
Stochastic Learning of Computational Resource Usage as
Graph Structured Multimarginal Schrödinger Bridge

Georgiy A. Bondar, Robert Gifford, Linh Thi Xuan Phan, Abhishek Halder, Senior Member, IEEE

Abstract—We propose to learn the time-varying stochastic
computational resource usage of software as a graph structured
Schrödinger bridge problem. In general, learning the computa-
tional resource usage from data is challenging because resources
such as the number of CPU instructions and the number of
last level cache requests are both time-varying and statistically
correlated. Our proposed method enables learning the joint time-
varying stochasticity in computational resource usage from the
measured profile snapshots in a nonparametric manner. The
method can be used to predict the most-likely time-varying
distribution of computational resource availability at a desired
time. We provide detailed algorithms for stochastic learning
in both single and multi-core cases, discuss the convergence
guarantees, computational complexities, and demonstrate their
practical use in two case studies: a single-core nonlinear model
predictive controller, and a synthetic multi-core software.

Keywords: Multimarginal Schrödinger bridge, stochastic
learning, computational resource, multi-core hardware.

I. INTRODUCTION

Compute-intensive software, including control software, of-
ten operate in hardware platforms that are different from
where their performance were verified. This could be because
of hardware up/downgrades in response to evolving project
needs, technology progress and such. A natural question, then,
is whether there could be a principled way to learn the stochas-
tic dynamical nature of computational resource availability
such as processor, memory bandwidth and last level shared
cache (LLC). Such learning could then be leveraged to design
dynamic scheduling algorithms by predicting, for example, the
most likely joint computational resource that will be available
at a future time. In this work, we propose such a stochastic
learning framework for both single and multi-core platforms.

In the real-time systems community, it is well-known [1]
that due to hardware-level stochasticity, multiple executions
of the same software on the same hardware with identical
initial conditions and parameters, result in different execution
times. A common way to account for this is to analyze some
lumped variable such as (worst-case or probabilistic) execution
time [2]–[4] for a given software-hardware combination. In
contrast, the ability to directly learn in the joint space of LLC,
processor and memory availability, could enable the design
of more fine-grained dynamic resource schedulers. This is of

Georgiy A. Bondar is with the Department of Applied Mathematics, Uni-
versity of California, Santa Cruz, CA 95064, USA, gbondar@ucsc.edu.

Robert Gifford and Linh Thi Xuan Phan are with the Department of
Computer and Information Science, University of Pennsylvania, Philadelphia,
PA 19104, USA, {rgif,linhphan}@seas.upenn.edu.

Abhishek Halder (corresponding author) is with the Department of
Aerospace Engineering, Iowa State University, Ames, IA 50011, USA,
ahalder@iastate.edu.

This research was supported by NSF awards 2112755, 2111688 and
1750158.

particular interest in safety-critical controlled cyber-physical
systems that operate in resource-constrained environments
because high performance controllers (e.g., MPC) are more
compute-intensive and have more pronounced stochasticity
than computationally benign controllers (e.g., PID).

Learning in the joint space, however, is technically challeng-
ing because variables such as processor availability, LLC and
memory bandwidth are not only statistically correlated, but
their correlations also change over time, i.e., they cannot be
assumed as (neither strict nor wide-sense) stationary stochastic
processes for learning purposes. It is also impractical to
fit parametric statistical models such as a Markov chain
by gridding the multi-dimensional space of computational
resource state since the resource state space is not countable.
In this work, we leverage the recent progress in multimarginal
Schrödinger bridges to show the feasibility of nonparametric
joint stochastic learning of computational resource usage from
hardware-software profile data.

Related work: Multimarginal Schrödinger bridge problems
(MSBPs) are entropy regularized variants of the multimarginal
optimal mass transport (MOMT) problems [5], [6]. The latter
has been applied to learning and inference problems in chem-
ical physics [7], [8], team matching [9], fluid dynamics [10]
and risk management [11]. For recent applications of MSBPs
to learning and tracking problems, see e.g., [12]–[14]. The
MSBPs can also be seen as generalized variants of the classical
(a.k.a. bimarginal) Schrödinger bridge problems (SBPs) which
we will explain in Sec. IV-A. In the control literature, there are
growing works on the stochastic optimal control interpretations
[15], [16], generalizations [17]–[19] and applications [20]–
[22] of the SBPs.

Prior work has applied machine learning to performance
prediction and workload modeling, especially in data center
and cloud environments; see e.g., the surveys in [23], [24]
and references therein. Unlike our work, these solutions focus
on predicting coarse-grained characteristics – such as request
rates, CPU utilization, memory and disk I/O usages, band-
width, or energy consumption – and they do not consider the
interdependent relationship among shared resources. In real-
time and embedded systems, learning techniques have been
used for estimating timing behaviors [25]–[27]; however, exist-
ing work focuses on the worst-case or probabilistic execution
time of the entire software, rather than the dynamic resource
usage patterns during an execution of the software. To our best
knowledge, our work is the first to use learning for predicting
the stochastic dynamical run-time behavior of computational
resource usage that jointly considers interdependent resources
on multi-core platforms (such as CPU, cache and memory
bandwidth) as well as multi-threaded applications.

1

ar
X

iv
:2

40
5.

12
46

3v
2

 [
m

at
h.

O
C

]
 1

9
M

ay
 2

02
5

Contributions: This work builds on our preliminary work
[28] but significantly extends the same by considering multi-
core resources and more general graph structures than path
tree. The specific contributions are threefold:

‚ Mathematical formulations (Sec. III-IV) for the stochas-
tic learning of computational resource usage as graph-
structured MSBPs where the graph structures arise from
single or multi-core computational platforms. These for-
mulations are motivated by maximum likelihood interpre-
tations in the path space.

‚ Numerical algorithms (Sec. V) for solving the proposed
graph-stuctured MSBPs. We show that unlike generic
graph structures, the MSBPs induced by single or multi-
core computational resource usage lead to structured
tensor optimization problems that can be leveraged to
reduce the learning algorithms’ computational complexity
from exponential to linear in number of observations.

‚ Numerical experiments (Sec. VI) to illustrate the pro-
posed learning framework. This includes a single-core
MPC benchmark, and a synthetic multi-core software
benchmark.

II. PRELIMINARIES

In this Section, we fix notations and background ideas that
will be used subsequently.
Sets. For any natural number ν, we use the finite set notation
JνK :“ t1, 2, . . . , νu. We denote the cardinality of set S as |S|.
We will use the following.

Lemma 1. [29, Thm. 19.2] Given finite sets S1 Ď S2 with
|S1| “ ν1 and |S2| “ ν2, we have |S2zS1| “ ν2 ´ ν1.

Vectors, matrices, tensors. We use unboldfaced (resp. bold-
faced) small letters to denote scalars (resp. vectors). Unbold-
faced capital letters denote matrices and bold capital letters
denote tensors of order three or more. We occasionally make
exceptions for standard notations such as (2)-(3).

We use square braces to denote the components. For ex-
ample, rXi1,...,ir s denotes the pi1, . . . , irqth component of an
order r tensor X , where pi1, . . . , irq P Nr. We use the r fold
tensor product space notation

`

Rd
˘br

:“ Rd b . . . b Rd
looooooomooooooon

r times

.

For two given tensors X,Y of order r, their Hilbert-
Schmidt inner product is

xX,Y y :“
ÿ

i1,...,ir

rXi1,...,ir s rYi1,...,ir s . (1)

The operators expp¨q, logp¨q, d and m are all understood
elementwise, i.e., denote elementwise exponential, logarithm,
multiplication and division, respectively. Vector or matrix
transposition is denoted by the superscript J. We use diagpvq

to denote a diagonal matrix with entries of vector v along
its main diagonal, and 1 to denote all ones column vector of
suitable length.
Probability. A probability measure µ over some Polish space
X satisfies

ş

X dµ “ 1. For a pair of probability measures µ, ν
defined over two Polish spaces X ,Y respectively, their product
measure is µ b ν, and

ş

XˆY d pµ b νq “ 1.

The entropy of a probability measure µ is ´
ş

logµdµ.
The relative entropy or Kullback-Leibler divergence DKLp¨}¨q

between two probability measures µ and ν is

DKLpµ}νq :“

#

ş

log dµ
dν dµ if µ ! ν,

`8 otherwise,
(2)

where dµ
dν denotes the Radon-Nikodym derivative, and µ ! ν

is a shorthand for “µ is absolutely continuous w.r.t. ν”.
The Wasserstein distance W between two probability mea-

sures µ, ν, supported respectively on X ,Y Ď Rd, is

W pµ, νq :“

ˆ

inf
πPΠpµ,νq

ż

XˆY
}x ´ y}22 dπpx,yq

˙
1
2

, (3)

where the infimum in (3) is over all joint couplings of µ, ν, i.e.,
Πpµ, νq :“ tprobability measuresπ |

ş

Y dπ “ µ,
ş

X dπ “ νu.
Unlike the Kullback-Leibler divergence (2), the Wasserstein
distance (3) is a metric on the space of probability measures.
Hilbert projective metric. The Hilbert projective metric [30]–
[32] dH pu,vq between u,v P Rn

ą0 (positive orthant) is

dH pu,vq “ log

ˆ

maxi“1,...,n ui{vi
mini“1,...,n ui{vi

˙

. (4)

The convergence plots w.r.t. Hilbert metric for our numerical
experiments will be given in Sec. VI.

The formula (4) is a special case of the general definition
of Hilbert metric dH between any two elements of a pointed*

convex cone K in a real vector space:

dHpu, vq “ log

ˆ

inftλ ě 0 | λv ě uu

suptλ ě 0 | u ě λvu

˙

@u, v P K. (5)

Note that (5) reduces to (4) for K ” Rn
ą0.

III. STOCHASTIC LEARNING OF COMPUTATIONAL
RESOURCE

We collect distributional data for the computational resource
availability state thought of as a continuous-time stochastic
process over time τ P r0, ts. In what follows, we will make
these ideas precise. For now, let us begin by assuming that the
data are collected at s P N, s ě 2 snapshots

τ1 ” 0 ă τ2 ă . . . ă τs´1 ă τs ” t. (6)

Define the snapshot index set JsK :“ t1, 2, . . . , su.
We consider multi-core computing hardware with J P N

cores, and define the core index set JJK :“ t1, 2, . . . , Ju. For
j P JJK and for a given time horizon of interest r0, ts, we think
of the computational resource state vector ξjpτq, 0 ď τ ď t,
as a continuous time Rd-valued stochastic process.

For each j P JJK, a (random) vectorial sample path ξjpτq

is referred to as a profile. For the single core (J “ 1) case,
we drop the core index superscript j and simply denote the
sample path or profile as ξpτq.

