitions – for instance, two partitions

might each end up with half an application’s worth of slack. In

this case, we can simply omit the leftover applications initially,

when solving the ILPs for the partitions, and then propagate

the solutions to the larger ILP, which thus becomes much

simpler (with only a few leftover applications remaining to

be scheduled). Occasionally, it may be impossible to fit in the

leftover application even using the larger ILP, in which case

it has to be dropped; however, since we do the bin packing

in criticality order (using first-fit), this problem will only ever

affect the lowest-criticality applications.

The second complication is that, if the system is large, the

above trick will still leave a fairly complex ILP. We can avoid

this problem by doing the partitioning recursively, starting with

just a few large partitions (or perhaps even just two) and then

repeatedly subdividing each of them until they become small

enough to solve. If the solutions are then propagated back up

the hierarchy, the ILPs at each level remain small and can all

be solved efficiently.

A final complication has to do with the network topology.

It is not uncommon for CPS to have a few bottlenecks – say,

low-capacity links that bridge between higher-capacity buses.

If we are not careful when picking the partitions, we may very

well end up with partitions that contain nodes on both sides

of such a bottleneck. This would cause a lot of traffic to be

routed through the bottleneck, and thus cause the partition-

level ILPs to become unsolvable much more quickly than the

giant system-level ILP. Thus, we must take care to partition the

system such that the partitions are well-connected internally

but have as few connections as possible between them.

In summary, the algorithm proceeds roughly as follows:

1) Divide a graph into subgraphs such that the subgraphs

are as little connected as possible.

Algorithm 2 Partitioning Algorithm (based on [16])

1: NoImproveCount = 0
2: while NoImproveCount < totalPasses do

3: g1,g2← random initial partition of G
4: L←{} ⊲ list of cells moved in this pass
5: while g1,g2 both contain at least MinNodes nodes do

6: for i = 1 · · ·n do ⊲ compute initial gains
7: F(i)← # of nodes in same partition as i

8: T (i)← # of nodes in different partition as i

9: gain(i)← F(i)−T (i)

10: “Free cell” C← argmaxi gain(i) ⊲ C ∈ g j

11: Move C from g j to g1− j .
12: Add C to L.
13: for i = 1 · · ·n, i 6∈ L do ⊲ update gains
14: F(i)← # of nodes in same partition as i

15: T (i)← # of nodes in different partition as i

16: gain(i)← F(i)−T (i)

17: if V <VMIN and constraints satisfied then

18: VMIN =V

19: P = {g1,g2}
20: NoImproveCount = 0
21: else

22: NoImproveCount ++

23: return P

2) Allocate entire applications to the bins that each sub-

graph represents.

3) Subdivide the graphs recursively until some threshold

number of nodes remains in each graph.

4) Solve the ILP problem for the leaf-layer subgraphs (in

parallel).

5) If, at any point, we find that a schedule is infeasible,

we can try to reduce the load by reducing the number

of applications we are trying to schedule or by reducing

the number of replicas we have.

6) Recursively propagate the computed schedule and any

unschedulable applications one layer up and solve the

ILP problem for the parent subgraph to find a schedule

for applications rejected (if any) at lower-layer sub-

graphs.

We make two additional observations. First, this approach

is not likely to find the optimal solution: the schedule we

can generate by combining the various ILP solutions will be

slightly worse than the schedule the original giant ILP would

have generated. However, as we will show in Section IX,

the actual loss tends to be relatively small. Second, although

we use partitioning here to efficiently solve the scheduling

problem for a single mode, it could be useful to use the same

partitioning for all the modes; this might make it possible

to respond to most faults locally within a partition, without

having to reconsider the schedules for the other partitions.

B. Graph partitioning

Graph partitioning is itself a hard problem. We can choose to

partition the graph globally or locally, but neither is guaranteed

to get the optimal solution unless we apply a brute-force

approach. One localized method that can run on hypergraphs

is the FM algorithm [16] (Algorithm 2), which is an extension

of the K-L algorithm [27]. The FM algorithm can handle

unbalanced partitions and hyperconnected edges, and it runs in

linear time, which makes it a good candidate for our purposes.

