
1

Path Structured Multimarginal Schrödinger Bridge for Probabilistic

Learning of Hardware Resource Usage by Control Software

Georgiy A. Bondar, Robert Gifford, Linh Thi Xuan Phan, Abhishek Halder

Abstract— Solution of the path structured multimarginal

Schrödinger bridge problem (MSBP) is the most-likely

measure-valued trajectory consistent with a sequence of ob-

served probability measures or distributional snapshots. We

leverage recent algorithmic advances in solving such structured

MSBPs for learning stochastic hardware resource usage by

control software. The solution enables predicting the time-

varying distribution of hardware resource availability at a

desired time with guaranteed linear convergence. We demon-

strate the efficacy of our probabilistic learning approach in

a model predictive control software execution case study. The

method exhibits rapid convergence to an accurate prediction

of hardware resource utilization of the controller. The method

can be broadly applied to any software to predict cyber-physical

context-dependent performance at arbitrary time.

I. INTRODUCTION

Control software in safety-critical cyber-physical systems
(CPS) is often designed and verified based on platform
models that do not fully capture the complexity of its
deployment settings. For example, it is common to assume
that the processor always operates at full speed, is dedicated
to the control software, and that overheads are negligible. In
practice, the hardware resources – such as last-level shared
cache (LLC), memory bandwidth and processor cycles –
often vary with time and depend on the current hardware
state, which is a reason why we observe different execution
times across different runs of the same control software [1].
This gap can lead to overly costly or unsafe design.

Measurement-based approaches and overhead-aware anal-
ysis can reduce the analysis pessimism or ensure safety [2].
The recent work [3] uses fine-grained profiles of the software
execution on an actual platform to make dynamic scheduling
and resource allocations. Supervisory algorithms that dynam-
ically switch among a bank of controllers – all provably safe
but some computationally more benign (and less performant)
than others – depending on the resource availability also
exist [4]. However, the effectiveness of these techniques
is contingent on the quality of prediction of the hardware
resource availability at a future instance or time horizon of
interest.

Georgiy A. Bondar is with the Department of Applied Math-
ematics, University of California, Santa Cruz, CA 95064, USA,
gbondar@ucsc.edu.
Robert Gifford and Linh Thi Xuan Phan are with the Department of Com-
puter and Information Science, University of Pennsylvania, Philadelphia, PA
19104, USA, {rgif,linhphan}@seas.upenn.edu.
Abhishek Halder is with the Department of Aerospace Engineering, Iowa
State University, Ames, IA 50011, USA, ahalder@iastate.edu.
This work was supported by NSF grants 2112755, 2111688 and 1750158.

In this work, we propose to predict the resource usage
by control software based on just a very small set of
measurements. This approach is attractive as it can reduce
measurement efforts while better handling potential vari-
ances.

A first-principle predictive model for hardware resource
availability based on semiconductor physics of the specific
platform is, however, unavailable. Furthermore, resources
such as cache and bandwidth are not only time-varying
and stochastic, but they are also statistically correlated.
This makes it challenging to predict the joint stochastic
variability of the hardware resource availability in general.
The challenge is even more pronounced for control software
because the computational burden then also depends on ad-
ditional context, e.g., reference trajectory that the controller
is tracking.

We note that for safety-critical CPS, predicting the joint
stochastic hardware resource state, as opposed to predicting a
lumped variable such as worst-case execution time, can open
the door for designing a new class of dynamic scheduling
algorithms with better performance than what is feasible
today while minimizing hardware cost.

This work proposes learning a joint stochastic process
for hardware resource availability from control software
execution profiles conditioned on CPS contexts (to be made
precise in Sec. III-A, III-B). Our proposed method leverages
recent advances in stochastic control – specifically in the
multimarginal Schrödinger bridge (MSBP) – to allow predic-
tion of time-varying joint statistical distributions of hardware
resource availability at any desired time.

Contributions: Our specific contributions are as follows.
• We show how recent algorithmic developments in solv-

ing the MSBP, enable probabilistic learning of hardware
resources. This advances the state-of-the-art at the in-
tersection of control, learning and real-time systems.

• The proposed method is statistically nonparametric, and
is suitable for high-dimensional joint prediction since it
avoids gridding the hardware feature/state space.

• The proposed formulation provably predicts the most
likely distribution given a sequence of distributional
snapshots for the hardware resource state.

• We explain that the resulting algorithm is an instance
of the multimarginal Sinkhorn iteration with path struc-
tured cost that is guaranteed to converge to a unique
solution, and enjoys linear rate of convergence. Its com-
putational complexity scales linearly w.r.t. dimensions,
linearly w.r.t. number of distributional snapshots, and
quadratically w.r.t. number of scattered samples.

ar
X

iv
:2

31
0.

00
60

4v
2

 [e
es

s.S
Y

]
3

O
ct

 2
02

3

2

Organization: We introduce the notations and preliminar-
ies in Sec. II. The problem formulation is detailed in Sec. III.
Sec. IV summarizes the overall methodology, which is then
followed by a numerical case study in Sec. V. Concluding
remarks are provided in Sec. VI.

II. NOTATIONS AND PRELIMINARIES

We use unboldfaced capital letters to denote matrices and
bold capital letters to denote tensors (of order three or
more). Unboldfaced (resp. boldfaced) small letters are used
to denote scalars (resp. vectors). Capital calligraphic letters
are reserved to denote sets.

Square braces are used to denote the components. For
instance, [Xi1,...,ir] denotes the (i1, . . . , ir)th component
of the order r tensor X , where (i1, . . . , ir) 2 Nr. We
use the r fold tensor product space notation

�
Rd
�⌦r

:=
Rd
⌦ . . .⌦ Rd

| {z }
r times

.

