
Analysis of Long-term Average Behaviors of Probabilistic Task
Systems

Yifan Cai
University of Pennsylvania

USA
caiyifan@seas.upenn.edu

Linh Thi Xuan Phan
University of Pennsylvania / Roblox

USA
linhphan@cis.upenn.edu

P.S. Thiagarajan
University of North Carolina at

Chapel Hill
USA

Chennai Mathematical Institute
India

thiagu@cs.unc.edu

Abstract
We present a Markov chain-based framework for studying the long-
term average behaviors of periodic real-time task systems in which
the tasks have stochastically varying computation times. In sharp
contrast to previous work, we construct our Markov chains w.r.t. to
a unit of time that is not required to be the hyperperiod of the task
system. Our chains have an important property called irreducibil-
ity, and this secures the mathematical basis for a simple sampling
procedure for estimating the long-term averages of interest. This is
signi�cant because for task systems of practical interest, it will be
computationally infeasible to use hyperperiods to determine the
required expected values. Our experimental results show that our
method can be used to analyze long-term average behaviors – such
as deadline misses and weakly-hard constraint violations – with
high accuracy, and that it scales well to large systems (with up to
1000 tasks). We further demonstrate its practical utility using a case
study of a rover control system.

CCS Concepts
• Computer systems organization ! Real-time systems; •
Theory of computation!Randomwalks andMarkov chains.

Keywords
Real-time systems, Markov chain, Ergodic theorem, weakly-hard
constraints, sampling
ACM Reference Format:
Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan. 2024. Analysis of
Long-term Average Behaviors of Probabilistic Task Systems. In The 32nd
International Conference on Real-Time Networks and Systems (RTNS 2024),
November 07–08, 2024, Porto, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3696355.3696365

1 Introduction
Due to the continued increase in hardware/software complexity,
it has become extremely challenging to obtain tight worst-case

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
RTNS 2024, November 07–08, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1724-6/24/11
https://doi.org/10.1145/3696355.3696365

execution time bounds for modern real-time systems. As a result,
probabilistic real-time task models, where one or more of the timing
parameters such as task execution times are modeled by random
variables, have been used for analyzing real-time systems [10].

In the probabilistic setting, existing analysis techniques focus
primarily on worst-case properties, such as the worst-case deadline
miss probabilities. For many systems, however, it is also important
to consider long-term average behaviors. For instance, soft real-
time and latency-sensitive applications, such as real-time stream-
ing video/audio applications, typically require a certain quality of
service (QoS) de�ned based on long-term average performance
metrics. Likewise, in mixed-criticality real-time systems, for a non-
critical or low-criticality task, it su�ces to ensure its long-term
average deadline miss rate is within a certain threshold. In the case
of feedback control systems too, control tasks (such as adaptive
cruise control and collision avoidance) can be designed to toler-
ate some deadline miss patterns without sacri�cing stability and
quality of control [30]. For such control tasks, we only need to
ensure that the long-term average deadline miss rates are within
the tolerance levels speci�ed by the control designers. A recent
trend [9, 19, 20, 24, 35] in this setting is to soften the deadline miss
requirements via weakly-hard constraints [6, 18]. For instance, the
weakly-hard constraint (<,:) demands that in any : consecutive
invocations of a task, there must be at least< deadline hits. An im-
portant variant is: In any : consecutive invocations of a task, there
cannot be< consecutive deadline misses. These kinds of guarantees
often require much fewer resources than worst-case guarantees,
while still yielding the desired performance. However, new types of
analysis are required here since existing techniques are primarily
designed for analyzing worst-case probabilities.

Motivated by these considerations, we present a technique for
estimating the long-term averages of properties associated with
probabilistic task systems. In particular, we focus on periodic task
systems in which the computation times of each task can vary
stochastically according to an associated probability distribution
over a �nite set of computation times. Thus, as a �rst step, we
treat the computation times as independent random variables. As
we observe in connection with our case study (Sec. 5), this can
be a useful working hypothesis. This class of systems has been
extensively studied in the literature from various angles as we
describe in Sec. 6. Here we sketch our main ideas and results.

Overview. Our �rst goal is to formalize the notion of long-
term averages. Intuitively, it is the average number of, say, the
number of deadline misses of a task divided by the total number

https://orcid.org/0009-0003-8125-1054
https://orcid.org/0000-0002-3458-7511
https://orcid.org/0000-0002-5225-3056
https://doi.org/10.1145/3696355.3696365
https://doi.org/10.1145/3696355.3696365

RTNS 2024, November 07–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

of deadlines in an unbounded time window. The question then
is what does an unbounded time window mean? The standard
abstraction for this idea is an in�nite time window. Accordingly, we
de�ne the in�nite execution sequences of a probabilistic periodic
task system. Then one might de�ne the long-term average as the
limit of averages of �nite pre�xes of increasing lengths of in�nite
execution sequences. The catch here is one must ensure such a limit
always exists. We achieve this by establishing that the behavior of
the task systems can be modeled as a �nite-state Markov chain and
that it captures the in�nite execution sequences of the task system.
We further show that this Markov chain has a standard property
called irreducibility. Informally, it says that the state space of the
Markov chain is strongly connected. As a result, we can appeal to
a fundamental result called the ergodic theorem to guarantee that
sequences of averages of �nite pre�xes will converge to a de�nite
value called the expected value. As an important byproduct, we
obtain a simple sampling procedure for estimating the long-term
averages of properties such as deadline misses and weakly-hard
constraints.

A key aspect of ourMarkov chain construction is that, in contrast
to most prior research on Markov chain-based analysis of periodic
task systems, it is not based on hyperperiods (i.e., the least common
multiple of the periods of all the tasks). Instead, it is based on a
user-supplied notion of unit interval. This unit interval can be
much smaller than the hyperperiod, which can be enormous (e.g.,
107 in our rover control case study). Consequently, the sampling
procedure can be much more e�cient (See Fig. 5 in Sec. 5 and the
accompanying remarks).

The �nite-state Markov chains that arise from our work con-
stitute a fundamental model of stochastic processes with a rich
theory and a wide variety of applications. Hence, using them to
model the in�nite behaviors of probabilistic task systems opens
up the possibility of developing many other analysis methods. In
particular, probabilistic model checking techniques [21] become
accessible.

Contributions. In summary, the paper makes the following
contributions: (1) Introducing a �nite-state Markov chain model
that represents the in�nite behaviors of periodic probabilistic task
systems. (2) Establishing the property called irreducibility for the
Markov chain model. This provides a mathematical basis for esti-
mating long-term averages of properties such as deadline misses
and violations of weakly-hard constraints using lightweight sam-
pling procedures. (3) Building this theory without basing it on the
hyperperiods of the task systems. To the best of our knowledge,
this is the �rst time this has been achieved. Another novel aspect
of our method is that it can smoothly handle a rich language of
weakly-hard constraints. (4) Presenting an experimental evaluation
demonstrating that our sampling-based method has high accuracy
for both synthetic workloads and a real-world rover control system.
Our evaluation also shows that the method scales well.

Organization of the paper. In Sec. 2, we formulate the system
model, de�ne the basic notion of a con�guration, which captures
the state of the system at a given time point, and de�ne the in�nite
execution sequences of the system. In Sec. 3, we introduce unit
intervals and Markov chain preliminaries. Sec. 4 is the technical
core of the paper. First, we de�ne a one-step transition relation
between con�gurations and then lift it to a multi-step relation.

We then establish the Markovian properties of these transition
relations. This leads to an in�nite state Markov chain representing
the set of execution sequences of the task system. Each state of this
chain will represent a unit stretch of the behavior of the system.
Next, by de�ning a natural equivalence relation over the states
of this chain, we construct a �nite state Markov chain, the key
object in our study. We then show that this chain is irreducible and
consequently its so-called stationary distribution – explained in
Section 3 – captures the long-term averages of many properties of
interest. Furthermore, it provides the formal basis for our simple
sampling procedure for estimating these averages. These results are
established assuming a preemptive static priority policy. However,
our technique can be extended in a straightforward manner to
dynamic priority schemes such as EDF. We then sketch how our
construction can be used to analyze weakly-hard constraints. In
Sec. 5, we present our experimental results. We discuss related work
in Sec. 6 and conclude with future directions in Sec. 7.

2 The System Model
The system consists of a set of periodic tasks {g1, g2, . . . , g=} running
on a single processor. Each task g8 has a period)8 , a deadline⇡8 )8 ,
and an initial o�set i8 � 0 (i.e., jobs of g8 will be released at time
points i8 + :)8 for : � 0). We consider a preemptive static priority
scheduling scheme. As mentioned earlier, our method can be easily
extended to a non-preemptive or dynamic priority scheme such as
EDF. For convenience, we assume ⇡8 =)8 and i8 = 0 for 1  8  =.
Our results will easily extend to the case ⇡8 <)8 . The case ⇡8 >)8
doesn’t come into play since, as in many previous studies, we adopt
the policy that a job is killed as soon it misses its deadline.

A key feature of our model is the computation times of a job
can vary stochastically. To capture this, we assume a �nite set of
computation times ⇠8 = {281, 2

8
2, . . . , 2

8
 8
} where 0 < 281 < 282 <

. . . < 28 8
and a probability distribution %A8 : ⇠8 ! (0, 1] for each

g8 . As is common in prior work, we assume that for each job g8, 9
released by a task g8 during an execution, its execution time is
chosen independently (of previous history and jobs of other tasks)
from⇠8 according to %A8 . In future work, we plan to explore settings
in which this assumption is relaxed.

Formally, we focus on S = {()8 ,⇡8 ,⇠8 , %A8)}18= , a periodic
task system, with ⇡8 =)8 for 1  8  =. Following [7], we assume
that the time domain T is discretized w.r.t. to a chosen micro time
unit W (e.g., the processor cycle). Thus, T = {: · W | : � 0} with :
ranging over N0, the set of non-negative integers. All the tempo-
ral quantities encountered, such as)8 and the members of ⇠8 , are
assumed to be integral multiples of W and hence will be viewed as
integers with the factor W almost always suppressed.