It also supports a notion of constraints, which we can use,

e.g., to enforce that each partition must have some minimum

number of nodes.

The algorithm starts by using a graph that has been ran-

domly partitioned. Let us call these two partitions the left and

right partitions. Each vertex (node) in the graph is a part of one

or more nets (links); we can use this feature to represent nodes

that have sensors and actuators that are needed for particular

applications and thus should be put into the same partition

with them. For each node n, we calculate FS(n) and T E(n),
where FS(n) is the number of nets for which n is the only

node in the left partition and T E(n) is the number of nets

containing n that are located entirely in the left partition.

The gain of moving node n to the other partition is defined

as FS(n)− T E(n). The algorithm takes the node with the

highest gain and moves it to the other partition, as long as no

constraints are violated by doing so. Once a node is moved, it

is fixed to be in the new partition (hence the linear runtime).

The gains of the neighbors of the moved node are updated to

reflect the new state of the partitions.

To prevent the partitioning algorithm from producing un-

reasonably small partitions, or partitions that are disconnected

internally, we provide a few additional constraints to the

partitioning algorithm:

1) Each partition P must have at least f +1 nodes

2) There exists a path from any node in a partition P to

any other node in that partition

3) No faulty node is a member node of a partition

C. Bin packing

As a first approximation, the bin-packing part of the algorithm

is simple enough: we process the applications in decreasing

order of criticality and use first-fit to allocate each to a parti-

tion. (Notice that we are packing applications into partitions,

not into individual nodes; the actual assignments will be

done by the ILP.) The condition that determines whether a

given candidate application “fits” into a particular partition

is that the partition must have sufficient resources available to

accommodate all tasks of that application. We sum the density

of the task we want to pack in addition to the number of

replicas we would like to schedule for it (which is itself a

function of the criticality of the application), and compare it

to the CPU slack available in the graph.

util(Ai)× (Fi(fm)+1)≤ slack(G).

Here, util(Ai) denotes the total density of the tasks in the appli-

cation Ai (the application to be packed) and slack(G) denotes

the total remaining available CPU bandwidth of the nodes in

the current subgraph G after having scheduled applications

mapped onto it by child subgraphs.

VIII. IMPLEMENTATION

For our experiments, we implemented a prototype of Cascade

in 6,425 lines of C++ code. The implementation includes the

ILP described in Section V, as well as the hierarchical bin-

packing described in Section VII. Since the hierarchical ILP

uses smaller versions of the original, giant ILP, we can easily

compare Cascade to a strawman approach that solves the giant

ILP directly; we will refer to this as “pure ILP”. To solve the

ILPs, we invoke Gurobi [22], a well-known commercial solver.

We use a timeout of one hour for each individual ILP.

For comparison, we also implemented TPCD [3], an effi-

cient heuristic that can pack a set of replicated tasks onto a

set of nodes. A key difference between Cascade and TPCD,

as well as its variants TPCDC [3] and TPCDC+R [4], is that

the latter are static – that is, they do not change their response

based on what faults have occurred – and that they assume

a fully-connected network with no bandwidth limitations. As

such, the scheduling problem for TPCD and its variants is

somewhat easier, but still close enough to serve as a basis for

comparisons.

Briefly, the input to TPCD is a set of independent tasks.

Each task has a primary and a configurable number of replicas;

in our implementation, we use 3 replicas for criticality-0 tasks,

2 replicas for criticality-1, and 1 replica for criticality-2. All

replicas are “hot” replicas, so their utilization is identical to

that of their primary. TPCD uses a best-fit decreasing packing

algorithm, with the constraint that a task’s replica cannot be

on the same node as its primary or another replica of the same

task. It packs tasks in decreasing order of replication. That is,

tasks with three replicas will have their third replicas packed

prior to all second replicas. Primaries are packed last. If TPCD

runs out of space and cannot find a node with enough spare

utilization for a given replica, it will create a new node. Since

this is not an option in our setting, where the number of nodes

is fixed, we instead drop any tasks that do not “fit” into the

system once it has filled up.