For two tensors X,Y of order r, we define their Hilbert-
Schmidt inner product as

hX,Y i :=
X

i1,...,ir

[Xi1,...,ir] [Yi1,...,ir] . (1)

The operators exp(·) and log(·) are understood element-
wise. We use � and ↵ to denote elementwise (Hadamard)
multiplication and division, respectively.

For measures µ, ⌫ defined on two Polish spaces, their prod-
uct measure is denoted by µ⌦ ⌫. The relative entropy a.k.a.
Kullback-Leibler divergence DKL(·k·) between probability
measures µ and ⌫ is

DKL(µk⌫) :=

(R
log dµ

d⌫ dµ if µ⌧ ⌫,

+1 otherwise,
(2)

where dµ
d⌫ denotes the Radon-Nikodym derivative, and µ⌧ ⌫

is a shorthand for “µ is absolutely continuous w.r.t. ⌫”.
The Hilbert (projective) metric (see e.g., [5]) dH (u,v)

between two vectors u,v 2 Rn
>0

is

dH (u,v) = log

✓
maxi=1,...,n ui/vi

mini=1,...,n ui/vi

◆
. (3)

We use the term “control cycle” to mean one pass of a
feedback control loop. Due to hardware stochasticity, each
control cycle completion takes variable amount of time.

III. PROBLEM FORMULATION

A. Context c

We consider a context vector c comprised of separable cyber
and physical context vectors

c :=

✓
ccyber
cphys

◆
. (4)

In this work, we consider an instance of (4) where

ccyber =

✓
allocated last-level cache

allocated memory bandwidth

◆
, (5)

where both features are allocated in blocks of some size, and

cphys = ydes(x) 2 GP([xmin, xmax]) , (6)

where GP denotes a Gaussian process over the domain
[xmin, xmax]. We work with a collection of contexts with
cardinality ncontext, i.e., a sample of contexts {ci}ncontext

i=1
.

B. Hardware Resource State ⇠

For concreteness, we define a hardware resource state or
feature vector used in our numerical case study (Sec. V):

⇠ :=

0

@
⇠1

⇠2

⇠3

1

A =

0

@
instructions retired

LLC requests
LLC misses

1

A . (7)

The three elements of ⇠ denote the number of CPU in-
structions, the number of LLC requests, and the number of
LLC misses in the last time unit (10 ms in our profiling),
respectively.

We emphasize that our proposed method is not limited
by what specific components comprise ⇠. To highlight this
flexibility, we describe the proposed approach for ⇠ 2 Rd

with suitable interpretations for the specific application.
For a time interval [0, t] of interest, we think of time-

varying ⇠ as a continuous time vector-valued stochastic
process over subsets of Rd. Suppose that s 2 N, s � 2
snapshots or observations are made for the stochastic state
⇠(⌧), 0  ⌧  t, at (possibly non-equispaced) instances

⌧1 ⌘ 0 < ⌧2 < . . . < ⌧s�1 < ⌧s ⌘ t.

Consider the snapshot index set JsK := {1, . . . , s}. For
a fixed context c, the snapshot observations comprise a
sequence of joint probability measures {µ�}�2JsK satisfyingR
dµ�(⇠(⌧�)) = 1. In other words,

⇠(⌧�) ⇠ µ� 8� 2 JsK. (8)

In our application, the data {µ�}�2JsK comes from control
software execution profiles, i.e., by executing the same
control software for the same c with all parameters and initial
conditions fixed. So the stochasticity in ⇠(⌧�) stems from the
dynamic variability in hardware resource availability.

In particular, for finitely many (say n) execution profiles,
we consider empirical distributions

µ� :=
1

n

nX

i=1

�(⇠ � ⇠i(⌧�)), (9)

where �(⇠ � ⇠i(⌧�)) denotes the Dirac delta at sample
location ⇠i(⌧�) where i 2 JnK, � 2 JsK. At any snapshot
index � 2 JsK, the set {⇠i(⌧�)}ni=1

is scattered data.
Given the data (8)-(9), we would like to predict the most

likely hardware resource state statistics

⇠(⌧) ⇠ µ⌧ for any ⌧ 2 [0, t]. (10)

Without the qualifier “most likely”, the problem is overde-
termined since there are uncountably many measure-valued
continuous curves over [0, t] that are consistent with the
observed data (8)-(9).

3

.
Fig. 1: The path tree for sequentially observed {µ�}�2JsK.

C. Multimarginal Schrödinger Bridge
Let X� := support (µ�) ✓ Rd

8� 2 JsK, and consider the
Cartesian product X1 ⇥X2 ⇥ . . .⇥Xs =: X ✓

�
Rd
�⌦s. Let

M (X�) and M (X) denote the collection (i.e., manifold)
of probability measures on X� and X , respectively. Define
a ground cost C : X 7! R�0.

Following [6, Sec. 3], let

d⇠�� := d⇠(⌧1)⇥ . . .⇥ d⇠(⌧��1)⇥ d⇠(⌧�+1)⇥ . . .⇥ d⇠(⌧s),
(11a)

X�� := X1 ⇥ . . .⇥ X��1 ⇥ X�+1 ⇥ . . .⇥ Xs. (11b)

For " � 0 (not necessarily small), the multimarginal
Schrödinger bridge problem (MSBP) is the following infinite
dimensional convex program:

min
M2M(X)

Z

X

�
C(⇠(⌧1), . . . , ⇠(⌧s)) + " logM(⇠(⌧1), . . . , ⇠(⌧s))

M(⇠(⌧1), . . . , ⇠(⌧s)) d⇠(⌧1) . . . d⇠(⌧s) (12a)

subject to
Z

X��

M(⇠(⌧1), . . . , ⇠(⌧s)) d⇠�� = µ� 8� 2 JsK. (12b)

In particular, M(X) is a convex set. The objective (12a)
is strictly convex in M , thanks to the "-regularized negative
entropy term

R
X "M logM . The constraints (12b) are linear.