As a concrete example, consider the case ξj P R3 @j P JJK,
with the components of ξj as

¨

˝

ξj1
ξj2
ξj3

˛

‚“

¨

˝

instructions retired
LLC requests
LLC misses

˛

‚ @j P JJK. (7)

*A cone K is pointed if K X ´K “ t0u.

2

In this example, the three elements of ξj denote the number
of CPU instructions, the number of LLC requests, and the
number of LLC misses in the last time unit (e.g., in the last
10 ms if the profiling frequency is 100 Hz), respectively, in
the core j P JJK. We will use this specific ξj P R3 in our
numerical experiments (both single and multi-core). However,
we will develop the proposed stochastic learning framework
for generic ξj P Rd. This will allow generalizability in
the sense that the proposed method can be adapted to an
application at hand with a custom definition of the d P N
components of the stochastic state ξj .

The distributional (i.e., measure-valued) observations col-
lected at instances (6) comprise a sequence of joint state
probability distributions or measures tµj

σupj,σqPJJKˆJsK, i.e.,

ξj pτσq „ µj
σ,

ż

dµj
σ

`

ξj pτσq
˘

“ 1 @pj, σq P JJK ˆ JsK.

(8)

In this work, we are interested in learning the hardware-
level stochasticity, i.e., the stochasticity in the state ξj arises
from dynamic resource variability. In other words, repeated
execution of the same (e.g., control) software with the same
initial condition and same parameters result in different pro-
files ξjpτq, pj, σq P JJK ˆ JsK, 0 ď τ ď t. See Fig. 5 and Fig.
9 as exemplar single core and multi-core profiles, respectively.

Intuitively, when the hardware-level stochasticity is negli-
gible, then the distributions µj

σ will be approximately Dirac
deltas supported on the graph of a single path. When the
stochastic variability is significant, µj

σ will have significant
dispersion.

In practice, the probability measures tµj
σupj,σqPJJKˆJsK are

only available empirically from a fixed, say n P N profiles.
Let the sample or profile index i P JnK. We accordingly set

µj
σ :“

1

n

n
ÿ

i“1

δ
`

ξj ´ ξi,j pτσq
˘

@pj, σq P JJK ˆ JsK (9)

where δ
`

ξj ´ ξi,j pτσq
˘

denotes the Dirac delta at the ith

sample location ξi,j pτσq P Rd for a fixed index pair pj, σq P

JJK ˆ JsK. For any fixed pair pj, σq P JJK ˆ JsK, the finite set
tξi,j pτσquni“1 is a scattered point cloud.

With the basic notations in place, the informal statement for
our stochastic learning problem is as follows.
Most likely distributional learning problem (informal).
Given distributional snapshots (8), predict the most likely
distribution of the computational resource state

ξj pτq „ µj
τ , j P JJK, for any τ P r0, ts. (10)

In the next section, we will formalize this problem statement
and discuss the related information graph structures.

IV. MSBP AND GRAPH STRUCTURES

To motivate the mathematical formulation, we start by
outlining the classical (bimarginal) SBP in Sec. IV-A. Then
in Sec. IV-B, we make the informal statement mentioned at
the end of the previous Section rigorous using the framework
of large deviation principle [33]. The resulting MSBP formu-
lation takes the form of a maximum likelihood problem in

the space of probability measure-valued curves, generalizing
a similar formulation for the classical SBP.

We then consider specific cases of this MSBP formulation
which result from the information graph structures induced
by the stochastic profiles in single and multi-core computing
hardware. In particular, Sec. IV-C details MSBP over a path
tree which is the information graph structure that arises in the
single core profiling. For the multi-core case, we discuss two
different information graph structures in Sec. IV-D and IV-E.

A. Classical SBP and its Maximum Likelihood Iterpretation

In 1931-32, Erwin Schrödinger formulated what is now
called the classical SBP, in two works: one written in German
[34] and another in French [35]. For a relatively recent survey,
see [36]. The classical SBP corresponds to the bimarginal (i.e.,
s “ 2) maximum likelihood problem: its solution finds the most
likely measure-valued curve µτ where τ P r0, ts connecting
the given endpoint measures µ1, µ2 at τ1 “ 0 and τ2 “ t with
respective supports over subsets of Rd. See Fig. 1(a).

The classical SBP formulation proceeds as follows. Let
X1,X2 Ď Rd be the supports of the given endpoint measures
µ1, µ2, respectively. Letting X :“ X1 ˆ X2 Ď Rd ˆ Rd,
we define a symmetric ground cost C : X ÞÑ Rě0, i.e.,
Cpξpτ1q, ξpτ2qq is a distance between the random vectors
ξpτ1q, ξpτ2q. Let M pX q denote the manifold of joint prob-
ability measures on the product space X . For fixed but not
necessarily small ε ą 0, the classical SBP is an infinite
dimensional convex problem:

min
MPMpX q

ż

X

␣

C pξpτ1q, ξpτ2qq ` ε logMpξpτ1q, ξpτ2qq
(

dMpξpτ1q, ξpτ2qq (11a)

subject to
ż

X2

dMpξpτ1q, ξpτ2qq “ µ1, (11b)
ż

X1

dMpξpτ1q, ξpτ2qq “ µ2. (11c)

In words, (11) seeks to compute a joint probability mea-
sure that minimizes the entropy-regularized transportation cost
(11a) subject to prescribed marginal constraints (11b)-(11c).

Notice that MpX q is a convex set. The objective (11a)
is strictly convex in M , thanks to the ε-regularized negative
entropy term

ş

X ε logM dM . The constraints (11b)-(11c) are
linear.

To clarify the maximum likelihood interpretation of (11), let
C
`

rτ1, τ2s,Rd
˘

denote the collection of continuous functions
on the time interval rτ1, τ2s taking values in Rd. Let Πpµ1, µ2q

be the collection of all path measures on C
`

rτ1, τ2s,Rd
˘

with time τ1 marginal µ1, and time τ2 marginal µ2. Given
a symmetric ground cost (e.g., Euclidean distance) C : X1 ˆ

X2 ÞÑ Rě0, let

Kp¨, ¨q :“ exp

ˆ

´
Cp¨, ¨q

ε

˙

, (12)

and consider the bimarginal Gibbs kernel

K pξpτ1q, ξpτ2qqµ1 b µ2. (13)

3

Fig. 1: (a) The classical (bimarginal) SBP computes the most likely measure-valued curve connecting two given probability measures µ1, µ2

at times τ1, τ2 respectively. (b) The MSBP computes the most likely measure-valued curve connecting multiple, here three given probability
measures µ1, µ2, µ3 at times τ1, τ2, τ3 respectively. In both subfigures, the feasible measured-valued curves are shown in the top with darker
(resp. lighter) hues for higher (resp. lower) probability. The given measures are shown in the bottom as colored scatter plots (red = high
probability, blue = low probability) in the ground coordinates pξ1, ξ2, ξ3q

J
P R3.

Recall that the minimizer of problem (11) is an optimal
coupling Mopt P M pX q. Proposition 1 next formalizes why
the solution of (11) corresponds to the most likely measure-
valued path (Fig. 1(a)) consistent with the observed measure-
valued snapshots µ1, µ2. Its proof uses Sanov’s theorem [37];
for details we refer the readers to the references below.

Proposition 1. ([38, Sec. II],[39, Sec. 2.1]) The optimal
coupling Mopt P M pX q in (11) corresponds to the optimal
measure-valued path πopt P Πpµ1, µ2q solving the (scaled)
relative entropy minimization problem:

min
πPΠpµ1,µ2q

εDKL pπ}K pξpτ1q, ξpτ2qqµ1 b µ2q . (14)

Remark 1. (Existence-uniqueness of the solution for (14))
Under the stated assumptions on the ground cost C, the
existence of minimizer for (14) is guaranteed [40], [41]. The
uniqueness of the minimizer follows from strict convexity of
the map π ÞÑ DKLpπ}νq for fixed ν.

Remark 2. Intuitively, Proposition 1 links the solution of
a static optimization problem (11) with that of a dynamic
optimization problem (14) in the sense that the minimization in
(14) is performed over all continuous measure-valued curves
connecting the endpoints µ1, µ2.

Our setting in (10) requires generalizing these ideas for the
multimarginal (s ě 2) case discussed next.

B. MSBP Formulation

In the single core pJ “ 1q case, Fig. 1(b) illustrates how the
MSBP of our interest generalizes the classical a.k.a. bimarginal
SBP in Fig. 1(a).

In general, for any J P N, we start by defining

X j
σ :“ support

`

µj
σ

˘

Ď Rd @pj, σq P JJK ˆ JsK, (15)

the Cartesian product

X :“
ź

pj,σqPJJKˆJsK

X j
σ Ď

`

Rd
˘bJs

, (16)

and a ground cost C : X ÞÑ Rě0.
Let M pX q denote the manifold of probability measures on

X , and for a fixed pair pj, σq P JJK ˆ JsK, let

X p´j,´σq :“
ź

pa,bqPJJKˆJsKzpj,σq

X a
b . (17)

For a fixed ε ą 0, the multimarginal Schrödinger bridge
problem (MSBP), generalizes the bimarginal problem (11) as

min
MPMpX q

ż

X

␣

C
`

ξ1pτ1q, . . . , ξJpτsq
˘

` ε logM
`

ξ1pτ1q, . . . , ξJpτsq
˘

udM
`

ξ1pτ1q, . . . , ξJpτsq
˘

(18a)

subject to
ż

X p´j,´σq

dM
`

ξ1pτ1q, . . . , ξJpτsq
˘

“ µj
σ

@pj, σq P JJK ˆ JsK. (18b)

The maximum likelihood interpretation for the bimarginal
problem given in Proposition 1 generalizes for MSBP (18) as
stated next in Proposition 2. Similar to the case in Proposition
1, its proof is by direct computation and omitted.

Proposition 2. Given the sets (15), (16), ground cost C :
X ÞÑ Rě0 and fixed ε ą 0, define

K
`

ξ1pτ1q, . . . , ξJpτsq
˘

:“ exp

˜

´
C
`

ξ1pτ1q, . . . , ξJpτsq
˘

ε

¸

,

(19)

and the multimarginal Gibbs kernel

K
`

ξ1 pτ1q , . . . , ξJ pτsq
˘

µ1
1 b . . . b µJ

s . (20)

4

.
Fig. 2: The path tree for sequentially observed tµσuσPJsK.