2.1 Con�gurations
We begin with �18 = {g8,: | : � 0}, the in�nite set of jobs released
by g8 along an in�nite execution sequence, with g8,: being released
at time :)8 . This leads to �1 =

–
8 �

1
8 . As done here, we will often

abbreviate the index set 1  8  = as just 8 . In addition, we will
say that a job belongs to the task g8 if it is a member of �18 . The
discretized time points along an in�nite run will be denoted as
non-negative integers with C representing the time point C · W .

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

terminates

Figure 1: An example of con�gurations at time C = 0.
Con�gurations. A con�guration describes the state of the system
at time point C . Formally, it is a triple u = (C,�,'), where C is a
non-negative integer, and � and ' are de�ned as follows:

(1) � records information concerning the set of active jobs that
were released before or at C which have neither missed their
deadlines nor have �nished computing at C . Each member of
� will be of the form (g8 , C8 , 28 ,38 , BC8), where:
• g8 is the task that this job belongs to.
• C8 is the time at which this job was released. Since the job
is active at time C , we require C8  C < C8 +)8 . We note that
for some non-negative integer ; , we will have C8 = ;)8 .

• 28 2 ⇠8 is the computation time assigned to the job (with
probability %A8 (28)) when it is released.

• 38 is the remaining computation time of this job at C , where
0 < 38  28 .

• BC8 2 {0, 1} is the status of this job during [C, C + 1), where
1 denotes that the job is currently running, and 0 denotes
that it is currently waiting. We require that at most one
job in � has status 1, and this job (if � is non-empty) has
the highest priority among all the active jobs in �.

(2) ' is the set of tasks that are at rest at C . Each member of '
will be a pair (g8 , C8) where C8 is the time point at which the
last completed job belonging to g8 was released but whose
next instance has not been released up to and including C .
Thus, we require that there exists a non-negative integer ;
such that C8 = ; ·)8 and C8 < C < C8 +)8 .

We also require that each task must appear in � or ', but
not both. More precisely, let T� = {g8 | 0 2 � and 0(1) = g8 }
and T' = {g8 | A 2 ' and A (1) = g8 }. We require T� \ T' = ;

and T� [T' = {g8 }8 . We use 0(1) to denote the �rst component
of the 5-tuple 0, and A (1) to denote the �rst component of the pair A .
Example. Fig. 1 shows an example of a con�guration at C = 0 for a
task system with two tasks g1 and g2 with periods)1 = 6 and)2 = 7,
respectively. At C = 0, since the last job of g2 released at C2 = �6 has
�nished at �3, and its new job hasn’t been released, only g1 has an
active job. This job was released at C1 = �2 with computation time
21 = 4. It has �nished 2 unit time of computation and is running at
C = 0 and thus 31 = 2 and BC1 = 1.

We note that the last component of each member of � is
uniquely determined by the static priority scheme we are assuming.
Hence, we will not spell out the last component of the elements of
�. In other words, from now on, a con�guration will be represented
as a triple (C,�,') with each member of�, a quadruple (g8 , C8 , 28 ,38).
We letH denote the set of all con�gurations.
Transitions.We next specify how the system transitions from one
con�guration to the next one.

D��������� 1. Let u = (C,�,') and v = (C 0,�0,'0) be two con-
�gurations. Then, u �! v i� the following conditions hold:
C1. C 0 = C + 1.

C2. (g 9 , C 9 , 2 9 ,3 9) 2 �0 i�:
C2.1. C 9 = C + 1 = :)9 for some : 2 N0 and 2 9 2 ⇠ 9 and 3 9 = 2 9 ,

or
C2.2. C + 1 = :)9 for no : 2 N0 and there exists (g 9 , C 9 , 2 9 ,3) 2 �

with 3 � BC > 0 and 3 9 = 3 � BC .
C3. (g 9 , C 9) 2 '0 i�:
C3.1. (g 9 , C 9) 2 ' and C + 1 = :)9 for no : 2 N0, or
C3.2. there exists (g 9 , C 9 , 2, 1) 2 � such that: (i) g 9 has the highest

priority among the active jobs at C and (ii) C + 1 = :)9 for
no : 2 N0

(C1) states that v is a con�guration that holds at C + 1. (C2.1)
indicates that a new job of g 9 is released at C + 1, with computation
time 2 9 and the remaining computation time also 2 9 . On the other
hand, (C2.2) indicates that an existing job of g 9 is active at C and
remains active at C + 1 (since at C + 1, this job still has at least 1 unit
of computation remaining and has not reached its deadline yet),
and its remaining execution time at C + 1 is the same (if BC8 = 0) or
one less (if BC8 = 1) than at C .

(C3.1) states that g 9 is at rest at C and will remain so at C + 1
since its next instance will be released at a time point later than
C + 1. As for (C3.2), g 9 is active and executing at time C , and has only
one computation unit left. Hence, it would be at rest at C + 1 since
its next instance will be released only at a later time point. The
con�guration v is a successor of the con�guration u i� u �! v.

Finally, (C,�,') is an initial con�guration if and only if C = 0,
� = {(g8 , 0, 28 , 28) | 28 2 ⇠8 }, and ' = ;. We let H8= denote the set
of initial con�gurations of S.
Traces and execution sequences.

(1) A �nite trace of S is a sequence of con�gurations d =
u0u1 · · · u: such that u; �! u;+1 for 0  ; < : . The trace d
is said to start from u0.

(2) An in�nite trace is an in�nite sequence of con�gurations
such that its every �nite pre�x is a �nite trace.

(3) A �nite execution sequence is a �nite trace that starts from
an initial con�guration.

(4) An in�nite execution sequence is de�ned in an obvious way.
We denote by ⌫S the set of in�nite execution sequences of S and
view it as the behavior of S.

We conclude this sectionwith a useful result about the successors
of a con�guration: every �nite execution sequence can be extended
to a longer one, and hence the behavior of S is assured to be non-
empty. This result will also form the basis of the Markov chain
constructions developed in the next section.

To start with, let u = (C,�,') be a con�guration. Then -u cap-
tures information about the set of jobs released at C + 1. It is the
subset of tasks de�ned as: g8 2 -u i� there exists (g8 , C8 , 28 ,38) 2 �
or (g8 , C8) 2 ' such that C8 +)8 = C + 1.

P���������� 2.1. Let u = (C,�,') be a con�guration.
(1) If -u = ;, then u has exactly one successor con�guration.
(2) Suppose -u = {g81 , g82 , · · · , g8: }. Then, for each c 2 ⇠81 ⇥

⇠82 ⇥ · · · ⇥⇠8: , there exists a unique successor con�guration
vc = (C + 1,�c,'c) of u satisfying: For 1  ;  : , (g8; , C +
1, c(;), c(;)) 2 �c.

P����. Suppose -u = ;. Consider the triple v = (C + 1,�0,'0)
given by:

RTNS 2024, November 07–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

(1) Suppose (g8 , C8 , 28 ,38) 2 � and BC8 = 1. If 38 = 1 then (g8 , C8) 2
'0. If 38 > 1 then (g8 , C8 , 28 ,38 � 1) 2 �0.

(2) If (g8 , C8 , 28 ,38) 2 � and BC8 = 0 then (g8 , C8 , 28 ,38) 2 �0.
(3) If (g8 , C8) 2 ' then (g8 , C8) 2 '0.

From the de�nition of a con�guration and the fact that -u = ;, it
follows easily that v is a con�guration, is uniquely induced by u,
and is a successor con�guration of u. We note that -u = ; also
implies that whether BC8 = 0 or BC8 = 1 during [C, C + 1), there can
be no deadline miss occurring at C + 1.

Next, assume that -u = {g81 , g82 , · · · , g8: }. For each c 2 ⇠81 ⇥
⇠82 ⇥ · · · ⇥ ⇠8: , let (C + 1,�c,'c) be given by:

(1) For 1  ;  : , (g8; , C + 1, c(;), c(;)) 2 �0.
(2) Suppose g8 8 -u.

• If (g8 , C8 , 28 ,38) 2 �, 38 = 1 and BC8 = 1 then (g8 , C8) 2 '0.
• If (g8 , C8 , 28 ,38) 2 � and 38 > 1 or BC8 = 0 then
(g8 , C8 , 28 ,38) 2 �0.

• If (g8 , C8) 2 ' then (g8 , C8) 2 '0.
From the de�nitions, it follows that (C + 1,�c,'c) is a con�guration,
is uniquely determined by u, and is a successor con�guration of u.
This proves the second part of the proposition. ⇤

3 Unit Intervals and Markov Chains
3.1 Unit intervals
We will construct a �nite-state Markov chain relative to a given
unit of time �. We require � to be an integral multiple of time but
again with the factor W suppressed. A state of the Markov chain
will be a trace of length �. At the end of the current � interval, the
chain will transition to the next trace of length �. We assume that
� has been �xed based on some pragmatic considerations. Some
possible choices for � are max({)8 }), ·max({)8 }) for some small
positive integer , or the lcm of the periods of a small subset of {)8 }.
A large � (e.g., � = ;2<({)8 }8) = hyperperiod) will cause a state
to carry excessive information, while a small � (e.g., � = W) will
require longer sequences of paths to be sampled before instances of
the properties of interest appear in su�cient numbers. The impact
of the choice of � is evaluated more systematically in Sec. 5.

