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Figure 1. MoSca reconstructs renderable dynamic scenes from monocular casual videos.

Abstract

We introduce 4D Motion Scaffolds (MoSca), a mod-
ern 4D reconstruction system designed to reconstruct and
synthesize novel views of dynamic scenes from monocu-
lar videos captured casually in the wild. To address such
a challenging and ill-posed inverse problem, we leverage
prior knowledge from foundational vision models and lift
the video data to a novel Motion Scaffold (MoSca) represen-
tation, which compactly and smoothly encodes the underly-
ing motions/deformations. The scene geometry and appear-
ance are then disentangled from the deformation field and
are encoded by globally fusing the Gaussians anchored onto
the MoSca and optimized via Gaussian Splatting. Addition-
ally, camera focal length and poses can be solved using
bundle adjustment without the need of any other pose esti-
mation tools. Experiments demonstrate state-of-the-art per-
formance on dynamic rendering benchmarks and its effec-
tiveness on real videos. Project page and code: https://
www.cis.upenn.edu/˜leijh/projects/mosca

1. Introduction

This paper presents 4D Motion Scaffolds (MoSca), a fully
automated system for reconstructing and rendering dynamic
scenes from casual monocular video inputs with unknown

camera parameters—the most typical data format for such
a system in the wild. Robust 4D scene reconstruction from
such input is increasingly vital for constructing datasets for
future AGI models, content creation for spatial computing
and VR/MR/AR, and building embodied agents to perceive
and learn from real video data. However, this task is known
to be highly challenging and inherently ill-posed [30, 51,
66] due to the limited availability of multi-view stereo cues
in casual video footage.

To tackle this challenging task, our first insight is to
leverage the recent advances of pretrained vision models
(Sec. 3.2.1), which today are very effective at fundamen-
tal computer vision tasks such as tracking and depth esti-
mation. While this knowledge provides a critical boost to
understanding the complete dynamic scene, it is inherently
insufficient, as it fails to capture occluded parts of the scene
and it is usually noisy, local, and partial. Our second in-
sight is to design a deformation representation, MoSca, de-
rived from the above foundational priors, exploiting a phys-
ical deformation prior. Although the real-world geometry
and appearance are complex and include high-frequency de-
tails, the underlying deformation that drives these geome-
tries is usually compact (low-rank) and smooth. MoSca
leverages this property by disentangling the 3D geometry
and motion, representing the deformation with sparse graph
nodes that can be smoothly interpolated (Sec. 3.1). Another
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physical prior we exploit is the as-rigid-as-possible (ARAP)
deformation, which can be efficiently applied via the tra-
jectory topology of MoSca. Two important benefits arise
from the above two insights: firstly, MoSca can be lifted
into 3D and optimized from the inferred 2D foundational
priors (Sec. 3.2.3), and secondly, the observations from all
timesteps can be globally fused and rendered for any query
time (Sec. 3.2.4). Gaussian fusion happens when we de-
form all Gaussians observed at different times to the query
time, forming a complete reconstruction, which can be su-
pervised through Gaussian Splatting [44]. Furthermore,
our system estimates the camera poses and focal lengths
via a bundle adjustment and the photometric optimization
(Sec. 3.2.2), obviating the need for other poes estimators
such as COLMAP.
In summary, our main contributions can be summarized as:
(1) An automatic 4D reconstruction system that works in the
real world for pose-free monocular videos. (2) A novel Mo-
tion Scaffold deformation representation, which we build
using knowledge from 2D foundational models, and op-
timize via physically-inspired deformation regularization.
(3) An efficient and explicit Gaussian-based dynamic scene
representation, driven by MoSca, which globally fuses ob-
servations across an input video to render this data into any
new viewpoint and query time of choice. (4) State-of-the-
art performance on dynamic scene rendering benchmarks.

2. Related Works
Dynamic Novel-View Synthesis. Novel-view synthesis of
dynamic scenes is challenging. Many existing works [2,
3, 5, 13, 28, 55, 60, 67, 78, 87, 120] assume available
synchronized multi-view video inputs. Another line of
works [11, 29, 56, 59, 66, 68, 85, 94, 96, 97, 104, 105, 110,
112, 113] tackles the more practical setting of monocular
inputs, where ambiguities from limited observations further
complicate the problem. As [30] pointed out, most methods
struggle with realistic single-view videos. To disambiguate,
some works [1, 16, 33, 35, 48, 52, 54, 65, 79, 82, 84, 90,
101, 102] target specific scenes and exploit domain knowl-
edge like template models [8, 95]. A few recent works
[51, 58, 118, 119] fuse information across frames, but only
from a small temporal window.

Neural radiance fields [4, 14, 27, 69, 70, 74, 75] and 3D
Gaussian Splatting [44–46, 114] are promising approaches
to novel view synthesis. The latter’s explicit point-based
representation fits particularly well into the dynamic set-
ting [18, 21, 25, 26, 37, 42, 50, 57, 59, 61, 67, 103, 110,
111]. We employ 3D Gaussians for long-term, global ag-
gregation. Compared to concurrent works [64, 83, 86, 99],
MoSca has a more structured deformation representation
exploiting powerful 2D foundation models, and is a full-
stack automated system that directly outputs 4D reconstruc-
tion from an unposed RGB video.