Let Π
`

µ1
1, . . . , µ

J
s

˘

denote the collection of measure-valued
paths on C

`

rτ1, τss,Rd
˘

with pj, σq marginal µj
σ @pj, σq P

JJK ˆ JsK. Then the optimal coupling Mopt P M pX q in
(18) corresponds to the optimal measure-valued path πopt P

Π
`

µ1
1, . . . , µ

J
s

˘

solving the (scaled) relative entropy minimiza-
tion problem:

min
πPΠpµ1

1,...,µ
J
s q
εDKL

`

π}K
`

ξ1pτ1q, . . . , ξJpτsq
˘

µ1
1 b . . . b µJ

s

˘

.

(21)

The existence-uniqueness of the minimizer for (21), and
thus for (18), follows from the same strict convexity argument
as in Remark 1.

Motivated by the maximum likelihood interpretation (21)
for (18), we propose to solve (18) for learning the stochastic
computational resource state (10). The minimizer of (18),
Mopt

`

ξ1pτ1q, . . . , ξJpτsq
˘

can be used to compute the opti-
mal bimarginal probability mass transport plans between any
pj1, σ1q, pj2, σ2q P JJK ˆ JsK, expressed as the bimarginal
analogue of (18b):

ż

X p´j1,´j2,´σ1,´σ2q

dMopt
`

ξ1pτ1q, . . . , ξJpτsq
˘

(22)

where

X p´j1,´j2,´σ1,´σ2q :“
ź

pa,bqPJJKˆJsKztpj1,σ1qYpj2,σ2qu

X a
b .

The coupling (22) will find use in implementing our multi-
marginal Sinkhorn recursions in Sec. V.

We next discuss the discrete formulations of (18) that arise
from the information graph structures in single and multi-core
computing hardware for finite scattered data tξi,jpτσquni“1 and
tµj

σupj,σqPJJKˆJsK as in (9). We will see that the corresponding
formulations lead to strictly convex problems over finite di-
mensional nonnegative tensors. To reduce the notational over-
load, we use the same boldfaced symbols for the continuous
and discrete version of the tensors.

C. Path Structured MSBP

For single core (J “ 1) computing hardware, the stochastic
process ξpτq is indexed only by time τ P r0, ts. So the
information graph structure is also induced by time, i.e., by
sequential in time measure-valued observations tµσuσPJsK. In
other words, the information graph in this case is a path tree
shown in Fig. 2. We refer to an MSBP specialized to such
path tree as the path structured MSBP.

Thanks to the path tree structure, the ground cost C in this
case can be written as

Cpξpτ1q, . . . , ξpτsqq “

s´1
ÿ

σ“1

cσ pξpτσq, ξpτσ`1qq (23)

where we choose the squared Euclidean distance sequential
cost between two consecutive snapshot indices, i.e., cσp¨, ¨q :“
} ¨ ´ ¨ }22 @σ P JsK.

To formulate the discrete version of the corresponding
MSBP, notice that the ground cost in (18a), in general, is an
order s tensor C P pRnq

bs
ě0 having components

rCi1,...,iss “ C pξi1 , . . . , ξisq (24)

that encodes the cost of transporting unit amount of mass for
an s tuple pi1, . . . , isq. However, the path structured cost (23)
implies that the s tuple in (24) equals to

řs´1
σ“1 cσ

`

ξiσ , ξiσ`1

˘

,
which is a sum of suitable elements of s ´ 1 different (in our
case, Euclidean) distance matrices.

The discrete mass tensor M P pRnq
bs
ě0 has components

rMi1,...,iss “ M pξi1 , . . . , ξisq , (25)

where rMi1,...,iss denotes the amount of transported mass for
an s tuple pi1, . . . , isq.

Furthermore, for path structured MSBP, we can drop the
core index superscript j to simplify constraints (18b) as

ż

X´σ

dM pξpτ1q, . . . , ξpτsqq “ µσ @σ P JsK. (26)

In the discrete version, the empirical marginals µσ P Rn
ě0

are supported on the finite sets tξipτσquni“1 @σ P JsK. Then,
the LHS of the constraints (26) are projections of the mass
tensor (25) on the σth marginal µσ @σ P JsK. We denote
this projection as projσpMq, which is a mapping projσ :
pRnq

bs
ě0 ÞÑ Rn

ě0, and is given componentwise as
”

projσpMqr

ı

“
ÿ

i1,...,iσ´1,iσ`1,...,is

Mi1,...,iσ´1,r,iσ`1,...,is . (27)

Similarly, the discrete version of (22) in the path struc-
tured case, is the projection of M P pRnq

bs
ě0 on the

pσ1, σ2qth marginal denoted as projσ1,σ2
pMq, i.e., projσ1,σ2

:

pRnq
bs
ě0 ÞÑ Rnˆn

ě0 , and is given componentwise as
”

projσ1,σ2
pMqr,ℓ

ı

“
ÿ

iσ|σPJsKztσ1,σ2u

Mi1,...,iσ1´1,r,iσ1`1,...,iσ2´1,ℓ,iσ2`1,...,is . (28)

Then, the discrete path structured version of (18) becomes

min
MPpRnq

bs
ě0

xC ` ε logM ,My (29a)

subject to projσ pMq “ µσ @σ P JsK. (29b)

Notice that (29) is a strictly convex problem in ns decision
variables, and is computationally intractable in general. In Sec.
V, we will design algorithms to solve them efficiently.

D. Barycentric MSBP

For multi-core (J ą 1) computing hardware, the stochastic
process ξjpτq is indexed by both time τ P r0, ts and CPU
core j P JJK. Thus, the information graph structure is induced
jointly by time and cores, i.e., by measure-valued observations
tµj

σupj,σqPJJKˆJsK. Unlike Sec. IV-C, we now have J measure-
valued snapshots at each time index. To account for this, we
propose two different MSBP formulations, the first of which
termed barycentric MSBP is discussed next.

5

Fig. 3: The tree graph for barycentric MSBP (Sec. IV-D) with
measures tµj

σupj,σqPpt0uYJJKqˆJsK, where J “ 2.

The main idea behind our proposed barycentric MSBP for-
mulation is to imagine a phantom CPU core whose statistics is
the average (i.e., barycenter) of the measure-valued snapshots
for all cores at any fixed time index σ P JsK. Accordingly, in
this formulation, we consider the core index j P t0u Y JJK
where j “ 0 refers to the phantom barycentric CPU. The
corresponding graph structure for J “ 2 is shown in Fig.
3. While a barycentric graph as in Fig. 3 is more general
than the path tree as in Fig. 2, we note that the treewidth
[42, p. 354-355] for barycentric graphs equals unity as in the
path tree case. It is known that the computational complexity
for graph-structured MSBP problems grow with the treewidth
[43], [44]. We will discuss the specific complexity for the
proposed algorithms in Sec. V.

The barycentric graph structure implies that (24) is no
longer equal to

řs´1
σ“1 cσ

`

ξiσ , ξiσ`1

˘

as in Sec. IV-C, but
instead becomes a sum of two types of ground transport
costs, viz. the cost of transport between consecutive-in-time
barycenters and the cost of transport between barycentric and
actual CPU cores. Denoting the barycentric random vectors
as tξ0pτσquσPJsK, and letting cj,σp¨, ¨q be the corresponding
ground transport costs for all j P t0u ˆ JJK, the cost (24) for
barycentric MSBP equals

s´1
ÿ

σ“1

c0,σ

´

ξ0iσ , ξ
0
iσ`1

¯

`

s
ÿ

σ“1

J
ÿ

j“1

cj,σ

´

ξjiσ , ξ
0
iσ

¯

.

Similar ideas appeared in [12, Sec. 3.3] in a different context.
Defining the barycentric index set

ΛBC :“ pt0u Y JJKq ˆ JsK, (30)

we note that |ΛBC| “ pJ ` 1qs, and thus for the barycentric
MSBP, the tensors C,M P pRnq

bpJ`1qs
ě0 . In summary, the

proposed barycentric MSBP is

min
MPpRnq

bpJ`1qs
ě0

xC ` ε logM ,My (31a)

subject to projpj,σq pMq “ µj
σ @pj, σq P ΛBC. (31b)

In Sec. V-B, we will discuss the computation of projections
(18b) and (22) for the minimizer of (31).

E. Series-Parallel Graph Structured MSBP

Different from the barycentric MSBP in Sec. IV-D, we now
propose another MSBP formulation for the multi-core (J ą 1)

Fig. 4: The graph for series-parallel graph-structured MSBP (Sec.
IV-E) with J parallel paths of length s.

Graph structure MSBP Index set Λ
Path tree (Sec. IV-C) (29) JsK

Barycentric (Sec. IV-D) (31) ΛBC in (30)

Series-parallel (Sec. IV-E) (33) ΛSP in (32)

TABLE I: The index set Λ in graph structured MSBPs.

case, based on the series-parallel information graph structure
in Fig. 4.

This series-parallel graph structured MSBP is motivated by
the observation that many software on multi-core computing
hardware have notions of input and output terminals. In such
applications, the input and output of the computational task
are aggregated to a single core. Thus, the information graph
structure is induced by measure-valued observations tµj

σupj,σq

where the tuple pj, σq belongs to the index set

ΛSP :“ pJJK ˆ JsKq z ppJJKzt1uq ˆ t1, suq . (32)

Although the series-parallel graph in Fig. 4 is not a tree, it has
treewidth at most two. So such MSBPs remain computation-
ally tractable as before (see details in Sec. V).

Unlike the formulation in Sec. IV-D, the series-parallel
graph structured MSBP formulation does not involve any
phantom CPU core. From Fig. 4, the cost (24) now equals

J
ÿ

j“1

"

cj,1

´

ξji1 , ξ
j
i2

¯

` cj,s´1

´

ξjis´1
, ξjis

¯

*

`

s´1
ÿ

σ“2

J
ÿ

j“1

cj,σ

´

ξjiσ , ξ
j
iσ`1

¯

.

By Lemma 1, we find |ΛSP| “ Jps ´ 2q ` 2, and hence
for the series-parallel graph structured MSBP, the tensors
C,M P pRnq

bJps´2q`2
ě0 . In summary, the proposed series-

parallel graph-structured MSBP is

min
MPpRnq

bpJps´2q`2q

ě0

xC ` ε logM ,My (33a)

subject to projpj,σq pMq “ µj
σ @pj, σq P ΛSP. (33b)

In Sec. V-C, we will discuss the computation of projections
(18b) and (22) for the minimizer of (33).

V. ALGORITHMS

This section provides algorithmic details and computational
complexities to solve the discrete MSBPs (29), (31) and (33).

These MSBPs are strictly convex tensor optimization prob-
lems in ns, npJ`1qs, and nJps´2q`2 decision variables, re-
spectively, and computationally intractable in general. By

6

leveraging an interplay between duality and graph structures,
we will see that it is possible to reduce the computational
complexity from exponential to linear in s.