3.2 Markov chain preliminaries
Our sampling-based analysis technique will be based on �nite state
Markov chains. However, we will �rst represent the behavior of
S with an in�nite-state Markov chain and then quotient it into a
�nite-state chain. Hence we begin with:

D��������� 2. A Markov chain is a structure " = ((, (8=, %)
where:

(1) (is a non-empty countable set of states.
(2) (8= ✓ (is a set of initial states.
(3) % : (⇥ (! [0, 1] is the probabilistic transition function

satisfying: for every B 2 (,
Õ
B0 2(% (B, B

0
) = 1.

Let " = ((, (8=, %) be a �nite-state Markov chain with (=
{B1, B2, · · · , B<}. Then " can be represented as the edge labeled
directed graph ⌧" = ((, ⇢) where ⇢ = {(B8 , B 9) | % (B8 , B 9) > 0}. If
(B8 , B 9) 2 ⇢ then % (B8 , B 9) is the label on this edge. A fundamental
property of Markov chains is irreducibility. " is said to be irre-
ducible i�⌧" is a strongly connected graph. This property implies

that " has a unique stationary distribution over its set of states.
This is best brought out in an algebraic setting.

The transition matrix of " , also denoted as " by abuse of no-
tation, is the |(| ⇥ |(| matrix satisfying: " (8, 9) = % (B8 , B 9). This
matrix " is viewed as a transformer of probability distributions
over the states of the chain. If ` is a distribution over (, then" will
transform it into a new distribution `0 in one step. This one-step
transformation is represented as the matrix multiplication ` ·" = `0

where a distribution over (is represented as a 1 ⇥< row vector.
c is a stationary distribution of" i� c ·" = c . The basic prop-

erty of an irreducible Markov chain is that it has a unique stationary
distribution [28]. The key feature of the stationary distribution is
that it captures the “long-term average values” of quantities associ-
ated with the dynamics of the chain. Suppose c is the stationary
distribution of the irreducible �nite-state Markov chain" whose
set of states is (. Then intuitively, in the long run, if we guess the
current state of" to be B , then this guess will be correct with prob-
ability c (B). Equally important, the average number of times that
B will appear in any randomly sampled (i.e. sampled according to
the transition probabilities) �nite path, will, in the limit, converge
to c (B). This follows from the ergodic theorem [28] for irreducible
Markov chains which we state next.

A �nite path of " is a sequence b = B0B1 · · · B< such that
% (B; , B;+1) > 0 for 0  ; < <. We de�ne |b | = < where |b | de-
notes the length of b and let b (;) = B; for 0  ;  <. If b and b 0
are two �nite paths then b � b 0 denotes that b is a pre�x of b 0 and
|b | < |b 0 |. That is, b is a strict pre�x of b 0.

Next, we de�ne a random variable over (to be a function 5 : (!

RwhereR is the set of reals. Suppose" with (as its set of states is a
�nite-state irreducible Markov chain, c is its stationary distribution
and 5 is a random variable over (. Then, b5 =

Õ
B2(c (B) · 5 (B).

Often b5 is written as E(5) and is called the expectation of 5 . The
following classic result, often called the ergodic theorem, provides
the mathematical basis for our sampling procedure.

T������ 1 (T������ 1.10.2 �� [28]). Let" = ((, (8=, %) be an
irreducible �nite-state Markov chain and 5 : (! R be a random
variable. Suppose {b: }:�1 is an in�nite sequence of �nite paths with
|b: | = : and b: � b:+1 for : � 1. Then,

lim:!1
1
:
Õ:
9=1 5 (b: (9)) =

b5 (with probability 1).

To be precise, the theorem as stated above is a specialized version
of Theorem 1.10.2 (ergodic theorem) in [28]. In the original version,
5 is required to be a bounded function. This is assured in our case
since (is a �nite set. The theorem also requires" to have a property
called positive recurrence. Again, this is guaranteed in our case
since" is an irreducible �nite-state chain [28]. Finally, the proviso
“with probability 1” is a measure-theoretic technicality. Loosely
speaking, it says that under the usual probability measure de�ned
over collections of in�nite paths of" , the set of in�nite paths for
which the claimed convergence property holds will have probability
measure 1. Note that the sequence of �nite paths {b: }: with b: �

b:+1 uniquely de�nes an in�nite path of theMarkov chain. Thus, the
sequence of averages de�ned in the ergodic theorem are averages
taken over the �nite pre�xes of increasing lengths of a randomly
sampled in�nite path of the chain; and this sequence will almost
certainly converge to the expectation of the random variable.

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

An important consequence of the ergodic theorem is that this
convergence property does not depend on the starting state of the
randomly sampled path.

4 The Main Results
Through this section, we �x a unit interval � � 1. We begin by
deriving two important probabilistic transition relations.

4.1 Two probabilistic transitions
To start with we associate the set Uu and the probability value ?A (u)
with the con�guration u. They are de�ned as follows.

Let u = (C,�,'). Then, Uu = {(g8 , 28) | (g8 , C, 28 , 28) 2 �}. Thus,
Uu records the stochastically assigned computation times to the
jobs released at C . If Uu = {(g81 , 281), (g82 , 282) · · · , (g8: , 28:)}, then
?A (u) =

Œ
1;: %A8; (28;). Hence, ?A (u) is the product of the prob-

abilities with which the computation times of the jobs released at C
are chosen. If Uu = ;, then ?A (u) = 1 by convention.

D��������� 3. Let u = (C,�,') and v = (C 0,�0,'0) be two con�g-

urations and ? 2 (0, 1]. Then u
?

�!
1

v i� v is a successor con�guration
of u (and hence C 0 = C + 1) and ?A (v) = ? .

Recall that H is the set of con�gurations of S. It will be con-
venient to represent this probabilistic transition relation as the
function %1 : H ⇥ H ! [0, 1] given by %1 (u, v) = ? , if u

?
�!
1

v.

Otherwise %1 (u, v) = 0. It will also be convenient to denote by
BD221 (u) the set of con�gurations {v | %1 (u, v) > 0}. The next ob-
servation is key to our Markov chain constructions.

L���� 2. Let u be a con�guration. Then
Õ
v2BD221 (u) %

1
(u, v) = 1

P����. If -u = ; then there exists a unique v such that
BD221 (u) = {v}. Furthermore, we are assured that Uv = ; and
hence ?A (v) = 1. This leads to

Õ
w2BD221 (u) %

1
(u,w) = 1.

So assume that-u = {g81 , g82 , · · · , g8: }. LetC = ⇠81⇥⇠82⇥· · ·⇥⇠8: .
Then according to Prop.2.1, for each c 2 C, there exists a unique
successor con�guration vc = (C + 1,�c,'c) of u satisfying: for
1  ;  : , (g8; , C + 1, c(;), c(;)) 2 �c. This implies that Uvc =
{(g8; , c(;)) | 1  ;  :} for each c 2 C, which in turn implies that
?A (vc) =

Œ
1;: %A8; (c(;)). Furthermore,

Õ
v2BD221 (u) %

1
(u, v) =Õ

c2C ?c where ?c = ?A (vc) for c 2 C.
We now proceed by induction on : . If : = 1 then C = ⇠81 . Clearly,

?A (Uv2) = %A81 (2) for 2 2 ⇠81 . But then
Õ
22⇠81

%A81 (2) = 1.
So assume that : > 1. As before, let ?c = ?A (vc) for c 2 C.

Then
Õ
c2C ?c =

Õ
c0 2C0 ?c0 · (

Õ
22⇠8:

%A8: (2)) where C0 = ⇠81 ⇥
⇠82 ⇥ · · · ⇥⇠8:�1 . From the proof of the basis step, it follows thatÕ
22C8:

%A8: (2) = 1. Thus
Õ
c2C ?c =

Õ
c0 2C0 ?c0 . The result now

follows from the induction hypothesis. ⇤

We next extend
?

�!
1

to traces of length �. This is motivated by
the fact that the states of the in�nite-state chain we wish to �rst
construct will be traces of length �. To de�ne this extension, we �rst
lift ?A to a non-null sequence of con�gurations x = u0u1 · · · u< via:
?A (x) =

Œ
0;< ?A (u;). Next, in what follows,)'� will denote the

set of traces of length �. Finally, if s 2)'� with s = u0u1 · · · u��1,
then where convenient, we shall view s to be the map s : {0, 1,� �

1} ! H with s(:) = u: for 0  : < �. Now let s, s0 2)'�. Then

s
?

�!
�

s0 i� (i) ? = ?A (s0) and (ii) s0 (0) is a successor con�guration

of s(�� 1). We now extend the function %1 to %� via: %� (s, s0) = ?
if s

?
�!
�

s0; otherwise, %� (s, s0) = 0. As before, it will also be

convenient to de�ne BD22� (s) = {s0 | %� (s, s0) > 0}. This leads to
the next lemma.

L���� 3. Let s 2)'�. Then
Õ
s0 2BD22� (s) %

�
(s, s0) = 1

The proof follows easily by induction on �with Lemma 2 serving
as the proof of the basis step.

4.2 The in�nite and �nite-state Markov chains
We can now construct the in�nite-state Markov chain b" for S.

D��������� 4. b" = (b(,b(8=, b%) where:
(1) b(8= ✓)'� is given by: s 2 b(8= i� s(0) 2 H8=

(2) b(is the least subset set of)'� satisfying:
• b(8= ✓ b(
• If s 2 b(and s0 2 BD22� (s), then s0 2 b(.

(3) b% is %� restricted to b(⇥ b(.
L���� 4. (1) Suppose s 2 b(and s(0) = (C,�,'). Then there

exists< � 0 such that C =<�.
(2) b" is a Markov chain.

P����. Suppose s 2 b(8= and s(0) = u = (C,�,'). Then C = 0
because u is an initial con�guration by the de�nition of b(8= . Assume
inductively that s 2 b(, s(0) = u = (C,�,') and C =<�. If b% (s, s0) >
0 and s0 (0) = v = (C 0,�0,'0) then C 0 = (< + 1)�. This follows
from the fact that s is a trace of length � and s0 (0) is a successor of
s(�� 1). The �rst part of the result now follows from the inductive
de�nition of b(.