Non-Rigid Structure-from-Motion. Geometric recon-
struction of non-rigidly deforming scenes from a single
camera is a long-standing problem. [7, 8, 81, 107, 108, 121]
focus on specific object categories or articulated shapes and
register observations to template models [8]. [10, 19, 23,
24, 31, 53, 71] warp, align, and fuse scans of generic scenes.
To model non-rigid deformations, state-of-the-art methods
[10, 23, 71, 121] use Embedded Deformation Graphs [89],
where dense transformations over the space are modeled
with a sparse set of basis transformations. In MoSca, we
extend classic Embedded Graphs to connect priors from 2D
foundation models to dynamic Gaussian splatting.
2D Vision Foundation Models. Recent years have wit-
nessed great progress in large-scale pretrained vision foun-
dation models [9, 47, 72, 73, 80] that serve various down-
stream tasks, ranging from image-level tasks such as vi-
sual question answering [62, 63, 72] to pixel-level tasks
including segmentation [47], dense tracking [32, 40], and
monocular depth estimation [6, 76, 109]. These models
encode strong data priors particularly useful in monocu-
lar video-based dynamic reconstruction, as they help dis-
ambiguate partial observations. While most previous meth-
ods [18, 29, 51, 56, 58, 64, 86, 99, 118] directly use the 2D
priors for regularization in image space, and often in isola-
tion from each other, we propose to lift these 2D priors to
3D and fuse them in a coordinated way.

3. Method
Overview. Given a casual monocular video of a dynamic
scene with T frames I = [I1, I2, . . . IT ], our fully auto-
matic system reconstructs the geometry and appearance of
the scene with a set of dynamic Gaussians and recovers the
focal length and poses of the camera if they are unknown
.Our key idea is to lift the 2D video input to a novel 4D dy-
namic scene representation, which we name Motion Scaf-
folds (MoSca), where all the observations are fused globally
and geometrically. Fig. 2 provides an overview of our ap-
proach. We first introduce the deformation representation
MoSca in Sec.3.1 and then, detail each step of our recon-
struction system in Sec. 3.2.

3.1. Deformation Representation with MoSca

A fundamental challenge in real-world 4D reconstruction
is the high dimensionality of the potential solution space
compared to the extremely limited spatiotemporal obser-
vations. However, real-world motion typically behaves
rigidly, smoothly, and compactly, meaning that the actual
solution is low-rank and driven by a few key “eigen” mo-
tions. With this insight, we model the underlying defor-
mation of the scene using an explicit, compact, and struc-
tured graph (V, E), named 4D Motion Scaffold (MoSca),
which encodes these local “eigen” motions and interpolates
the dense deformation field.
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Figure 2. Overview: (A) Given a monocular casual video, we infer pre-trained 2D vision foundation models (Sec. 3.2.1). (B) The camera
intrinsics and poses are initialized using tracklet-based bundle adjustment (Sec. 3.2.2). (C) Our proposed Motion Scaffold (MoSca) is lifted
from 2D predictions and optimized with physics-inspired regularizations (Sec. 3.2.3). (D) Gaussians are initialized from all timesteps,
deformed with MoSca (Sec. 3.1), and fused globally to model the dynamic scene. The entire representation is rendered with Gaussian
Splatting and optimized with photometric losses (Sec. 3.2.4).

Motion Scaffold Graph Definition. Intuitively, the MoSca
graph nodes V = {v(m)}Mm=1 are 6-DoF trajectories that
capture the underlying low-rank, smooth motion of the
scene. The number of nodes M is significantly smaller
(e.g., see Tab. 7) than the number of points required to repre-
sent the scene. Specifically, each node v(m) ∈ V consists of
per-timestep rigid transformations Q

(m)
t and a global con-

trol radius r(m), which parameterizes a radial basis function
(RBF) describing its influence on nearby space:

v(m) = ([Q
(m)
1 ,Q

(m)
2 , . . . ,Q

(m)
T ], r(m)), (1)

where Q(m) = [R(m), t(m)] ∈ SE(3) and r(m) ∈ R+ is
the radius. To properly interpolate the node-encoded trajec-
tories and regularize the deformation, we organize the nodes
v(m) into a topology. We define the MoSca graph edges E
as:

E(m) = KNNn∈{1,...,M} [Dcurve(m,n)] ,

Dcurve(m,n) = max
t=1,2,...,T

∥t(m)
t − t

(n)
t ∥, (2)

where KNN denotes the K-nearest neighbors under the
curve distance metric Dcurve. This metric captures the
global proximity between trajectories across all timesteps
and accounts for topological changes (e.g., opening a door
does not connect the door and wall).
SE(3) Deformation Field. Given MoSca (V, E), we can
derive a dense deformation field by interpolating motions
from nodes near the query point. We use Dual Quaternion
Blending (DQB) [43] to mix multiple SE(3) elements on
the SE(3) manifold. Similar to the unit quaternion rep-
resentation of SO(3), the unit dual quaternion represents
SE(3) using eight numbers by including a dual part. Please
refer to [20, 38, 43] for details. Given L rigid transforma-
tions Qi ∈ SE(3) and their blending weights wi, the inter-
polated motion is:

DQB({(wi,Qi)}Li=1) =

∑L
i=1 wiq̂i

∥
∑L

i=1 wiq̂i∥DQ

∈ SE(3),

(3)

where q̂ is the dual quaternion representation of Q and
| · |DQ denotes the dual norm [43]. Unlike linear blend skin-
ning (LBS), DQB is a manifold interpolation that always
produces an interpolated element in SE(3). Consider any
query position x in 3D space at time tsrc. Denote its nearest
node at tsrc as v(m∗) where m∗ = argminm ||t(m)

tsrc − x||
and t

(m)
tsrc is the translation part of node m’s transformation

at time tsrc.
We can efficiently compute its SE(3) deformation to the

query time tdst using nodes in the neighborhood of v(m
∗).

Formally, the deformation field W from time tsrc to time
tdst is:

W(x,w; tsrc, tdst) = DQB
(
{wi,∆Q(i)}i∈E(m∗)

)
, (4)

where ∆Q(i) = Q
(i)
tdst

(Q
(i)
tsrc
)−1 and w = {wi} are skinning

weights computed from RBFs parameterized by radius r(i):
wi(x, tsrc) = exp (−∥x− t

(i)
tsrc
∥22/2r(i)) ∈ R+. (5)

In summary, MoSca (V, E) encodes the deformation field
through skinning on a structured, sparse trajectory graph.
In the following sections, we will demonstrate how to re-
construct MoSca and attach Gaussians onto it to produce
the final 4D reconstruction.

3.2. Reconstruction System

3.2.1 Leveraging Priors from 2D Foundation Models
4D reconstruction from monocular videos is highly ill-
posed; therefore, it is essential to leverage prior knowl-
edge to constrain the solution space. In the first step of
our system, we exploit the priors provided by large vision
foundation models pre-trained on massive datasets. Specif-
ically, we utilize off-the-shelf pre-trained models to obtain:
1) Depth estimations [34, 36, 76] D = [D1, D2, . . . , DT ]
that are relatively consistent across frames; 2) Long-
term 2D pixel trajectories [22, 41, 106] T = {τ (i) =

[(p
(i)
1 , v

(i)
1 ), (p

(i)
2 , v

(i)
2 ), . . . , (p

(i)
T , v

(i)
T )]}i, where p

(i)
t and
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v
(i)
t represent the i-th trajectory’s 2D image coordinate and

visibility at frame t; 3) Per-frame epipolar error maps M =
[E1, E2, . . . , ET ] [66] computed from RAFT[91] dense op-
tical flow predictions, which indicate the likelihood of being
in the dynamic foreground. These inferred results provide
critical cues about geometry and correspondence. However,
such raw information is partial, local, and noisy, and does
not constitute a complete solution. We are going to fuse and
optimize these initial cues to produce a coherent and global
4D reconstruction.

3.2.2 Camera Initializaition
To enable 4D reconstruction in the wild, our system must
operate on dynamic scene videos with unknown camera
parameters. Therefore, in the second step of our recon-
struction pipeline, we propose a tracklet-based bundle ad-
justment to robustly initialize the camera focal lengths and
poses. Given the inferred 2D tracks T and epipolar error
maps M, we first compute the maximum epipolar error of
each tracklet as e(τ) = maxt=1...T Et[pt] · vt across visible
timesteps. We identify confident background tracklets by
thresholding e(τ) with a predefined small threshold. Start-
ing with a pre-defined initial camera focal length, we opti-
mize the camera poses and intrinsics jointly by minimizing
the reprojection errors on these confident static tracks:

Lproj =
∑

i∈|Tstatic|

∑
a,b∈[1,T ]

(v(i)a v
(i)
b ) (6)

·
∥∥∥πK

(
W−1

b Waπ
−1
K (p(i)a , Da[p

(i)
a ])

)
− p

(i)
b

∥∥∥ ,
where pa and pb are pixel locations, πK denotes projection
with intrinsics K, and Wt is the camera pose at time t.
To account for errors in the depth estimation—particularly
scale misalignment—we jointly optimize a correction to the
depth Da[pa], which consists of per-frame global scaling
factors and small per-pixel corrections, using a depth align-
ment loss:
Lz =

∑
i∈|Tstatic|

∑
a,b∈[1,T ]

(v(i)a v
(i)
b ) (7)

Dscale-inv

([
W−1

b Waπ
−1
K (p(i)a , Da[p

(i)
a ])

]
z
, Db[p

(i)
b ]

)
,

where [·]z takes the z coordinate, and Dscale-inv(x, y) =
|x/y − 1| + |y/x − 1|. The overall bundle adjustment loss
is LBA = λprojLproj + λzLz , and the solved camera poses
Wt will be refined during later rendering phases. While
camera solving is not our primary contribution, our system
achieves state-of-the-art camera pose accuracy on dynamic
videos (Sec. 4.2); more details are provided in the Supple-
mental Material.