IX. EVALUATION

Our evaluation was designed to answer three high-level ques-

tions: 1) Can we leverage Cascade to find near optimal solution

that are scalable? 2) How well can such a task allocation

strategy handle the introduction of faults? And 3) How well

does Cascade compete with existing work?

All our experiments ran on Intel Xeon E5-2620 v3 servers,

each with 24 hyperthreaded cores (two hyperthreads per phys-

ical core) with 64 GB RAM. Each machine ran Fedora 26.

To compare the pure ILP with Cascade, we generated

systems with networks that were either fully connected (for

Section IX-A) or generated using the Erdös-Renyi G(n,p)

model, with p=0.5 – that is, each node-to-node link had a 50%

chance of being included in the system. We used 100 random

seeds to vary the input graph and input application set that

we wanted to schedule. Applications consisted of single tasks

(i.e., no dependencies); we drew both their CPU utilizations

(between 0.1 and 0.7) and their criticality level (0, 1, or 2)

uniformly at random, and we stopped generating applications

as soon as adding the next one would have caused the total

utilization to reach or exceed the number of nodes N. We

selected the period uniformly at random from the range [10,

0 20 40 60 80 100
% Nodes Faulty

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
 o

f S
ch

ed
ul

ed
 C

rit
-0

 A
pp

s 25 Nodes

Pure ILP
Cascade
TPCD

0 20 40 60 80 100
% Nodes Faulty

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f S

ch
ed

ul
ed

 C
rit

-0
 A

pp
s 50 Nodes

Pure ILP
Cascade
TPCD

0 20 40 60 80 100
% Nodes Faulty

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f S

ch
ed

ul
ed

 C
rit

-0
 A

pp
s 75 Nodes

Pure ILP
Cascade
TPCD

0 20 40 60 80 100
% Nodes Faulty

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f S

ch
ed

ul
ed

 C
rit

-0
 A

pp
s 100 Nodes

Pure ILP
Cascade
TPCD

Fig. 2: Schedulability for criticality-0 applications using Cascade, TPCD, and our strawman approach (Pure ILP). The points

show the median, and the error bars show the 20th and the 80th percentile.

20 40 60 80 100
Number of nodes

0.06
0.25

1
4

16
64

256
1024
4096

To
ta

l T
im

e
(s

ec
on

ds
)

0% Nodes Faulty

Pure ILP
Cascade
Timeout

20 40 60 80 100
Number of nodes

0.06
0.25

1
4

16
64

256
1024
4096

To
ta

l T
im

e
(s

ec
on

ds
)

20% Nodes Faulty

Pure ILP
Cascade
Timeout

20 40 60 80 100
Number of nodes

0.06
0.25

1
4

16
64

256
1024
4096

To
ta

l T
im

e
(s

ec
on

ds
)

40% Nodes Faulty
Pure ILP
Cascade
Timeout

20 40 60 80 100
Number of nodes

0.06
0.25

1
4

16
64

256
1024
4096

To
ta

l T
im

e
(s

ec
on

ds
)

60% Nodes Faulty
Pure ILP
Cascade
Timeout

40 60 80 100
Number of nodes

0

50

100

Nu
m

be
r o

f T
im

eo
ut

s

Pure ILP
Cascade

40 60 80 100
Number of nodes

0

50

100

Nu
m

be
r o

f T
im

eo
ut

s

Pure ILP
Cascade

40 60 80 100
Number of nodes

0

50

100

Nu
m

be
r o

f T
im

eo
ut

s

Pure ILP
Cascade

40 60 80 100
Number of nodes

0

50

100

Nu
m

be
r o

f T
im

eo
ut

s

Pure ILP
Cascade

Fig. 3: Top row: Time needed to allocate tasks using Pure ILP and Cascade, for systems of different sizes and with different

fractions of faulty nodes. Bottom row: Timeout rates for both techniques.

40] ms, and we set the deadline equal to the period. We set

Rmax = 100ms and Pft = 5ms. The base of the exponentiation

in the objective function was set to M = 1.2. The execution

time was calculated as the selected CPU utilization multiplied

by the period. Criticality-0 applications were required to start

with three replicas (that is, four copies of each task), and

could thus tolerate up to three simultaneous faults. Criticality-

1 applications started with two replicas, and criticality-2

applications with a single replica.