In this work, the measures {µ�}�2JsK correspond to se-
quential observation, and we therefore fix the path structured
(Fig. 1) ground cost

C(⇠(⌧1), . . . , ⇠(⌧s)) =
s�1X

�=1

c� (⇠(⌧�), ⇠(⌧�+1)) . (13)

In particular, we choose the squared Euclidean distance
sequential cost between two consecutive snapshot indices,
i.e., c�(·, ·) := k ·� ·k

2

2
8� 2 JsK. MSBPs with more general

tree structured ground costs have appeared in [7].
When the cardinality of the index set JsK equals 2, then

(12) reduces to the (bi-marginal) Schrödinger bridge problem
(SBP) [8], [9]. In this case, the solution of (12) gives the most
likely evolution between two marginal snapshots µ1, µ2. This
can be established via the large deviations [10] interpretation
[11, Sec. II] of SBP using Sanov’s theorem [12]; see also [13,
Sec. 2.1].

Specifically, let C
�
[⌧1, ⌧2],Rd

�
denote the collection of

continuous functions on the time interval [⌧1, ⌧2] taking
values in Rd. Let ⇧(µ1, µ2) be the collection of all path
measures on C

�
[⌧1, ⌧2],Rd

�
with time ⌧1 marginal µ1, and

time ⌧2 marginal µ2. Given a symmetric ground cost (e.g.,
Euclidean distance) C : X1 ⇥ X2 7! R�0, let

K(·, ·) := exp

✓
�
C(·, ·)

"

◆
, (14)

and consider the bimarginal Gibbs kernel

K (⇠(⌧1), ⇠(⌧2))µ1 ⌦ µ2. (15)

Then, the bimarginal SBP solves

min
⇡2⇧(µ1,µ2)

"DKL (⇡kK (⇠(⌧1), ⇠(⌧2))µ1 ⌦ µ2) , (16)

i.e., the most likely evolution of the path measure consistent
with the observed measure-valued snapshots µ1, µ2.

Under the stated assumptions on the ground cost c, the
existence of minimizer for (16) is guaranteed [14], [15]. The
uniqueness of minimizer follows from strict convexity of the
map ⇡ 7! DKL(⇡k⌫) for fixed ⌫.

This relative entropy reformulation, and thereby “the most
likely evolution consistent with observed measures” interpre-
tation, also holds for the MSBP (12) with s � 2 snapshots.
Specifically, for C : X 7! R�0 as in (12)-(13), we generalize
(14) as

K(⇠(⌧1), . . . , ⇠(⌧s)) := exp

✓
�
C(⇠(⌧1), . . . , ⇠(⌧s))

"

◆
, (17)

and define the multimarginal Gibbs kernel

K (⇠(⌧1), . . . , ⇠(⌧s))µ1 ⌦ . . .⌦ µs. (18)

Problem (16) then generalizes to

min
⇡2⇧(µ1,...,µs)

"DKL (⇡kK (⇠(⌧1), . . . , ⇠(⌧s))µ1 ⌦ . . .⌦ µs)

(19)

where ⇧(µ1, . . . , µs) denotes the collection of all path mea-
sures on C

�
[⌧1, ⌧s],Rd

�
with time ⌧� marginal µ� 8� 2 JsK.

The equivalence between (12) and (19) can be verified
by direct computation. Thus solving (19), or equivalently
(12), yields the most likely evolution of the path measure
consistent with the observed measure-valued snapshots µ�

8� 2 JsK.
We propose to solve the MSBP (12) for learning the time-

varying statistics of the hardware resource state ⇠ as in (10).
We next detail a discrete formulation to numerically solve the
same for scattered data {⇠i(⌧�)}ni=1

where n is the number
of control software execution profiles.

The minimizer of (12), Mopt (⇠(⌧1), . . . , ⇠(⌧s)) can be
used to compute the optimal coupling between snapshot
index pairs (�1,�2) 2 {JsK⌦2

| �1 < �2} as
Z

X��1,��2

Mopt(⇠(⌧1), . . . , ⇠(⌧s)) d⇠��1,��2 (20)

where

d⇠��1,��2 :=
Y

�2JsK\{�1,�2}

d⇠(⌧�), (21a)

X��1,��2 :=
Y

�2JsK\{�1,�2}

X�. (21b)

This will be useful for predicting the statistics of ⇠(⌧) ⇠ µ⌧

at any (out-of-sample) query time ⌧ 2 [0, t].

Remark 1. (MSBP and MOT) When the entropic regu-
larization strength " = 0, then the MSBP (12) reduces to
the multimarginal optimal transport (MOT) problem [16],
[17] that has found widespread applications in barycenter
computation [18], fluid dynamics [19], [20], team matching
problems [21], and density functional theory [22], [23].
Further specializing MOT with the cardinality of JsK equals
2, yields the (bimarginal) optimal transport [24] problem.

4

D. Discrete Formulation of MSBP
For finite scattered data {⇠i(⌧�)}ni=1

and {µ�}�2JsK as in
(9), we set up a discrete version of (12) as follows.