Recognizing that (29), (31), (33) are instances of the generic
structured optimization problem:

min
MPpRnq

b|Λ|

ě0

xC ` ε logM ,My (34a)

subject to projpj,σq pMq “ µj
σ @pj, σq P Λ, (34b)

for suitable index set Λ (see Table I), the following is
consequence of strong Lagrange duality.

Proposition 3. [45]–[47] Given problem (34), let λj
σ P Rn

be the Lagrange multipliers for the equality constraints (34b)
for all pj, σq P Λ. Let

K :“ expp´C{εq P pRnq
b|Λ|

ą0 , (35a)

uj
σ :“ exppλj

σ{εq P Rn
ą0 @pj, σq P Λ, (35b)

U :“ bpj,σqPΛu
j
σ P pRnq

b|Λ|

ą0 . (35c)

Then, the multi-marginal Sinkhorn recursions

uj
σ Ð uj

σ d µj
σ m projpj,σq pK d Uq @pj, σq P Λ, (36)

have guaranteed linear rate of convergence†, and the mini-
mizer Mopt for (34) is given in terms of the converged U
as

Mopt “ K d U . (37)

Once Mopt is computed, its bimarginal projections of the
form (28) yield the probability mass transport matrices be-
tween any two marginals. With this, we are able to interpolate
between any two marginals to obtain a predicted distribution.

Remark 3. In our problem, the useful application of this
interpolation is as follows: given a time τ P r0, tq and CPU
index j P JJK, find σ P JsK such that τσ ď τ ă τσ`1, and
use the expressions for the bimarginal projections above to
compute the bimarginal bridge

M j,σ :“ projpj,σq,pj,σ`1qpMoptq : µj
σ Ñ µj

σ`1

`

P Rnˆn
ě0

˘

.

Using this projection, we can interpolate between µj
σ and

µj
σ`1 to obtain our estimate pµj

τ for the computational resource
usage distribution for CPU j at time τ , as

µ̂j
τ :“

n
ÿ

r“1

n
ÿ

ℓ“1

”

M j,σ
r,ℓ

ı

δpξj ´ pξjpτ, ξr,jpτσq, ξℓ,jpτσ`1qqq (38)

where pξjpτ, ξr,jpτσq, ξℓ,jpτσ`1qq :“ p1 ´ λqξr,jpτσq `

λξℓ,jpτσ`1q, and λ :“
τ ´ τσ

τσ`1 ´ τσ
P r0, 1s.

†The proof sketch for discrete state space is as follows. The MSBP (34) can
be recast [45, Sec. 4.1] as a Kullback-Leibler projection to a convex set that is
an intersection of |Λ| hyperplanes given by (34b). That this iterative Kullback-
Leibler projection has guaranteed convergence follows from the seminal result
on iterative Bregman projection [48], and from the fact that the Kullback-
Leibler divergence is an instance of Bregman divergence. That the rate is
linear follows from the co-ordinate descent analysis by Luo and Tseng [49,
p. 25-26].

For the continuous state space, ref. [46, Thm. 4.7] proves the convergence
of multi-marginal recursions. Ref. [47, Sec. 3] extends the result of [46] by
showing linear rate of convergence.

For numerically solving bi-marginal SBPs (i.e., the case
s “ 2, J “ 1), the Sinknorn recursions (36) have become the
standard [50]–[53]. However, applying the same is challenging
for MSBPs because computing projpj,σq pK d Uq requires
O
`

n|Λ|
˘

operations. The same issue arises for computing
projpj1,σ1q,pj2,σ2q pK d Uq. For both projections, this com-
plexity can be reduced by exploiting the structure of the
Hilbert-Schmidt inner product xK,Uy. Specifically, we make
use of the following results from [12].

Lemma 2. Let the tensor U be as in (35c), and consider a
tensor K P pRnq

b|Λ|.
(i) [12, Lemma 1] For a fixed pj, σq P Λ, if xK,Uy “

wJ
1 diag

`

uj
σ

˘

w2 for some vectors w1,w2 P Rn that do not
depend on uj

σ , then

projpj,σqpK d Uq “ w1 d uj
σ d w2.

(ii) [12, Lemma 2] For fixed pj1, σ1q, pj2, σ2q P Λ, if
xK,Uy “ wJ

1 diagpuj1
σ1

qΦdiagpuj2
σ2

qw3 for some vectors
w1,w3 P Rn and matrix Φ P Rnˆn where w1,Φ,w3 do
not depend on uj1

σ1
,uj2

σ2
, then

projpj1,σ1q,pj2,σ2qpKdUq “ diagpw1duj1
σ1

qΦdiagpuj2
σ2

dw3q.

The special inner product structures in Lemma 2 arises
from structured tensors K which are in turn induced by the
graph structures discussed earlier. Thus, expressing xK,Uy in
the appropriate forms helps compute the desired projections.
Below, we show how the imposition of structure on K allows
this to be done efficiently.

A. Projections for Path Structured MSBP

For software running on a single CPU core, we have J “ 1
as in Sec. IV-C. The corresponding MSBP is (29). Here, the
cost tensor C in (24) has a path structure

“

Cpiσ |σPJsKq

‰

“ rCi1,...,iss “

s´1
ÿ

σ“1

”

Cσ
iσ,iσ`1

ı

(39)

where the matrix Cσ P Rnˆn
ě0 encodes the cost of transporting

unit mass from tξipτσquni“1 to tξipτσ`1quni“1. This allows us
to write K in (35a) as

“

Kpiσ |σPJsKq

‰

“

s´1
ź

σ“1

”

Kσ
iσ,iσ`1

ı

(40)

which leads to the following expressions for the marginal
projections.

Proposition 4. [12, Prop. 2], [28, Prop. 1] If C has the form
(39), Kσ :“ expp´Cσ{εq P Rnˆn

ě0 , K as in (40), and U as
in (35c), then (27) and (28) can be expressed as

projσpK d Uq“

˜

uJ
1K

1
σ´1
ź

k“2

diagpukqKk

¸J

d uσd

˜̃

s´1
ź

k“σ`1

Kk´1diagpukq

¸

Ks´1us

¸

@σ P JsK, (41)

7

and projσ1,σ2
pK d Uq “

diag

˜

uJ
1 K

1
σ1´1
ź

k“2

diagpukqKk

¸

σ2
ź

k“σ1`1

`

Kk´1diagpukq
˘

diag

˜̃

s´1
ź

k“σ2`1

Kk´1diagpukq

¸

Ks´1us

¸

@pσ1, σ2q P tJsKb2 | σ1 ă σ2u. (42)

Observe that even the naı̈ve computation of (41) is domi-
nated by 2s´4 matrix-vector multiplications (by cancellation,
(36) can be computed by s ´ 1 such multiplications; see
[28, Remark 3]). Since such multiplications have Opn2q com-
plexity, each Sinkhorn iteration has O

`

ps ´ 1qn2
˘

complexity
– linear in s, and a great improvement from the general
Opnsq complexity of the method. Our method’s O

`

ps ´ 1qn2
˘

complexity is sharp for exact computation. The recent work
[54] reduces the complexity in n from quadratic to linear at
the expense of approximate computation.

Remark 4. While it is clear from their expressions that
the bimarginal projection (42) has similar order-of-magnitude
complexity to the unimarginal projection (41), hereafter we
focus only on the complexity of the latter, as these are
performed every Sinkhorn iteration until the method converges.
Following this, bimarginal projections of the solution Mopt

onto each pair of marginals of interest are to be performed
only once a posteriori, and so exact floating-point operational
count for these projections is not critical.

B. Projections for Barycentric MSBP

For software running on multiple CPU cores, we have J ą

1. The corresponding barycentric MSBP (31) formulated in
Sec. IV-D involves a tree that is more general than a path.

In this subsection, we let n0 denote the number of samples
in the barycentric CPU. For the sake of generality, here we
derive the complexity for the projections in terms of n and
n0. Then, C,M ,U P pRnq

bJs
ě0 b pRn0q

bs
ě0. For n0 ‰ n,

formulation (34)-(35) applies mutatis-mutandis.
Recall that here the index set Λ “ ΛBC as in (30). The cost

tensor C for barycentric MSBP takes the form

”

Cpipj,σq|pj,σqPΛBCq

ı

“

s´1
ÿ

σ“1

”

C0,σ
ip0,σq,ip0,σ`1q

ı

`

s
ÿ

σ“1

J
ÿ

j“1

”

Cj,σ
ipj,σq,ip0,σq

ı

(43)

where the matrices C0,σ P Rn0ˆn0
ě0 are the ground cost matri-

ces between barycenters ξ0pτσq and ξ0pτσ`1q for σ P Js´1K,
whereas Cj,σ P Rn0ˆn

ě0 are those between the CPU marginals
ξjpτσq and their barycenters ξ0pτσq, for pj, σq P JJKˆJsK. So
now, we can write K in (35a) as
”

Kpipj,σq|pj,σqPΛBCq

ı

“

ˆ s´1
ź

σ“1

”

K0,σ
ip0,σq,ip0,σ`1q

ı

˙

ˆ

s
ź

σ“1

J
ź

j“1

”

Kj,σ
ipj,σq,ip0,σq

ı

. (44)

With this, the projections can be computed as follows (proof
in Appendix A).

Proposition 5. If C has the form (43), Kj,σ :“
expp´Cj,σ{εq, K as in (44), and U as in (35c), then the
projections (27) and (28) can be expressed as

projp0,σqpK d Uq“

˜

pJ
1K

0,1
σ´1
ź

k“2

diagppkqK0,k

¸J

d pσd

˜̃

s´1
ź

k“σ`1

K0,k´1diagppkq

¸

K0,s´1ps

¸

@σ P JsK, (45a)

projpj,σqpK d Uq“ uj
σ d Kj,σJ

˜̃

pJ
1K

0,1
σ´1
ź

k“2

diagppkqK0,k

¸J

d
`

pσ m
`

Kj,σuj
σ

˘˘

d

˜̃

s´1
ź

k“σ`1

K0,k´1diagppkq

¸

K0,s´1ps

¸

@pj, σq P JJK ˆ JsK, (45b)

and for pj, σq P JJKˆJsK and σ1, σ2 P JsK such that σ1 ă σ2,

projp0,σq,pj,σqpK d Uq “ diagpu0
σqdiag

´

K0,σ´1J
ρp0,σq,pj,σq

¯

Kj,σdiagpuj
σq, (46a)

projp0,σ1q,p0,σ2qpK d Uq “ diag

˜

pJ
1 K

0,1
σ1´1
ź

k“2

diagppkqK0,k

¸

d diagppσ1
q

σ2
ź

k“σ1`1

`

K0,k´1diagppkq
˘

d diag

˜̃

s´1
ź

k“σ2`1

K0,k´1diagppkq

¸

K0,s´1ps

¸

(46b)

where pσ :“ u0
σ d p

Ä

jPJJK K
j,σuj

σq for σ P JsK, and

ρp0,σq,pj,σq :“

˜

pJ
1K

0,1
σ´1
ź

k“2

diagppkqK0,k

¸J

d
`

pσ m
`

u0
σ d Kj,σuj

σ

˘˘

d
˜̃

s´1
ź

k“σ`1

K0,k´1diagppkq

¸

K0,s´1ps

¸

@σ P JsK.