A. Comparison to TPCD

Our first experiment is designed to get a general impression

of the quality of the schedules Cascade produces. We cre-

ated systems of sizes 25,50,75, and 100 nodes and a fully-

connected network (to enable comparisons to TPCD, which

requires this) and then used Pure ILP, Cascade, and TPCD to

generate schedules for random modes in which between 0 and

60% of nodes have failed. We discarded networks where the

solver timed out. Figure 2 shows our results (median across all

seeds). Cascade ensures that all the criticality-0 applications

are scheduled until almost all of the nodes in the system are

faulty, whereas TPCD cannot schedule them all even in the

absence of faults. To be fair, TPCD was designed with the

ability to add nodes to the system when more are needed,

whereas Cascade assumes that the number of nodes is fixed

and that it must find the best possible schedule using the

available resources.

B. Scheduling time

Next, we examined how much Cascade improves the schedul-

ing time relative to using a single giant ILP. We generated

systems of different sizes, ranging from 25..100 nodes. We

solved each system with 0%, 20%, 40%, and 60% faulty

nodes, using both the gigantic (“pure”) ILP and Cascade. We

did not use TPCD for this experiment because it requires a

fully-connected network.

Figure 3 shows the results; notice that the vertical axis

is logarithmic. As expected, the runtime for the pure ILP

increases very quickly with the size of the system; as early

as with N=50 nodes, the 80th percentile is at the one-hour

time limit we imposed. In contrast, the runtime for Cascade

grows slowly with the system size, as long as the fraction of

faulty nodes is not too large. For 60% faulty nodes and above,

the graph often is no longer partitionable with our method, so

Cascade’s performance starts to approach that of Pure ILP.

Due to large runtimes, we did not attempt to run the

pure ILP for systems larger than N=100 nodes, but we ran

additional experiments with larger systems using Cascade.

Fig. 4 shows the results, again with a logarithmic vertical axis.

The difficulty of the scheduling problem can vary substantially

across our randomly chosen test graphs; because of this, the

80th percentile is much higher than the median (but timeouts

occurred for only four of the topologies). Overall, the solution

time does increase with the system size, but the numbers are

orders of magnitude smaller than those for Pure ILP.

100 150 200 250 300
Number of nodes

1
4

16
64

256
1024
4096

To
ta

l T
im

e
(s

ec
on

ds
)

0% Nodes Faulty

Cascade
Timeout

100 150 200 250 300
Number of nodes

0.25
1
4

16
64

256
1024
4096

To
ta

l T
im

e
(s

ec
on

ds
)

50% Nodes Faulty

Cascade
Timeout

Fig. 4: Time needed to solve Cascade’s hierarchical ILP for

larger systems. The points show the median, and the error bars

show the 20th and the 80th percentile.

Although we were unable to compare Cascade to TPCD

(because our network topologies were not fully connected),

we wanted to include at least a qualitative comparison, so we

ran experiments on some fully-connected networks. On these

networks, TPCD is very fast: it can finish a task allocation for

a 1,000-node system in about four seconds.

C. Schedule quality

Another possible concern is that, while Cascade can find a

solution much faster than the “pure” ILP, the quality of the

resulting schedules might suffer. To examine this, we per-

formed the following experiment. We generated 100 random

graphs with N = 25..100 nodes, and we scheduled them with

0%,20%,40%, and 60% faulty nodes, using both Pure ILP

and Cascade. For the graphs that did not time out, we then

measured the average fraction of the tasks at each criticality

level that were schedulable, as well as the average value of

the objective function for the ILPs that we were able to solve

within our one-hour cut-off.

Figure 5 shows, for N = 25,50,75,100, the median schedu-

lability at each criticality level. We make three key ob-

servations. First, the most critical tasks (at criticality level

zero) remain completely schedulable with both approaches,

even when 60% of nodes are faulty. Second, most of the

lower-criticality tasks remain schedulable as well, with the

criticality-2 tasks suffering first. This shows Cascade’s ability

to dynamically reduce the number of replicas for a given

application once there are no longer enough nodes to support

the original replication level. Finally, Cascade does do a little

worse than the pure ILP, but only at the lower criticality levels,

and not by much.