With slight abuse of notations, we use the same symbol
for the continuum and discrete version of a tensor. The
ground cost in discrete formulation is represented by an
order s tensor C 2 (Rn)⌦s

�0
, with components [Ci1,...,is] =

C (⇠i1 , . . . , ⇠is). The component [Ci1,...,is] encodes the cost
of transporting unit mass for a tuple (i1, . . . , is).

Likewise, consider the discrete mass tensor M 2 (Rn)⌦s
�0

with components [Mi1,...,is] = M (⇠i1 , . . . , ⇠is). The com-
ponent [Mi1,...,is] denotes the amount of transported mass
for a tuple (i1, . . . , is).

For any � 2 JsK, the empirical marginals µ� 2 Rn
�0

are supported on the finite sets {⇠i(⌧�)}ni=1
. We denote

the projection of M 2 (Rn)⌦s
�0

on the �th marginal as
proj�(M). Thus proj� : (Rn)⌦s

�0
7! Rn

�0
, and is given

componentwise as
h
proj�(M)j

i
=

X

i1,...,i��1,i�+1,...,is

Mi1,...,i��1,j,i�+1,...,is . (22)

Likewise, denote the projection of M 2 (Rn)⌦s
�0

on
the (�1,�2)th marginal as proj�1,�2

(M), i.e., proj�1,�2
:

(Rn)⌦s
�0
7! Rn⇥n

�0
, and is given componentwise as

h
proj�1,�2

(M)j,`

i

=
X

i�|�2JsK\{�1,�2}

Mi1,...,i�1�1,j,i�1+1,...,i�2�1,`,i�2+1,...,is . (23)

We note that (22) and (23) are the discrete versions of the
integrals in (12b) and (20), respectively.

With the above notations in place, the discrete version of
(12) becomes

min
M2(Rn)

⌦s
�0

hC + " logM ,Mi (24a)

subject to proj� (M) = µ� 8� 2 JsK. (24b)

The primal formulation (24) has n
s decision variables,

and is computationally intractable. Recall that even for the
bimarginal (s = 2) case, a standard approach [25] is to
use Lagrange duality to notice that the optimal mass matrix
Mopt is a diagonal scaling of K := exp(�C/") 2 Rn⇥n

>0
,

i.e., Mopt = diag(u1)Kdiag(u2) where u1 := exp(�1/"),
u2 := exp(�2/"), and �1,�2 2 Rn are the Lagrange
multipliers associated with respective bimarginal constraints
proj

1
(M) = µ1, proj

2
(M) = µ2. The unknowns u1,u2

can be obtained by performing the Sinkhorn iterations

u1 µ1 ↵ (Ku2) , (25a)
u2 µ2 ↵

�
K

>u1

�
, (25b)

with guaranteed linear convergence [26] wherein the com-
putational cost is governed by two matrix-vector multiplica-
tions.

The duality result holds for the multimarginal (s � 2)
case. Specifically, the optimal mass tensor in (24) admits
a structure Mopt = K � U where K := exp(�C/") 2

(Rn)⌦s
>0

, U := ⌦s
�=1

u� 2 (Rn)⌦s
>0

, u� := exp(��/"), and
�� 2 Rn are the Lagrange multipliers associated with the
respective multimarginal constraints (24b). The unknowns
u� can, in principle, be obtained from the multimarginal
Sinkhorn iterations [27]

u� u� � µ� ↵ proj� (K �U) 8� 2 JsK, (26)

which generalize (25). However, computing proj� (K �U)
requires O (ns) operations. Before describing how to avoid
this exponential complexity (Sec. III-F), we point out the
convergence guarantees for (26).

E. Convergence for Multimarginal Sinkhorn Iterations

The iterations (26) can either be derived as alternating
Bregman projections [27] or via block coordinate dual ascent
[6]. Following either viewpoints leads to guaranteed linear
convergence of (26); see [28], [7, Thm. 3.5].

More recent works have also established [29] guaranteed
convergence for the continuous formulation (12) with linear
rate of convergence [30].

F. Multimarginal Sinkhorn Iterations for Path Structured C

We circumvent the exponential complexity in computing
proj� (K �U) in (26) by leveraging the path structured
ground cost (13). This is enabled by a key result from [6],
rephrased, and reproved below in slightly generalized form.

Proposition 1. ([6, Prop. 2]) Consider the discrete ground
cost tensor C in (24) induced by a path structured cost
(13) so that [Ci1,...,is] =

Ps�1

�=1

h
C

�!�+1

i�,i�+1

i
where the matrix

C
�!�+1

2 Rn⇥n
�0

encodes the cost of transporting unit mass
between each source-destination pair from the source set
{⇠i(⌧�)}ni=1

to the destination set {⇠i(⌧�+1)}ni=1
.

Let K
�!�+1 := exp(�C�!�+1

/") 2 Rn⇥n
�0

, K :=

exp(�C/") 2 (Rn)⌦s
>0

, U := ⌦s
�=1

u� 2 (Rn)⌦s
>0

.
Then (22) and (23) can be expressed as

proj�(K �U)=

0

@u>
1
K

1!2

��1Y

j=2

diag(uj)K
j!j+1

1

A
>

� u��

0

@

0

@
s�1Y

j=�+1

K
j�1!jdiag(uj)

1

AKs�1!sus

1

A 8� 2 JsK, (27)

and

proj�1,�2
(K �U) = diag

0

@u>
1
K

1!2

�1�1Y

j=2

diag(uj)K
j!j+1

1

A

diag(u�1)
�2Y

j=�1+1

�
K

j�1!jdiag(uj)
�

diag

0

@

0

@
s�1Y

j=�2+1

K
j�1!jdiag(uj)

1

AK
s�1!sus

1

A

8(�1,�2) 2 {JsK⌦2
| �1 < �2}. (28)

5

Proof. The proof strategy is to write the Hilbert-Schmidt
inner product hK,Ui in two different ways.