3.2.3 Geometric Optimization of MoSca

After inferring the 2D foundational models and initializing
the camera, we are ready to geometrically construct MoSca

(V, E) in the third step of our system. A key contribution of
this paper is the seamless integration of MoSca with pow-
erful 2D foundational models. Specifically, the long-term
2D tracking T , together with the depth estimates D, pro-
vide strong cues for constructing V . However, there is still
a gap due to missing information when tracks are invisible
and because the local rotation component of MoSca is also
unknown. We address this gap by incorporating physics-
inspired regularization into the optimization of MoSca.

3D Lift and Initialization. Similar to the camera initializa-
tion, we identify foreground 2D tracks by thresholding the
maximum epipolar error e(τ) of each tracklet. We then lift
the foreground tracklets into 3D using depth estimates D
at visible timesteps and linearly interpolate between nearby
observations at occluded timesteps. Formally, we compute
the lifted 3D position ht at timestep t from the 2D track
τ = [(pt, vt)]

T
t=1 as

ht =

{
Wtπ

−1
K (pt, Dt[pt]), if vt = 1,

LinearInterp(hleft,hright), if vt = 0,
(8)

where π−1
K refers to back-projection with camera intrinsics

K, Wt refers to the camera pose, and hleft,hright refer to the
lifted 3D positions from the nearest visible timesteps before
and after t. From each track, we initialize a MoSca node
v(i) using the lifted positions ht as the translation part and
the identity as the rotation, i.e., Q(i)

t = [I,h
(i)
t ], along with

a predefined control radius rinit. In practice, we retain only
a subset of the densely inferred 2D tracklets by uniformly
resampling nodes based on the curve distance (Eq. 2).

Geometry Optimization. Starting from the initialized rota-
tions and the invisible lines, we propagate the visible infor-
mation to the unknowns through the MoSca topology E by
optimizing a physics-inspired as-rigid-as-possible (ARAP)
loss. Given two timesteps separated by a time interval ∆,
we define the ARAP loss Larap as:

Larap =

T∑
t=1

M∑
m=1

∑
n∈Ê(m)

λl

∣∣∣∥t(m)
t − t

(n)
t ∥ − ∥t(m)

t+∆ − t
(n)
t+∆∥

∣∣∣
+ λc

∥∥∥Q−1 (n)
t t

(m)
t −Q

−1 (n)
t+∆ t

(m)
t+∆

∥∥∥ , (9)

where Ê refers to a multi-level sub-sampled topology pyra-
mid from E in MoSca (detailed in the Supplemental Mate-
rial). The first term encourages the preservation of local dis-
tances in the neighborhood, and the second term preserves
the local coordinates by involving the local frame Q in the
optimization. We also enforce the temporal smoothness of
the deformation by regularizing the velocity and accelera-
tion:
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Figure 3. In-the-wild videos: MoSca can process a list of RGB frames and reconstruct the 4D scene from various types of videos.

Lvel =

T∑
t=1

M∑
m=1

∥t(m)
t − t

(m)
t+1∥+ ∥ log(R(m)

t R
−1 (m)
t+1 )∥F

Lacc =

T∑
t=1

M∑
m=1

∥t(m)
t − 2t

(m)
t+1 + t

(m)
t+2∥ (10)

+
∣∣∣∥ log(R(m)

t R
−1 (m)
t+1 )∥F − ∥ log(R(m)

t+1R
−1 (m)
t+2 )∥F

∣∣∣ ,
where ∥ log(·)∥F refers to the Frobenius norm of rotation
logarithm (the axis-angle of the rotation). In summary, the
objective of this geometric optimization in the third step of
our system is Lgeo = λarapLarap+λaccLacc+λvelLvel, and we
only optimize rotations and invisible 3D translations, leav-
ing the visible 3D positions unchanged to prevent degener-
ation.

3.2.4 Photometric Optimization of MoSca

Dynamic Scene Representation. An important feature of
MoSca is that its global deformation field can transform
points at any time globally, enabling the fusion of all ob-
served video frames into a single coherent representation.
In the final step of the system, the optimized MoSca collects
3D Gaussians initialized from back-projected foreground
depth points at all timesteps. Formally:

G = {(µj , Rj , sj , oj , cj ; t
ref
j ,∆wj)}Nj=1, (11)

where the first five attributes are the center, rotation,
non-isotropic scales, opacity, and spherical harmonics of
3DGS [44], and the latter two are tailored for MoSca.
Specifically, tref

j is the reference timestep—that is, the
timestep at which the Gaussian is initialized from the back-
projected depth; and ∆wj ∈ RK is the per-Gaussian learn-
able skinning weight correction. To obtain the complete ge-
ometry at a query timestep t, Gaussians from all timesteps
are deformed to the query time t and fused:

G(t) = {(Tj(t)µj ,Tj(t)Rj , sj , oj , cj) |
Tj(t) = W(µj ,w(µj , t

ref
j ) + ∆wj ; t

ref
j , t)}Nj=1 (12)

where W is the deformation field defined in Eq.4, and w
is the base RBF skinning weight defined in Eq.5. The
static background is also represented as a standard 3DGS
H = (µj , Rj , sj , oj , cj)

H
j=1, which can be initialized by

back-projecting the depth map using known camera param-
eters. Therefore, the final renderable dynamic scene at time
t can be approximated by the union G(t) ∪H.
Photometric Optimization. The Gaussians described
above can be rendered using a Gaussian Splatting-based
differentiable renderer and optimized with depth and RGB
rendering losses, along with the regularization losses from
Sec. 3.2.3. To fully exploit the inferred tracklets, we also
render a flow/track map by rasterizing the XYZ coordi-
nates (replacing the RGB color with XYZ values) of each
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Figure 4. Visual comparison on DyCheck [30] under the settings with or without camera pose.