Figure 6 shows a different view on this data: it compares

the objective function for both Pure ILP and Cascade at the

10th to 90th percentiles in 10 percentile increments. Overall,

the numbers are roughly comparable across all system sizes

and failure scenarios.

D. Worst-case failure scenario

So far, we have compared Cascade and TPCD only in terms of

runtime and schedulability. This does not capture an important

advantage of Cascade: whereas TPCD statically allocates tasks

to nodes, Cascade can dynamically adapt to different failure

scenarios.

TABLE I: Assignments generated for a small graph by TPCD.

“P” indicates primary and “R” indicates replica.

Node ID
0 1 2 3 4 5

App ID

0 R - R - - P
1 - R - - P -
2 - - - R - P
3 R - R - P -
4 - - - - - -
5 - R - R - P

Sets of Faulty Nodes
{5} {3,5} {1,3,5} {1,2,3,5} {0,1,2,3,5}

P R1 R2 P R1 R2 P R1 R2 P R1 R2 P R1 R2

TPCD
Crit. 0 3 3 1 3 2 1 2 2 1 2 1 0 1 0 0
Crit. 1 2 1 0 1 1 0 1 0 0 1 0 0 1 0 0

Cascade
Crit. 0 3 3 2 3 3 0 3 3 0 3 0 0 2 0 0
Crit. 1 1 1 0 3 0 0 1 0 0 1 0 0 1 0 0

TABLE II: Number of applications that can retain their pri-

mary (P), first replica (R1), and second replica (R2) in an

example network with six nodes and three applications.

To illustrate this point, we used a single, very small system

with only six nodes and a fully connected network. Table I

shows the task allocation that TPCD generates for this system;

applications 0, 3, and 5 have a primary (P) and two replicas

(R) because their criticality is higher; the other applications

only have a primary and a single replica.

Now consider the scenario where node 5 fails, then node 3,

and finally node 1. In this situation, application 5 no longer

works, since its primary and both its replicas were mapped

to the nodes that have failed. Since the faults did not occur

simultaneously, there would have been time after the first fault

to reconfigure the system and create another replica on a

different node. TPCD uses a static mapping of tasks to nodes

and thus cannot support such a reconfiguration, but Cascade

does take advantage of this opportunity, and can thus survive

the second fault without losing the high-criticality application.

We extended the comparison until Cascade was unable to

schedule a criticality-0 application, and we show the results in

Table II; we report, for each failure scenario, the number of

high-criticality and low-criticality tasks and replicas that are

still active. As in the previous example, Cascade prioritizes the

high-criticality applications and spawns additional replicas for

them (potentially at the expense of lower-criticality applica-

tions) as soon as a fault is detected, whereas TPCD, with its

static task mapping, is not able to respond to faults. As a

result, in 4/5 scenarios, Cascade manages to continue to run

all of the high-criticality applications; in the fifth scenario, the

system loses five of the six nodes (83%) and is no longer able

to support them all. In contrast, TPCD’s success rates vary,

but the inability to adapt prevents high-criticality applications

from running even in cases where there are enough resources.

E. Case study: Volvo XC90

Finally, we wanted to see how well Cascade would do on

a topology from a real cyber-physical system. We chose the

onboard network of the Volvo XC90 for this case study;