First, recall that K := exp(�C/") 2 (Rn)⌦s
>0

and U :=
⌦

s
�=1

u� 2 (Rn)⌦s
>0

. So following (1), we have

hK,Ui =
X

i1,...,is

0

@
sY

j=2

h
K

j�1!j
ij�1,ij

i
1

A
sY

j=1

(uj)ij

=
X

i1,...,is

(u1)i1

sY

j=2

⇥
K

j�1!jdiag(uj)
⇤
ij�1,ij

= u>
1

0

@
s�1Y

j=2

K
j�1!jdiag(uj)

1

AK
s�1!sus,

and (27) follows from [6, Lemma 1 in Appendix 1].
Next, notice that we can alternatively write

hK,Ui = u>
1

0

@
�1�1Y

j=2

K
j�1!jdiag(uj)

1

AK
�1�1!�1

0

@
�2�1Y

j=�1

diag(uj)K
j!j+1

1

A diag(u�2)

0

@
s�1Y

j=�2+1

K
j�1!jdiag(uj)

1

AK
s�1!sus.

Then (28) follows from [6, Lemma 2 in Appendix 1]. ⌅
Remark 2. Unlike [6, Prop. 2], our data {⇠i(⌧�)}ni=1

are
scattered, i.e., not on a fixed grid, hence the need for
superscripts � ! � + 1 for the time-varying matrices in
our Prop. 1. In contrast, the corresponding matrices in [6,
Prop. 2] are independent of �.

Remark 3. We note that substituting (27) into (26) cancels
the (elements of) positive vectors u� 8� 2 JsK from the
corresponding numerators and denominators. This further
simplifies our multimarginal Sinkhorn recursions to

u� µ� ↵

0

B@

0

@u>
1
K

1!2

��1Y

j=2

diag(uj)K
j!j+1

1

A
>

�

0

@

0

@
s�1Y

j=�+1

K
j�1!jdiag(uj)

1

AKs�1!sus

1

A

1

A 8� 2 JsK.

(29)

Remark 4. (From exponential to linear complexity in s)
We note that (29) involves s�1 matrix-vector multiplications
each of which has O(n2) complexity. So the computational
complexity for (29) becomes O

�
(s� 1)n2

�
which is linear in

s, i.e., a significant reduction from earlier O (ns) complexity
mentioned at the end of Sec. III-D.

Remark 5. (Linear complexity in d) The dimension d of
the vector ⇠ only affects the construction of the time-varying
Euclidean distance matrices C

�!�+1
8� 2 Js� 1K in Prop.

1, which has total complexity O(sd). Once constructed, the
recursions (29) are independent of d.

We next outline how the solution tensor Mopt = K �U
obtained from the converged Sinkhorn iterations can be used
together with (28), to make stochastic predictions of the most
likely hardware resource state in the form (10).

G. Predicting Most Likely Distribution
For the ground cost (13) resulting from sequential infor-
mation structure (Fig. 1), we utilize (28) to decompose
Mopt = K �U of (24) into bimarginal transport plans

M
�1!�2 := proj�1,�2

(Mopt) = proj�1,�2
(K �U). (30)

Further, when C is squared Euclidean, as we consider here,
the maximum likelihood estimate for µ⌧ in (10) for a query
point ⌧ 2 [0, t], is (see [6, Sec. 2.2])

µ̂⌧ :=
nX

i=1

nX

j=1

⇥
M

�!�+1

i,j

⇤
�(⇠ � ⇠̂(⌧, ⇠i(⌧�), ⇠

j(⌧�+1))) (31)

where � 2 JsK such that ⌧ 2 [⌧�, ⌧�+1], and

⇠̂(⌧, ⇠i(⌧�), ⇠
j(⌧�+1)):=(1� �)⇠i(⌧�)+�⇠

j(⌧�+1), (32a)

� :=
⌧ � ⌧�

⌧�+1 � ⌧�
2 [0, 1]. (32b)

IV. OVERALL ALGORITHM

The methodology proposed in Sec. III is comprised of the
following three overall steps.
Step 1. Given a collection of contexts (Sec. III-A)
{ci}ncontext

i=1
, execute the control software over [0, t] to gen-

erate hardware resource state sample snapshots (Sec. III-
B) {⇠i(⌧�)}ni=1

, and thereby empirical µ� as in (9) for all
� 2 JsK, conditional on each of the ncontext context samples.
Step 2. Using data from Step 1, construct Euclidean distance
matrices C

�!�+1 from the source set {⇠i(⌧�)}ni=1
to the

destination set {⇠i(⌧�+1)}ni=1
8� 2 Js� 1K. Perform recur-

sions (29) until convergence (error within desired tolerance).
Step 3. Given a query context c and time ⌧ 2 [0, t], return
most likely distribution µ̂⌧ using (31).

Remark 6. For the three steps mentioned above, Step 1 is
data generation, Step 2 is probabilistic learning using data
from Step 1, and Step 3 is prediction using the learnt model.