Gaussian at different timesteps. We supervise the flow/track
map with the inferred 2D tracklets as a regularization loss
Ltrack [99]. The final photometric step has a total objective:

L = λrgbLrgb + λdepLdep + λtrackLtrack

+ λarapLarap + λaccLacc + λvelLvel. (13)

Node Control. Similar to standard 3DGS Gaussian control
techniques including gradient-based densification and reset-
pruning simplification, we propose a novel control policy
over the proposed MoSca nodes. To periodically densify
nodes, we select Gaussians with high tracking-loss Ltrack
induced gradients, subsample them, and convert them into
new MoSca nodes. To clean the representation and prune
the structure, we also periodically copy the dynamic fore-
ground Gaussians from a randomly selected timestep into
the static background and reset the foreground Gaussians
to a low opacity. This simplifies unnecessary foreground
Gaussians. We then prune nodes whose skinning weights
toward all Gaussians fall below a threshold, indicating a
limited contribution to deformation modeling.

4. Experiments

4.1. Novel View Synthesis

In-the-wild. One of the most significant results of MoSca
is demonstrating that such an automatic dynamic render-
ing system can work effectively in real-world scenarios.
In Fig. 3, we showcase reconstruction results on diverse
in-the-wild monocular videos—including movie clips, in-

Table 1. Comparison on DyCheck [30], group w-pose and w/o-
pose means with or without camera pose and are averaged over all
7 scenes on the standard 2x resolution. Group SOM-5-1x means
using the 5 scenes and 1x res. as in Shape-of-Motion [99].

Method mPSNR↑ mSSIM↑ mLPIPS↓
T-NeRF [30] 16.96 0.577 0.379
NSFF [56] 15.46 0.551 0.396
Nerfies [74] 16.45 0.570 0.339

HyperNeRF [75] 16.81 0.569 0.332
PGDVS [118] 15.88 0.548 0.340
DyPoint [119] 16.89 0.573 -

DpDy [98] - 0.559 0.516
Dyn.Gauss. [67] 7.29 - 0.692

4D GS [103] 13.64 - 0.428
Gauss.Marbles [86] 16.72 - 0.413

DyBluRF [11] 17.37 0.591 0.373
CTNeRF [68] 17.69 0.531 -
D-NPC [39] 16.41 0.582 0.319

Shape-of-Motion [99] 17.32 0.598 0.296

w-pose

Ours 19.32 0.706 0.264
RobustDynrf [66] 17.10 0.534 0.517

Dyn.Gaussians [67] 7.60 - 0.704
4D GS [103] 13.11 - 0.726

Gaussian Marbles [86] 15.79 - 0.430
Ours 18.84 0.676 0.289

w/o-pose

Ours (w. focal) 19.02 0.683 0.279
Shape-of-Motion [99] 16.72 0.63 0.45SOM-5-1x Ours 18.40 0.67 0.42

ternet videos, SORA-generated videos, and DAVIS[77]
videos—demonstrating the effectiveness of MoSca.

DyCheck. To quantitatively evaluate our rendering results,
we compare our method to others on the currently most
challenging dataset – the iPhone DyCheck [30]. DyCheck
features generic, diverse dynamic scenes captured with a
handheld iPhone using realistic camera motions for train-
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Figure 5. Visual comparison on NVIDIA dataset [112].

ing, and utilizes two static cameras at significantly different
poses from the training views for testing. For a fair com-
parison with previous methods that exploit noisy LiDAR
depth from the dataset, we use the iPhone’s noisy LiDAR
depth as the metric depth D and employ BootsTAPIR [22]
for tracking. Since the camera parameters are optimized
during training, during inference, we fix the scene repre-
sentation and adjust the test camera poses to find the cor-
rect viewpoints. The quantitative results are reported in
Tab. 1, and qualitative results are shown in Fig. 1. Due to
the large deviation of the testing views from the training
camera trajectory, most per-frame depth warping methods
fail directly (e.g., see Fig.10 of Casual-FVS [51]). Simi-
larly, local fusion methods exhibit large missing areas (e.g.,
PGDVS [118], Gaussian Marbles [86]), even though these
missing areas are visible in other time steps. Some recent
Gaussian-based methods like 4D-GS [103] also fail because
they depend on strong multi-view stereo cues to reconstruct
the scene. As shown in Tab. 1, we outperform all other
methods by a large margin. We attribute this improvement
to two factors: firstly, by leveraging powerful pre-trained
2D long-term trackers, our MoSca representation models
long-term motion trajectories, enabling the global aggre-
gation of observations across all timesteps, which leads to
a more complete reconstruction. Secondly, the structured
sparse motion graph design of MoSca facilitates optimiza-
tion. Compared to dense Gaussian geometries, its compact
and smoothly interpolated motion nodes significantly re-
duce the optimization space. Its topology enables the ef-
fective propagation of information to unobserved regions
through ARAP regularization. Note that our system still

Table 2. Comparison on NVIDIA [112], averaged over all scenes.
“w/o” means without camera pose.