Similar to the single-core case in the Sec. V-A, the com-
putational complexity for all projections in Proposition 5 are
linear in J and s. Specifically, the computation of the s
pσ vectors in Proposition 5 requires a total of Js matrix-
vector multiplications, and the total number of floating-point
operations when projecting onto a barycenter (as in (45a)) is

Jspn0n ` n0q ` p2n0q ` p2s ´ 2qn2
0. (47)

The number of floating-point operations when projecting onto
a non-barycentric marginal (as in (45b)) is

Jspn0n ` n0q ` p3n0 ` n ` 2n0nq ` p2s ´ 2qn2
0. (48)

8

C. Projections for Series-Parallel Graph-structured MSBP

The series-parallel graph-structured MSBP (33) formulated
in Sec. IV-E involves a series-parallel graph which is not a
tree. Recall that the corresponding index set Λ “ ΛSP as in
(32). For any fixed j P JJK, let

Λj
SP :“ tju ˆ pJsKzt1, suq .

Then, the cost tensor C for series-parallel graph-structured
MSBP takes the form

”

Cpipj,σq|pj,σqPΛSPq

ı

“

J
ÿ

j“1

”

Cj

ip1,1q,pipj,σq|pj,σqPΛj
SPq,ip1,sq

ı

(49)

where each Cj P pRnq
bs
ą0 is the path-structured cost tensor

along the jth CPU’s path, i.e.,

”

Cj

ip1,1q,pipj,σq|pj,σqPΛj
SPq,ip1,sq

ı

“ Cj,1
ip1,1q,ipj,2q

`

s´2
ÿ

σ“2

Cj,σ
ipj,σq,ipj,σ`1q

` Cj,s´1
ipj,s´1q,ip1,sq

, (50)

wherein the matrices Cj,1 P Rnˆn
ě0 are the ground cost

matrices between marginals ξ1pτ1q and ξjpτ2q for j P JJK, and
similarly Cj,s´1 maps between ξjpτs´1q and ξ1pτsq. When
σ P Js ´ 2Kzt1u, the matrices Cj,σ map between ξjpτσq and
ξjpτσ`1q.

Consequently, we write K in (35a) as

”

Kpipj,σq|pj,σqPΛSPq

ı

“

J
ź

j“1

”

Kj

ip1,1q,pipj,σq|pj,σqPΛj
SPq,ip1,sq

ı

, (51a)

”

Kj

ip1,1q,pipj,σq|pj,σqPΛj
SPq,ip1,sq

ı

“ Kj,1
ip1,1q,ipj,2q

,

¨

˜

s´2
ź

σ“2

Kj,σ
ipj,σq,ipj,σ`1q

¸

Kj,s´1
ipj,s´1q,ip1,sq

, (51b)

and the associated projections can be expressed as follows
(proof in Appendix B).

Proposition 6. If C has the form (49), Kj,σ :“
expp´Cj,σ{εq, K as in (51), and U as in (35c), then letting

Ak :“ Kk,1

˜

s´1
ź

σ“2

diagpuk
σqKk,σ

¸

, Bj :“
ä

k‰j

Ak , (52)

and

Xj
σ :“ Kj,1

ˆ σ´1
ź

m“2

diagpuj
mqKj,m

˙

,

Y j
σ :“ Kj,σ

ˆ s´1
ź

m“σ`1

diagpuj
mqKj,m

˙

,

Zj
σ1,σ2

:“ Kj,σ1

ˆ σ2´1
ź

m“σ1`1

diagpuj
mqKj,m

˙

,

(so Ak “ Xk
s “ Y k

1), the projection (27) takes the form

projp1,1qpK d Uq“ u1
1 d

˜

J
ä

k“1

Ak

¸

u1
s, (53a)

projp1,sqpK d Uq“

˜

u1
1

J
¨

J
ä

k“1

Ak

¸J

d u1
s, (53b)

projpj,σqpK d Uq“ uj
σddiag

´

Y j
σ diagpu1

sqBJ
j diagpu1

1qXj
σ

¯

,

(53c)

where pj, σq P
Ť

kPJJK Λ
k
SP in (53c). Furthermore, the

projection (28) can be expressed as

projp1,1q,pj,2qpK d Uq“ diag
`

u1
1

˘

¨

˜

Kj,1 d

ˆ

Bjdiagpu1
sqY j

2

J
˙

¸

¨ diag
´

uj
2

¯

, (54a)

projpj,s´1q,p1,sqpK d Uq“ diag
´

uj
s´1

¯

¨

˜

Kj,s´1 d

ˆ

Xj
s´1

J
diagpu1

1qBj

˙

¸

¨ diag
`

u1
s

˘

, (54b)

projpj,σq,pj,σ`1qpK d Uq“ diag
`

uj
σ

˘

¨

˜

Kj,σ d

ˆ

Xj
σ

J
diagpu1

1qBjdiagpu1
sqY j

σ`1

J
˙

¸

¨diag
´

uj
σ`1

¯

.

(54c)

Directly computing Ak in (52) requires 1`2ps´2q matrix-
matrix multiplications, each in this case involving n3 floating-
point operations. Thus, (53a) and (53b) each involve

Jp1 ` 2ps ´ 2qqn3 ` pJ ` 1qn2 ` n (55)

operations, and (53c) involves

pJp1 ` 2ps ´ 2qq ` 3qn3 ` pJ ´ 1qn2 ` n (56)

operations.

Remark 5. For n0 “ n, s ě 2, J ě 2, we note that

the expression (48) “ pJs ` 2sqn2 ` pJs ` 4qn ě 8n2 ` 8n.

In contrast, the expression (56) “ p2Js ´ 3J ` 3qn3 ` pJ ´

1qn2 ` n ě n3 `n2 `n. Thereby for n large, Propositions
5 and 6 enable computation of unimarginal projections with
OpJsn2q complexity for the barycentric case, and OpJsn3q

for the series-parallel case. The n3 complexity of the latter
is a consequence of the treewidth (“ 2) of the series-parallel
graph structure. Both cases have complexity linear in Js.

D. Overall Algorithm

Having shown that the computation of the projections are
tractable in the number of marginals, we are able to efficiently
solve (29) for all of our proposed graph structures: path,
barycentric (BC), and series-parallel (SP). In applying MSBP
for computational resource prediction, the choice of problem
graph structure can affect the quality of the prediction. For
single-core software, all graph structures necessarily degen-
erate to the path structure. But for a multi-core software,

9

there are two structurally distinct options: BC and SP. In the
following Sec. VI, we evaluate the merits of these structures.

Regardless of the choice of graph structure, our overall
methodology is as follows.
Step 1. Execute the software of interest n times over r0, ts,
generating hardware resource state snapshots tξi,j pτσquni“1

for all pj, σq P JJK ˆ JsK. Our marginal distributions µj
σ are

then as per (9).
Step 2. Pick an appropriate graph structure (path, BC, or
SP). From the marginals in Step 1, construct the bimarginal
Euclidean distance matrices Cj,σ . If the BC structure is used,
compute the barycenters µ0

σ . Run the Sinkhorn recursion (36)
until convergence, i.e. until the Hilbert projective metric (4)
between the new and old uj

σ is less than some numerical
tolerance for all marginals. The resulting Mopt given by (37)
is the solution for our MSBP.
Step 3. Given any time τ P r0, tq and CPU index j, use (38)
to predict our estimate pµj

τ for the hardware resource usage
distribution of CPU j at time τ .

VI. EXPERIMENTS

In Sec. IV and V, we explained how to formulate and
efficiently solve graph-structured MSBPs to compute the opti-
mal mass transport plan Mopt between marginal distributions
(9) which in our application correspond to the statistics of
computational resource usage at times (6).

In Remark 3, we outlined how the computed Mopt can
be used to make predictions on a software’s resource usage
at any (possibly out-of-sample) given time. To evaluate the
quality of these predictions, in this Section we perform two
experiments: one with a single-core software and one with a
multi-core software. We quantify the quality of our predictions
against known resource usage data.

For all experiments herein, benchmark programs were pro-
filed on an Intel Xeon E5-2683 v4 processor with 16 cores and
a 40MB LLC running Ubuntu 16.04.7. We leveraged Intel’s
Cache Allocation Technology (CAT) [55] and Memguard [56]
to control the amount of LLC and memory bandwidth available
to the benchmark programs.

The implementation of the algorithms described in Sec. V,
the solution of the MSBP (34) itself, and all other processing
of profiled data, were done in MATLAB R2019b on a Debian
12 Linux machine with an AMD Ryzen 7 5800X CPU.

A. Single Core Experiment

For this experiment we used a custom single-core software‡

which we wrote in C language, implementing a path-following
nonlinear model predictive controller (NMPC) for a kinematic
bicycle model (KBM) [21], [57]. At each control step, the
NMPC used the IPOPT nonlinear program solver [58] to
determine the control decision which minimizes the sum of
various measurements of deviation from the desired path while
promoting smoothness of the control inputs. For details on this
control software, we refer the readers to [28, Sec. V].

‡Github repository: https://github.com/abhishekhalder/CPS-Frontier-Task3-Collaboration

1) Profiling: To gather the execution profiles for our NMPC
control software, we ran our application on an isolated CPU
and used the Linux perf tool [59], version 4.9.3, to sample the
computational resource state vector ξ as in (7) every 10 ms.

For each profile, we ran the NMPC software for nc :“
5 control steps with a fixed reference trajectory and a fixed
combination of LLC and memory bandwidth partitions (30
MB and 30 MBps respectively, both allocated in blocks of 2
MB) to ensure a fixed execution context.

For our chosen context, we profiled the controller n :“ 500
times. Fig. 5 overlays all of the profiles, split into its three
components as per (7).

2) Numerical Results: To account for the asynchrony
among the profiles, we analyzed the statistics of the control
cycle end times, i.e., the (random) times needed to complete
one pass of the NMPC feedback loop. For details, we refer the
readers to [28, Table I, Fig. 4]. We then consider snapshots
of the profiling data at times corresponding to the average
control cycle end times as well as at sint equi-spaced intervals
between control cycles. This results in s “ 1 ` ncpsint ` 1q

total marginals forming our path-structured MSBP (29), and
completes Step 1 in section V-D.