V. NUMERICAL CASE STUDY

In this Section, we illustrate the application of the proposed
method for a vehicle path tracking control software. All
along, we provide details for the three steps in Sec. IV.
Control Software. We wrote custom software1 in C language
implementing path following nonlinear model predictive con-
troller (NMPC) for a kinematic bicycle model (KBM) [32],
[33] of a vehicle with four states (x, y, v,) and two control
inputs (ac, �), given by ẋ = v cos(+ �), ẏ = v sin(+
�), v̇ = ac, ̇ = v

`rear
sin�, where the sideslip angle � =

1Git repo: https://github.com/abhishekhalder/CPS-Frontier-Task3-Collaboration

6

Fig. 2: All 12 paths used in profiling the NMPC software (Sec.
V), generated by GP sampling via Scikit-learn [31] over the domain
[0, 10] using mean zero and variance 10.

arctan
⇣

`rear
`front +`rear

tan �
⌘

. The 4 ⇥ 1 state vector comprises
of the inertial position (x, y) for the vehicle’s center-of-mass,
its speed v, and the vehicle’s inertial heading angle . The
2 ⇥ 1 control vector comprises of the acceleration ac, and
the front steering wheel angle �.

The parameters `front , `rear are the distances of the vehi-
cle’s center-of-mass to the front and rear axles, respectively.

The NMPC was designed to track a desired path given as a
sequence of N = 200 waypoint tuples

�
(x(i)

d , y
(i)
d , v

(i)
d)
 N
i=1

,
i.e., a sequence of desired positions and speeds (desired
speed profile was numerically estimated from the desired
waypoint profiles). At every control step (at most every
100 ms), using the IPOPT nonlinear program solver [34],
the NMPC solved an optimization problem to minimize
the sum of the crosstrack, , and v errors, along with the
magnitude and rapidity in change of the control inputs, over
a period of time from 0 to the time horizon Hp = 4,
subject to control magnitude and slew rate constraints. For
formulation details and control performance achieved, see
[35]. For implementation and parameter values, we refer the
readers to the Git repository in the footnote.

While closing the loop with KBM with computed control
values requires minimal computational overhead, the NMPC
is computationally demanding. In the case where multiple
vehicle controllers are available, it is of practical interest to
predict the hardware resource usage for the NMPC for one
to several control cycles, conditional on the CPS context c
(Sec. III-A) at a given time. For this we ‘profile’ the NMPC,
meaning we run the software many times for different values
of c as in (4), measuring time evolution of the hardware
resource state ⇠ as in (7). We use these profiles to generate
marginals µ� as in (9), thus completing Step 1 in Sec. IV.

We next provide details on generating control software
execution profiles for our specific case study.
Generating Execution Profiles. To gather the execution
profiles for our NMPC control software, we used an Ubuntu
16.04.7 Linux machine with an Intel Xeon E5-2683 v4
CPU. We leveraged Intel’s Cache Allocation Technology
(CAT) [36] and Memguard [37] to control allocation of LLC
partitions and memory bandwidth available to the control

software, respectively. Both LLC partitions and memory
bandwidth were allocated in blocks of 2MB.

Utilizing these resource partitioning mechanisms, we ran
our application on an isolated CPU and used the Linux perf
tool [38], version 4.9.3, to sample ⇠ every 10 ms.

For each run of our application, we set the cache and
memory bandwidth to a static allocation and pass as input
a path for the NMPC to follow, represented as an array
of desired (x, y) coordinates. We then execute the control
software for nc := 5 uninterrupted “control cycles”, wherein
the NMPC gets the KBM state, makes a control decision,
and updates the KBM state.

We profile over 12 unique desired paths to track, denoted
{y

i
des

(x)}12i=1
, and 5 unique vectors of {ci

cyber
}
5

i=1
, compris-

ing ncontext = 12 ⇥ 5 = 60 samples for c. Conditional on
each of these 60 context samples {ci}ncontext=60

i=1
, we run the

software for 500 profiles for each unique c for a total of
30,000 profiles.

The sample paths {y
i
des

(x)}12i=1
in (6) were all generated

for x 2 [0, 10] using a GP with mean zero and variance 10
[31], and are shown in Fig. 2.

Our vectorial samples {ci
cyber

}
5

i=1
in (5) were [1, 1]>,

[5, 5]>, [10, 10]>, [15, 15]>, and [20, 20]>, where each entry
represents the number of cache/memory bandwidth partitions
from 1 to 20. These values were selected to broadly cover
the range of possible hardware contexts.

Control cycle Mean Standard deviation
#1 0.1181 0.0076
#2 0.2336 0.0106
#3 0.3495 0.0127
#4 0.4660 0.0143
#5 0.5775 0.0159

TABLE I: The means and standard deviations of the end times for
the nc = 5 control cycles data shown in Fig. 4.

sint W1 W2 W3 W4 W5

0 2.0489 - - - -
1 2.2695 1.1750 - - -
2 5.7717 0.9163 0.3794 - -
3 2.2413 1.6432 1.2345 0.6010 -
4 0.6372 1.2691 0.9176 0.6689 0.2111

TABLE II: Number of intracycle marginals sint vs. Wasserstein
distances Wj as in (33). All entries are scaled up by 104.
Applying the Proposed Algorithm. Given a query context
c, we determine the closest CPS context for which profiling
data is available, using the Euclidean distance between cyber
context vectors (5), and the Fréchet distance [41] between
physical context curves (6). In this case study, we consider
a query context with closest ccyber =

⇥
15, 15

⇤> and closest
cphys = y

1

des
(x). Profiling data for this c is shown in Fig. 3.

For each of the n = 500 profiles, we are given the
end times for each of the nc = 5 control cycles. We
then determine the statistics of the cycle end times (Fig. 4)
and compute the empirical distributions of ⇠ at the means
(Table I) of the control cycle start/end time boundaries. For
empirical distributions at times between cycle boundaries,
we let sint be the number of marginals equispaced-in-time

7

Fig. 3: Components of the measured feature vector ⇠ in (7) for all of the five control cycles for 500 executions of the NMPC software,
where c = [15, 15, y1

des(x)].