Method PSNR LPIPS Method PSNR LPIPS
D-NeRF [78] 21.49 0.232 CTNeRF [68] 26.13 0.082

NR-NeRF [96] 19.69 0.323 DynPoint [119] 26.53 0.068
TiNeuVox [27] 19.74 0.285 D-NPC [39] 25.64 0.109

HyperNeRF [75] 17.60 0.367 RoDynRF [66] 25.89 0.067
NSFF [56] 24.33 0.199 RoDynRF [66] w/o 25.38 0.079

DynNeRF [29] 26.10 0.082 GaussianMarbles [86] 22.32 0.129
MonoNeRF [94] 25.62 0.106 Ours 26.72 0.070

4DGS [103] 21.45 0.199 Ours w/o 26.54 0.073
Casual-FVS [51] 24.57 0.081

performs well under the pose-free setup, as shown in the
bottom group of Tab. 1.
NVIDIA. We also evaluate MoSca on the widely used
NVIDIA video dataset [112], following the protocol in Ro-
DynRF [66]. As reported in Tab. 2 and Fig. 5, we achieve
high PSNR and very competitive LPIPS results. Since the
facing-forward, the small-baseline setting is relatively eas-
ier compared to the realistic DyCheck dataset, where most
areas of the dynamic scene are visible in neighboring time
frames, reducing the need for strong regularization and fu-
sion of information in occluded areas – the advantages of
MoSca are not fully showcased on NVIDIA videos.

4.2. Camera and Correspondence

Camera Pose. Another advantage of MoSca is its nat-
ural integration of camera solving, both geometrically
through tracklet-based bundle adjustment and photomet-
rically through rendering-based refinement. We quanti-
tatively evaluate the camera pose estimation, a byprod-
uct of our system, following MonST3R [115] on the
SLAM dataset TUM-dynamics [88] and the synthetic Sintel
dataset [12]. The camera pose errors are shown in Table 3.
Although camera pose estimation is not the main focus of

Figure 6. Application of MoSca reconstructed 4D scenes.
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Table 3. Camera pose accuracy (∗ requires ground truth camera
intrinsics as input)

Sintel [12] TUM-dynamics [88]
Method ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓
DROID-SLAM∗ [92] 0.175 0.084 1.912 - - -
DPVO∗ [93] 0.115 0.072 1.975 - - -
ParticleSfM [117] 0.129 0.031 0.535 - - -
LEAP-VO∗ [15] 0.089 0.066 1.250 0.068 0.008 1.686
Robust-CVD [49] 0.360 0.154 3.443 0.153 0.026 3.528
CasualSAM [116] 0.141 0.035 0.615 0.071 0.010 1.712
DUSt3R [100] w/ mask 0.417 0.250 5.796 0.083 0.017 3.567
MonST3R [115] 0.108 0.042 0.732 0.063 0.009 1.217
Ours 0.090 0.034 0.312 0.031 0.011 0.426

Figure 7. Visual comparison of ablation.

MoSca, it still achieves comparable or even superior perfor-
mance compared to camera-pose-tailored SLAM-based and
DuST3R-based methods. Notably, some of the SLAM sys-
tems in the table require known camera intrinsics, whereas
MoSca does not.
Correspondence. One feature of MoSca is its ability to
perform global fusion and provide dense correspondence.
We quantitatively evaluate the correspondence tracking ac-
curacy following DyCheck [30] and Gaussian Marbles [86].
Tab. 4 shows our state-of-the-art accuracy. Notably, MoSca
is optimized starting from BootsTAPIR [22] on DyCheck,
and we observe a significant improvement over the raw
tracker after reconstruction optimization.

4.3. Ablation Study

We assess the effects of different components in our system
in Tab. 5 and Fig. 7. We observe that both the geometric op-
timization and photometric optimization phases are critical.
DQB contributes to smooth results, the multi-level topology
pyramid enhances global rigidity and shape, and node con-
trol along with learnable skinning further improves the ex-
pressiveness of our system. Additionally, our system bene-
fits from the global fusion of observations from every frame.
We also verify the effectiveness of the tracking loss Ltrack.
When Ltrack is not used, the PCK-T accuracy decreases from
0.824 to 0.737. In Tab. 6, we study how different foundation
models affect performance. Note that Metric3D-v2 [34] and
UniDepth [76] are entirely RGB-based and do not use Li-
DAR sensor information, leading to a reasonable decrease
in performance. We report more specifications of our sys-
tem in Tab. 7, where we observe near real-time inference
FPS and the compactness of the MoSca nodes compared to
Table 4. Correspondence on DyCheck [30] with PCK-T @0.05%

Methods Nerfies[74] HyperNeRf[75] Dyn. Gauss. [67] 4D Gauss. [103]
PCK-T ↑ 0.4 0.453 0.079 0.073
Methods CoTracker[40] Gauss.Marbles[86] BootsTAPIR [22] Ours
PCK-T ↑ 0.803 0.806 0.779 0.824