Next, we observe that due to the �rst part of the lemma, b(can be
partitioned as b(= {b(0,b(1,b(2 · · · } where b(< = {s | s(0) (1) = <�}.
Here s(0) (1) =<� is the time component of the �rst con�guration
in the trace s. According to Prop. 2.1, a con�guration can have at
most |⇠1 | ⇥ |⇠2 | ⇥ · · · ⇥ |⇠= | = successor con�gurations. This
implies that for every s 2 b(, |{s0 | b% (s, s0) > 0}| is of size at most
 �. Hence b(< is a �nite set for every<, which implies that b(is the
countable union of �nite sets and is hence countable.

From Lemma 3 it now follows that b" is a Markov chain. ⇤

We next derive a �nite-state irreducible Markov chain representa-
tion of the behavior of S. We �rst de�ne the equivalence relation ⇡

over the set of con�gurations and then lift it to b(. Let u = (C,�,')
and v = (C 0,�0,'0) be two con�gurations. Then u ⇡ v i� the
following conditions are satis�ed:

(1) (g8 , C8 , 28 ,38) 2 � i� there exists (g8 , C 08 , 2
0
8 ,3

0
8) 2 �

0 such that
C � C8 = C 0 � C 08 , 28 = 2

0
8 and 38 = 3

0
8

(2) (g8 , C8) 2 ' i� there exists (g8 , C 08) 2 '
0 such that C�C8 = C 0 �C 08

Clearly, ⇡ is an equivalence relation. Basically, it asserts that the
active jobs in two equivalent states have the same release times
relative to their current times and in all other respects they are
identical. Furthermore, the same holds for all the jobs at rest as
well. We let [u] denote the ⇡-equivalence class containing u. The
following characterization of⇡ is key to constructing the �nite-state
Markov chain" .

RTNS 2024, November 07–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

L���� 5. (1) ⇡ is of �nite index. In other words, {[u] | u 2 H}

is a �nite set.

(2) Suppose u ⇡ v and u
?

�!
1

u0. Then, there exists v0 such that

v
?

�!
1

v0 and u0 ⇡ v0.

P����. Let u be a con�guration. Then we de�ne bu = (b�, b')
where b� = {(g8 , C � C8 , 28 ,38) | (g8 , C8 , 28 ,38) 2 �} and b' = {(g8 , C �
C8) | (g8 , C8) 2 '}. We claim that / = {bu | u 2 H} is a �nite set. To
see this, we �rst note that there can be only �nitely many sets of
the form b�. This is so since the �rst component of an element ofb� can take only = di�erent values. Next, the second component of
an element can take values only in the set {0, 1, · · · ,max{)8 }8 } due
to the W-discretization of the time domain and the de�nition of a
con�guration. Next, the third element can take at most max{|⇠8 |}8
di�erent values. Since 38  28 for each element (g8 , C8 , 28 ,38) 2 �,
the last element can also only take at most max{|⇠8 |}8 di�erent
values. Similarly, the number of sets of the form b' is also �nite.
Consequently, / is a �nite set. But then from the de�nition of ⇡ it
follows that u ⇡ v i�bu = bv. Thus {[u] | u 2 H} is a �nite set.

To show the second part, let u ⇡ v with u = (C,�,') and v =
(C 0,�0,'0). We �rst wish to argue that -u = -v. Suppose g8 2 -u.
Then there exists (g8 , C8 , 28 ,38) 2 � or (g8 , C8) 2 ' such that C8 +)8 =
C + 1. This in turn implies that there exists (g8 , C 08 , 28 ,38) 2 �0 or
(g8 , C 08) 2 '

0 such that C 0 � C 08 =)8 � 1 which in turn implies g8 2 -v.
Thus-u ✓ -v. By a symmetric argument, we can establish-v ✓ -u.
Hence -u = -v.

Now suppose u
?

�!
1

u0. Consider the case-u = ;. Then u
1

�!
1

u0

with u0 being the unique successor of u. This follows from Prop. 2.1.
Since -v = ; there exists v0, the unique successor of v such that
v

1
�!
1

v0. It remains to be shown that u0 ⇡ v0. Let u0 = (C + 1,⌫,,)

and v0 = (C 0 + 1,⌫0,, 0
). Suppose (g8 , C8 , 28 ,38) 2 ⌫. Then from

the proof of Prop. 2.1, it follows that there exists (g8 , C8 , 28 ,38) 2 �
with C8 +)8 > C + 1. Hence there exists (g8 , C 08 , 28 ,38) 2 �

0 such that
C 08 +)8 > C

0
+ 1. This implies that (g8 , C 08 , 28 ,38) 2 ⌫

0 by the de�nition
of v0. Clearly (C + 1) � C8 = (C 0 + 1) � C 08 since C � C8 = C

0
� C 08 . In a

similar fashion we can show that (g8 , C 08 , 2
0
8 ,3

0
8) 2 ⌫

0 implies there
exists (g8 , C8 , 208 ,3

0
8) 2 ⌫ such that (C + 1) � C8 = (C 0 + 1) � C 08 .

Now suppose (g8 , C8) 2 , . Then there exists (g8 , C8 , 28 , 1) 2 �
with BC8 = 1 or (g8 , C8) 2 '. In either case, using the fact that
u ⇡ v, we can conclude that there exists (g8 , C 08) 2 , 0 such that
(C + 1) � C8 = (C 0 + 1) � C 08 . By a symmetric argument we can also
establish that if (g8 , C 08) 2,

0 then there exists (g8 , C8) 2, such that
(C = 1) � C8 = (C 0 + 1) � C 08 .

Next assume that -u = {g81 , g82 · · · , g8: } = -v. Then using
Prop. 2.1 and the fact that -u = -v, it is a laborious but routine
exercise to apply the de�nitions and show that if u

?
�!
1

u0, then

there exists v0 such that v
?

�!
1

v0 with u0 ⇡ v0. By a symmetric
argument, we can complete the proof. ⇤

We now lift ⇡ to b(. Let s, s0 2 b(. Then s ⌘ s0 i� s(;) ⇡ s0 (;) for
0  ; < �. As before, we let [s] denote the ⌘-equivalence class
containing the state s. It will be convenient to lift Lemma 5 to the
setting of states.

Figure 2: s0 is reachable from s via [x0].

L���� 6. (1) ⌘ is of �nite index. In other words {[s] | s 2 b(}
is a �nite set.

(2) Suppose s ⌘ s0 and s
?

�!
�

x. Then there exists x0 such that

s0
?

�!
�

x0 and x ⌘ x0

P����. The �rst part follows easily from the de�nition of ⌘
and the �rst part of Lemma 5. To show the second part, assume
s(��1) = u and x = v0v1 · · · v��1. Since s

?
�!
�

xwe have u
?0
�!
1

v0
where ?0 = ?A (v0). Assume s0 (� � 1) = u0. Then u ⇡ u0 and hence
by lemma 5, there exists v00 such that u0

?0
�!
1

v00 which also implies

that ?A (v00) = ?0. Furthermore, v0 ⇡ v00. Since x is a trace, v0
?1
�!
1

v1
where ?1 = ?A (v1). Since v0 ⇡ v00, again by Lemma 5, there exists v01
such that v00

?1
�!
1

v01 which also implies ?A (v01) = ?1. Furthermore,
v1 ⇡ v01. Proceeding this way, we can show that for 2  ;  � � 1
there exist v0; that v; ⇡ v0; , and ?A (v

0

;) = ?; . Let x
0 = v00v

0
1 · · · v

0

��1.

Then it is easy to see that s0
?

�!
�

x0. Moreover, x ⌘ x0. ⇤

We are now ready to de�ne the required Markov chain.

D��������� 5. " = ((, (8=, %) where:
(1) (= {[s] | s 2 b(}.
(2) (8= = {[s] | s(0) 2 H8=}

(3) % ([s], [s0]) = ? if there exists x 2 [s] and x0 2 [s0] such that

x
?

�!
�

x0. Otherwise % ([s], [s0]) = 0

Due to Lemma 6, the probabilistic transition function % is well-
de�ned.

T������ 7. " is a �nite-state irreducible Markov chain.

P����. From the �rst part of Lemma 5 it follows easily that (is
a �nite set of states.

Next, for [x] 2 (, de�ne BD22 ([x]) = {[x0] | % ([x], [x0]) > 0}.
Now consider [s] 2 (. From the de�nition of ⌘ and the second
part of Lemma 6, it follows that there exists x 2 [s] such that
x

?
�!
�

x0 i� x0 2 BD22 ([s]). From Lemma 2, it now follows thatÕ
[s0]2BD22 ([s]) % ([s], [s0]) = 1. Hence" is a Markov chain.
What remains is to show that" is irreducible. The overall struc-

ture of the argument used to establish irreducibility is shown in
Fig. 2. The details are as follows.

Let s 2 (. Then by the construction of" , there exists [x] 2 (8=
and a sequence of states s0, s1, · · · , s< such that [x] = s0, s< = s,
and % (s; , s;+1) > 0 for 0  ; < <. In this sense s is reachable from
some [x] 2 (8= in" .

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

Now let s0 2 (. By the above reasoning, there exists [x0] 2 (8=
such that s0 is reachable from [x0] in" . The irreducibility property
will follow if we show that [x0] is reachable from s in" .