F = 0 F = 5 F = 10 F = 150.0
0.2
0.4
0.6
0.8
1.0
1.2 Pure ILP, 25 nodes

crit 0 crit 1 crit 2

F = 0 F = 10 F = 20 F = 300.0
0.2
0.4
0.6
0.8
1.0
1.2 Pure ILP, 50 nodes

crit 0 crit 1 crit 2

F = 0 F = 15 F = 30 F = 450.0
0.2
0.4
0.6
0.8
1.0
1.2 Pure ILP, 75 nodes

crit 0 crit 1 crit 2

F = 0 F = 20 F = 40 F = 600.0
0.2
0.4
0.6
0.8
1.0
1.2 Pure ILP, 100 nodes

crit 0 crit 1 crit 2

F = 0 F = 5 F = 10 F = 150.0
0.2
0.4
0.6
0.8
1.0
1.2 Cascade, 25 nodes

crit 0 crit 1 crit 2

F = 0 F = 10 F = 20 F = 300.0
0.2
0.4
0.6
0.8
1.0
1.2 Cascade, 50 nodes

crit 0 crit 1 crit 2

F = 0 F = 15 F = 30 F = 450.0
0.2
0.4
0.6
0.8
1.0
1.2 Cascade, 75 nodes

crit 0 crit 1 crit 2

F = 0 F = 20 F = 40 F = 600.0
0.2
0.4
0.6
0.8
1.0
1.2 Cascade, 100 nodes

crit 0 crit 1 crit 2

Fig. 5: Fraction of applications that can be scheduled, for Erdös-Renyi networks with 25..100 nodes, using both pure ILP and

Cascade, as the number of faults increases. Timeouts have been filtered out for both techniques.

0 20 40 60 80 100
Pure ILP Objective

0

20

40

60

80

100

Ca
sc

ad
e

Ob
je

ct
iv

e

0% Nodes Faulty
25 nodes
50 nodes
75 nodes
100 nodes

0 20 40 60 80 100
Pure ILP Objective

0

20

40

60

80

100

Ca
sc

ad
e

Ob
je

ct
iv

e

20% Nodes Faulty
25 nodes
50 nodes
75 nodes
100 nodes

0 20 40 60 80 100
Pure ILP Objective

0

20

40

60

80

100

Ca
sc

ad
e

Ob
je

ct
iv

e

40% Nodes Faulty
25 nodes
50 nodes
75 nodes
100 nodes

0 20 40 60 80 100
Pure ILP Objective

0

20

40

60

80

100

Ca
sc

ad
e

Ob
je

ct
iv

e

60% Nodes Faulty
25 nodes
50 nodes
75 nodes
100 nodes

Fig. 6: Objective function comparison of pure ILP (red) and Cascade (blue) for Erdös-Renyi networks of size 25..100 as the

percentage of nodes in the system that are faulty increase. Points are selected as 10th..90th percentiles.

F =
 0

F =
 7

F =
 14

F =
 21

F =
 28

F =
 35

0.0

0.2

0.4

0.6

0.8

1.0

Case Study - TPCD
crit 0 crit 1 crit 2

F =
 0

F =
 7

F =
 14

F =
 21

F =
 28

F =
 35

0.0

0.2

0.4

0.6

0.8

1.0

Case Study- Cascade
crit 0 crit 1 crit 2

F =
 0

F =
 7

F =
 14

F =
 21

F =
 28

F =
 35

0.0

0.2

0.4

0.6

0.8

1.0

Case Study - Pure ILP
crit 0 crit 1 crit 2

Fig. 7: Fraction of applications scheduled for the Volvo XC90

network, using TPCD (left), Cascade (middle), and Pure ILP

(right), for different numbers of faults.

we have already shown its topology earlier, in Figure 1.

This network contains 38 compute nodes and 13 buses – 1

HCAN, 1 LCAN, 1 MOST, and 10 LIN – for connectivity.

We used the same workload generation method as for the

other experiments, with two differences: first, to get at least a

rough sense of how well TPCD would do, we first generated

TPCD application sets for each of the buses (which can be

thought as the fully connected network TPCD requires), and

we then merged these application sets to form the workload for

Cascade. And second, since some of the buses are very small

and cannot accommodate a criticality-0 application with three

replicas, we reduced the number of replicas by one at each

level – that is, two replicas for criticality-0, one for criticality-

1, and zero (i.e., no redundancy) for criticality-2. As before, we

measured how the number of scheduled applications changed

as the number of faults increases.