Table 5. Ablation study on different components of the system.
Components mPSNR mSSIM mLPIPs
Full model 19.32 0.706 0.264
No node control 19.28 0.707 0.267
No learnable skinning correction 19.27 0.707 0.267
No dual quaternion blending 19.18 0.701 0.276
No multi-level topology 19.14 0.701 0.270
No geometric optimizaiton stage 18.85 0.693 0.287
No photometric optimization stage 13.71 0.480 0.763
Only fuse 4 neighboring frames 16.96 0.663 0.344
Only fuse 8 neighboring frames 17.26 0.664 0.346

Table 6. Ablation study on different priors on DyCheck [30].
Tracker BootsTAPIR [22] CoTracker-v3 [41] SpaTracker [106]
Depth mPSNR mLPIPs mPSNR mLPIPs mPSNR mLPIPs

LIDAR 19.32 0.264 19.55 0.243 19.32 0.259
Metric3D-v2 [34] 17.05 0.331 17.02 0.320 17.60 0.301

UniDepth [76] 17.12 0.323 17.42 0.299 17.61 0.300

Table 7. More specs of MoSca on DyCheck [30] (averaged)
FPS (2x res) Num of fg GS Num of nodes Ratio: #GS/#nodes

37.823 106596 3177 46.105

the actual foreground GS used to model the scene.

4.4. Applications

In-the-wild 4D reconstruction enables many interesting ap-
plications, as shown in Fig. 6. For example, we can re-
move the moving foreground (Figure 6-A), or remove oc-
cluders in an extremely challenging cup-game video to look
through and see where the ball goes (Figure 6-B). Video ob-
ject segmentation from DEVA [17] can be lifted and baked
into 4D to produce novel view semantic videos (Figure 6-
C). Finally, the 4D video can be edited in flexible ways, as
shown in Figure 6-D. We believe that MoSca will provide
the community with many more possibilities for future ap-
plications.

5. Limitations and Conclusion
Limitations. While MoSca achieves state-of-the-art perfor-
mance on standard benchmarks and can operate on some in-
the-wild videos, several limitations remain. (1) Our method
relies on accurate 2D long-term tracks and depth estima-
tion, indicating that improvements in these areas are crucial
for enhancing our performance. (2) Our current framework
only reconstructs areas that are visible at some point in the
video; it would be advantageous to incorporate large-scale
2D/video diffusion priors to hallucinate areas that are never
visible. (3) Another important issue for future work is the
correct modeling of lighting effects such as shadows, re-
flections, liquids, and changes in exposure. These effects
cannot be explained by deformation alone and may cause
artifacts in the background.

In summary, this paper takes a step toward reconstruction
and rendering from monocular in-the-wild casual videos We
hope this small step could inspire future exploration toward
understanding our dynamic physical world.

8



Acknowledgements. The authors appreciate the support of
the gift from AWS AI to Penn Engineering’s ASSET Cen-
ter for Trustworthy AI; and the support of the following
grants: NSF IIS-RI 2212433, NSF FRR 2220868 awarded
to UPenn, ARL grant W911NF-21-2-0104 and a Vannevar
Bush Faculty Fellowship awarded to Stanford University.

The authors thank Minh-Quan Viet Bui and the authors
of DyBluRF, Xiaoming Zhao and the authors of PGDVS for
providing their per-scene evaluation metrics on DyCheck
dataset.

References
[1] ShahRukh Athar, Zexiang Xu, Kalyan Sunkavalli, Eli

Shechtman, and Zhixin Shu. Rignerf: Fully controllable
neural 3d portraits. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
20364–20373, 2022. 2

[2] Benjamin Attal, Jia-Bin Huang, Christian Richardt,
Michael Zollhoefer, Johannes Kopf, Matthew O’Toole, and
Changil Kim. Hyperreel: High-fidelity 6-dof video with
ray-conditioned sampling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 2

[3] Aayush Bansal, Minh Vo, Yaser Sheikh, Deva Ramanan,
and Srinivasa Narasimhan. 4d visualization of dynamic
events from unconstrained multi-view videos. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020. 2

[4] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 5855–
5864, 2021. 2

[5] Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel,
and Tobias Ritschel. X-fields: Implicit neural view-, light-
and time-image interpolation. SIGGRAPH Asia, 2020. 2

[6] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter
Wonka, and Matthias Müller. Zoedepth: Zero-shot trans-
fer by combining relative and metric depth. arXiv preprint
arXiv:2302.12288, 2023. 2

[7] Volker Blanz and Thomas Vetter. A morphable model for
the synthesis of 3d faces. In Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Tech-
niques, pages 187–194, 1999. 2

[8] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Pe-
ter Gehler, Javier Romero, and Michael J Black. Keep it
smpl: Automatic estimation of 3d human pose and shape
from a single image. In European Conference on Computer
Vision, pages 561–578. Springer, 2016. 2

[9] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 2

[10] Aljaz Bozic, Pablo Palafox, Michael Zollöfer, Angela Dai,
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Michael Zollhöfer, Christoph Lassner, and Christian
Theobalt. Non-rigid neural radiance fields: Reconstruc-
tion and novel view synthesis of a dynamic scene from
monocular video. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 12959–
12970, 2021. 2, 7