Let �% =
Œ
8)8 be the hyperperiod of the task system. Let

[z] 2 (8= and d = z0z1 · · · z�% be a path of length �% in b" with
z0 = z. Since [z] 2 (8= , we must have z(0) 2 H8= and hence will be
of the form (0,�0, ;) with �0 = {(g8 , 0, 28 , 28)}8 where 28 2 ⇠8 for
each 8 . Since each state of b" represents a trace of length �, we will
have, along the path d , if z9 (0) = (C 9 ,� 9 ,' 9) then C 9 = 9 ·�. From the
de�nition of �% , it now follows that if z�% (0) = (C�% ,��% ,'�%)
then C�% = �% · � and hence will be an integer multiple of)8 for
each 8 . This implies that for every task, a new instance of a job
belonging to the task will be released at C�% . Furthermore, we have
'�% = ; and ��% = {(g8 , C�% , 28 , 28 }8 with 28 2 ⇠8 for each 8 . This
in turn implies that [z�%] 2 (8= by the de�nitions of (and (8= .

Returning to s, let be the least positive integer such that< <
 · �% where< is the length of the path from [x] to s in" . Then
: = · �% �< > 0. Since " is a Markov chain, each state will
have at least one successor state and hence, starting from s0 = s
we can construct a path s0s1 · · · s:�1s: of length : in" . But then
< + : = · �% and hence by the reasoning above, we will have
s: 2 (8= . By the de�nitions of the transition relation of " and
(8= , each state in (8= will be a successor state of s:�1 in" . Hence
s0s1 · · · s:�1 [x0] will also a path in" . Thus [x0] is reachable from
s in" and the irreducibility of" follows. ⇤

4.3 " represents ⌫S

We wish to argue here that " represents ⌫S . In fact, it will be
more convenient to show this for b" . Due to lemma 6, we can con-
clude then that this holds for " as well. The basic idea is that
there is a 1 � 1 correspondence between the set of in�nite paths
in b" that start from an initial con�guration and the set of in�-
nite execution sequences. To this end, let u0u1 · · · be an in�nite
execution sequence with u0 2 H8= and u; �! u;+1 for every
; � 0. This implies u;

?;
�!
1

u;+1 with ?; 2 (0, 1] for every ; � 0.
Let s; = u;u;+1 · · · u;+��1 for ; � 0. Then it follows easily that

s; ·�
?0;
�!
�

s(;+1) ·� with ?0; 2 (0, 1] From the de�nition of b" we can

conclude that s0s�s2� · · · is an in�nite path in b" that starts from
the initial state s0. We let ⇢% be the map that assigns in this way
an in�nite path f of b" to an in�nite execution sequence of d of S.

Next let f = [s0] [s1] · · · be an in�nite path in b" with s0 an
initial state and % (s; , s;+1) = ?; > 0 for every ; � 0. From the
de�nitions of the probabilistic transition relations, it follows that
s0s1 · · · is an in�nite execution sequence of S. We let %⇢ be the
map that assigns in this way an in�nite execution sequence d of
S to an in�nite path f of b" . It is straightforward to prove that
⇢% (%⇢ (f)) = f for every in�nite path f of b" and %⇢ (⇢% (d)) = d
for every in�nite execution sequence d of S.

In this sense, b" and therefore" represent ⌫S . Consequently, the
stationary distribution of" captures long-term average properties
of S. Thanks to the ergodic theorem and the equivalence relation
⌘, we can start from any initial state of b" and sample long enough
paths to estimate the desired long-term average. For instance, let
3;<8 : (! N0 be given by3;<8 (s) is the number of deadlinemisses

Figure 3:"3 is induced by" .
of jobs belonging to g8 in the trace represented by s. Then we can
estimate the expected value of this quantity through sampling.

4.4 Weakly-hard constraints
Finally, we consider the estimation of the long-term averages of
weakly-hard constraints. To be sure, we can sample paths fromb" and carry forward a bounded amount of information during
sampling to estimate averages of weakly-hard constraint violations.
However, to establish the statistical validity of such estimates, we
must ensure that these averages converge and in the limit they will
correspond to the expected numbers of violations de�ned by the
steady state distribution of an irreducible Markov chain. In this
case, such sampling-based average estimates can be justi�ed by
appealing to the ergodic theorem,

A complication with weakly-hard constraints is that, unlike dead-
line misses, we can not de�ne a random variable over a single state
(unit interval) to capture violations since the interval associated
with a constraint may straddle two consecutive unit intervals. For
instance, with � = 5 and (2, 4) as a weakly-hard constraint, the
intervals [2, 6), [3, 7) and [4, 8) will straddle the unit intervals [0, 5)
and [5, 10). Hence a random variable de�ned over the states of"
(de�ned in de�nition.5) will not be able to count the constraint vio-
lations occurring during these “straddling” intervals. Consequently,
the expected number of violations of the constraint (2, 4) predicted
by the stationary distribution of" will not be accurate.

We shall present here our technique for getting around this in a
simple setting where the speci�cation consists of a single weakly-
hard constraint (<8 ,:8) for each task g8 . We then �x ; to be the
least integer such that max{:8 }8  ; and de�ne the Markov chain
"; . The states of this chain will be �nite paths of length ; � 1 of" .
Further, the transition function of"; will ensure the following: (i)
"; is an irreducible Markov chain, (ii) we can de�ne, for each 8 , a
random variable F⌘8 over the states of "; such that, E(F⌘8), the
expected number violations of the constraint (<8 ,:8) de�ned by
the steady state distribution of "; indeed captures the long term
averages of violations of the constraint (<8 ,:8) for each 8 , and (iii)
the estimates of these averages obtained by sampling from b" as
sketched above, will converge in the limit to E(F⌘8) for each 8 .

To bring out the main ideas in a su�ciently general setting
while minimizing the notational overhead, we shall assume here
that :8  3 · � for each constraint (<8 ,:8). We then de�ne the
Markov chain"3 as follows.

D��������� 6. Let" = ((, (8=, %) be as de�ned in subsection 4.2.
Then"3 = ((3, (8=3 , %3) where:

• (3 ✓ (⇥ (⇥ (is given by:
(B1, B2, B3) 2 (3 i� % (B 9 , B 9+1) > 0 for 1  9 < 3.

• (8=3 ✓ (3 is given by:
(B1, B2, B3) 2 (8=3 i� B1 2 (8= .

RTNS 2024, November 07–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

• For (B1, B2, B3), (B01, B
0
2, B

0
3) 2 (3:

%3 ((B1, B2, B3), (B01, B
0
2, B

0
3)) = % (B3, B

0
3) if (B2, B3) = (B01, B

0
2). Oth-

erwise, %3 ((B1, B2, B3), (B01, B
0
2, B

0
3)) = 0.

The idea underlying this construction is illustrated in Fig. 3.
The arguments developed for showing Theorem 7, can be easily
extended to show the next result. We omit the details due to space
limitations.

T������ 8. "3 is a �nite-state irreducible Markov chain.

We can now de�ne the random variable F⌘8 : (3 !

N0 via: F⌘8 ((B1, B2, B3)) = : i� there are : violations of
the constraint (<8 ,:8) in the trace B1B2B3. Now suppose d =
(B01, B

0
2, B

0
3), (B

1
1, B

1
2, B

1
3) · · · (B

9
1, B

9
2, B

9
3) · · · is an in�nite path in "3.

Then (B 91, B
9
2, B

9
3) will cover the behavior during [9 ·�, (9+3)·�) while

(B 9+11 , B 9+12 , B 9+13) will cover the behavior during [(9+1) ·�, (9+4) ·�).
This is due to the fact that (B 92, B

9
3) = (B 9+11 , B 9+12) by the de�nition of

"3. ThusF⌘8 will count all the violations of the (<8 ,:8) constraint
that occur along d and E(F⌘8) de�ned by the steady state distribu-
tion of"3 will be the long-term average of the number of violations
of this constraint. Furthermore, due to the ergodic theorem and the
de�nition of"3, this boils down to sampling su�ciently long paths
from b" augmented with some bounded bookkeeping. In this sense,
"3 provides the mathematical basis for estimating the weakly-hard
constraint violations through a simple sampling procedure.

The de�nition of "3 can be smoothly extended to "; for any
; � 1. Then given a set of constraints {(<8 ,:8)}8 , we can choose an
; that satis�esmax({:8 })  ; ·� and de�ne"; . This will secure the
mathematical basis for estimating the long-term averages of the
violations of these constraints by sampling paths from b" . Due to
lack of space, we do not present the details here. Finally, our method
can be easily extended to handle a rich language of constraints
described in [34].

5 Evaluation
To evaluate the performance and practical utility of our method,
we conducted a series of experiments using synthetic workloads
(Sec. 5.1–5.4) and a real-world rover control system (Sec. 5.5).
Setup. We implemented our Markov chain-based ground truth
computation (by explicitly computing the stationary distribution)
and the sampling method for computing the long-term average
deadline miss and weakly-hard constraint violations. We used the
weakly-hard constraint with (<,:) = (3, 4) by default, unless speci-
�ed otherwise. We implemented both the static-priority policy and
the EDF policy (as a representative dynamic scheduling policy).
Our implementation was in Python. Experiments were performed
on a machine with Intel(R) Xeon(R) Silver 4216 CPUs @ 2.10GHz
and 64GB memory. The implementation is available on GitHub
(https://github.com/fyc1007261/analysis-LTA).
Workload.We randomly generated periodic task sets of di�erent
sizes and utilizations. For each task set with size = and utilization
D, we used the Dirichlet-Rescale algorithm [16, 17] to generate =
average utilization values D1,D2, · · · ,D= for the = tasks in the set,
such that

Õ=
8=1 D8 = D. The expectation of the execution time `4 of

a task was set to be the product of its period and average utilization.
A task’s deadline was set equal to its period. The task set utilization

Tasks 5 6 7 8 9 10
EDF 0.51 4.19 27.12 150.52 2124.34 8222.69
Static 0.50 4.52 24.42 127.17 1888.02 6797.99

Table 1: Median time (seconds) of ground-truth computation.
varied between 0.85 and 1.05, at steps of 0.05. For each combination
of task set size and utilization, we generated 50 di�erent task sets.
In total, we tested 8 · 5 · 50 = 2000 task sets.