Setting the regularizer ε “ 0.1 and a numerical tolerance
of 10´14, we solve the discrete path-structured MSBP (29)
with squared Euclidean cost C as in (39). Fig. 6 depicts the
linear convergence of the Sinkhorn iterations (as in Proposition
3) shown w.r.t. the Hilbert metric (4). The path structure
of the problem yields efficient computation of the Sinkhorn
iterations leading to rapid convergence. In particular, setting
sint :“ 4 (and so s “ 26), we solve the MSBP (29) with
ns “ 50026 decision variables in approx. 10s and « 120
Sinkhorn iterations with no optimizations to the code. Notice
that problems of this size are impractical to load in memory,
let alone to solve efficiently using off-the-shelf solvers. This
completes Step 2 in section V-D.

For Step 3, we compute sint ` 1 “ 5 distributional
predictions pµ

pτ
pσ

at times pτ
pσ , temporally equispaced throughout

the duration of the 3rd control cycle, i.e., between τ2psint`1q`1

and τ3psint`1q`1, with

pτ
pσ “ τ2psint`1q`1 `

˜

τ3psint`1q`1 ´ τ2psint`1q`1

sint ` 2

¸

pσ,

where the index pσ P Jsint ` 1K. Since pτ
pσ P

rτ2psint`1q`pσ, τ2psint`1q`pσ`1s, we used (38) with σ “ 2psint`

1q ` pσ to arrive at the predictions. In Fig. 7, we compare our
predictions against the observed empirical distributions.

Fig. 7 shows that our predictions capture the mode(s) of the
measured distributions quite well. Further improvements can
be made by placing marginals closer together in time. In this
experiment, we do this by increasing the value of sint, i.e.,
by placing more marginals equi-spaced between control cycle
boundaries. In Table II, we report the Wasserstein distances
W p¨, ¨q as in (3) between the corresponding predicted and
measured distributions:

W
pσ :“ W ppµ

pτ
pσ
, µ

pτ
pσ
q @pσ P Jsint ` 1K. (57)

10

https://github.com/abhishekhalder/CPS-Frontier-Task3-Collaboration

Fig. 5: Components of the measured feature vector ξ in (7) for the single core experiment in Sec. VI-A, for all of the five control cycles
for 500 executions of the NMPC software, for a fixed cyber-physical context.

Fig. 6: Linear convergence of Sinkhorn iterations (36) for the single
core experiment in Sec. VI-A, for sint “ 4 w.r.t. the Hilbert’s
projective metric dH in (4) between uσPJsK at iteration indices k

and k ´ 1.
sint W1 W2 W3 W4 W5

0 2.049 ˆ 10´4 - - - -
1 2.270 ˆ 10´4 1.175 ˆ 10´4 - - -
2 5.772 ˆ 10´4 9.163 ˆ 10´5 3.794 ˆ 10´5 - -
3 2.241 ˆ 10´4 1.643 ˆ 10´4 1.234 ˆ 10´4 6.010 ˆ 10´5 -
4 6.372 ˆ 10´5 1.2691 ˆ 10´4 9.176 ˆ 10´5 6.689 ˆ 10´5 2.111 ˆ 10´5

TABLE II: For the single core experiment in Sec. VI-A, the number
of intracycle marginals sint vs. Wasserstein distances W

pσ as in (57).

We computed (57) as the square roots of the optimal values of
the corresponding Kantorovich linear programs [60, Ch. 3.1]
that results from specializing (29) with s “ 2, ε “ 0. As
expected, placing the marginals closer together in time results
in higher accuracy in predictions.

B. Multi-core Experiment

For this experiment, we used the Canneal benchmark from
the PARSEC suite [61]. Canneal is a resource-heavy, multi-
threaded application that simulates an anneal workload to
minimize routing costs for chip design. Specifically, Canneal
pseudorandomly picks pairs of input elements to swap in
a tight loop, leading to a heavy reliance on both cache
and memory bandwidth. This can be seen in Fig. 8 where
the average number of LLC misses decreases as the cache

Fig. 7: Predicted pµ
pτ
pσ

(blue) vs. measured µ
pτ
pσ

(red) at times τ̂
pσPJ5K

for the single core experiment in Sec. VI-A, during the 3rd control
cycle with sint “ 4. Distributions at the control cycle boundaries are
in black.

size increases. The dashed vertical lines represent the cache
allocation used in our profiling.

1) Profiling: To enable multi-core profiling, we made a
small modification to Canneal’s source code to pin each
created thread to its own core. We then use perf, as with the
single core experiment, to sample the computational resource
state ξj , j P JJK, as in (7) for every 10 ms.

Desiring to examine how Canneal behaves when its resource
allocation varies across its cores, we profile using a single
context defined by J “ 4 cores, and resource allocations
of p24, 10, 4, 2q MBs of LLC and p125, 25, 5, 1q MBps of
memory bandwidth, ordered left-to-right by increasing CPU
number. So, CPU 1 has the highest resource allocation while
CPU 4 has the lowest. For this choice of context, we collected
a total of n “ 400 profiles for the Canneal software; these
profiles are shown in Fig. 9. For the barycentric formulation,
we fix n0 “ 600.

2) Numerical Results: We placed snapshots at times τσ P

t0.0, 0.5, 1.5, 2.5, 5.0, 9.5, 10.5u (so s “ 7) and interpolated at
times pτ

pσ P t0.8, 2.2, 7.0, 9.0, 10.0u (so pσ P J5K). Both BC and

11

Fig. 8: LLC miss rate per cache size for the Canneal benchmark in
Sec. VI-A. The dashed vertical lines show our resource allocations
per core.
j W j

1 W j
2 W j

3 W j
4 W j

5

1 4.077 ˆ 10´5 1.009 ˆ 10´7 2.131 ˆ 10´7 1.976 ˆ 10´7 1.509 ˆ 10´7

2 0 1.135 ˆ 10´7 2.342 ˆ 10´7 7.684 ˆ 10´8 8.805 ˆ 10´8

3 0 1.149 ˆ 10´7 1.534 ˆ 10´7 5.752 ˆ 10´8 6.538 ˆ 10´8

4 0 3.647 ˆ 10´8 2.146 ˆ 10´7 1.906 ˆ 10´7 9.713 ˆ 10´8

j W j
1 W j

2 W j
3 W j

4 W j
5

1 4.254 ˆ 10´5 1.020 ˆ 10´7 2.023 ˆ 10´7 1.412 ˆ 10´7 2.589 ˆ 10´7

2 0 2.386 ˆ 10´7 2.329 ˆ 10´7 8.962 ˆ 10´8 1.908 ˆ 10´7

3 0 2.392 ˆ 10´7 1.513 ˆ 10´7 4.693 ˆ 10´8 1.100 ˆ 10´7

4 0 4.868 ˆ 10´8 2.050 ˆ 10´7 1.617 ˆ 10´7 1.204 ˆ 10´7

TABLE III: Wasserstein distances (58) between the measured distri-
butions and those predicted in the BC case (top) and SP case (bottom)
for the Canneal benchmark in Sec. VI-B at each τ̂

pσPJ5K.

SP methods were then used to solve the MSBPs (31) and (33)
respectively, therefrom we used (38) to estimate the resource
usage distributions at the desired times.

Once again, the code for solution of (31) and (33), in-
cluding the computation of the projections in Propositions
5 and 6, were implemented in MATLAB with some minor
optimizations owing to the large size of the problem (the BC
and SP formulations have 40035 and 40022 decision variables
respectively; see Sec. V).

With the regularizer ε “ 0.05 and a numerical tolerance
of 10´13, the BC and SP algorithms converged in 0.4810s
and 0.5055s, with 110 and 127 iterations respectively (see
Fig. 10). The predicted distributions, marginalized to each
component of ξj , j P JJK, are shown in Fig. 11. Finally,
Table III compares the Wasserstein distances of the predicted
distributions for each CPU from those measured from our
profiles, i.e.,

W j
pσ :“ W ppµj

pτ
pσ
, µj

pτ
pσ
q @pj, pσq P JJK ˆ Jsint ` 1K. (58)

These figures show the same behavior as in the single-
core experiment – primarily, that our predictions accurately
capture the mode(s) of the resource usage distribution at all
interpolation times. Note that at pσ “ 1, pτ

pσ “ 0.8, all CPUs
except the CPU 1 are idle. Our predictions match the measured
distribution exactly for the CPUs 2, 3, and 4 (i.e. the Dirac
delta at 0 for all components), but not so for CPU 1, which
has a nontrivial distribution.

VII. CONCLUSIONS

This work explores a new vision for learning and pre-
dicting stochastic time-varying computational resource usage
from hardware-software profile data in both single and multi-
core platforms. We propose to formulate the problem as a
distributional learning problem directly in the joint space of
correlated computational resources such as processor avail-
ability, memory bandwidth, etc. This leads to graph-structured
multi-marginal Schrödinger bridge problems (MSBPs) where
the specific graph structures are induced by underlying single
or multi-core nature of computation. At first glance, such
formulations for scattered profile data appear computationally
intractable because they involve tensorial convex optimization
problems where the number of primal variables is exponen-
tial in the number of observational snapshots. By leverag-
ing strong duality and graph structures, we show that the
computational complexities can be reduced from exponential
to linear without approximation, and these problems can in
fact be solved efficiently via nonparametric computation with
maximum likelihood guarantees in the space of distributions.
This enables us to predict the most likely joint (and hence
all marginal) computational resource usage distribution at any
user-specified query time. We emphasize that our proposed
algorithms and the benchmark results reported here, directly
work with the scattered profile data without gridding the joint
space of computational resource (here, instructions retired,
LLC requests, LLC load misses). For the single core case,
we illustrate the computational details for a nonlinear model
predictive controller benchmark. For the multi-core case, we
provide the results for a benchmark software from real-time
systems literature.

The learning-scheduling co-design that builds on the pro-
posed method, will comprise our future work. Another direc-
tion of interest is to account for the asynchronous nature of the
profiles by formulating the corresponding MSBPs with joint
space-time stochasticity, i.e., as distributional generalization of
optimal stopping problems initiated in the recent work [62].
Our multi-marginal formulation also opens up the possibility
to incorporate additional flow rate constraints as in [63].