[97] Chaoyang Wang, Ben Eckart, Simon Lucey, and Orazio
Gallo. Neural trajectory fields for dynamic novel view syn-
thesis. arXiv preprint arXiv:2105.05994, 2021. 2

[98] Chaoyang Wang, Peiye Zhuang, Aliaksandr Siarohin, Junli
Cao, Guocheng Qian, Hsin-Ying Lee, and Sergey Tulyakov.
Diffusion priors for dynamic view synthesis from monocu-
lar videos. arXiv preprint arXiv:2401.05583, 2024. 6

[99] Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin,
Zhengqi Li, and Angjoo Kanazawa. Shape of motion: 4d
reconstruction from a single video. 2024. 2, 6

[100] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris
Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d
vision made easy. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
20697–20709, 2024. 8

[101] Jing Wen, Xiaoming Zhao, Zhongzheng Ren, Alexan-
der G Schwing, and Shenlong Wang. Gomavatar: Efficient
animatable human modeling from monocular video us-
ing gaussians-on-mesh. arXiv preprint arXiv:2404.07991,
2024. 2

[102] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan,
Jonathan T Barron, and Ira Kemelmacher-Shlizerman. Hu-
mannerf: Free-viewpoint rendering of moving people from
monocular video. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
16210–16220, 2022. 2

[103] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xi-
aopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xing-
gang Wang. 4d gaussian splatting for real-time dynamic
scene rendering. arXiv preprint arXiv:2310.08528, 2023.
2, 6, 7, 8

[104] Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, For-
rester Cole, and Cengiz Oztireli. D 2̂ nerf: Self-supervised
decoupling of dynamic and static objects from a monocular
video. arXiv preprint arXiv:2205.15838, 2022. 2

[105] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint
video. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9421–
9431, 2021. 2

[106] Yuxi Xiao, Qianqian Wang, Shangzhan Zhang, Nan Xue,
Sida Peng, Yujun Shen, and Xiaowei Zhou. Spatialtracker:

12



Tracking any 2d pixels in 3d space. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024. 3, 8

[107] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel
Vlasic, Forrester Cole, Huiwen Chang, Deva Ramanan,
William T Freeman, and Ce Liu. Lasr: Learning articulated
shape reconstruction from a monocular video. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4925–4935, 2021. 2

[108] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ra-
manan, Andrea Vedaldi, and Hanbyul Joo. Banmo: Build-
ing animatable 3d neural models from many casual videos.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 22247–22257, 2022.
2

[109] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Ji-
ashi Feng, and Hengshuang Zhao. Depth anything: Un-
leashing the power of large-scale unlabeled data. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10371–10381, 2024. 2

[110] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians
for high-fidelity monocular dynamic scene reconstruction.
arXiv preprint arXiv:2309.13101, 2023. 2

[111] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and
Li Zhang. Real-time photorealistic dynamic scene repre-
sentation and rendering with 4d gaussian splatting. arXiv
preprint arXiv:2310.10642, 2023. 2

[112] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,
and Jan Kautz. Novel view synthesis of dynamic scenes
with globally coherent depths from a monocular camera.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5336–5345, 2020. 2,
7

[113] Meng You and Junhui Hou. Decoupling dynamic monoc-
ular videos for dynamic view synthesis. arXiv preprint
arXiv:2304.01716, 2023. 2

[114] Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian
opacity fields: Efficient and compact surface reconstruction
in unbounded scenes. arXiv preprint arXiv:2404.10772,
2024. 2

[115] Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jam-
pani, Trevor Darrell, Forrester Cole, Deqing Sun, and
Ming-Hsuan Yang. Monst3r: A simple approach for esti-
mating geometry in the presence of motion. arXiv preprint
arxiv:2410.03825, 2024. 7, 8

[116] Zhoutong Zhang, Forrester Cole, Zhengqi Li, Michael Ru-
binstein, Noah Snavely, and William T Freeman. Structure
and motion from casual videos. In European Conference
on Computer Vision, pages 20–37. Springer, 2022. 8

[117] Wang Zhao, Shaohui Liu, Hengkai Guo, Wenping Wang,
and Yong-Jin Liu. Particlesfm: Exploiting dense point tra-
jectories for localizing moving cameras in the wild. In Eu-
ropean conference on computer vision (ECCV), 2022. 8

[118] Xiaoming Zhao, Alex Colburn, Fangchang Ma, Miguel An-
gel Bautista, Joshua M. Susskind, and Alexander G.
Schwing. Pseudo-generalized dynamic view synthesis from
a video, 2024. 2, 6, 7

[119] Kaichen Zhou, Jia-Xing Zhong, Sangyun Shin, Kai Lu,
Yiyuan Yang, Andrew Markham, and Niki Trigoni. Dyn-
point: Dynamic neural point for view synthesis. Advances
in Neural Information Processing Systems, 36, 2024. 2, 6,
7

[120] C. Lawrence Zitnick, Sing Bing Kang, Matthew Uytten-
daele, Simon Winder, and Richard Szeliski. High-quality
video view interpolation using a layered representation.
ACM Transactions on Graphics (TOG), 2004. 2
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