5.1 Ground truth computation
To establish a reference for evaluating the accuracy of our sampling
method, we computed the ground-truth stationary distribution of
our Markov chains by using the scipy [29] package to compute
eigenvectors and eigenvalues. To keep the running times of ground
truth computations manageable, the task periods were randomly
chosen from {3, 4, 6, 12}. For each task with expected execution
time `4 , we �xed the distribution of its computation times to be
0.8`4 with probability 0.5 and 1.2`4 with probability 0.5.
Results. Table. 1 shows the median time for computing the ground-
truth weakly-hard constraint violations. As expected, computing
the ground truth is feasible only for small systems; for larger sys-
tems, sampling is a much more e�cient alternative.

5.2 Sampling methodology
When sampling a path in a Markov chain, we need to know when
it is safe to stop. To determine this, we used the diagnostic method
proposed by Gelman and Rubin [15] to detect convergence. This
method computes a value, referred to as “Rhat ('̂) score”, which
measures convergence by comparing the variance between mul-
tiple chains to the variance within each chain. An '̂ score close
to 1 indicates that the execution sequences sampled are close to
convergence, whereas a score much larger than 1 means that more
sampling steps are needed.We used the arviz library [23] in Python
with the recommended rank method [32] to compute '̂ scores. Be-
sides '̂, we also introduced a parameter)BC01 : only if the '̂ scores
of all tasks stabilized below a threshold for a su�ciently long time
duration)BC01 , we declared convergence and stopped sampling.

To determine)BC01 and proper thresholds for '̂, we performed
experiments on the same task sets used in Sec. 5.1. For all task sets,
we sampled four execution sequences (the execution sequences 0–3
in Fig. 4b), measured their violation rates, and computed the '̂ score
with respect to the number of jobs sampled.
Results. Fig. 4a shows the maximum and mean '̂ scores across all
tasks in all task sets. We observe that all tasks reach a stable state
where '̂ < 1.0002. Fig. 4b and 4c show the sampling results and the
'̂ scores during the sampling of a speci�c task. The violation rates
for the execution sequences become stable after around 15000 jobs
(Fig. 4b), while the '̂ score stabilizes when 10000 jobs are sampled
(Fig. 4c). Results for other task sets show a similar relationship, with
an approximately 5000 jobs di�erence, between the convergence of
results and '̂ score. Therefore, we chose '̂ = 1.0002 as the threshold
and)BC01 = 5000 jobs as the stabilization time.

5.3 Accuracy of the sampling method
We ran the same task sets as in Sec. 5.1 with two distributions of
job execution times, using the sampling method discussed above.
Besides the distribution described in Sec. 5.1, we also considered a
“likely-unlikely” distribution: the job execution time is “likely” to be

https://github.com/fyc1007261/analysis-LTA

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

� ����� 	����
���� ����� �����
�#��� �������!�!������

�����

����	

�����

' ��
��

�
�

���� '��$!��#��������!��������
��%� '�������������"�!�!
����� '�������������"�!�!
'�
�����	��!���"� �!����

� 	����
���� ����� �����
����
�'���$�!���!�%�%��"���

���

��	

��

���

��
!�
�&
�!
 �
��

&�

������ ������%�����"�� ����%'�&%
�(��'&�! ���#'� ����
�(��'&�! ���#'� ���	
�(��'&�! ���#'� ���

�(��'&�! ���#'� ����

� 	����
���� ����� �����
����
�'���$�!���!�%�%��"���

	����

	���

	����

	����

* ��
��
!$
�

���������� ����&�%�� *����!$�
*��!��&����!'$�%�#'� ��%
*��	����
��%���&�$�%�!��

Figure 4: (a) Max and mean '̂ scores across all tasks in all task sets during sampling. (b) Weakly-hard constraint violation rate
of each execution sequence for a speci�c task. (c) '̂ score of the four execution sequences in the middle sub�gure.

Job execution time Uniform distribution Likely-unlikely distribution
Di�erence Mean value (%) Median value (%) 99th perc. value (%) Mean value (%) Median value (%) 99th perc. value (%)
� Values 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12

Deadline
Miss Ratio

EDF 0.031 0.031 0.031 0.000 0.000 0.000 0.411 0.412 0.406 0.043 0.044 0.043 0.023 0.023 0.023 0.290 0.295 0.287
Static 0.032 0.033 0.032 0.000 0.000 0.000 0.365 0.367 0.351 0.038 0.040 0.038 0.022 0.023 0.021 0.231 0.234 0.236

Weakly-hard
Constraints

EDF 0.026 0.027 0.027 0.000 0.000 0.000 0.458 0.439 0.481 0.023 0.023 0.023 0.006 0.006 0.006 0.242 0.243 0.240
Static 0.039 0.039 0.038 0.000 0.000 0.000 0.518 0.497 0.491 0.025 0.025 0.025 0.004 0.004 0.004 0.233 0.245 0.240

Table 2: Accuracy (by absolute di�erence) of sampling with job execution time in uniform and likely-unlikely distributions.

95
99 `4 with probability 0.99, and “unlikely” to be 5`4 with probability
0.01. For each task set, we computed the absolute di�erence between
the sampling results and the ground truth (Sec. 5.1). We repeated
the experiments for di�erent � values.
Results. Table 2 shows the sampling accuracy under each of the
considered settings. We can make four observations: First, the mean
di�erence is very small, between 0.023% and 0.044% across all eval-
uated cases, indicating that the sampling method has very high
accuracy in general. Further, for the vast majority (99%) of the tasks,
the di�erence between sampling and ground truth results is within
0.518%. Third, under the uniform distribution, the median di�erence
is zero across all settings, which indicates that more than half of the
sampling results are the same as the ground truth. Upon a closer
examination, we �nd that many tasks in the system never miss
the deadline or violate the weakly-hard constraints. Our sampling
method catches this behavior for all of these tasks, hence return-
ing the same estimates as the ground truth. Finally, the results are
similar across the di�erent settings of �, which suggests that the
exact value of � has minimal in�uence on the accuracy. Overall,
the results con�rm that our sampling method is highly accurate.

5.4 Performance and scalability of sampling
For scalability evaluation, we focused on the four most determinant
factors of the Markov chain size: the length of the unit interval �,
the task set size, the length of task periods, and the number of job
execution times. We considered much larger task systems than the
ones in earlier experiments. When generating a task set, we �rst
chose an upper bound value for task periods)max

8 (referred to as
maximum period value) and then randomly selected integers in
[1,)max

8] as task periods. We performed experiments for a wide
range of values for the above four factors, and considered 20 task
sets per each combination of values. The results are consistent
across these combinations; due to space constraints, we present
only the results for variants of the following default values, unless
explicitly stated otherwise:)max

8 = 16; � =)max
8 ; task set size is 50;

and job execution times are in the range of [0.8`, 1.2`], with 10

possible execution times which represent a discrete approximation
of the Gaussian distribution ` = `4 and f = 0.2`4 . Speci�cally, we
computed the integral of the probability density function of the
Gaussian distribution in each of the 10 slots, and then computed
the probability of each of the 10 values based on the integral.
Impact of �.We �rst evaluated the impact of the unit of time �
on convergence time. We repeated the experiments for di�erent
values of �, ranging from 1 to 720720 (the hyperperiod), while
keeping the default values for other factors. When we tried to draw
samples with � being the hyperperiod, convergence of some of the
task sets was not achieved even after 40 hours; this con�rmed a
hyperperiod-based analysis is not scalable.

Fig. 5a and Fig. 5b show the convergence time for di�erent �
settings. We observe that the convergence time is much higher
when � is either too small or too large, under both scheduling
policies. For example, under the static priority policy, the median
convergence time is 293.96 s when � = 5, 55.65 s when � = 500,
and 3163.34 s when � = 100000. For smaller � values, it is often
the case that within a �-interval, no job is issued or �nished, and
therefore no useful data is sampled. For large � values, even one
�-interval may be longer than needed for the sampling to converge.
Hence our approach allows the user to �exibly choose a value
of � to improve the sampling performance, instead of �xing the
interval at the two extremes of the hyperperiod or the microtick (W).
Impact of task set size. We next varied the task set size to be
in {5, 10, 25, 50, 100, 200, 300, 400, 500, 1000} while keeping the
default values for other factors. Fig. 5c and Fig. 5d show the box
plots of the convergence time for all task sets grouped by the
task set size under EDF and static priority. We observe that the
convergence time grows slightly faster than linear but slower than
quadratic, and that it is e�cient for typical real-time systems. For
example, at 50 tasks per set, the median sampling time is less than
45.39 seconds under EDF and 59.82 seconds under static priority
policy. At the extreme, for task sets with 1000 tasks, the median
time to convergence is 19.53 minutes under EDF, and 32.90 minutes

RTNS 2024, November 07–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

� �
��
�

��
�

��
��

��
��

��
��
�

��
��
�

��
��
��

��
��
��

/HQJWK�RI�WKH�8QLW�7LPH�̩

���

���

&R
QY
HU
JH
QF
H�
WLP
H�
�V
� �D��9DU\LQJ�8QLW�7LPH��(')��

� �
��
�

��
�

��
��

��
��

��
��
�

��
��
�

��
��
��

��
��
��

/HQJWK�RI�WKH�8QLW�7LPH�̩

���

���

�E��9DU\LQJ�8QLW�7LPH��6WDWLF��

� �� �� �� ��
�

��
�

��
�

��
�

��
�

��
��

1XPEHU�RI�WDVNV

���

���

���

�F��9DU\LQJ�1XP�RI�7DVNV��(')�

� �� �� �� ��
�

��
�

��
�

��
�

��
�

��
��

1XPEHU�RI�WDVNV

���

���

���

�G��9DU\LQJ�1XP�RI�7DVNV��6WDWLF�

Figure 5: Convergence time of sampling, grouped by unit interval � value (a+b) and by the size of the task sets (c+d).