APPENDIX

A. Proof of Proposition 5

With K as in (44) and U as in (35b), consider the Hilbert-
Schmidt inner product

xK,Uy “
ÿ

ipr,ℓq,

pr,ℓqPΛBC

”

Kpipr,ℓq|pr,ℓqPΛBCq

ı ”

Upipr,ℓq|pr,ℓqPΛBCq

ı

“
ÿ

ipr,ℓq,

pr,ℓqPΛBC

˜

ˆ s´1
ź

σ“1

”

K0,σ
ip0,σq,ip0,σ`1q

ı

˙

ˆ s
ź

σ“1

J
ź

j“1

”

Kj,σ
ipj,σq,ip0,σq

ı

˙ˆ s
ź

σ“1

J
ź

j“0

“

puj
σqipj,σq

‰

˙

¸

“
ÿ

ip0,ℓq,

ℓPJsK

ÿ

ipr,ℓq,

pr,ℓqPJJKˆJsK

˜

ˆ s´1
ź

σ“1

”

K0,σ
ip0,σq,ip0,σ`1q

ı

˙

12

Fig. 9: Components of ξj , j P J4K, for the n “ 400 executions of the Canneal benchmark in Sec. VI-B, for all CPUs. Observe the erratic
behavior of CPU4, which has the least hardware resources, as well that of CPU1, which has the most.

Fig. 10: Convergence of Sinkhorn iterations of both BC (left) and
SP (right) algorithms for the Canneal benchmark in Sec. VI-B, shown
w.r.t. the Hilbert projective metric dH as in (4).

s
ź

σ“1

ˆ J
ź

j“1

”

Kj,σ
ipj,σq,ip0,σq

ı

˙ˆ J
ź

j“0

“

puj
σqipj,σq

‰

˙

¸

“
ÿ

ip0,ℓq, ℓPJsK

˜

ˆ s´1
ź

σ“1

”

K0,σ
ip0,σq,ip0,σ`1q

ı

˙

s
ź

σ“1

ÿ

ipr,ℓq,

pr,ℓqPJJKˆJsK

ˆ J
ź

j“1

”

Kj,σ
ipj,σq,ip0,σq

ı

˙ˆ J
ź

j“0

“

puj
σqipj,σq

‰

˙

¸

“
ÿ

ip0,ℓq, ℓPJsK

˜

ˆ s´1
ź

σ“1

”

K0,σ
ip0,σq,ip0,σ`1q

ı

˙

s
ź

σ“1

„ˆ

u0
σ d

´ J
ä

j“1

Kj,σuj
σ

¯

looooooooooomooooooooooon

:“pσ

˙

ip0,σq

ȷ

¸

“ pJ
1

ˆ s´1
ź

σ“2

K0,σ´1diagppσq

˙

K0,s´1ps (59)

“ pJ
1

ˆ σ´1
ź

m“2

K0,m´1diagppmq

˙

K0,σ´1

¨ diag

ˆ

u0
σ d

´ J
ä

j“1

Kj,σuj
σ

¯

˙

¨

ˆ s´1
ź

m“σ`1

K0,m´1diagppmq

˙

K0,s´1ps

(60)

where (59) follows by the same argument as for Proposition
4 (see also [28, Proposition 1]). Then the unimarginal projec-
tions (45a)-(45b) follow by applying Lemma 2 to (60).

For the bimarginal projections, let pj, σq P JJK ˆ JsK and
σ1, σ2 P JsK such that σ1 ă σ2. Starting with (59), we have

xK,Uy “ pJ
1

ˆ s´1
ź

σ“2

K0,σ´1diagppσq

˙

K0,s´1ps

“ pJ
1

ˆ s
ä

m“2

K0,m´1pm

˙

“ 1JdiagppσqK0,σ´1J

ˆ

p1 d

s
ä

m“2,
m‰σ

K0,m´1pm

˙

“ 1Jdiag

ˆ

u0
σ d

´ J
ä

k“1

Kk,σuk
σ

¯

˙

13

Fig. 11: Resource usage distributions predicted with the BC structure (red), the SP structure (blue), vs. the measured distributions (grey) at
prediction times pτ

pσ P J5K for the multi-core Canneal benchmark in Sec. VI-B.

K0,σ´1J

ˆ

p1 d

s
ä

m“2,
m‰σ

K0,m´1pm

˙

“ 1Jdiagpu0
σqdiag

ˆ J
ä

k“1
k‰j

Kk,σuk
σ

˙

diag

˜

K0,σ´1J

ˆ

p1 d

s
ä

m“2,
m‰σ

K0,m´1pm

˙

¸

Kj,σdiagpuj
σq1

“ 1Jdiagpu0
σq

diag

˜

K0,σ´1J

ˆ

p1 d

´ s
ä

m“2,
m‰σ

K0,m´1pm

¯´ J
ä

k“1
k‰j

Kk,σuk
σ

¯

˙

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“:ρp0,σq,pj,σq

¸

Kj,σdiagpuj
σq1 (61)

“

ˆ

pJ
1 K

0,1
σ1´1
ź

k“2

diagppkqK0,k

˙

¨ diagppσ1q

ˆ σ2´1
ź

k“σ1`1

K0,k´1diagppkq

˙

K0,σ2´1diagppσ2q

¨

ˆ s´1
ź

k“σ2`1

K0,k´1diagppkq

˙

K0,s´1ps. (62)

Then, (46a) follows from (61), and (46b) follows from ex-
panding diagppσ1

q and diagppσ2
q in (62), followed by the

application of Lemma 2. ■

B. Proof of Proposition 6

With K as in (51) and U as in (35b), we start with the
Hilbert-Schmidt inner product

xK,Uy “
ÿ

ipj,σq,

pj,σqPΛSP

”

Kpipj,σq|pj,σqPΛSPq

ı ”

Upipj,σq|pj,σqPΛSPq

ı

“
ÿ

ipj,σq,pj,σqPΛSP

˜

J
ź

k“1

”

Kk
ip1,1q,pipj,σq|pj,σqPΛk

SPq,ip1,sq

ı

¸

pu1
1qip1,1q

˜

J
ź

k“1

s´1
ź

σ“2

puk
σqipk,σq

¸

pu1
sqip1,sq

“ u1
1

J
J
ä

k“1

˜

Kk,1

˜

s´1
ź

σ“2

diagpuk
σqKk,σ

¸

loooooooooooooooomoooooooooooooooon

:“Ak

¸

u1
s (63)

“ u1
1

J

˜

ˆ

Kj,1

ˆ σ´1
ź

m“2

diagpuj
mqKj,m

˙

looooooooooooooooomooooooooooooooooon

:“Xj
σ

¨ diagpuj
σqKj,σ

ˆ s´1
ź

m“σ`1

diagpuj
mqKj,m

˙

loooooooooooooooomoooooooooooooooon

:“Y j
σ

˙

d
ä

k‰j

Ak

loomoon

:“Bj

¸

u1
s

14

“ trace
´

diagpu1
1q
`

Xj
σdiagpuj

σqY j
σ

˘

diagpu1
sqBJ

j

¯

“ 1Jdiag
´

diagpuj
σqY j

σ diagpu1
sqBJ

j diagpu1
1qXj

σ

¯

“ 1J
loomoon

wJ
1

¨diagpuj
σq ¨ diag

´

Y j
σ diagpu1

sqBJ
j diagpu1

1qXj
σ

¯

looooooooooooooooooooomooooooooooooooooooooon

w2

,

(64)

wherefrom the projections (53a) and (53b) follow by applying
Lemma 2 to (63). Similarly, (53c) follows by applying Lemma
2 to (64).

Next, for the bimarginal projections, we write

xK,Uy “ trace
´

diagpu1
1qXj

σ1
diagpuj

σ1
q

¨ Zj
σ1,σ2

diagpuj
σ2

qY j
σ2
diagpu1

sqBJ
j

¯

“ wJ
1 diagpu1

1q

˜

Kj,1 d

ˆ

Bjdiagpu1
sqY j

2

J
˙

¸

looooooooooooooooooomooooooooooooooooooon

Φ

diagpuj
2qw3

(65)

“ wJ
1 diagpuj

s´1q

˜

Kj,s´1d

ˆ

Xj
s´1

J
diagpu1

1qBj

˙

¸

loooooooooooooooooomoooooooooooooooooon

Φ

diagpu1
sqw3

(66)

“ wJ
1 diagpuj

σ1
q

˜

Zj
σ1,σ2

d

ˆ

Xj
σ1

J
diagpu1

1qBjdiagpu1
sqY j

σ2

J

˙

¸

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Φ

¨ diagpuj
σ2

qw3, (67)

where w1 “ w3 “ 1. Now (54a) follows from (65), (54b)
from (66), and (54c) from (67). ■

REFERENCES

[1] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of probabilistic
hard real-time systems,” in RTSS, 2002.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The
worst-case execution-time problem—overview of methods and survey
of tools,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 7, no. 3, pp. 1–53, 2008.

[3] R. I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM computing surveys (CSUR), vol. 43,
no. 4, pp. 1–44, 2011.

[4] S. J. Gil, I. Bate, G. Lima, L. Santinelli, A. Gogonel, and L. Cucu-
Grosjean, “Open challenges for probabilistic measurement-based worst-
case execution time,” IEEE Embedded Systems Letters, vol. 9, no. 3, pp.
69–72, 2017.

[5] L. Rüschendorf and L. Uckelmann, “On the n-coupling problem,”
Journal of multivariate analysis, vol. 81, no. 2, pp. 242–258, 2002.

[6] B. Pass, “Multi-marginal optimal transport: theory and applications,”
ESAIM: Mathematical Modelling and Numerical Analysis, vol. 49, no. 6,
pp. 1771–1790, 2015.

[7] G. Buttazzo, L. De Pascale, and P. Gori-Giorgi, “Optimal-transport
formulation of electronic density-functional theory,” Physical Review A,
vol. 85, no. 6, p. 062502, 2012.

[8] C. Cotar, G. Friesecke, and C. Klüppelberg, “Density functional theory
and optimal transportation with Coulomb cost,” Communications on
Pure and Applied Mathematics, vol. 66, no. 4, pp. 548–599, 2013.

[9] G. Carlier, A. Oberman, and E. Oudet, “Numerical methods for matching
for teams and wasserstein barycenters,” ESAIM: Mathematical Mod-
elling and Numerical Analysis, vol. 49, no. 6, pp. 1621–1642, 2015.

[10] J.-D. Benamou, G. Carlier, and L. Nenna, “Generalized incompressible
flows, multi-marginal transport and Sinkhorn algorithm,” Numerische
Mathematik, vol. 142, pp. 33–54, 2019.

[11] H. Ennaji, Q. Mérigot, L. Nenna, and B. Pass, “Robust risk management
via multi-marginal optimal transport,” Journal of Optimization Theory
and Applications, pp. 1–28, 2024.