Figure 7 shows our results. The behavior is consistent with

the earlier results: since TPCD uses a static task mapping and

cannot respond to faults by reconfiguring the system, it starts

to lose criticality-0 applications as soon as a fault knocks out

all of their original replicas. Cascade loses the least critical

applications more quickly, since it uses their resources to

replenish the replica sets of the more critical applications, but,

in return, the most critical applications survive far longer –

they start failing only after almost all of the nodes are gone.

X. CONCLUSION

Bounded-time recovery is a new addition to the community’s

fault-tolerance toolbox; it has a number of interesting proper-

ties, but also comes with some new challenges. In this paper,

we have focused on one of them: its very unusual scheduling

problem, which is quite different from anything else we had

seen before. Although the problem appears very complex at

first, Cascade shows that this complexity can be managed quite

well, and that it is possible to efficiently find schedules for

fairly large systems, with more than 100 nodes.

Cascade is probably not the last word on BTR scheduling;

for instance, by using the mode transitions “only” to move

replicas or to create new ones (and not, say, to change what

the system is doing, or how it is doing it), it leaves a lot of

potential flexibility on the table. Nevertheless, Cascade should

provide a solid foundation for more powerful BTR scheduling

techniques.

ACKNOWLEDGEMENTS

We thank Alice Cheng for her help with an initial implemen-

tation of the Cascade algorithm and the anonymous reviewers

for their thoughtful comments and suggestions. This research

was supported in part by NSF CNS 1750158, CNS 1703936

and CNS 1563873, by ONR N00014-20-1-2744, and by the

Defense Advanced Research Projects Agency (DARPA) under

Contract No. HR0011-16-C-0056 and HR0011-17-C-0047.

REFERENCES

[1] Y. Afek and G. M. Brown. Self-stabilization over un-

reliable communication media. Distributed Computing,

7(1):27–3–4, 1993.

[2] J. Balasubramanian, A. Gokhale, A. Dubey, F. Wolf,

D. C. Schmidt, C. Lu, and C. Gill. Middleware for

resource-aware deployment and configuration of fault-

tolerant real-time systems. In Proc. RTAS, 2010.

[3] A. Bhat, S. Samii, and R. Rajkumar. Practical task allo-

cation for software fault-tolerance and its implementation

in embedded automotive systems. In Proc. RTAS, 2017.

[4] A. Bhat, S. Samii, and R. Rajkumar. Recovery time

considerations in real-time systems employing software

fault tolerance. In Proc. ECRTS, 2018.

[5] G. M. Brown, M. G. Gouda, and C.-L. Wu. Token sys-

tems that self-stabilize. IEEE Trans. Comput., 38(6):845–

852, June 1989.

[6] J. E. Burns and J. K. Pachl. Uniform self-stabilizing

rings. ACM Transations on Programming Languages and

Systems, 11(2):330–344, Apr. 1989.

[7] T. D. Chandra, V. Hadzilacos, and S. Toueg. The

weakest failure detector for solving consensus. J. ACM,

43(4):685–722, July 1996.

[8] T. D. Chandra and S. Toueg. Unreliable failure detectors

for reliable distributed systems. J. ACM, 43(2):225–267,

Mar. 1996.

[9] A. Chen, H. Xiao, L. T. X. Phan, and A. Haeberlen. Fault

tolerance and the five-second rule. In Proc. HotOS, May

2015.

[10] M. Correia, D. G. Ferro, F. P. Junqueira, and M. Serafini.

Practical hardening of crash-tolerant systems. In Proc.

USENIX ATC, 2012.

[11] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchin-

son, and A. Warfield. Remus: high availability via

asynchronous virtual machine replication. In Proc. NSDI,

2008.

[12] M. Di Natale and J. Stankovic. Dynamic end-to-end

guarantees in distributed real time systems. In Proc.

RTSS, 1994.

[13] E. W. Dijkstra. Self-stabilizing systems in spite of

distributed control. Communications of the ACM,

17(11):643–644, Nov. 1974.

[14] S. Dolev. Self-Stabiliaztion. MIT Press, 2000.

[15] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of

dynamic systems assuming only read/write atomicity. In

Proc. PODC, 1990.

[16] C. M. Fiduccia and R. M. Mattheyses. A linear-time

heuristic for improving network partitions. In Proc. DAC,

1982.