� �� �� �� ��
�

��
�

0D[�3HULRG�$PRQJ�7DVNV

���

���

���

&R
QY
HU
JH
QF
H�
WLP
H�
�V
� �D��9DU\LQJ�0D[�3HULRG��(')�

� �� �� �� ��
�

��
�

0D[�3HULRG�$PRQJ�7DVNV

���

���

���

�E��9DU\LQJ�0D[�3HULRG��6WDWLF�

� �� �� �� ��
�

��
�

��
�

��
��

��
��

��
��

1XP�RI�3RVVLEOH�-RE�([HF�7LPHV

���

���

�F��9DU\�1XP�RI�([HF�7LPHV��(')�

� �� �� �� ��
�

��
�

��
�

��
��

��
��

��
��

1XP�RI�3RVVLEOH�-RE�([HF�7LPHV

���

���

�G��9DU\�1XP�RI�([HF�7LPHV��6WDWLF�

Figure 6: Convergence time, grouped by the maximum length of periods (a+b) and the number of job execution times (c+d).

under the static-priority policy, which is acceptable for o�ine
analysis. In short, our sampling method is e�cient for common
task set sizes, and it can scale to very large numbers of tasks.
Impact of task periods. We considered a range of maximum
period values)max

8 , chosen randomly in {8, 16, 32, 64, 128, 256},
and set � = 128. For each)max

8 , we generated the tasks’ periods
as integers randomly chosen in the range [1,)max

8]. Fig. 6a and
Fig. 6b show the box plots of the convergence time grouped by
the longest period for the two scheduling policies. We observe
that the convergence time increases as the longest period value
increases, but at a slow pace. For instance, increasing the longest
period from 8 to 256 (by 32⇥) leads to around a 5⇥ increase in the
mean, median, and maximum analysis time.
Impact of the number of job execution times. This evaluation
assesses the e�ciency of sampling as we scaled the number of
possible job execution times. With the minimum and maximum
execution time still being 0.8`4 and 1.2`4 , respectively, we divided
this range into di�erent numbers (instead of the default number 10)
of discrete values, which we refer to as the number of possible job
execution times.We tested the convergence time of our sampling
method with the number of possible job execution times in the set
of {5, 10, 25, 50, 100, 200, 500, 1000, 2000, 5000}.

Fig. 6c and Fig. 6d show the convergence time grouped by the
number of possible job execution times (|⇠8 |). We observe that as
the number of possible job execution times increases, the conver-
gence time does not change much; this means that our analysis
scales with the number of values within the job execution time
distribution. On a closer examination, we observed that the time
taken for picking a job execution time from any distribution during
our sampling procedure is insigni�cant, which explains why the
number of possible job execution times has little impact on the anal-
ysis time. Thus, by setting a high number of possible job execution
times, the discrete job execution time distribution used for sam-
pling can more closely match the actual distribution of execution

time, thus improving the accuracy of sampling for real workloads
without bringing much overhead to the sampling e�ciency.

5.5 Case study: rover control system
To demonstrate the practical utility of our technique, we conducted
a case study of a rover control system, ArduPilot [2], an open-
source autopilot software system for real-time control of unmanned
vehicles. ArduPilot has been usedwidely in practice, e.g., by NASA,
Intel, Boeing, and in research [1, 4, 5].
Workload and setup. The rover control system contains 45 con-
trol tasks (including GPS signal processing, RPM adjustment, etc.)
with periods between 2500`B and 107`B . To keep in line with our
proposed approach, we modi�ed the scheduler and employed the
policy that a job will be killed once it misses the deadline. For the
rest, we kept ArduPilot’s static-priority and non-preemptive pol-
icy. We used SITL (software in the loop) of ArduPilot to simulate
the environments, sensors, and actuators. The periods (deadlines)
and priority values were extracted from ArduPilot documentation
and source code. All tasks were implemented in C++. We ran the
tasks on a single core on a Raspberry Pi 3A+, a common platform
for the deployment of ground vehicles.
Execution time pro�ling. The execution time of a job depends
on many factors including the input(s), the current environment,
and the recent history of the micro-architectural components. It
is di�cult to create an accurate model to capture all these factors.
Instead, we measured the computation times of the jobs released by
a task along a long execution sequence, discretized these times into
10k bins, and extracted a distribution from the resulting histogram.
Our working hypothesis was that this distribution is a reasonable
approximation from which one can sample the execution times of
the jobs belonging to a task.

Accordingly, we ran the entire system with all tasks together
on our experimental platform. During the execution, each task
released from 120k to 4.8M jobs, depending on its period. The
inputs of the tasks varied, re�ecting the current state of the real

Analysis of Long-Term Average Behaviors of Probabilistic Task Systems RTNS 2024, November 07–08, 2024, Porto, Portugal

Deadline Miss Ratio (m, k) = (3, 4) (m, k) = (4, 5) (m, k) = (8, 10)
Observed Predicted Observed Predicted Observed Predicted Observed Predicted

AHRS Update 0.035% 0.035% 0.006% 0.005% 0.007% 0.006% 0.008% 0.009%
GCS Update Recv 0.055% 0.052% 0.007% 0.006% 0.009% 0.007% 0.009% 0.010%
GCS Update Send 0.057% 0.055% 0.007% 0.006% 0.008% 0.007% 0.009% 0.010%
Gyro FFT Sample 0.005% 0.005% 0.006% 0.005% 0.006% 0.005% 0.009% 0.010%
Gyro FFT Update 0.058% 0.059% 0.008% 0.007% 0.009% 0.009% 0.009% 0.010%
Inertial Sensing 0.058% 0.058% 0.008% 0.007% 0.009% 0.009% 0.009% 0.010%

Set Servos 0.039% 0.040% 0.006% 0.005% 0.007% 0.006% 0.008% 0.009%
Update Mode 0.038% 0.037% 0.006% 0.005% 0.007% 0.006% 0.008% 0.009%

Update Precland 0.057% 0.056% 0.007% 0.007% 0.008% 0.008% 0.009% 0.010%
Table 3: The observed and predicted violation rate comparison in the rover control system.

system. We collected the execution time of each job for our analysis.
The measured job execution times of each task formed a (discrete)
distribution of its execution time, which we then used as input to
our sampling method. Overall, the total system utilizations based
on the mean, median, 99.9-th percentile, and 99.99-th percentile
execution times of the tasks are 0.15, 0.14, 0.75 and 6.40, respectively.
Predicted results vs. observed results. We applied our sampling
method to compute the long-term average weakly-hard constraint
violation rates using the pro�led execution time distributions as
inputs, following the same methodology as in Section 5.2. Further,
to evaluate how close our prediction is to the violation rates from
actual executions, we executed the rover control system on our
experimental platform for 5 runs, 1 hour per run (1.44M jobs for
the task with the smallest period), and logged the deadline hits and
misses for each task. We then computed the average violation rates
for di�erent weakly-hard constraints. Table 3 shows the results
computed by our analysis (“predicted”) and measured from actual
runs (“observed”). (Tasks with both rates below 0.005% are not
shown). The results show that the violation rates predicted by our
method are very close to the ones observed in real executions. The
absolute di�erence is  0.003% and  0.002%. This con�rms that our
analysis can be highly accurate when applied to a real-world system,
even when using an approximate execution time distribution.

6 Related Work
There is a rich body of work on probabilistic task systems. The
survey [10] provides a broad and detailed account. Here, we focus
on research that is closely in line with our work. Accordingly, an
often studied property is Deadline Miss Probability (DMP), which is
informally stated in [10] as “a probability with a long-run frequency
interpretation equating to the expected number of missed deadlines
divided by the total number of deadlines in a long (tending to
in�nite) time interval.” This is, however, often formalized in terms
of the ratio of the total number of deadline misses to the total
number of deadlines in a hyperperiod.

The early work on analyzing the DMP of periodic tasks byWood-
bury and Shin [36] is also based on hyperperiods termed in their
work as major cycles. In addition, most methods for computing
DMP and related properties [11, 12, 22, 25, 26] are not only based
on hyperperiods but also work with a matrix representation of
an associated Markov chain. In contrast, we use a sampling-based
approach that avoids the explicit construction of the Markov chain
which is computationally infeasible for all but small systems.

A relatedwork aimed at mitigating the e�ect of the independence
assumption while estimating long-term average properties is the
multimode Markov model investigated in [14] where each mode is

accompanied by a distribution. The analysis however is carried out
by �rst converting the model into an in�nite-state Markov chain.
Then using an in�nite transition matrix, the stationary distribution
is estimated using a numerical technique. Consequently, ourmethod
can be easily applied to this more general model without appealing
to an in�nite transition matrix.

Moving a step away from our work, pWCET [13, 31], WCDFP [3,
33] and WCRTEP [8, 27] are properties that have been well studied.
However, they are essentially transient properties while we focus on
long-term averages arising from in�nite executions of the system.

Recently, Bozhko et al. [7] proposed a Monte Carlo approach to
estimate tasks’ response times with much better performance than
static analysis (assuming some probability of mis-estimates). This
technique is applicable in our setting only when the hyperperiod is
chosen as the unit of time so that one can draw independent samples
without requiring state-dependent backlogs. However, drawing a
su�cient number of samples in this case will be often computation-
ally infeasible.

Weakly-hard constraints have often been studied in co-design
techniques, which exploit the ability to tolerate some violations
of such constraints to optimize resource usage [19, 24, 35]. Prob-
abilistic analysis for weakly-hard constraints has also been con-
sidered [20]. However, we are not aware of any existing work for
analyzing long-term average behaviors of probabilistic task systems
with weakly-hard constraints.