[12] F. Elvander, I. Haasler, A. Jakobsson, and J. Karlsson, “Multi-marginal
optimal transport using partial information with applications in robust
localization and sensor fusion,” Signal Processing, vol. 171, p. 107474,
2020.

[13] I. Haasler, A. Ringh, Y. Chen, and J. Karlsson, “Multimarginal optimal
transport with a tree-structured cost and the Schrodinger bridge prob-
lem,” SIAM Journal on Control and Optimization, vol. 59, no. 4, pp.
2428–2453, 2021.

[14] M. Noble, V. De Bortoli, A. Doucet, and A. Durmus, “Tree-based diffu-
sion Schrödinger bridge with applications to Wasserstein barycenters,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[15] Y. Chen, T. T. Georgiou, and M. Pavon, “Stochastic control liaisons:
Richard sinkhorn meets gaspard monge on a schrodinger bridge,” Siam
Review, vol. 63, no. 2, pp. 249–313, 2021.

[16] A. M. Teter, Y. Chen, and A. Halder, “On the contraction coefficient
of the Schrödinger bridge for stochastic linear systems,” IEEE Control
Systems Letters, 2023.

[17] K. F. Caluya and A. Halder, “Finite horizon density steering for multi-
input state feedback linearizable systems,” in ACC. IEEE, 2020, pp.
3577–3582.

[18] K. F. Caluya and A. Halder, “Reflected Schrödinger bridge: Density
control with path constraints,” in ACC. IEEE, 2021, pp. 1137–1142.

[19] K. F. Caluya and A. Halder, “Wasserstein proximal algorithms for the
Schrödinger bridge problem: Density control with nonlinear drift,” IEEE
Transactions on Automatic Control, vol. 67, no. 3, pp. 1163–1178, 2021.

[20] I. Nodozi and A. Halder, “Schrödinger meets Kuramoto via Feynman-
Kac: Minimum effort distribution steering for noisy nonuniform ku-
ramoto oscillators,” in 2022 IEEE 61st Conference on Decision and
Control (CDC). IEEE, 2022, pp. 2953–2960.

[21] S. Haddad, A. Halder, and B. Singh, “Density-based stochastic reacha-
bility computation for occupancy prediction in automated driving,” IEEE
Transactions on Control Systems Technology, vol. 30, no. 6, pp. 2406–
2419, 2022.

[22] I. Nodozi, J. O’Leary, A. Mesbah, and A. Halder, “A physics-informed
deep learning approach for minimum effort stochastic control of col-
loidal self-assembly,” in 2023 American Control Conference (ACC).
IEEE, 2023, pp. 609–615.

[23] M. Amiri and L. Mohammad-Khanli, “Survey on prediction models of
applications for resources provisioning in cloud,” Journal of Network
and Computer Applications, vol. 82, pp. 93–113, 2017.

[24] D. Saxena, J. Kumar, A. K. Singh, and S. Schmid, “Performance analysis
of machine learning centered workload prediction models for cloud,”
IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 4,
pp. 1313–1330, 2023.

[25] V. Kumar, “Estimation of an early wcet using different machine learning
approaches,” in Advances on P2P, Parallel, Grid, Cloud and Internet
Computing, 2023, pp. 297–307.

[26] J. Lee, S. Y. Shin, S. Nejati, L. Briand, and Y. I. Parache, “Estimating
probabilistic safe wcet ranges of real-time systems at design stages,”
ACM Trans. Softw. Eng. Methodol., vol. 32, no. 2, mar 2023.

[27] K. Muts, “Multiobjective compiler-based optimizations for hard real-
time systems,” Ph.D. dissertation, Technische Universität Hamburg,
2022.

[28] G. A. Bondar, R. Gifford, L. T. X. Phan, and A. Halder, “Path structured
multimarginal Schrödinger bridge for probabilistic learning of hardware
resource usage by control software,” 2023 American Control Conference,
arXiv preprint arXiv:2310.00604, 2023.

[29] S. Warner, Modern algebra. Courier Corporation, 1990.
[30] G. Birkhoff, “Extensions of Jentzsch’s theorem,” Transactions of the

American Mathematical Society, vol. 85, no. 1, pp. 219–227, 1957.
[31] P. J. Bushell, “Hilbert’s metric and positive contraction mappings in a

Banach space,” Archive for Rational Mechanics and Analysis, vol. 52,
pp. 330–338, 1973.

[32] E. Kohlberg and J. W. Pratt, “The contraction mapping approach to
the perron-frobenius theory: Why Hilbert’s metric?” Mathematics of
Operations Research, vol. 7, no. 2, pp. 198–210, 1982.

[33] A. Dembo, Large deviations techniques and applications. Springer
Science & Business Media, 2009.

[34] E. Schrödinger, Über die umkehrung der naturgesetze. Verlag der
Akademie der Wissenschaften in Kommission bei Walter De Gruyter
u. Company., 1931.

[35] E. Schrödinger, “Sur la théorie relativiste de l’électron et l’interprétation
de la mécanique quantique,” in Annales de l’institut Henri Poincaré,
vol. 2, no. 4, 1932, pp. 269–310.

15

[36] C. Léonard, “A survey of the Schrödinger problem and some of its
connections with optimal transport,” Discrete & Continuous Dynamical
Systems-A, vol. 34, no. 4, pp. 1533–1574, 2014.

[37] I. N. Sanov, On the probability of large deviations of random variables.
United States Air Force, Office of Scientific Research, 1958.

[38] H. Follmer, “Random fields and diffusion processes,” Ecole d’Ete de
Probabilites de Saint-Flour XV-XVII, 1985-87, 1988.

[39] M. Pavon, G. Trigila, and E. G. Tabak, “The data-driven Schrödinger
bridge,” Communications on Pure and Applied Mathematics, vol. 74,
no. 7, pp. 1545–1573, 2021.

[40] I. Csiszár, “I-divergence geometry of probability distributions and min-
imization problems,” The annals of probability, pp. 146–158, 1975.

[41] J. M. Borwein, A. S. Lewis, and R. D. Nussbaum, “Entropy mini-
mization, DAD problems, and doubly stochastic kernels,” Journal of
Functional Analysis, vol. 123, no. 2, pp. 264–307, 1994.

[42] R. Diestel, “Graph theory 3rd ed,” Graduate texts in mathematics, vol.
173, no. 33, p. 12, 2005.

[43] J. Fan, I. Haasler, J. Karlsson, and Y. Chen, “On the complexity of the
optimal transport problem with graph-structured cost,” in International
conference on artificial intelligence and statistics. PMLR, 2022, pp.
9147–9165.

[44] J. M. Altschuler and E. Boix-Adsera, “Polynomial-time algorithms for
multimarginal optimal transport problems with structure,” Mathematical
Programming, vol. 199, no. 1, pp. 1107–1178, 2023.

[45] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, “Iterative
Bregman projections for regularized transportation problems,” SIAM
Journal on Scientific Computing, vol. 37, no. 2, pp. A1111–A1138, 2015.

[46] S. D. Marino and A. Gerolin, “An optimal transport approach for the
Schrödinger bridge problem and convergence of Sinkhorn algorithm,”
Journal of Scientific Computing, vol. 85, no. 2, p. 27, 2020.

[47] G. Carlier, “On the linear convergence of the multimarginal Sinkhorn
algorithm,” SIAM Journal on Optimization, vol. 32, no. 2, pp. 786–794,
2022.

[48] L. M. Bregman, “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex
programming,” USSR computational mathematics and mathematical
physics, vol. 7, no. 3, pp. 200–217, 1967.

[49] Z.-Q. Luo and P. Tseng, “On the convergence of the coordinate descent
method for convex differentiable minimization,” Journal of Optimization
Theory and Applications, vol. 72, no. 1, pp. 7–35, 1992.

[50] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” Advances in neural information processing systems, vol. 26,
2013.

[51] A. Genevay, G. Peyré, and M. Cuturi, “Learning generative models
with Sinkhorn divergences,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2018, pp. 1608–1617.

[52] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon,
S. Chambon, L. Chapel, A. Corenflos, K. Fatras, N. Fournier et al.,
“Pot: Python optimal transport,” Journal of Machine Learning Research,
vol. 22, no. 78, pp. 1–8, 2021.

[53] I. Nodozi, C. Yan, M. Khare, A. Halder, and A. Mesbah, “Neural
Schrödinger bridge with Sinkhorn losses: Application to data-driven
minimum effort control of colloidal self-assembly,” IEEE Transactions
on Control Systems Technology, vol. 32, no. 3, pp. 960–973, 2024.

[54] F. A. Ba and M. Quellmalz, “Accelerating the Sinkhorn algorithm for
sparse multi-marginal optimal transport via fast Fourier transforms,”
Algorithms, vol. 15, no. 9, p. 311, 2022.

[55] Intel, “Improving real-time performance by utilizing cache allocation
technology,” Apr. 2015, white Paper.

[56] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
bandwidth management for efficient performance isolation in multi-core
platforms,” IEEE Transactions on Computers, vol. 65, no. 2, pp. 562–
576, Feb 2016.

[57] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in 2015
IEEE intelligent vehicles symposium (IV). IEEE, 2015, pp. 1094–1099.

[58] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[59] “perf(1) — linux manual page,” https://man7.org/linux/man-pages/
man1/perf.1.html, accessed: 2023-09-29.

[60] G. Peyré and M. Cuturi, “Computational optimal transport: With appli-
cations to data science,” Foundations and Trends® in Machine Learning,
vol. 11, no. 5-6, pp. 355–607, 2019.

[61] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in 2008 Interna-

tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2008, pp. 72–81.

[62] A. Eldesoukey, O. M. Miangolarra, and T. T. Georgiou, “Schrödinger’s
bridges with stopping: Steering of stochastic flows towards spatio-
temporal marginals,” arXiv preprint arXiv:2404.07402, 2024.

[63] A. Dong, A. Stephanovitch, and T. T. Georgiou, “Monge–Kantorovich
optimal transport through constrictions and flow-rate constraints,” Auto-
matica, vol. 160, p. 111448, 2024.

16

https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf.1.html

	Introduction
	Preliminaries
	Stochastic Learning of Computational Resource
	MSBP and Graph Structures
	Classical SBP and its Maximum Likelihood Iterpretation
	MSBP Formulation
	Path Structured MSBP
	Barycentric MSBP
	Series-Parallel Graph Structured MSBP

	Algorithms
	Projections for Path Structured MSBP
	Projections for Barycentric MSBP
	Projections for Series-Parallel Graph-structured MSBP
	Overall Algorithm

	Experiments
	Single Core Experiment
	Profiling
	Numerical Results

	Multi-core Experiment
	Profiling
	Numerical Results

	Conclusions
	Appendix
	Proof of Proposition 5
	Proof of Proposition 6

	References