[17] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-

sibility of distributed consensus with one faulty process.

J. ACM, 32(2):374–382, Apr. 1985.

[18] G. Fohler. Changing operational modes in the context

of pre-runtime scheduling. IEICE Transactions on Infor-

mation and Systems, E76-D(11):1333–1340, 1993.

[19] S. Ghosh, R. Melhem, and D. Mossé. Fault-tolerance

through scheduling of aperiodic tasks in hard real-time

multiprocessor systems. IEEE TPDS, 8(3), Mar. 1997.

[20] M. Gouda and N. Multari. Stabilizing communication

protocols. IEEE Transactions on Computers, 40(4):448–

458, Apr. 1991.

[21] M. G. Gouda, R. R. Howell, and L. E. Rosier. The insta-

bility of self-stabilization. Acta Informatica, 27(8):697–

724, 1990.

[22] Gurobi Optimization, Inc. http://www.gurobi.com.

[23] A. Haeberlen and P. Kuznetsov. The Fault Detection

Problem. In Proc. OPODIS, 2009.

[24] A. Israeli and M. Jalfon. Token management schemes

and random walks yield self-stabilizing mutual exclusion.

In Proc. PODC, 1990.

[25] H. Kao and H. Garcia-Molina. Deadline assignment in a

distributed soft real-time system. In Proc. ICDCS, 1993.

[26] S. Katz and K. J. Perry. Self-stabilizing extensions

for message-passing systems. Distributed Computing,

7(1):17–26, Nov. 1993.

[27] B. W. Kernighan and S. Lin. An efficient heuristic

procedure for partitioning graphs. The Bell system

technical journal, 49(2):291–307, 1970.

[28] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schw-

abl, C. Senft, and R. Zainlinger. Distributed fault-tolerant

real-time systems: The Mars approach. IEEE Micro,

9(1):25–40, 1989.

[29] H. Kruijer. Self-stabilization (in spite of distributed con-

trol) in tree-structured systems. Information Processing

Letters, 8(2):91–95, 1979.

[30] L. Lamport. The part-time parliament. ACM Transac-

tions on Computer Systems (TOCS), 16(2):133–169, May

1998.

[31] L. Lamport, R. Shostak, and M. Pease. The Byzantine

generals problem. ACM Trans. Program. Lang. Syst.,

4(3):382–401, July 1982.

[32] D. Marinca, P. Minet, and L. George. Analysis of

deadline assignment methods in distributed real-time

systems. Computer Communications, 27(15):1412–1423,

2004.

[33] M. Morari. Fast model predictive control (MPC). Presen-

tation, available from http://divf.eng.cam.ac.uk/cfes/pub/

Main/Presentations/Morari.pdf.

[34] T. Nolte. Share-driven scheduling of embedded networks.

PhD thesis, Mälardalen University, 2006.

[35] D. Ongaro and J. Ousterhout. In search of an under-

standable consensus algorithm. In Proc. USENIX ATC,

http://www.gurobi.com
http://divf.eng.cam.ac.uk/cfes/pub/Main/Presentations/Morari.pdf
http://divf.eng.cam.ac.uk/cfes/pub/Main/Presentations/Morari.pdf

2014.

[36] P. Pedro and A. Burns. Schedulability analysis for mode

changes in flexible real-time systems. In Proc. ECRTS,

1998.

[37] J. Real and A. Crespo. Mode change protocols for real-

time systems: A survey and a new proposal. Real-Time

Systems, 26:161–197, 2004.

[38] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham.

Mode change protocols for priority-driven preemptive

scheduling. Real-Time Systems, 1(3):243–264, 1989.

[39] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable

mode changes in real-time systems with fixed priority or

EDF scheduling. In Proc. DATE, 2009.

[40] K. Tindell, A. Burns, and A. Wellings. Mode changes in

priority preemptively scheduled systems. In Proc. RTSS,

1992.

[41] Y. Zhang and J. Jiang. Bibliographical review on recon-

figurable fault-tolerant control systems. Annual reviews

in control, (32):229–252, 2008.