Fig. 4: Normalized histograms (gray filled) and kernel density
estimates (KDEs) (solid line) for the end times of all of the
five control cycles for 500 executions of the NMPC software
conditioned on a fixed CPS context c shown above. The KDEs used
Gaussian kernel with bandwidths computed via cross validation
[39], [40].

Fig. 5: Linear convergence of Sinkhorn iterations (29) for sint = 4

w.r.t. the Hilbert’s projective metric dH in (3) between u�2JsK at
iteration indices k and k � 1.

between each cycle boundary. We then set ⌧�2JsK from the
means in Table I, where s := 1+nc(sint+1) and ⌧�(sint+1)+1

is the sampled mean end time for the �th control cycle.
Our distributions are as per (9), where ⇠i(⌧�) is the sample

of the hardware resource state (7) at time ⇡ ⌧� (within 5ms)
for profile i given context c.

We set " = 0.1 and solve the discrete MSBP (24)
with squared Euclidean cost C using (29). Fig. 5 shows
that the Sinkhorn iterations converge linearly (Sec. III-E).
We emphasize here that the computational complexity of
proposed algorithm is minimal, thanks to the path structure of

Fig. 6: Predicted µ̂⌧̂j (blue) vs. measured µ⌧̂j (red) at times ⌧̂j2J5K
during the 3rd control cycle with sint = 4. Distributions at the
control cycle boundaries are in black.

the information. In particular, we solve the MSBP (24) with
n
s = 50026 decision variables in approx. 10 s in MATLAB

on an Ubuntu 22.04.2 LTS Linux machine with an AMD
Ryzen 7 5800X CPU.

Fig. 6 compares predicted versus observed empirical dis-
tributions. Specifically, Fig. 6 shows sint + 1 = 5 distri-
butional predictions µ̂⌧̂j at times ⌧̂j , temporally equispaced
throughout the duration of the 3rd control cycle, i.e., between
⌧2(sint+1)+1 and ⌧3(sint+1)+1, with

⌧̂j = ⌧2(sint+1)+1 +

⌧3(sint+1)+1 � ⌧2(sint+1)+1

sint + 2

!
j,

where j 2 Jsint+1K. We used (31) with � = 2(sint+1)+ j,
since ⌧̂j 2 [⌧2(sint+1)+j , ⌧2(sint+1)+j+1].

From Fig. 6 it is clear that the measure-valued predictions,
while largely accurate, are prone to error in cases where the
software resource usage behavior changes in bursts too short
to be appear in our observations. It follows that increasing the
number of snapshots should yield an improvement in overall
accuracy. In this example, we achieve this by increasing sint.
Table II reports the Wasserstein distances W (·, ·) between the
corresponding predicted and measured distributions:

Wj := W (µ̂⌧̂j , µ⌧̂j) 8j 2 Jsint + 1K. (33)

We computed each of these Wj as the square root of the
optimal value of the corresponding linear program that results
from specializing (24) with s = 2, " = 0.

8

VI. CONCLUDING REMARKS

We apply recent algorithmic advances in solving the MSBP
to learn stochastic hardware resource usage by control soft-
ware. The learnt model demonstrates accurate nonparametric
measure-valued predictions for the joint hardware resource
state at a desired time conditioned on CPS context. The
formulation and its solution comes with a maximum like-
lihood guarantee in the space of probability measures, and
the algorithm enjoys a guaranteed linear convergence rate.

REFERENCES

[1] G. Bernat, A. Colin, and S. Petters, “WCET analysis of probabilistic
hard real-time systems,” in 23rd IEEE Real-Time Systems Symposium,
2002 (RTSS), 2002, pp. 279–288.

[2] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang, “A survey of
WCET analysis of real-time operating systems,” in 2009 International
Conference on Embedded Software and Systems, 2009, pp. 65–72.

[3] R. Gifford, N. Gandhi, L. T. X. Phan, and A. Haeberlen, “Dna:
Dynamic resource allocation for soft real-time multicore systems,” in
2021 IEEE 27th Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS). IEEE, 2021, pp. 196–209.

[4] K. Zhang, J. Sprinkle, and R. G. Sanfelice, “Computationally aware
switching criteria for hybrid model predictive control of cyber-physical
systems,” IEEE Transactions on Automation Science and Engineering,
vol. 13, no. 2, pp. 479–490, 2016.

[5] P. J. Bushell, “Hilbert’s metric and positive contraction mappings in a
Banach space,” Archive for Rational Mechanics and Analysis, vol. 52,
pp. 330–338, 1973.

[6] F. Elvander, I. Haasler, A. Jakobsson, and J. Karlsson, “Multi-marginal
optimal transport using partial information with applications in robust
localization and sensor fusion,” Signal Processing, vol. 171, p. 107474,
2020.

[7] I. Haasler, A. Ringh, Y. Chen, and J. Karlsson, “Multimarginal
optimal transport with a tree-structured cost and the Schrodinger
bridge problem,” SIAM Journal on Control and Optimization, vol. 59,
no. 4, pp. 2428–2453, 2021.

[8] C. Léonard, “A survey of the Schrödinger problem and some of
its connections with optimal transport,” Discrete and Continuous
Dynamical Systems-Series A, vol. 34, no. 4, pp. 1533–1574, 2014.

[9] Y. Chen, T. T. Georgiou, and M. Pavon, “Stochastic control liaisons:
Richard Sinkhorn meets Gaspard Monge on a Schrodinger bridge,”
Siam Review, vol. 63, no. 2, pp. 249–313, 2021.