7 Conclusion and Future Work
We have introduced aMarkov chain-based framework for analyzing
the long-term average behaviors of probabilistic periodic real-time
systems. The novelty of our model is that, unlike previous work, it is
not con�ned to hyperperiods being the unit of time. Our evaluation
results have demonstrated that our sampling-based method scales
up to large task sets. In our future work, we plan to extend the
current theory to settings where the independence assumption
about task execution times can be relaxed. In addition, we plan to
extend our technique to multiprocessor and distributed systems. It
will also be interesting to combine our method with probabilistic
formal veri�cation methods [21] to construct a uni�ed framework
for analyzing both transient and long-term properties.

Acknowledgments
The authors would like to thank the anonymous reviewers for
their thorough and helpful reviews. This work was supported in
part by NSF grants CNS-1750158, CNS-1955670, CNS-2111688 and
CCF-2326606.

RTNS 2024, November 07–08, 2024, Porto, Portugal Yifan Cai, Linh Thi Xuan Phan, and P.S. Thiagarajan

References
[1] Azza Allouch, Omar Cheikhrouhou, Anis Koubâa, Mohamed Khalgui, and Tarek

Abbes. 2019. MAVSec: Securing the MAVLink protocol for ardupilot/PX4 un-
manned aerial systems. In Proc. International Wireless Communications & Mobile
Computing Conference (IWCMC ’19).

[2] ArduPilot. 2023. ArduPilot - versatile, trusted, open. https://ardupilot.org/.
[3] Philip Axer and Rolf Ernst. 2013. Stochastic response-time guarantee for non-

preemptive, �xed-priority scheduling under errors. In Proc. Annual Design Au-
tomation Conference (DAC ’13).

[4] Sabur Baidya, Zoheb Shaikh, and Marco Levorato. 2018. FlyNetSim: An open
source synchronized UAV network simulator based on ns-3 and ardupilot. In
Proc. International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM ’18).

[5] Simone Baldi, Danping Sun, Xin Xia, Guopeng Zhou, and Di Liu. 2022. ArduPilot-
based adaptive autopilot: architecture and software-in-the-loop experiments.
IEEE Trans. Aerospace Electron. Systems 58, 5 (2022), 4473–4485.

[6] Guillem Bernat, Alan Burns, and Albert Liamosi. 2001. Weakly hard real-time
systems. IEEE transactions on Computers 50, 4 (2001), 308–321.

[7] Sergey Bozhko, Georg von der Brüggen, and Björn Brandenburg. 2021. Monte
carlo response-time analysis. In Proc. IEEE Real-Time Systems Symposium (RTSS
’21).

[8] Kuan-Hsun Chen, Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen. 2022.
Critical instant for probabilistic timing guarantees: Refuted and revisited. In Proc.
IEEE Real-Time Systems Symposium (RTSS ’22).

[9] Hoon Sung Chwa, Kang G. Shin, and Jinkyu Lee. 2018. Closing the Gap Between
Stability and Schedulability: A New Task Model for Cyber-Physical Systems.
In Proc. IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS ’18).

[10] Robert I. Davis and Liliana Cucu-Grosjean. 2019. A Survey of Probabilistic
Timing Analysis Techniques for Real-Time Systems. Leibniz Trans. Embed. Syst.
6, 1 (2019), 03:1–03:60.

[11] José Luis Díaz, Daniel F García, Kanghee Kim, Chang-Gun Lee, L Lo Bello,
José María López, Sang Lyul Min, and Orazio Mirabella. 2002. Stochastic analysis
of periodic real-time systems. In Proc. IEEE Real-Time Systems Symposium (RTSS
’02).

[12] Jose Luis Diaz, Jose Maria Lopez, Manuel Garcia, Antonio M Campos, Kanghee
Kim, and Lucia Lo Bello. 2004. Pessimism in the stochastic analysis of real-time
systems: Concept and applications. In Proc. IEEE Real-Time Systems Symposium
(RTSS ’04).

[13] Stewart Edgar and Alan Burns. 2001. Statistical analysis of WCET for scheduling.
In Proc. IEEE Real-Time Systems Symposium (RTSS ’01).

[14] Bernardo Villalba Frias, Luigi Palopoli, Luca Abeni, and Daniele Fontanelli. 2017.
Probabilistic real-time guarantees: There is life beyond the iid assumption. In Proc.
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS
’17).

[15] Andrew Gelman and Donald B Rubin. 1992. Inference from iterative simulation
using multiple sequences. Statistical science (1992), 457–472.

[16] David Gri�n, Iain Bate, and Robert I. Davis. 2020. dgdguk/drs. https://doi.org/
10.5281/zenodo.4118058

[17] David Gri�n, Iain Bate, and Robert I Davis. 2020. Generating utilization vectors
for the systematic evaluation of schedulability tests. In Proc. IEEE Real-Time
Systems Symposium (RTSS ’20).

[18] Moncef Hamdaoui and Parameswaran Ramanathan. 1995. A dynamic priority
assignment technique for streams with (m, k)-�rm deadlines. IEEE transactions
on Computers 44, 12 (1995), 1443–1451.

[19] Michael Hertneck, Ste�en Linsenmayer, and Frank Allgöwer. 2021. E�cient
stability analysis approaches for nonlinear weakly-hard real-time control systems.
Automatica 133 (2021), 109868.

[20] Eun-Young Kang, Dongrui Mu, and Li Huang. 2018. Probabilistic veri�cation of
timing constraints in automotive systems using UPPAAL-SMC. In Proc. Interna-
tional Conference of Integrated Formal Methods (IFM ’18).

[21] Joost-Pieter Katoen. 2016. The Probabilistic Model Checking Landscape. In Proc.
ACM/IEEE Symposium on Logic in Computer Science (LICS ’16).

[22] Kanghee Kim, Jose Luis Diaz, Lucia Lo Bello, José María López, Chang-Gun Lee,
and Sang Lyul Min. 2005. An exact stochastic analysis of priority-driven periodic
real-time systems and its approximations. IEEE Trans. Comput. 54, 11 (2005),
1460–1466.

[23] Ravin Kumar, Colin Carroll, Ari Hartikainen, and Osvaldo Antonio Martín. 2019.
ArviZ a uni�ed library for exploratory analysis of Bayesian models in Python.
Journal of Open Source Software (2019).

[24] Ching-Chi Lin, Mario Günzel, Junjie Shi, Tristan Taylan Seidl, Kuan-Hsun Chen,
and Jian-Jia Chen. 2023. Average task execution time minimization under (m,
k) soft error constraint. In Proc. IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS ’23).

[25] José María López, José Luis Díaz, Joaquín Entrialgo, and Daniel García. 2008.
Stochastic analysis of real-time systems under preemptive priority-driven sched-
uling. Real-Time Systems 40, 2 (2008), 180–207.

[26] Dorin Maxim, Olivier Bu�et, Luca Santinelli, Liliana Cucu-Grosjean, and Robert I
Davis. 2011. Optimal Priority Assignment Algorithms for Probabilistic Real-Time
Systems. In Proc. International Conference on Real-Time and Network Systems
(RTNS ’11).

[27] Dorin Maxim and Liliana Cucu-Grosjean. 2013. Response time analysis for �xed-
priority tasks with multiple probabilistic parameters. In Proc. IEEE Real-Time
Systems Symposium (RTSS ’13).

[28] JR Norris. 1998. Markov Chains. Vol. 2. Cambridge University Press.
[29] SciPy. 2024. SciPy: Fundamental algorithms for scienti�c computing in Python.

https://scipy.org/.
[30] Damoon Soudbakhsh, Linh T. X. Phan, Anuradha Annaswamy, Oleg Sokolsky,

and Insup Lee. 2013. Co-design of Control and Platform with Dropped Signals.
In Proc. International Conference on Cyber-Physical Systems (ICCPS ’13).

[31] T-S Tia, Zhong Deng, Mallikarjun Shankar, Matthew Storch, Jun Sun, L-C Wu,
and JW-S Liu. 1995. Probabilistic performance guarantee for real-time tasks with
varying computation times. In Proc. IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS ’95).

[32] Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian
Bürkner. 2021. Rank-normalization, folding, and localization: An improved R-hat
for assessing convergence of MCMC (with discussion). Bayesian analysis 16, 2
(2021), 667–718.

[33] Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and
Katharina Morik. 2018. E�ciently approximating the probability of deadline
misses in real-time systems. In Proc. Euromicro Conference on Real-Time Systems
(ECRTS ’18).

[34] Nils Vreman, Richard Pates, and Martina Maggio. 2022. WeaklyHard.jl: Scalable
Analysis of Weakly-Hard Constraints. In Proc. IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’22).

[35] Nils Vreman, Paolo Pazzaglia, Victor Magron, Jie Wang, and Martina Maggio.
2022. Stability of Linear Systems Under Extended Weakly-Hard Constraints.
IEEE Control Systems Letters 6 (2022), 2900–2905.

[36] Michael H Woodbury and Kang G Shin. 1988. Evaluation of the probability of
dynamic failure and processor utilization for real-time systems. In Proc. IEEE
Real-Time Systems Symposium (RTSS ’88).

https://ardupilot.org/
https://doi.org/10.5281/zenodo.4118058
https://doi.org/10.5281/zenodo.4118058
https://scipy.org/

	Abstract
	1 Introduction
	2 The System Model
	2.1 Configurations

	3 Unit Intervals and Markov Chains
	3.1 Unit intervals
	3.2 Markov chain preliminaries

	4 The Main Results
	4.1 Two probabilistic transitions
	4.2 The infinite and finite-state Markov chains
	4.3 M represents BS
	4.4 Weakly-hard constraints

	5 Evaluation
	5.1 Ground truth computation
	5.2 Sampling methodology
	5.3 Accuracy of the sampling method
	5.4 Performance and scalability of sampling
	5.5 Case study: rover control system

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