[10] A. Dembo and O. Zeitouni, Large deviations techniques and applica-
tions. Springer Science & Business Media, 2009, vol. 38.

[11] H. Follmer, “Random fields and diffusion processes,” Ecole d’Ete de
Probabilites de Saint-Flour XV-XVII, 1985-87, 1988.

[12] I. N. Sanov, On the probability of large deviations of random variables.
United States Air Force, Office of Scientific Research, 1958.

[13] M. Pavon, G. Trigila, and E. G. Tabak, “The data-driven Schrödinger
bridge,” Communications on Pure and Applied Mathematics, vol. 74,
no. 7, pp. 1545–1573, 2021.

[14] I. Csiszár, “I-divergence geometry of probability distributions and
minimization problems,” The annals of probability, pp. 146–158, 1975.

[15] J. M. Borwein, A. S. Lewis, and R. D. Nussbaum, “Entropy mini-
mization, DAD problems, and doubly stochastic kernels,” Journal of
Functional Analysis, vol. 123, no. 2, pp. 264–307, 1994.

[16] L. Rüschendorf and L. Uckelmann, “On the n-coupling problem,”
Journal of multivariate analysis, vol. 81, no. 2, pp. 242–258, 2002.

[17] B. Pass, “Multi-marginal optimal transport: theory and applica-
tions,” ESAIM: Mathematical Modelling and Numerical Analysis-
Modélisation Mathématique et Analyse Numérique, vol. 49, no. 6, pp.
1771–1790, 2015.

[18] M. Agueh and G. Carlier, “Barycenters in the Wasserstein space,”
SIAM Journal on Mathematical Analysis, vol. 43, no. 2, pp. 904–924,
2011.

[19] Y. Brenier, “Generalized solutions and hydrostatic approximation of
the Euler equations,” Physica D: Nonlinear Phenomena, vol. 237, no.
14-17, pp. 1982–1988, 2008.

[20] J.-D. Benamou, G. Carlier, and L. Nenna, “Generalized incompressible
flows, multi-marginal transport and sinkhorn algorithm,” Numerische
Mathematik, vol. 142, pp. 33–54, 2019.

[21] G. Carlier, A. Oberman, and E. Oudet, “Numerical methods for match-
ing for teams and Wasserstein barycenters,” ESAIM: Mathematical
Modelling and Numerical Analysis, vol. 49, no. 6, pp. 1621–1642,
2015.

[22] G. Buttazzo, L. De Pascale, and P. Gori-Giorgi, “Optimal-transport
formulation of electronic density-functional theory,” Physical Review
A, vol. 85, no. 6, p. 062502, 2012.

[23] C. Cotar, G. Friesecke, and C. Klüppelberg, “Density functional theory
and optimal transportation with Coulomb cost,” Communications on
Pure and Applied Mathematics, vol. 66, no. 4, pp. 548–599, 2013.

[24] G. Peyré and M. Cuturi, “Computational optimal transport: With
applications to data science,” Foundations and Trends® in Machine
Learning, vol. 11, no. 5-6, pp. 355–607, 2019.

[25] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” Advances in neural information processing systems, vol. 26,
2013.

[26] J. Franklin and J. Lorenz, “On the scaling of multidimensional
matrices,” Linear Algebra and its applications, vol. 114, pp. 717–735,
1989.

[27] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, “It-
erative Bregman projections for regularized transportation problems,”
SIAM Journal on Scientific Computing, vol. 37, no. 2, pp. A1111–
A1138, 2015.

[28] H. H. Bauschke and A. S. Lewis, “Dykstras algorithm with Bregman
projections: A convergence proof,” Optimization, vol. 48, no. 4, pp.
409–427, 2000.

[29] S. D. Marino and A. Gerolin, “An optimal transport approach for the
Schrödinger bridge problem and convergence of Sinkhorn algorithm,”
Journal of Scientific Computing, vol. 85, no. 2, p. 27, 2020.

[30] G. Carlier, “On the linear convergence of the multimarginal Sinkhorn
algorithm,” SIAM Journal on Optimization, vol. 32, no. 2, pp. 786–
794, 2022.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
2015 IEEE intelligent vehicles symposium (IV). IEEE, 2015, pp.
1094–1099.

[33] S. Haddad, A. Halder, and B. Singh, “Density-based stochastic reach-
ability computation for occupancy prediction in automated driving,”
IEEE Transactions on Control Systems Technology, vol. 30, no. 6, pp.
2406–2419, 2022.

[34] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[35] https://github.com/abhishekhalder/CPS-Frontier-Task3-Collaboration/
blob/master/Codes/kbm sim/Documentation KinematicBicycle
Controllers.pdf, accessed: 2023-09-29.

[36] Intel Corporation, “Improving real-time performance by utilizing
cache allocation technology,” Apr. 2015, White Paper.

[37] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
bandwidth management for efficient performance isolation in multi-
core platforms,” IEEE Transactions on Computers, vol. 65, no. 2, pp.
562–576, Feb 2016.

[38] “perf(1) — linux manual page,” https://man7.org/linux/man-pages/
man1/perf.1.html, accessed: 2023-09-29.

[39] A. W. Bowman, “An alternative method of cross-validation for the
smoothing of density estimates,” Biometrika, vol. 71, no. 2, pp. 353–
360, 1984.

[40] P. Hall, J. Marron, and B. U. Park, “Smoothed cross-validation,”
Probability theory and related fields, vol. 92, no. 1, pp. 1–20, 1992.

[41] T. Eiter and H. Mannila, “Computing discrete Fréchet distance,”
1994. [Online]. Available: https://api.semanticscholar.org/CorpusID:
16010565

